JP2014198346A - Method of manufacturing different diameter cylindrical molding by cold forging, and method of manufacturing main fitting for gas sensor - Google Patents

Method of manufacturing different diameter cylindrical molding by cold forging, and method of manufacturing main fitting for gas sensor Download PDF

Info

Publication number
JP2014198346A
JP2014198346A JP2013225292A JP2013225292A JP2014198346A JP 2014198346 A JP2014198346 A JP 2014198346A JP 2013225292 A JP2013225292 A JP 2013225292A JP 2013225292 A JP2013225292 A JP 2013225292A JP 2014198346 A JP2014198346 A JP 2014198346A
Authority
JP
Japan
Prior art keywords
diameter
rear end
peripheral surface
punch
polygonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013225292A
Other languages
Japanese (ja)
Other versions
JP6109709B2 (en
Inventor
光成 仮屋
Mitsunari Kariya
光成 仮屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013225292A priority Critical patent/JP6109709B2/en
Publication of JP2014198346A publication Critical patent/JP2014198346A/en
Application granted granted Critical
Publication of JP6109709B2 publication Critical patent/JP6109709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cold forging method capable of reducing a cutting step for a different diameter cylindrical molding which is a material for a main fitting.SOLUTION: After molding of a different diameter cylindrical molding 120b, a hole is opened at a rear end surface 29b of its large diameter part 22b, and at a drilling punch 240c for evagination-molding an outer peripheral surface thereof to provide a polygonal portion 23c, an extrusion sleeve 250c which allows entering of the large diameter part 22b into the inside of its own and allows a front end to enter a polygonal hole 207c of a die 200c for molding the polygonal portion 23c is externally fitted in circumferential direction with an interval being held. The sleeve 250c is linked with reciprocation of the punch 240c through a spring. When a front end of the punch 240c is driven into the rear end surface 29b of the large diameter part 22b, a portion of the sleeve that is closer to the front end is fitted in a portion of the large diameter part 22b which is closer to the rear end face 29b. When the polygonal portion 23c with a hole is evagination-molded, a thin-walled cylinder part 27c is extrusion molded between an inner peripheral surface of a portion of the sleeve which is closer to the front end, being at the rear end thereof, and the outer peripheral surface of the punch.

Description

本発明は、排気ガスの酸素濃度を測定するガスセンサの主要構成部品である主体金具、或いはスパークプラグの主要構成部品である主体金具のように、異径筒状をなす部品であり、その部品の製造に供される素材であるところの異径筒状成形体の冷間鍛造による製造方法、及び、この異径筒状成形体から製造されるガスセンサ用主体金具の製造方法に関する。   The present invention is a component having a different diameter cylindrical shape, such as a metal shell that is a main component of a gas sensor that measures the oxygen concentration of exhaust gas, or a metal shell that is a main component of a spark plug. The present invention relates to a manufacturing method by cold forging of a different-diameter cylindrical molded body, which is a material used for manufacturing, and a manufacturing method of a metal shell for a gas sensor manufactured from this different-diameter cylindrical molded body.

図8は、自動車やバイク(2輪自動車)に使用されるガスセンサ(例えば、酸素センサ。以下、単にセンサともいう)10の断面図である。このものは、排気管に設けられたネジ穴にねじ込み方式で取付けられる異径筒状をなす主体金具20と、その内側において先端(図示下端)が閉じられた筒状をなすセンサ素子30、そして、その素子30の内側やセンサ内の端子金具11等を保護するために被せられた保護筒(内側保護筒、外側保護筒)40,41等から構成されている。このセンサ10は、素子30の内外の酸素濃度差に基づいて、その内外に設けられた電極間に起電力を生じさせ、これに基づく信号を後端(図示上端)から引き出されているリード線50を介して制御回路に出力し、排気ガス中の酸素濃度を検知して空燃比制御するのに使用される。   FIG. 8 is a cross-sectional view of a gas sensor (for example, an oxygen sensor; hereinafter simply referred to as a sensor) 10 used in an automobile or a motorcycle (two-wheeled automobile). This has a metal shell 20 with a different diameter that is attached to a screw hole provided in an exhaust pipe by a screw-in method, a cylindrical sensor element 30 with a tip (lower end in the figure) closed inside, and The protective cylinder (inner protective cylinder, outer protective cylinder) 40, 41, etc., is provided to protect the inside of the element 30 and the terminal fitting 11 in the sensor. The sensor 10 generates an electromotive force between electrodes provided on the inside and outside of the element 30 based on a difference in oxygen concentration between the inside and outside of the element 30, and a lead based on this signal is drawn from the rear end (the upper end in the figure). 50 is output to the control circuit via 50 and used to detect the oxygen concentration in the exhaust gas and control the air-fuel ratio.

このようなセンサ10の主要構成部品である主体金具20は、図8に示したように、全体としてみると異径筒状構造を呈しており、先端側が、相対的に小径のネジ付き筒部(ネジ付き小径円筒部)21をなし、それに続く後方に、それより大径のねじ込み用の多角形部(例えば、六角形部)23を備えている。そして、さらにこれに続く後端側には、この多角形部よりは小径であるが、ネジ付き小径円筒部21よりは大径で、薄肉円筒部27を有する円筒部(以下、薄肉円筒部も含めて大径円筒部ともいう)25を備えている。図8では、薄肉円筒部27は中心線に向けて曲げられているが、これは後述するように部品状態(図9参照)においては円筒状をなしている。このセンサ10では、この主体金具20の内側にセンサ素子30が、シール材13や絶縁ホルダ15等を介して同心配置されて固定されている。この固定は、外側保護筒41が固定される前の組立工程において、主体金具20の内側にセンサ素子30等を配置、装填した後、内側保護筒40の先端外周のフランジ43を、絶縁ホルダ15の後端に当接させ、Oリング17を介した状態において、大径円筒部25の後端の薄肉円筒部27を図示のように内側(中心軸線側)に向けて折り曲げると共に、先端に向けて圧縮するカシメ加工によっている。   As shown in FIG. 8, the metal shell 20 which is a main component of the sensor 10 has a cylindrical structure with a different diameter when viewed as a whole, and a threaded cylindrical portion having a relatively small diameter at the tip side. (Screwed small-diameter cylindrical part) 21 is formed, and a polygonal part (for example, a hexagonal part) 23 for screwing having a larger diameter is provided at the rear thereof. Further, on the rear end side following this, a cylindrical portion (hereinafter also referred to as a thin cylindrical portion) having a smaller diameter than the polygonal portion but a larger diameter than the threaded small diameter cylindrical portion 21 and having a thin cylindrical portion 27. Including a large-diameter cylindrical portion) 25. In FIG. 8, the thin cylindrical portion 27 is bent toward the center line, but this is cylindrical in the component state (see FIG. 9) as described later. In the sensor 10, a sensor element 30 is concentrically disposed and fixed inside the metal shell 20 via a seal material 13, an insulating holder 15, and the like. This fixing is performed in the assembly process before the outer protective cylinder 41 is fixed, after the sensor element 30 or the like is arranged and loaded inside the metal shell 20, the flange 43 on the outer periphery of the front end of the inner protective cylinder 40 is attached to the insulating holder 15. The thin cylindrical portion 27 at the rear end of the large-diameter cylindrical portion 25 is bent toward the inner side (center axis side) as shown in the drawing while being brought into contact with the rear end and through the O-ring 17 and directed toward the front end. It is by caulking processing that compresses.

図9は、このようなカシメ加工が行われる前の部品としての主体金具20を示したものである。図示のように、その大径円筒部25の後端寄り部位のうち、後端(図示上端)から先端(図示下端)に向かう一定範囲(一定部位)は、カシメ加工に適するように、外径が小さく、肉厚の薄い薄肉円筒部27をなしている。また、図9のものでは、大径円筒部25のうち、多角形部23寄り部位も、外径が小さく肉厚の薄い第2薄肉円筒部28をなしている。これは、カシメ加工時においては、この部位が図8に示したように座屈状に変形するようにするためである。また、このような主体金具は、図示のように、内径は、素子30をシール状に保持するためのシール材13等を配置するため、ネジ付き小径円筒部21から後方に向かうに従い段階的に大きくなるように形成されている。なお、本願において、主体金具に関して先端というときは、図9におけるその下端をいい、後端というときはその逆の端を言う。   FIG. 9 shows the metallic shell 20 as a part before such caulking is performed. As shown in the drawing, a certain range (constant portion) from the rear end (the upper end in the drawing) to the tip (the lower end in the drawing) of the portion near the rear end of the large-diameter cylindrical portion 25 has an outer diameter suitable for caulking. The thin cylindrical portion 27 is small and thin. In the case of FIG. 9, the portion near the polygonal portion 23 in the large-diameter cylindrical portion 25 also forms the second thin-walled cylindrical portion 28 having a small outer diameter and a small thickness. This is to cause this portion to be buckled as shown in FIG. 8 during the caulking process. In addition, as shown in the figure, such a metal shell has an inner diameter that gradually increases from the threaded small-diameter cylindrical portion 21 to the rear in order to dispose the sealing material 13 and the like for holding the element 30 in a seal shape. It is formed to be large. In addition, in this application, when it is called the front-end | tip regarding a metal fitting, the lower end in FIG. 9 is said, and when it is called a rear end, it means the opposite end.

ところで、このような異径筒状構造を有する主体金具を、高強度、かつ、低コストで効率的に製造するためには、なるべく、その完成品に近い寸法、形状(構造)のものに冷間鍛造によって成形した成形体としておき、この成形体において、ネジや寸法精度上において必要箇所のみを、できるだけ少ない切削代となるように仕上げることになる。これは、酸素センサを構成する主体金具に限られず、同様又は類似の異径筒状構造を有する、スパークプラグを構成する主体金具の製造においても同様である。こうしたことから、かかる主体金具は、従来、冷間鍛造により、低炭素鋼の丸棒を短く切断した出発素材(円柱体)から、複数(多段)の冷間鍛造工程を経ることで、図10に示したような、形状の素材(異径筒状成形体)20fに製造していた(例えば、特許文献1の図1参照)。そして、この素材(異径筒状成形体)20fは、その後、大径円筒部25のうち、その後端から先端に向かう一定範囲(薄肉円筒部27相当部位)や、その多角形部23寄り部位の第2薄肉円筒部28をカシメ加工に適するように切削(円筒切削)するなどされ、図9に示した主体金具(部品)20として仕上げられる。   By the way, in order to efficiently manufacture a metal shell having such a different-diameter cylindrical structure with high strength and low cost, it should be cooled to a size and shape (structure) as close to the finished product as possible. The molded body is formed by hot forging, and in this molded body, only necessary portions in terms of screws and dimensional accuracy are finished so as to have as little cutting allowance as possible. This is not limited to the metal shell constituting the oxygen sensor, and the same applies to the production of the metal shell constituting the spark plug having the same or similar different diameter cylindrical structure. For this reason, the metal shell is conventionally subjected to a plurality of (multistage) cold forging steps from a starting material (cylindrical body) obtained by cutting a low-carbon steel round bar short by cold forging. (See, for example, FIG. 1 of Patent Document 1). Then, this raw material (different diameter cylindrical molded body) 20f is a fixed range (a portion corresponding to the thin cylindrical portion 27) from the rear end to the tip of the large diameter cylindrical portion 25, or a portion closer to the polygonal portion 23. The second thin-walled cylindrical portion 28 is cut (cylindrical cutting) so as to be suitable for caulking, and finished as a metal shell (part) 20 shown in FIG.

ところで、図10に示した異径筒状成形体20fは、例えば、図11に、A〜Fとして断面図示したように、第1工程成形体20aから最終の異径筒状成形体をなす第6工程成形体20f(最終の異径筒状成形体と同成形体であるため、同符号を用いて図示)に、順次成形されていた(特許文献1の図1参照)。ここで、その概要を説明すると、第1工程においては、丸棒から切断した出発素材(円柱体)の端面等を整える成形を行って第1工程成形体20aとし、第2工程において、これを先端(図示下端)側が小径部で、後端(図示上端)側が大径部の異径円柱状成形体(第2工程成形体)20bとする。そして、第3工程においては、図12の左図(A)に示したように、この異径円柱状成形体(第2工程成形体)20bにおけるその小径部の外周面を拘束可能の円形穴と、この円形穴と同心で、環状棚面を介し、ねじ込み用の多角形部における外周面の多角形を内周面として備えた多角形穴を有するダイ200cを用い、このダイにおける前記円形穴に、前記小径部を内挿してその先端面を支持用パンチ220c等で支持し(図12の左図の中心線の左側参照)、その後、図12の左図の中心線の右側に示したように、前記大径部の後端面に、前記大径円筒部の内周面形成用の穴あけ用パンチ240cを打ち込む(図12の左図の中心線の左側は当該工程前(成形前)の図を、中心線の右側は当該工程後(成形後)の図を、それぞれ示している)。これによって、その大径部の後端面に底のある穴をあけると共に、該大径部の外周面を、前記多角形穴の内周面に押付けて膨出成形することにより、穴付き多角形部を形成し、穴付き多角形部付き異径成形体(第3工程成形体)20cを得る。   By the way, the different-diameter cylindrical molded body 20f shown in FIG. 10 is, for example, a first cylindrical molded body having a final diameter different from the first process molded body 20a as shown in FIGS. The six-step molded body 20f (the same molded body as the final different-diameter cylindrical molded body, which is illustrated using the same reference numerals) was sequentially molded (see FIG. 1 of Patent Document 1). Here, the outline will be explained. In the first step, the first step formed body 20a is formed by adjusting the end face of the starting material (cylindrical body) cut from the round bar, and in the second step, A different diameter cylindrical molded body (second process molded body) 20b having a small diameter portion on the front end (lower end in the figure) and a large diameter portion on the rear end (upper end in the figure) is assumed. And in the 3rd process, as shown in the left figure (A) of Drawing 12, circular hole which can constrain the outer peripheral surface of the small diameter part in this different diameter columnar molded object (2nd process molded object) 20b And a die 200c having a polygonal hole having an outer peripheral surface of a polygon part for screwing as an inner peripheral surface through an annular shelf surface and concentric with the circular hole, and the circular hole in the die Further, the small diameter portion is inserted and the front end surface thereof is supported by a support punch 220c or the like (see the left side of the center line in the left diagram in FIG. 12), and then shown on the right side of the center line in the left diagram in FIG. Thus, the punching punch 240c for forming the inner peripheral surface of the large-diameter cylindrical portion is driven into the rear end surface of the large-diameter portion (the left side of the center line in the left diagram of FIG. 12 is before the process (before molding). The right side of the center line shows the figure after the process (after molding). ). Accordingly, a hole with a bottom is formed in the rear end surface of the large-diameter portion, and the outer peripheral surface of the large-diameter portion is pressed against the inner peripheral surface of the polygonal hole to form a polygon with a hole. Part is formed, and a different-diameter molded body (third-process molded body) 20c with a polygonal section with holes is obtained.

そして、第4工程においては、図12の右図(B)に示したように、ダイ200dに配置された支持用スリーブ220dの前端内に、この異径成形体(第3工程成形体)20cにおける小径部を内挿して、穴付き多角形部の先端向き面を支持し(図12の右図の中心線の左側参照)、かつ、穴付き多角形部に設けられた前記穴に保形用パンチ240dを挿入した状態で、図12の右図の中心線の右側に示したように、該穴付き多角形部の外周面のうち、後端(図示上端)から先端に向かう所定範囲(多角形部に相当する先後範囲以外)の外周面を、ダイ260dにて、前記大径円筒部25の切削加工前の外径に縮小する(絞り込む)と同時に、後方に延伸させる押出し成形を行い、第4工程成形体20dを得る。そして、その後、第5工程において、穴の深穴成形をすると共に小径部を延伸して小径筒部としてなる第5工程成形体20e(図11−E参照)とし、さらに、第6工程において、その穴の底壁である未貫通壁部を打抜いて最終の第6工程成形体(異径筒状成形体)20f(図11−F参照)としていた。かくして、複数、多段の冷間鍛造により製造された異径筒状成形体は、図10に示したような成形体20fとなる。なお、本明細書では、以下、各冷間鍛造工程を経て、素材から異径筒状成形体として成形されるまでの仕掛品を単に成形体ともいう。また、本願において、成形体の成形に供されるダイ、又はパンチ等の金型構成部材等について、前端とは、それらの金型のうち、素材(成形体)が押込まれる入口側の端、又は素材に打ち付けられる(押付けられる)側にある端をいい、基端とは、前端と逆の端をいい、上記した主体金具及びその仕掛品(成形体)の先端、後端とを使い分けるものとする。   Then, in the fourth step, as shown in the right view (B) of FIG. 12, this different diameter molded body (third process molded body) 20c is formed in the front end of the supporting sleeve 220d disposed on the die 200d. Is inserted into the small-diameter portion to support the tip-facing surface of the polygonal portion with a hole (see the left side of the center line in the right diagram of FIG. 12), and is retained in the hole provided in the polygonal portion with a hole With the punch 240d inserted, as shown on the right side of the center line in the right diagram of FIG. 12, a predetermined range (from the rear end (upper end in the drawing) to the front end of the outer peripheral surface of the holed polygonal portion ( The outer peripheral surface (except for the front and rear range corresponding to the polygonal portion) is reduced (squeezed) to the outer diameter before cutting of the large-diameter cylindrical portion 25 by the die 260d, and at the same time, the extrusion is performed to extend backward. The fourth process molded body 20d is obtained. Then, in the fifth step, the fifth step formed body 20e (see FIG. 11-E) is formed as a small-diameter cylindrical portion by extending the small diameter portion while forming the deep hole of the hole, and further, in the sixth step, The non-penetrating wall portion, which is the bottom wall of the hole, was punched into the final sixth step molded body (different diameter cylindrical molded body) 20f (see FIG. 11-F). Thus, the different-diameter cylindrical molded body manufactured by a plurality of multi-stage cold forgings becomes a molded body 20f as shown in FIG. In the present specification, hereinafter, the work in progress from the raw material through the cold forging process until it is formed as a different diameter cylindrical molded body is also simply referred to as a molded body. Moreover, in this application, about die | dye used for shaping | molding of a molded object, or die components, such as a punch, a front end is an end by the side of the entrance into which a raw material (molded object) is pushed among those dies. Or, the end on the side to be struck (pressed) on the material, the base end is the end opposite to the front end, and the above-mentioned metal shell and the tip and rear end of the work piece (molded product) are used properly Shall.

特開平04−371336号公報JP 04-371336 A

図10に示したように、上記、複数、多段の冷間鍛造工程を経て製造された異径筒状成形体20fにおいて、カシメ加工の対象とされる薄肉円筒部27,第2薄肉円筒部28を構成することになる大径円筒部25は、その冷間鍛造の終了時点では、先後に概ね一定の厚肉の厚肉円筒部をなしている。このため、大径円筒部25は、その多角形部23寄り部位の第2薄肉円筒部28だけでなく、多角形部23とは反対端側の後端から先端に向かう一定範囲(薄肉円筒部27相当部位)の外径についても、その外周面を切削(旋削)する必要がある。これにより、従来の主体金具は、製造工程が多く、また、その削り代が多い分、材料歩留まりも悪いし、さらには切削工具の寿命も短くなるため、コストアップを招いていたという指摘ないし問題があった。かかる問題に対しては、例えば、上記冷間鍛造工程中の第4工程(図12の右図B参照)において、穴付き多角形部の外周面のうち、後端から先端に向かう所定範囲(多角形部に相当する先後範囲以外)の外周面を、大径円筒部(切削加工前の外径)に縮小して押出し成形する際、図13に示した成形体120fのように、その大径円筒部25の後端から先端に向かう一定範囲の外径を、最初からカシメ加工に適する薄肉円筒部27f又はそれに近い寸法をなすよう、この一定範囲以外の外径より小さくなるように成形すればよいのではないか、という見解もある。すなわち、大径円筒部25を、多角形部寄りの厚肉円筒部26と、薄肉円筒部27fとになるように成形すればよい、というものである。   As shown in FIG. 10, in the different-diameter cylindrical molded body 20f manufactured through the above-described multiple and multi-stage cold forging processes, the thin cylindrical portion 27 and the second thin cylindrical portion 28 that are to be caulked. The large-diameter cylindrical portion 25 that constitutes is formed into a thick-walled cylindrical portion having a substantially constant thickness at the end of the cold forging. For this reason, the large-diameter cylindrical portion 25 is not limited to the second thin-walled cylindrical portion 28 near the polygonal portion 23, but a certain range (thin-walled cylindrical portion) from the rear end on the opposite side to the polygonal portion 23 toward the front end. 27), the outer peripheral surface must be cut (turned). As a result, the conventional metal shell has many manufacturing processes, and there is a lot of cutting allowance, resulting in poor material yield and shortened cutting tool life, leading to an increase in cost. was there. For such a problem, for example, in the fourth step in the cold forging step (see the right diagram B in FIG. 12), a predetermined range (from the rear end to the front end) of the outer peripheral surface of the polygonal portion with a hole ( When the outer peripheral surface of the polygonal portion (other than the front and rear range) is reduced to a large-diameter cylindrical portion (outer diameter before cutting) and extrusion-molded, as shown in a molded body 120f shown in FIG. The outer diameter in a certain range from the rear end to the tip of the diameter cylindrical portion 25 is formed so as to be smaller than the outer diameter outside this certain range so as to form a thin cylindrical portion 27f suitable for caulking from the beginning or a size close thereto. There is also an opinion that it may be good. That is, the large-diameter cylindrical portion 25 may be formed so as to be a thick cylindrical portion 26 near the polygonal portion and a thin cylindrical portion 27f.

確かに、第4工程(図12の右図B参照)において、その上のダイ260dに代えて、図13に示した成形体が得られる内周面(図12の右図B中の2点鎖線 L1)を有するダイを用いれば、それは理論上は可能である。しかしながら、このような成形では、先後方向において、2段の縮径(変形)を同時に行いながらの後方押出し成形になるだけでなく、押出される隙間が小さく、しかも、後方への押出し長さも長くなる。これにより、成形抵抗が極端に大きくなることから、鍛造時のプレス荷重が異常に増大することや、ダイやパンチ(金型)の負担が大きく、損傷を受けやすいのでそれらの寿命が短くなる。しかも、塑性変形される素材(肉)の回りこみ(流動)に不具合が発生しがちとなり、成形体にワレ等の不良も発生しやすく、歩留まりも悪くなる。こうしたことから、上記したような第4工程において、2段の縮径(変形)を行いながらの後方押出し成形は、難点が多く、採用できないというのが実情である。   Certainly, in the fourth step (see the right figure B in FIG. 12), instead of the die 260d on the fourth step (see the right figure B in FIG. 12), the inner peripheral surface (two points in the right figure B in FIG. 12) is obtained. It is theoretically possible if a die with chain line L1) is used. However, in such molding, not only backward extrusion molding while simultaneously performing two-stage diameter reduction (deformation) in the front-rear direction, the extruded gap is small, and the backward extrusion length is long. Become. As a result, the molding resistance becomes extremely large, the press load during forging increases abnormally, the burden on the die and punch (die) is large, and they are susceptible to damage, so their life is shortened. In addition, defects tend to occur in the wrapping (flow) of the plastically deformed material (meat), and defects such as cracks are likely to occur in the molded body, resulting in poor yield. For these reasons, in the fourth step as described above, the backward extrusion molding with two-stage diameter reduction (deformation) has many drawbacks and cannot be adopted.

本発明は、かかる問題点に鑑み、図13に示したような、主体金具仕掛品をなす異径筒状成形体を冷間鍛造により、効率的に製造できる方法、及びガスセンサ用主体金具を効率的に製造できる方法を提供することをその目的とする。   In view of such problems, the present invention has a method for efficiently manufacturing a tubular molded body having a different diameter, which is a work in progress of a metal shell, as shown in FIG. It is an object of the present invention to provide a method that can be manufactured automatically.

請求項1に記載の本発明は、先端側に小径円筒部を、後端側に大径円筒部を有すると共に、この両円筒部の先後の間に、外径が大径円筒部の外径より大きい多角形部を有し、かつ、前記大径円筒部は、この多角形部と反対端側の後端から先端に向かう一定範囲が、それ以外の範囲より外径が小さく、前記一定範囲が肉厚の薄い薄肉円筒部に成形され、それ以外の範囲が肉厚の厚い厚肉円筒部に成形されてなる異径筒状成形体の冷間鍛造による製造方法であって、
その冷間鍛造工程中に、
先端側が小径部で後端側が大径部をなす異径円柱状成形体を成形する冷間鍛造工程と、
この異径円柱状成形体における前記大径部の後端面に、前記大径円筒部の内周面成形用の穴あけ用パンチを打ち込むことによって、その後端面に底のある穴をあけると共に、該大径部の外周面を、ダイに設けられた多角形穴の内周面に押付けるようにして穴付き多角形部を膨出成形して穴付き多角形部付き異径成形体を成形する冷間鍛造工程と、
を含んでいる、前記異径筒状成形体の冷間鍛造による製造方法において、
前記異径円柱状成形体を成形する際、その大径部の外径を、前記薄肉円筒部の外径となるようにして成形しておき、
前記穴付き多角形部付き異径成形体を成形する冷間鍛造工程において、
自身の内側に前記大径部が嵌り込み可能であり、かつ、前記ダイにおける多角形穴に前端が嵌り込み可能の押出し用スリーブを、前記穴あけ用パンチに対し、周方向において一定の間隔が保持されるように外嵌め状態で、しかも、前進及び後進が可能に取り付けておくと共に、
前記穴あけ用パンチの前端が前記大径部の後端面に打ち込まれるときに、該押出し用スリーブの前端寄り部位を、該大径部の後端面寄り部位に嵌り込ませてその外周面を拘束するようにしておき、
前記穴あけ用パンチを、前記大径部の後端面に打ち込むことによって前記穴付き多角形部を成形する際に、該穴付き多角形部の後端であって、前記押出し用スリーブの前端寄り部位の内周面と該穴あけ用パンチの外周面との間に前記薄肉円筒部を押出し成形しておくことを特徴とする。
The present invention according to claim 1 has a small-diameter cylindrical portion on the front end side and a large-diameter cylindrical portion on the rear end side, and the outer diameter of the large-diameter cylindrical portion is between the front and rear of both cylindrical portions. The large-diameter cylindrical portion has a larger polygonal portion, and the constant diameter range from the rear end to the front end on the opposite side of the polygonal portion is smaller in outer diameter than the other ranges. Is a method for manufacturing by cold forging of a different-diameter cylindrical molded body formed into a thin-walled cylindrical portion with a thin wall thickness, and the other range is formed into a thick-walled thick-walled cylindrical portion,
During the cold forging process,
A cold forging step of forming a different-diameter cylindrical molded body having a small diameter portion on the front end side and a large diameter portion on the rear end side;
By punching a punch for punching the inner peripheral surface of the large-diameter cylindrical portion into the rear end surface of the large-diameter portion in the different-diameter columnar molded body, The outer peripheral surface of the diameter portion is pressed against the inner peripheral surface of the polygonal hole provided in the die so that the polygonal portion with the hole is bulged to form a different diameter molded body with the polygonal portion with the hole. A forging process,
In the manufacturing method by cold forging of the different-diameter cylindrical molded body,
When molding the different-diameter columnar molded body, the outer diameter of the large diameter portion is molded to be the outer diameter of the thin cylindrical portion,
In the cold forging process of forming the different diameter molded body with a polygonal portion with a hole,
The pushing sleeve, in which the large-diameter portion can be fitted inside itself and the front end can be fitted in a polygonal hole in the die, is kept at a constant interval in the circumferential direction with respect to the punch for punching. It is attached so that it can be moved forward and backward in an externally fitted state,
When the front end of the punch for punching is driven into the rear end surface of the large-diameter portion, the portion near the front end of the pushing sleeve is fitted into the portion near the rear end surface of the large-diameter portion to restrain the outer peripheral surface. So that
When forming the polygonal portion with holes by driving the punch for punching into the rear end surface of the large-diameter portion, the rear end portion of the polygonal portion with holes and a portion closer to the front end of the extrusion sleeve The thin cylindrical portion is extruded between the inner peripheral surface of the hole and the outer peripheral surface of the punch for punching.

また、請求項2に記載の本発明は、前記押出し用スリーブを、前記穴あけ用パンチに対し、該穴あけ用パンチの前進、後進にバネを介して連動するように取り付けておくと共に、前記穴あけ用パンチの前端が前記大径部の後端面に打ち込まれるときに、該押出し用スリーブの前端寄り部位を、前記バネの作用によって該大径部の後端面寄り部位に嵌り込ませてその外周面を拘束するようにしておくことを特徴とする、請求項1に記載の異径筒状成形体の冷間鍛造による製造方法である。
そして、請求項3に記載の本発明は、前記押出し用スリーブは、少なくともその前端から基端に向かう一定範囲の外周面が、前記ダイの多角形の内周面に入り込み可能の多角形をなしていることを特徴とする、請求項1又は2のいずれか1項に記載の異径筒状成形体の冷間鍛造による製造方法である。
According to a second aspect of the present invention, the extruding sleeve is attached to the punch for punching so as to be interlocked with a forward and backward movement of the punch for punching via a spring. When the front end of the punch is driven into the rear end surface of the large diameter portion, the portion near the front end of the pushing sleeve is fitted into the portion near the rear end surface of the large diameter portion by the action of the spring, and the outer peripheral surface thereof is It is made to restrain, It is a manufacturing method by cold forging of the different diameter cylindrical molded object of Claim 1 characterized by the above-mentioned.
According to the third aspect of the present invention, the extrusion sleeve has a polygon in which at least a certain outer peripheral surface from the front end to the base end can enter the inner peripheral surface of the polygon of the die. It is the manufacturing method by cold forging of the different diameter cylindrical molded object of any one of Claim 1 or 2 characterized by the above-mentioned.

請求項4に記載の本発明は、ガスセンサを構成するガスセンサ用主体金具の製造方法であって、
該ガスセンサ用主体金具は、先端側に小径円筒部を、後端側に大径円筒部を有すると共に、この両円筒部の先後の間に、外径が大径円筒部の外径より大きい多角形部を有し、かつ、前記大径円筒部は、この多角形部と反対端側の後端から先端に向かう一定範囲が、それ以外の範囲より外径が小さく、前記一定範囲が肉厚の薄い薄肉円筒部に成形され、それ以外の範囲が肉厚の厚い厚肉円筒部に成形されてなる異径筒状成形体から形成されてなり、
しかも、該異径筒状成形体は冷間鍛造によって成形され、該異径筒状成形体を形成する冷間鍛造工程中に、
先端側が小径部で後端側が大径部をなす異径円柱状成形体を成形する第1冷間鍛造工程と、
この異径円柱状成形体における前記大径部の後端面に、前記大径円筒部の内周面成形用の穴あけ用パンチを打ち込むことによって、その後端面に底のある穴をあけると共に、該大径部の外周面を、ダイに設けられた多角形穴の内周面に押付けるようにして穴付き多角形部を膨出成形して穴付き多角形部付き異径成形体を成形する第2冷間鍛造工程と、
を含んでいる、ガスセンサ用主体金具の製造方法であって、
前記異径円柱状成形体を成形する第1冷間鍛造工程において、その大径部の外径を、前記薄肉円筒部の外径となるようにして成形しておき、
前記穴付き多角形部付き異径成形体を成形する第2冷間鍛造工程において、
自身の内側に前記大径部が嵌り込み可能であり、かつ、前記ダイにおける多角形穴に前端が嵌り込み可能の押出し用スリーブを、前記穴あけ用パンチに対し、周方向において一定の間隔が保持されるように外嵌め状態で、しかも、前進及び後進が可能に取り付けておくと共に、
前記穴あけ用パンチの前端が前記大径部の後端面に打ち込まれるときに、該押出し用スリーブの前端寄り部位を、該大径部の後端面寄り部位に嵌り込ませてその外周面を拘束するようにしておき、
前記穴あけ用パンチを、前記大径部の後端面に打ち込むことによって前記穴付き多角形部を成形する際に、該穴付き多角形部の後端であって、前記押出し用スリーブの前端寄り部位の内周面と該穴あけ用パンチの外周面との間に前記薄肉円筒部を押出し成形しておき、
この後、この第2冷間鍛造工程で成形された前記穴付き多角形部における外周面のうち、該穴付き多角形部の後端から先端に向かう所定範囲の外周面を、前記大径部における前記厚肉円筒部の外径に縮小して後方に延伸させる押出し成形をする第3冷間鍛造工程を含めたことを特徴とする。
The present invention according to claim 4 is a method of manufacturing a metal shell for a gas sensor constituting a gas sensor,
The metal shell for gas sensor has a small-diameter cylindrical portion on the front end side and a large-diameter cylindrical portion on the rear end side, and an outer diameter larger than the outer diameter of the large-diameter cylindrical portion between the front and rear of both cylindrical portions. The large-diameter cylindrical portion has a square portion, and the large-diameter cylindrical portion has a certain range from the rear end to the tip side opposite to the polygonal portion, the outer diameter being smaller than the other ranges, and the certain range is thick. Formed into a thin thin cylindrical part, and the other range is formed from a different diameter cylindrical molded body formed into a thick thick cylindrical part,
Moreover, the different diameter cylindrical formed body is formed by cold forging, and during the cold forging step of forming the different diameter tubular formed body,
A first cold forging step of forming a different-diameter cylindrical molded body having a small diameter portion on the front end side and a large diameter portion on the rear end side;
By punching a punch for punching the inner peripheral surface of the large-diameter cylindrical portion into the rear end surface of the large-diameter portion in the different-diameter columnar molded body, The outer diameter surface of the diameter portion is pressed against the inner periphery surface of the polygonal hole provided in the die, and the polygonal portion with the hole is bulged to form a different diameter molded body with the polygonal portion with the hole. 2 cold forging process,
A method for manufacturing a metal shell for a gas sensor, comprising:
In the first cold forging step of forming the different-diameter columnar molded body, the outer diameter of the large-diameter portion is molded so as to be the outer diameter of the thin-walled cylindrical portion,
In the second cold forging step of forming the different diameter molded body with a polygonal portion with a hole,
The pushing sleeve, in which the large-diameter portion can be fitted inside itself and the front end can be fitted in a polygonal hole in the die, is kept at a constant interval in the circumferential direction with respect to the punch for punching. It is attached so that it can be moved forward and backward in an externally fitted state,
When the front end of the punch for punching is driven into the rear end surface of the large-diameter portion, the portion near the front end of the pushing sleeve is fitted into the portion near the rear end surface of the large-diameter portion to restrain the outer peripheral surface. So that
When forming the polygonal portion with holes by driving the punch for punching into the rear end surface of the large-diameter portion, the rear end portion of the polygonal portion with holes and a portion closer to the front end of the extrusion sleeve And extruding the thin cylindrical portion between the inner peripheral surface and the outer peripheral surface of the punch for punching,
Thereafter, out of the outer peripheral surface of the polygonal portion with holes formed in the second cold forging step, the outer peripheral surface of a predetermined range from the rear end to the tip of the polygonal portion with holes is changed to the large diameter portion. A third cold forging step is included in which extrusion molding is performed to reduce the outer diameter of the thick-walled cylindrical portion and extend backward.

請求項5に記載の本発明は、前記押出し用スリーブを、前記穴あけ用パンチに対し、該穴あけ用パンチの前進、後進にバネを介して連動するように取り付けておくと共に、前記穴あけ用パンチの前端が前記大径部の後端面に打ち込まれるときに、該押出し用スリーブの前端寄り部位を、前記バネの作用によって該大径部の後端面寄り部位に嵌り込ませてその外周面を拘束するようにしておくことを特徴とする、請求項4に記載のガスセンサ用主体金具の製造方法である。
請求項6に記載の本発明は、前記押出し用スリーブは、少なくともその前端から基端に向かう一定範囲の外周面が、前記ダイの多角形の内周面に入り込み可能の多角形をなしていることを特徴とする、請求項4又は5のいずれか1項に記載のガスセンサ用主体金具の製造方法である。
According to a fifth aspect of the present invention, the extruding sleeve is attached to the punch for punching so as to be interlocked with a forward and backward movement of the punch for punching via a spring. When the front end is driven into the rear end surface of the large-diameter portion, the portion near the front end of the pushing sleeve is fitted into the portion near the rear end surface of the large-diameter portion by the action of the spring to restrain the outer peripheral surface. The method of manufacturing a metal shell for a gas sensor according to claim 4, wherein:
In the present invention according to claim 6, in the extrusion sleeve, at least an outer peripheral surface in a certain range from the front end to the base end is a polygon that can enter the inner peripheral surface of the polygon of the die. The method for manufacturing a metal shell for a gas sensor according to any one of claims 4 and 5, wherein

本発明では、上記した構成により、従来の冷間鍛造工程の第3工程に相当する工程において、薄肉円筒部を押出し成形しておくことを特徴としている。この薄肉円筒部の押出し成形工程においては、該押出し用スリーブは、前記穴あけ用パンチの前端が前記大径部の後端面に打ち込まれるとき、その前端寄り部位が、該大径部の後端面寄り部位に嵌り込んでその外周面を拘束している。そして、前記穴あけ用パンチを、前記大径部の後端面に打ち込むことによって前記穴付き多角形部を成形する際に、該穴付き多角形部の後端であって、前記押出し用スリーブの前端寄り部位の内周面と該穴あけ用パンチの外周面との間に前記薄肉円筒部を押出し成形する、というものであるから、この成形工程(段階)においては、極端な成形抵抗の増大となることもない。したがって、以後は、上記した従来と同様の第4工程以降の工程に、順次回すことで、最終的に所望とする異径筒状成形体を問題なく得ることができる。ここで、本発明においてその薄肉円筒部の成形工程で成形抵抗が極端に大きくならない理由は、押出し用スリーブの前端において後方に押出される長さは、薄肉円筒部の長さ分だけでありその長さも大きくない。しかも、1段の縮径だけである。そして、他の変形は、穴あけ及びそれに伴って、従来の第3工程と同様の前記多角形穴の内周面に押付けられる膨出成形による変形だけであり、それが、押出し用スリーブの前端より前方において行われるというだけであるためである。   In the present invention, the above-described configuration is characterized in that the thin cylindrical portion is extruded in a step corresponding to the third step of the conventional cold forging step. In the extrusion process of the thin-walled cylindrical portion, when the front end of the punch for punching is driven into the rear end surface of the large-diameter portion, the portion near the front end is located near the rear end surface of the large-diameter portion. The outer peripheral surface is constrained by fitting into the part. When forming the polygonal portion with a hole by driving the punch for punching into the rear end surface of the large-diameter portion, the rear end of the polygonal portion with the hole, and the front end of the extrusion sleeve Since the thin cylindrical portion is extruded between the inner peripheral surface of the offset portion and the outer peripheral surface of the punch for punching, in this molding step (stage), an extreme increase in molding resistance occurs. There is nothing. Therefore, after that, the desired different diameter cylindrical molded body can be finally obtained without any problems by sequentially turning to the fourth and subsequent steps similar to the conventional one. Here, in the present invention, the reason why the molding resistance is not extremely increased in the molding process of the thin cylindrical portion is that the length pushed backward at the front end of the extrusion sleeve is only the length of the thin cylindrical portion. The length is not too big. In addition, the diameter is only reduced by one stage. The other deformation is only the deformation due to the bulge forming that is pressed against the inner peripheral surface of the polygonal hole, which is the same as in the conventional third step, which is the same as the conventional third step. This is because it is only performed in the front.

請求項1において、該押出し用スリーブは、前記穴あけ用パンチの前端が前記大径部の後端面に打ち込まれるときに、該押出し用スリーブの前端寄り部位を、該大径部の後端面寄り部位に嵌り込ませてその外周面を拘束するようにしておき、前記穴あけ用パンチを、前記大径部の後端面に打ち込むことによって前記穴付き多角形部を成形する際に、該穴付き多角形部の後端であって、前記押出し用スリーブの前端寄り部位の内周面と該穴あけ用パンチの外周面との間に前記薄肉円筒部を押出し成形されるように、駆動、制御すればよい。ただし、該押出し用スリーブは、請求項2に記載のように、前記穴あけ用パンチに対し、該穴あけ用パンチの前進、後進にバネを介して連動するように取り付けておくと共に、前記穴あけ用パンチの前端が前記大径部の後端面に打ち込まれるときに、該押出し用スリーブの前端寄り部位を、前記バネの作用によって該大径部の後端面寄り部位に嵌り込ませてその外周面を拘束するようにしておくとよい。このようにしておけば、別途、該押出し用スリーブの駆動、制御手段を要しないので、プレス装置の構成の単純化が図られるためである。   2. The extrusion sleeve according to claim 1, wherein when the front end of the punch for punching is driven into the rear end surface of the large-diameter portion, the portion near the front end of the extrusion sleeve is defined as a portion near the rear end surface of the large-diameter portion. The holed polygon is formed when the holed polygonal part is formed by driving the holed punch into the rear end surface of the large diameter part. It may be driven and controlled so that the thin cylindrical portion is extruded between the inner peripheral surface of the portion near the front end of the extrusion sleeve and the outer peripheral surface of the punch for punching. . However, as described in claim 2, the extruding sleeve is attached to the punch for punching so that the forward and backward movement of the punch for punching is interlocked with a spring, and the punch for punching is performed. When the front end of the sleeve is driven into the rear end surface of the large-diameter portion, the portion near the front end of the pushing sleeve is fitted into the portion near the rear end surface of the large-diameter portion by the action of the spring to restrain the outer peripheral surface. It is good to do so. By doing so, it is not necessary to separately drive and control the extruding sleeve, so that the configuration of the pressing device can be simplified.

なお、前記薄肉円筒部を備えた穴付き多角形部付き異径成形体を、上記した従来の冷間鍛造工程において相当する第4工程に回す。そこでは、従来同様に、この異径成形体における小径部に支持用スリーブを外嵌し、自身の外周面のうち、該小径部と該穴付き多角形部との境界をなす先端向き面を支持し、該穴付き多角形部に設けられた前記穴に保形用パンチを挿入した状態で、該穴付き多角形部の外周面のうち、後端から先端に向かう所定範囲の外周面を、前記大径円筒部のうちの厚肉円筒部の外径に縮小して後方に延伸させる押出し成形を行えばよい。そして、この押出し成形により、大径円筒部は、厚肉円筒部と、その後方の前記薄肉円筒部とに成形される。かくして、その後も、上記した従来の冷間鍛造工程と同様の第5工程に回して前記穴の深穴あけ加工をすると共に小径円筒部として延伸し、そして、従来の冷間鍛造工程と同様の第6工程に回してその穴の底壁の打抜く。こうすることで、先端側に小径円筒部を、後端側に大径円筒部を有すると共に、この両円筒部の先後の間に、外径が大径円筒部の外径より大きい多角形部を有し、かつ、前記大径円筒部は、この多角形部と反対端側の後端から先端に向かう一定範囲が、それ以外の範囲より外径が小さく、前記一定範囲が肉厚の薄い薄肉円筒部に成形され、それ以外の範囲が肉厚の厚い厚肉円筒部に成形されてなる、所望とする異径筒状成形体を得ることができる。すなわち、このようにして得られた異径筒状成形体は、図13に示したものとなるから、その後の機械加工においては、その大径円筒部25に対して行う、カシメ加工に適するようにするための切削工程においては、少なくとも、その薄肉円筒部27fの加工工程を大幅に低減できるため、加工コストのみならず、材料の節減も図ることができる。   In addition, the different diameter molded body with a polygon part with a hole provided with the said thin cylindrical part is sent to the 4th process corresponded in the above-mentioned conventional cold forging process. In this case, as in the prior art, a supporting sleeve is externally fitted to the small-diameter portion of the different-diameter molded body, and a tip-facing surface that forms a boundary between the small-diameter portion and the polygonal portion with the hole is formed on the outer peripheral surface of itself. In a state where the shape retaining punch is inserted into the hole provided in the polygonal portion with the hole, the outer peripheral surface of the predetermined range from the rear end to the tip is provided among the outer peripheral surfaces of the polygonal portion with the hole. The extrusion molding may be performed in which the outer diameter of the thick cylindrical portion of the large diameter cylindrical portion is reduced and stretched backward. And by this extrusion molding, a large diameter cylindrical part is shape | molded by the thick cylindrical part and the said thin cylindrical part of the back. Thus, after that, the fifth step similar to the conventional cold forging step described above is carried out to deep drill the hole and extend as a small diameter cylindrical portion, and the same as the conventional cold forging step. Turn to 6 steps and punch the bottom wall of the hole. In this way, a small diameter cylindrical portion is provided on the front end side and a large diameter cylindrical portion is provided on the rear end side, and a polygonal portion whose outer diameter is larger than the outer diameter of the large diameter cylindrical portion between the front and rear of both cylindrical portions. The large-diameter cylindrical portion has a certain range from the rear end to the tip opposite to the polygonal portion, the outer diameter is smaller than the other ranges, and the certain range is thin. It is possible to obtain a desired different-diameter cylindrical molded body which is formed into a thin cylindrical portion and is formed into a thick cylindrical portion where the other range is thick. That is, the different-diameter cylindrical molded body obtained in this way is the one shown in FIG. 13, so that it is suitable for the caulking process performed on the large-diameter cylindrical portion 25 in the subsequent machining. In the cutting process for achieving the above, at least the processing step of the thin cylindrical portion 27f can be greatly reduced, so that not only the processing cost but also the material can be saved.

請求項4に記載の発明は、請求項1における異径筒状成形体が、該ガスセンサ用主体金具となる場合であり、該異径筒状成形体を形成する冷間鍛造工程中に、上記第3冷間鍛造工程を含めたものである。すなわち、請求項4に記載の発明は、第2冷間鍛造工程の後、この第2冷間鍛造工程で成形された前記穴付き多角形部における外周面のうち、該穴付き多角形部の後端から先端に向かう所定範囲の外周面を、前記大径部における前記厚肉円筒部の外径に縮小して後方に延伸させる押出し成形をする第3冷間鍛造工程を含めたことを特徴とする、ガスセンサ用主体金具の製造方法である。したがって、その構成より、請求項1に記載の発明と同様の上記した効果が得られることは明らかである。なお、請求項5,6に記載の各発明は、請求項2,3に記載の各発明に対応するものであり、したがって、異径筒状成形体が該ガスセンサ用主体金具となる場合において、請求項2,3に記載の各発明と同様の効果が得られる。   Invention of Claim 4 is a case where the different diameter cylindrical molded object in Claim 1 becomes this metal fitting for gas sensors, During the cold forging process which forms this different diameter cylindrical molded object, The third cold forging step is included. That is, in the invention according to claim 4, after the second cold forging step, of the outer peripheral surface of the polygonal portion with holes formed in the second cold forging step, A third cold forging step is included in which an outer peripheral surface in a predetermined range from the rear end to the front end is reduced to the outer diameter of the thick cylindrical portion in the large-diameter portion and is extended backward. It is a manufacturing method of the metal fittings for gas sensors. Therefore, it is obvious that the above-described effect similar to that of the invention described in claim 1 can be obtained from the configuration. In addition, each invention of Claims 5 and 6 corresponds to each invention of Claims 2 and 3, and therefore, when the different-diameter cylindrical molded body is the metal shell for the gas sensor, The same effects as those of the inventions of claims 2 and 3 can be obtained.

本発明の製造方法を具体化した実施形態を説明する図であって、各工程で成形された成形体を説明する半断面図。It is a figure explaining embodiment which actualized the manufacturing method of this invention, Comprising: The half sectional view explaining the molded object shape | molded by each process. 実施形態において異径円柱状成形体を成形するまでの第1工程、第2工程を説明する金型を含む模式的断面図であって、左図Aは第1工程を示すもので、中心線の左半断面は成形前、中心線の右半断面は成形後の図、右図Bは第2工程を示すもので、中心線の左半断面は成形前、中心線の右半断面は成形後の各図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view including a mold for explaining a first step and a second step until a different-diameter cylindrical molded body is formed in an embodiment, and the left figure A shows a first step, and a center line The left half section of the figure is before molding, the right half section of the center line is the figure after molding, the right figure B shows the second step, the left half section of the center line is before molding, the right half section of the center line is molded Each figure after. 実施形態において穴付き多角形部付き異径成形体を成形する本発明の要部工程(第3工程)を説明する金型を含む模式的断面図、及びその要部拡大図であって、中心線の左半断面は成形前、中心線の右半断面は成形後の各図。It is typical sectional drawing including the metal mold | die explaining the principal part process (3rd process) of this invention which shape | molds the different diameter molded object with a polygon part with a hole in embodiment, The principal part enlarged view, Comprising: The left half section of the line is before molding, and the right half section of the center line is each figure after molding. 図3の第3工程において、穴付き多角形部が成形されるまでの、その素材の変形状態を説明する図。The figure explaining the deformation | transformation state of the raw material until a polygon part with a hole is shape | molded in the 3rd process of FIG. 実施形態において第4工程を説明する金型を含む模式的断面図であって、中心線の左半断面は成形前、中心線の右半断面は成形後の各図。It is typical sectional drawing containing the metal mold | die explaining a 4th process in embodiment, Comprising: The left half cross section of a center line is each figure after shaping | molding, and the right half cross section of a center line is after shaping | molding. 実施形態において第5工程を説明する金型を含む模式的断面図であって、中心線の左半断面は成形前、中心線の右半断面は成形後の各図。It is typical sectional drawing containing the metal mold | die explaining a 5th process in embodiment, Comprising: The left half section of a centerline is each figure after shaping | molding, and the right half section of a centerline is after shaping | molding. 実施形態において第6工程を説明する金型を含む模式的断面図であって、中心線の左半断面は成形前、中心線の右半断面は成形後の各図。It is typical sectional drawing containing the metal mold | die explaining a 6th process in embodiment, Comprising: The left half cross section of a center line is each figure after shaping | molding, and the right half cross section of a center line is after shaping | molding. 従来のガスセンサの一例を説明する概略構成断面図。The schematic structure sectional view explaining an example of the conventional gas sensor. 図8のガスセンサに用いられている主体金具の組付け前の部品状態の半断面図。FIG. 9 is a half cross-sectional view of a component state before assembly of a metal shell used in the gas sensor of FIG. 8. 図9の主体金具が冷間鍛造により成形された段階の主体金具仕掛品(機械加工前の成形体)の半断面図。FIG. 10 is a half cross-sectional view of a work in progress of a metal shell (formed body before machining) at a stage where the metal shell of FIG. 9 is formed by cold forging. 図10の主体金具仕掛品を冷間鍛造で成形するとき、各工程で成形された成形体を説明する断面図。Sectional drawing explaining the molded object shape | molded by each process, when shape | molding the metal fitting in-process of FIG. 10 by cold forging. 図11の成形体を成形する工程のうち、第3工程及び第4工程を説明する金型を含む模式的断面図。The typical sectional view containing the metallic mold explaining the 3rd process and the 4th process among the processes in which the fabrication object of Drawing 11 is fabricated. 機械加工前の成形体として望まれる主体金具仕掛品形状を説明する半断面図。The half sectional view explaining the metal shell work-in-progress shape desired as a molded object before machining.

本発明に係る異径筒状成形体の冷間鍛造による製造方法を具体化した実施の形態例について、図1〜図7を参照しながら詳細に説明する。ただし、本形態で製造される異径筒状成形体は、ガスセンサ用の主体金具製造用の素材であり、上記した図13に示した異径筒状成形体120fと同じものである。このため、それ自体の説明は省略するが、ガスセンサについて、図8、図9に基づいて、再度、説明する。図8は、自動車やバイクに使用されるガスセンサ(例えば、酸素センサ。)10の断面図である。このものは、排気管に設けられたネジ穴にねじ込み方式で取付けられる異径筒状をなす主体金具20と、その内側において先端(図示下端)が閉じられた筒状をなすセンサ素子30、そして、その素子30の内側やセンサ内の端子金具11等を保護するために被せられた保護筒(内側保護筒、外側保護筒)40,41等から構成されている。このセンサ10は、素子30の内外の酸素濃度差に基づいて、その内外に設けられた電極間に起電力を生じさせ、これに基づく信号を後端(図示上端)から引き出されているリード線50を介して制御回路に出力し、排気ガス中の酸素濃度を検知して空燃比制御するのに使用される。   The embodiment which actualized the manufacturing method by cold forging of the different diameter cylindrical molded object concerning this invention is described in detail, referring FIGS. However, the different-diameter cylindrical molded body manufactured in this embodiment is a material for manufacturing a metal shell for a gas sensor, and is the same as the different-diameter cylindrical molded body 120f shown in FIG. For this reason, although description of itself is abbreviate | omitted, a gas sensor is demonstrated again based on FIG. 8, FIG. FIG. 8 is a cross-sectional view of a gas sensor (for example, oxygen sensor) 10 used in an automobile or a motorcycle. This has a metal shell 20 with a different diameter that is attached to a screw hole provided in an exhaust pipe by a screw-in method, a cylindrical sensor element 30 with a tip (lower end in the figure) closed inside, and The protective cylinder (inner protective cylinder, outer protective cylinder) 40, 41, etc., is provided to protect the inside of the element 30 and the terminal fitting 11 in the sensor. The sensor 10 generates an electromotive force between electrodes provided on the inside and outside of the element 30 based on a difference in oxygen concentration between the inside and outside of the element 30, and a lead based on this signal is drawn from the rear end (the upper end in the figure). 50 is output to the control circuit via 50 and used to detect the oxygen concentration in the exhaust gas and control the air-fuel ratio.

また、このセンサ10の主要構成部品である主体金具20は、図8に示したように、全体としてみると異径筒状構造を呈しており、先端側が、相対的に小径のネジ付き筒部(ネジ付き小径円筒部)21をなし、それに続く後方に、それより大径のねじ込み用の多角形部(例えば、六角形部)23を備えている。そして、さらにこれに続く後端側には、この多角形部よりは小径であるが、ネジ付き小径円筒部21よりは大径で、薄肉円筒部27を有する円筒部(以下、薄肉円筒部も含めて大径円筒部ともいう)25を備えている。図8では、薄肉円筒部27は中心線に向けて曲げられているが、これは後述するように部品状態(図9参照)においては円筒状をなしている。なお、このセンサ10では、この主体金具20の内側にセンサ素子30が、シール材13や絶縁ホルダ15等を介して同心配置されて固定されている。この固定は、外側保護筒41が固定される前の組立工程において、主体金具20の内側にセンサ素子30等を配置、装填した後、内側保護筒40の先端外周のフランジ43を、絶縁ホルダ15の後端に当接させ、Oリング17を介した状態において、大径円筒部25の後端の薄肉円筒部27を図示のように内側(中心軸線側)に向けて折り曲げると共に、先端に向けて圧縮するカシメ加工によっている。   Further, as shown in FIG. 8, the metal shell 20 that is a main component of the sensor 10 has a cylindrical structure with a different diameter when viewed as a whole, and a threaded cylindrical portion having a relatively small diameter at the tip side. (Screwed small-diameter cylindrical part) 21 is formed, and a polygonal part (for example, a hexagonal part) 23 for screwing having a larger diameter is provided at the rear thereof. Further, on the rear end side following this, a cylindrical portion (hereinafter also referred to as a thin cylindrical portion) having a smaller diameter than the polygonal portion but a larger diameter than the threaded small diameter cylindrical portion 21 and having a thin cylindrical portion 27. Including a large-diameter cylindrical portion) 25. In FIG. 8, the thin cylindrical portion 27 is bent toward the center line, but this is cylindrical in the component state (see FIG. 9) as described later. In the sensor 10, a sensor element 30 is concentrically arranged and fixed inside the metal shell 20 via a sealing material 13, an insulating holder 15, and the like. This fixing is performed in the assembly process before the outer protective cylinder 41 is fixed, after the sensor element 30 or the like is arranged and loaded inside the metal shell 20, the flange 43 on the outer periphery of the front end of the inner protective cylinder 40 is attached to the insulating holder 15. The thin cylindrical portion 27 at the rear end of the large-diameter cylindrical portion 25 is bent toward the inner side (center axis side) as shown in the drawing while being brought into contact with the rear end and through the O-ring 17 and directed toward the front end. It is by caulking processing that compresses.

図9は、このようなカシメ加工が行われる前の部品としての主体金具20を示したものである。図示のように、その大径円筒部25の後端寄り部位のうち、後端(図示上端)から先端(図示下端)に向かう一定範囲(一定部位)は、カシメ加工に適するように、外径が小さく、肉厚の薄い薄肉円筒部27をなしている。また、図9のものでは、大径円筒部25のうち、多角形部23寄り部位も、外径が小さく肉厚の薄い第2薄肉円筒部28をなしている。これは、カシメ加工時においては、この部位が図8に示したように座屈状に変形するようにするためである。また、このような主体金具は、図示のように、内径は、素子30をシール状に保持するためのシール材13等を配置するため、ネジ付き小径円筒部21から後方に向かうに従い段階的に大きくなるように形成されている。しかして、このような主体金具、すなわち、ガスセンサ用主体金具は、図13に示した異径筒状成形体120fにおいて、その大径円筒部25等に必要な加工を施すことで得られる。   FIG. 9 shows the metallic shell 20 as a part before such caulking is performed. As shown in the drawing, a certain range (constant portion) from the rear end (the upper end in the drawing) to the tip (the lower end in the drawing) of the portion near the rear end of the large-diameter cylindrical portion 25 has an outer diameter suitable for caulking. The thin cylindrical portion 27 is small and thin. In the case of FIG. 9, the portion near the polygonal portion 23 in the large-diameter cylindrical portion 25 also forms the second thin-walled cylindrical portion 28 having a small outer diameter and a small thickness. This is to cause this portion to be buckled as shown in FIG. 8 during the caulking process. In addition, as shown in the figure, such a metal shell has an inner diameter that gradually increases from the threaded small-diameter cylindrical portion 21 to the rear in order to dispose the sealing material 13 and the like for holding the element 30 in a seal shape. It is formed to be large. Thus, such a metal shell, that is, a gas sensor metal shell, is obtained by performing necessary processing on the large-diameter cylindrical portion 25 and the like in the different-diameter cylindrical molded body 120f shown in FIG.

以下、冷間鍛造により、低炭素鋼からなる円柱状の素材Sを出発材料とする第1工程から、第6工程(最終鍛造工程)において異径筒状成形体120fを成形(製造)するまでの各工程について、各工程において成形される図1に示した各成形体120a〜120fをも参照しながら、その工程に従い順次、説明する。図2、図3、図5〜図7に示した各工程を示す図においては、いずれもその中心線(軸線)の左側が、その工程で成形される前の素材(成形体)形状の半断面を示し、右側がその工程における成形後の成形体の半断面を示している。なお、図2〜図7に示した断面図において、成形体以外はハッチングを省略している。   Hereinafter, by cold forging, from the first step using a columnar material S made of low carbon steel as a starting material, to forming (manufacturing) the different diameter cylindrical molded body 120f in the sixth step (final forging step). Each of the steps will be described in order according to the steps, with reference to the molded bodies 120a to 120f shown in FIG. 2, 3, and 5 to 7, the left side of the center line (axis) is the half of the shape of the material (molded body) before being molded in the process. The cross section is shown, and the right side shows the half cross section of the molded body after molding in the process. In the cross-sectional views shown in FIGS. 2 to 7, hatching is omitted except for the molded body.

(第1工程)
図2の左図Aに示したように、第1工程用のダイ200aに設けられた、上下に同径の円形穴(空孔)203a内に、完成品に対応して材料取、切断された円柱状の素材(円柱体)Sを装填する(図2の左図Aの中心線の左側参照)。ただし、この円形穴203aの内周面の下端は、周方向に沿って隅肉アールが付けられている。この装填後、円形穴203aの下端を前端(図示上端)として内挿配置された支持用円柱パンチ(ピン)220aと、上から打ち込まれる円軸状のパンチ240aで、その素材Sを両端面間で圧縮する。こうすることで、同図の中心線の右側に示したように端面等が矯正ないし整えられ、先端面(図示下端)と外周面との成す角にアールが付与され、先端面の中央に凹部が設けられると共に、後端面の中央に浅いテーパ状の凹部が設けられた第1工程成形体120aを成形する(図1−A参照)。なお、この第1工程成形体120aにおける外径は、図13に示した成形体120fの大径円筒部25における薄肉円筒部27fの外径よりも若干小さくなるものとされている。なお、この成形後はパンチ240aを抜き、支持用円柱パンチ(ピン)220aを連動してノックアウトして第1工程成形体102aを取り出す。以下、各工程において、素材を支持する支持用パンチやノックアウトピン(又はノックアウト用スリーブ)の駆動や、成形体の取り出し等は従来公知の事項であるため、適宜、その説明を省略する。
(First step)
As shown in the left figure A of FIG. 2, material is taken and cut in a circular hole (hole) 203a of the same diameter up and down provided in the first process die 200a corresponding to the finished product. A cylindrical material (cylindrical body) S is loaded (see the left side of the center line of the left figure A in FIG. 2). However, the lower end of the inner peripheral surface of the circular hole 203a is provided with a fillet radius along the circumferential direction. After this loading, the material S is placed between both end faces by a supporting cylindrical punch (pin) 220a inserted and arranged with the lower end of the circular hole 203a as the front end (the upper end in the figure) and a circular punch 240a driven from above. Compress with. By doing so, the end face and the like are corrected or arranged as shown on the right side of the center line in the figure, a round is given to the angle formed by the tip surface (lower end in the figure) and the outer peripheral surface, and a recess is formed in the center of the tip surface. And a first process molded body 120a having a shallow tapered recess at the center of the rear end face is formed (see FIG. 1-A). Note that the outer diameter of the first step molded body 120a is slightly smaller than the outer diameter of the thin cylindrical portion 27f in the large diameter cylindrical portion 25 of the molded body 120f shown in FIG. In addition, after this shaping | molding, the punch 240a is extracted, the cylindrical punch (pin) 220a for a support is knocked out, and the 1st process molded object 102a is taken out. Hereinafter, in each step, driving of the support punch and the knockout pin (or knockout sleeve) for supporting the material, taking out of the molded body, and the like are conventionally known matters, and thus the description thereof will be omitted as appropriate.

(第2工程)
図2の右図Bに示したように、図示下方が小径で上方が大径の異径円形穴を有する第2工程用のダイ200bの、図示上方の大径の円形穴203b内に、第1工程成形体120aを先端側から装填する(図2の右図Bの中心線の左側参照))。ここで、小径の円形穴205bの内径は、図13に示した成形体の小径円筒部21fの外径と略同じであり、大径の円形穴203bの内径は、図13に示した成形体120fの薄肉円筒部27fの外径と略同じである。この装填後、小径円形穴205bの下端を前端として内挿配置された支持用円柱ピン220b,スリーブ240bと、上から打ち込まれる円軸状のパンチ260bで、第1工程成形体120aを圧縮する。こうすることで、同右図Bの中心線の右側に示したように、後端側が大径部22bをなし、その先方に、先細りテーパ部を介して小径部21bが押出し成形された、異径円柱状成形体をなす第2工程成形体120bが成形される(図1−B参照)。なお、この第2工程成形体120bを成形する工程(本例第2工程)が、請求項4に記載の発明における「第1冷間鍛造工程」に相当する。
(Second step)
As shown in the right diagram B of FIG. 2, the second step die 200b having a small-diameter circular hole having a small diameter on the lower side and a large diameter on the upper side is inserted into the large-diameter circular hole 203b on the upper side in the figure. The one-step molded body 120a is loaded from the front end side (see the left side of the center line in the right view B of FIG. 2). Here, the inner diameter of the small-diameter circular hole 205b is substantially the same as the outer diameter of the small-diameter cylindrical portion 21f of the compact shown in FIG. 13, and the inner diameter of the large-diameter circular hole 203b is the compact shown in FIG. The outer diameter of the thin cylindrical portion 27f of 120f is substantially the same. After this loading, the first process molded body 120a is compressed by the supporting cylindrical pin 220b and the sleeve 240b inserted and arranged with the lower end of the small-diameter circular hole 205b as the front end, and the circular punch 260b driven from above. By doing so, as shown on the right side of the center line in FIG. 5B, the rear end side has a large diameter portion 22b, and a small diameter portion 21b is extruded through a taper taper portion at the rear end side. A second process molded body 120b forming a cylindrical molded body is molded (see FIG. 1-B). In addition, the process (this example 2nd process) which shape | molds this 2nd process molded object 120b is corresponded to the "1st cold forging process" in the invention of Claim 4.

(第3工程)
第3工程について図3、図4に基づいて説明する。第3工程において金型には、図3に示したダイ、及び穴あけ用パンチ等を用いる。すなわち、図示下方のダイ200cは、第2工程成形体(異径円柱状成形体)120bにおけるその小径部21bの外周面を拘束可能の円形穴203cと、この円形穴と同心で、環状棚面205cを介し、図13に示した成形体120fの多角形部23における外周面の多角形を内周面とする多角形穴207cを有するように形成されている。このダイ200cにおける円形穴203cには、その下端を前端として支持用円柱ピン220c,及びスリーブ270cが内挿配置されている。
(Third step)
A 3rd process is demonstrated based on FIG. 3, FIG. In the third step, the die shown in FIG. 3, a punch for punching, or the like is used as the mold. That is, the die 200c in the lower part of the figure includes a circular hole 203c capable of restraining the outer peripheral surface of the small diameter portion 21b in the second process molded body (different diameter cylindrical molded body) 120b, and an annular shelf surface concentric with the circular hole. A polygonal hole 207c is formed via 205c with the polygon of the outer peripheral surface of the polygonal portion 23 of the molded body 120f shown in FIG. 13 as the inner peripheral surface. In the circular hole 203c in the die 200c, a supporting cylindrical pin 220c and a sleeve 270c are inserted and arranged with the lower end as a front end.

一方、このダイ200cの図示上には、第2工程成形体(異径円柱状成形体)120bにおけるその大径部22bの後端面29bに、底のある円形穴をあけるための穴あけ用パンチ240cが、円形穴203c、多角形穴207cと同心(同軸)で配置されている。この穴あけ用パンチ240cは、成形体120fにおける厚肉円筒部26と薄肉円筒部27fとをなす大径円筒部25の内周面成形用のものであり、したがって、その外径は、成形後のその大径円筒部の内径と略同一とされ、横断面が円形とされている。ただし、穴あけ用パンチ240cにおける前端部は相対的に細く、成形体120fにおける中間部位の内周面が成形されるように段付き異径に形成されている。しかして、この穴あけ用パンチ240cをその大径部22bの後端面29bに打ち込むことによって、その後端面29bにその穴をあけると共に、該大径部の外周面を、前記多角形穴207cの内周面に押付けて膨出成形をすることによって穴付き多角形部を成形し得るように形成されている。   On the other hand, in the illustration of the die 200c, a punching punch 240c for making a circular hole with a bottom in the rear end surface 29b of the large diameter portion 22b of the second process molded body (different diameter cylindrical molded body) 120b. Are arranged concentrically (coaxially) with the circular hole 203c and the polygonal hole 207c. The punching punch 240c is for forming the inner peripheral surface of the large-diameter cylindrical portion 25 that forms the thick-walled cylindrical portion 26 and the thin-walled cylindrical portion 27f in the molded body 120f. The inner diameter of the large-diameter cylindrical portion is substantially the same, and the cross section is circular. However, the front end portion of the punching punch 240c is relatively thin and has a stepped diameter so that the inner peripheral surface of the intermediate portion of the molded body 120f is molded. Thus, by punching the punching punch 240c into the rear end surface 29b of the large-diameter portion 22b, the hole is made in the rear end surface 29b, and the outer peripheral surface of the large-diameter portion is used as the inner periphery of the polygonal hole 207c. It is formed so that the polygonal part with a hole can be shape | molded by pressing to a surface and carrying out bulging shaping | molding.

他方、この穴あけ用パンチ240cには、その外径より内径が大きい押出し用スリーブ250cが、スペーサ(円管)260cを介し、同軸(同心)にて外嵌めされている。このスペーサ(円管)260cにより、押出し用スリーブ250cの前端寄り部位が、穴あけ用パンチ240cに対し、周方向において一定の間隔(円筒状空隙)が保持されている。なお、この間隔(円筒状空隙)が、後述するように薄肉円筒部27fが押出されるところとなるところであり、スペーサ(円管)260cの前端には本例では常にこの間隔(円筒状空隙)が保持されるように設定されている。一方、押出し用スリーブ250cは、内周面が円形で、その内径は、大径部22bの外径より微量大きく、図13に示した成形体120fにおける薄肉円筒部27fの外径と略同径とされている。そして、この押出し用スリーブ250cは、外周面が、前記ダイ200cにおける多角形穴207cに隙間嵌めで入り込み可能の多角形をなしている。   On the other hand, an extrusion sleeve 250c having an inner diameter larger than the outer diameter is externally fitted coaxially (concentrically) to the punching punch 240c via a spacer (circular tube) 260c. By this spacer (circular tube) 260c, a portion near the front end of the pushing sleeve 250c is held at a constant interval (cylindrical gap) in the circumferential direction with respect to the punching punch 240c. This interval (cylindrical gap) is where the thin cylindrical portion 27f is pushed out as will be described later, and this interval (cylindrical gap) is always present at the front end of the spacer (circular tube) 260c in this example. Is set to be retained. On the other hand, the pushing sleeve 250c has a circular inner peripheral surface, and its inner diameter is slightly larger than the outer diameter of the large diameter portion 22b, and is substantially the same as the outer diameter of the thin cylindrical portion 27f in the molded body 120f shown in FIG. It is said that. The outer surface of the extrusion sleeve 250c is a polygon that can be inserted into the polygonal hole 207c of the die 200c with a clearance fit.

この穴あけ用パンチ240cの基端(図示上端)は、プレス装置の上方の可動盤に固定されたブロック280cに固定されている。そして、押出し用スリーブ250cは、このブロック280cの下面に、バネ(例えば、圧縮コイルばね)290cを介して連結されており、可動盤の下降、又は上昇により、穴あけ用パンチ240cと連動、同期してそれと実質的に同量前進(下降)、又は後退(上昇)するように設けられている。ただし、穴あけ用パンチ240cを所定ストローク前進させて、大径部22bの後端面29bに打ち込んで穴をあけて該大径部の外周面を、前記多角形穴207cの内周面に押付けて膨出成形をするときにおいては、穴あけ用パンチ240cの外周面243cと押出し用スリーブ250cの前端253c寄り部位の内周面と間隔(円筒状空隙)において、薄肉円筒部27fを後方押出し成形するように、押出し用スリーブ250cは、最終的に、穴あけ用パンチ240cに対して相対的に基端側に押し戻されるように、そのバネ290cの強さが設定されている。なお、この押し戻され量は、薄肉円筒部27fが所定範囲(長さ)、押出し成形されるように、例えば、後述するようにストッパ手段で規制するようにすればよい。また、スペーサ(円管)260cは、例えば、図示はしないがブロック280cにバネで吊下げられており、穴あけ用パンチ240cの下動にしたがって、上記間隔(円筒状空隙)内において押し下げられ、その上動においてスプリングバックにより上動するように設けられている。   The base end (the upper end in the figure) of the punching punch 240c is fixed to a block 280c fixed to the movable platen above the press device. The extrusion sleeve 250c is connected to the lower surface of the block 280c via a spring (for example, a compression coil spring) 290c, and is interlocked and synchronized with the punching punch 240c by the lowering or raising of the movable platen. It is provided so as to move forward (down) or reverse (up) substantially the same amount. However, the punch for punching 240c is advanced by a predetermined stroke, punched into the rear end surface 29b of the large diameter portion 22b to make a hole, and the outer peripheral surface of the large diameter portion is pressed against the inner peripheral surface of the polygonal hole 207c to swell. When performing the extrusion molding, the thin cylindrical portion 27f is rearwardly extruded at a distance (cylindrical space) between the outer peripheral surface 243c of the punching punch 240c and the inner peripheral surface near the front end 253c of the extrusion sleeve 250c. The strength of the spring 290c is set so that the pushing sleeve 250c is finally pushed back relatively to the base end side with respect to the punching punch 240c. It should be noted that the amount to be pushed back may be regulated by a stopper means, for example, as described later, so that the thin cylindrical portion 27f is extruded within a predetermined range (length). In addition, the spacer (circular tube) 260c is suspended by a spring on the block 280c (not shown), for example, and is pushed down in the interval (cylindrical space) according to the downward movement of the punching punch 240c. It is provided so as to move upward by a springback in the upward movement.

このため、バネ290cは、少なくとも、穴あけ用パンチ240cが前進してその前端245cが、ダイ200cに装填された異径円柱状成形体120bの大径部22bの後端面29bに当接するとき(又は衝突する直前)、押出し用スリーブ250cの前端253c寄り部位(内周面)が、その大径部22bの後端面29b寄り部位に嵌り込むように設定されている(図4−A参照)。すなわち、押出し用スリーブ250cは、バネ290cを介してブロック280cの下面に連結されているのであるが、その衝突前において、大径部22bの外周面のうち、その後端面29b寄り部位が、押出し用スリーブ250cの前端253c寄り部位の内周面で包囲され、拘束(規制)されるように、穴あけ用パンチ240cの前端245cに対し、押出し用スリーブ250cの前端253cが位置するように、そのバネ290cを介して取り付けられている。   For this reason, the spring 290c is at least when the punching punch 240c advances and its front end 245c contacts the rear end surface 29b of the large diameter portion 22b of the different diameter cylindrical molded body 120b loaded in the die 200c (or Immediately before the collision, the portion (inner peripheral surface) near the front end 253c of the pushing sleeve 250c is set to fit into the portion near the rear end surface 29b of the large diameter portion 22b (see FIG. 4-A). In other words, the pushing sleeve 250c is connected to the lower surface of the block 280c via the spring 290c, but before the collision, the portion closer to the rear end face 29b of the outer circumferential surface of the large diameter portion 22b is for pushing. The spring 290c so that the front end 253c of the pushing sleeve 250c is positioned with respect to the front end 245c of the punching punch 240c so as to be surrounded and restrained (restricted) by the inner peripheral surface of the sleeve 250c near the front end 253c. Is attached through.

穴あけ用パンチ240cの打ち込みは瞬時に終了するが、その打ち込みによって、穴あけ用パンチ240cの前端245cが大径部22bの後端面29bに打ち込まれる初期は、図4−Bに示したように、大径部22bが先端側に圧縮変形(すえこみ変形)する。このときは、バネ290cを介して、押出しスリーブ250cも連動して前進し、その大径部22bの外周面の後端面29b寄り部位を、その内周面が包囲し、拘束(規制)するよう設定されている。すなわち、バネの強さは、初期のすえこみ変形に対しても、押出し用スリーブ250cの前端寄り部位の内周面が、大径部22bの外周面の後端面29b寄り部位を、包囲し、拘束(規制)し得るように、試験プレスを行うことで設定すればよい。そして、図4−Cに示したように、穴あけ用パンチ240cの前進により、穴の穿孔が行われることによって、大径部22bの膨出変形が進む。そして、その打ち込みが終了すると、図4−Dに示したように、その外周面が多角形穴207cの内周面に押付けられ、その多角形穴の内周面側の空間が材料素材で満たされることになる。すなわち、これにしたがい、その素材にて押出し用スリーブ250cは、そのバネ290cが圧縮されることから、穴あけ用パンチ240cに対し相対的に基端側に押し戻される。ただし、その押し戻され(後退)は、押出し用スリーブ250cの前端寄り部位の内周面と、穴あけ用パンチ240cの外周面243cとの間に、薄肉円筒部27fが押出し成形されるべき位置よりは後退しないように、図示しないストッパ手段にて止められるように設定されている。すなわち、押出し用スリーブ250cの前端253cは、薄肉円筒部27fが押出し成形されるべき位置より後退しないように設定されている。   The driving of the punching punch 240c is instantaneously terminated, but the initial stage where the front end 245c of the punching punch 240c is driven into the rear end surface 29b of the large diameter portion 22b by the driving is large as shown in FIG. The diameter portion 22b is compressed and deformed (upward deformation) toward the tip side. At this time, the pushing sleeve 250c is also moved forward through the spring 290c so that the inner peripheral surface surrounds and restrains (regulates) the portion of the outer peripheral surface of the large-diameter portion 22b closer to the rear end surface 29b. Is set. That is, the strength of the spring is such that the inner peripheral surface near the front end of the pushing sleeve 250c surrounds the portion near the rear end surface 29b of the outer peripheral surface of the large diameter portion 22b, even with respect to the initial upset deformation. What is necessary is just to set by performing a test press so that it may restrain (regulation). And as shown to FIG. 4-C, the bulge deformation of the large diameter part 22b advances by drilling a hole by advance of the punch for punching 240c. When the driving is completed, as shown in FIG. 4-D, the outer peripheral surface is pressed against the inner peripheral surface of the polygonal hole 207c, and the space on the inner peripheral surface side of the polygonal hole is filled with the material material. Will be. That is, according to this, the extrusion sleeve 250c is pushed back to the base end side relative to the punching punch 240c because the spring 290c is compressed by the material. However, the pushing back (retreating) is less than the position where the thin cylindrical portion 27f is to be extruded between the inner peripheral surface near the front end of the pushing sleeve 250c and the outer peripheral surface 243c of the punching punch 240c. It is set to be stopped by stopper means (not shown) so as not to move backward. That is, the front end 253c of the extrusion sleeve 250c is set so that the thin cylindrical portion 27f does not recede from the position where the extrusion molding should be performed.

しかして、この第3工程においては、ダイ200cの円形穴203cに、異径円柱状成形体120bの小径部21bを内挿し、装填する。その装填後、円形穴203cの下端を前端として内挿配置された支持用円柱ピン220c,スリーブ270cと、上から打ち込まれる穴あけ用パンチ240cと、これと連動する押出しスリーブ250cによって、第2工程成形体120bを圧縮する。すなわち、装填された第2工程成形体における大径部22bの後端面29bに、穴あけ用パンチ240cを所定ストロークで打ち込むことにより、その後端面に底のある穴が所定深さであけられ、穴付き多角形部23cが形成されるが、その打ち込み終了時においては、押出し用スリーブ250cの前端253c寄り部位の内周面と、該穴あけ用パンチ240cの外周面243cとの間であって穴付き多角形部23cの後端に、薄肉円筒部27fが押出し成形される(図4−D参照)。   Thus, in the third step, the small-diameter portion 21b of the different-diameter cylindrical molded body 120b is inserted into the circular hole 203c of the die 200c and loaded. After the loading, the second step molding is performed by the supporting cylindrical pin 220c and the sleeve 270c inserted and arranged with the lower end of the circular hole 203c as the front end, the punching punch 240c driven from above, and the extrusion sleeve 250c interlocked therewith. The body 120b is compressed. That is, by punching the punching punch 240c with a predetermined stroke into the rear end surface 29b of the large-diameter portion 22b in the loaded second process molded body, a hole with a bottom on the rear end surface is formed with a predetermined depth, and a hole is provided. A polygonal portion 23c is formed, but at the end of the driving, a portion between the inner peripheral surface near the front end 253c of the pushing sleeve 250c and the outer peripheral surface 243c of the punching punch 240c is provided with many holes. A thin cylindrical portion 27f is extruded at the rear end of the square portion 23c (see FIG. 4-D).

かくして、この成形後、穴あけ用パンチ240cと共に押出し用スリーブ250cを上昇させることにより、穴付き多角形部23cの後端に薄肉円筒部27fを備えた成形体である、穴付き多角形部付き異径成形体(第3工程成形体)120cが得られる(図1−C参照)。なお、この第3工程成形体120cを成形する工程(本例第3工程)が、請求項4に記載の発明における「第2冷間鍛造工程」に相当する。このような第3工程により、第2工程成形体120bにおける大径部22bは、その後端面29bに底のある穴があけられると共に、外周面は、多角形穴207cの内周面に押付けられて膨出成形されて穴付き多角形部23cとして成形されるが、穴あけ用パンチ240cの打ち込み終了時において押込まれていた押出し用スリーブ250cの前端253c寄り部位の内周面と、該穴あけ用パンチ240cの外周面243cとの間であって穴付き多角形部23cの後端には薄肉円筒部27f(図13の成形体の27fに相当する部位)が押出し成形されたものとなる。したがって、この第3工程(段階)においては、問題なく、薄肉円筒部27fを成形できる。そして、その後は、このように穴付き多角形部23cの後端に薄肉円筒部27fが押出し成形された第3工程成形体120cを、上記した従来の冷間鍛造工程と同様の第4工程以降の工程に順次、回すことで、最終的に所望とする異径筒状成形体120fを得ることができる。   Thus, after this molding, the extrusion sleeve 250c is lifted together with the punching punch 240c, so that the polygonal portion with a hole, which is a molded body having the thin cylindrical portion 27f at the rear end of the polygonal portion 23c with the hole, is obtained. A diameter molded body (third process molded body) 120c is obtained (see FIG. 1-C). In addition, the process (this example 3rd process) which shape | molds this 3rd process molded object 120c is corresponded to the "2nd cold forging process" in the invention of Claim 4. By such a third step, the large-diameter portion 22b in the second-step molded body 120b is drilled with a bottom hole at the rear end surface 29b, and the outer peripheral surface is pressed against the inner peripheral surface of the polygonal hole 207c. Although it is formed as a polygonal portion 23c with a hole by bulging, the inner peripheral surface near the front end 253c of the pushing sleeve 250c that has been pushed in when the punching punch 240c has been driven, and the punching punch 240c. A thin cylindrical portion 27f (a portion corresponding to 27f of the molded body in FIG. 13) is extrusion-molded at the rear end of the polygonal portion 23c with a hole between the outer peripheral surface 243c and the outer peripheral surface 243c. Therefore, in the third step (stage), the thin cylindrical portion 27f can be formed without any problem. After that, the third step molded body 120c in which the thin cylindrical portion 27f is extrusion-molded at the rear end of the polygonal portion 23c with a hole in this way is subjected to the fourth and subsequent steps similar to the conventional cold forging step described above. By sequentially turning to this step, it is possible to finally obtain a desired different-diameter cylindrical molded body 120f.

(第4工程)
すなわち、第4工程においては、図5に示したように、例えば、下のダイ200dに設けられた、内周面が、穴付き多角形部付き異径成形体(第3工程成形体)120cにおける小径部21c(図13の成形体の21fに相当する部位)を拘束しえる円形穴を有し、外周面がその穴付き多角形部の多角形よりひとまわり小さく形成された多角形を有する支持用スリーブ220dの上部に、その小径部21cを内挿する。このスリーブ220dの上端により、小径部21cと該穴付き多角形部23cとの境界をなす多角形の先端向き面を支持する。そして、穴付き多角形部23cに設けられた穴に保形用パンチ(第3工程において用いた穴あけ用パンチと同様のもの)240dを挿入する(図5の左参照)。そして、この状態で、穴付き多角形部23cの外周面のうち、後端(図示上端)から先端に向かう所定範囲の外周面を、図13に示した成形体120fの大径円筒部25のうちの厚肉円筒部26の外径に縮小するように後方に延伸させる押出し成形を行う。なお、この成形に用いるダイ260dは、前端側に、穴付き多角形部23cの外周面に略一致する多角形の内周面の多角形穴263dを有すると共に、その後方に同心で、図13に示した成形体120fの大径円筒部25における厚肉円筒部26の外周面に一致する円形穴265dを有するものである。したがって、このダイ260dを、保形用パンチ240dに同軸で、図示上方の可動盤(図示せず)に取り付けておき、そのうち、このダイ260dを、支持用スリーブ220d等で支持された成形体120c及び保形用パンチ240dに対し、相対的に所定量前進させる。こうすることで、穴付き多角形部23cの外周面は、図13の成形体120fにおける多角形部23の後方に、厚肉円筒部26と前工程で成形されていた薄肉円筒部27fからなる大径円筒部25に成形される。かくして、この成形工程後には図1−Dに示した第4工程成形体120dが得られる。なお、この第4工程成形体120dを成形する工程(本例第4工程)が、請求項4に記載の発明における「第3冷間鍛造工程」に相当する。以後は、従来と同様に、第5工程で、先方に穴をあける深穴あけ加工(先穴の穴あけ加工)と小径部の延伸を行い、第6工程で穴底の壁を打抜けばよい。
(4th process)
That is, in the fourth step, as shown in FIG. 5, for example, the inner peripheral surface provided in the lower die 200d has a different diameter molded body with a polygonal portion with a hole (third process molded body) 120c. Has a circular hole capable of restraining the small-diameter portion 21c (the portion corresponding to 21f of the molded body in FIG. 13), and the outer peripheral surface has a polygon formed slightly smaller than the polygon of the polygonal portion with the hole. The small diameter portion 21c is inserted into the upper portion of the supporting sleeve 220d. The upper end of the sleeve 220d supports a polygonal tip-facing surface that forms a boundary between the small diameter portion 21c and the polygonal portion 23c with a hole. Then, a shape-retaining punch (similar to the punch for punching used in the third step) 240d is inserted into the hole provided in the polygonal portion 23c with a hole (see the left in FIG. 5). And in this state, the outer peripheral surface of the predetermined range which goes to a front-end | tip from a rear end (illustration upper end) among the outer peripheral surfaces of the polygon part 23c with a hole of the large diameter cylindrical part 25 of the molded object 120f shown in FIG. Extrusion is performed to extend backward so as to reduce the outer diameter of the thick-walled cylindrical portion 26. The die 260d used for this molding has a polygonal inner peripheral surface polygonal hole 263d substantially coinciding with the outer peripheral surface of the polygonal portion 23c with a hole on the front end side, and is concentric to the rear thereof, as shown in FIG. A circular hole 265d that coincides with the outer peripheral surface of the thick cylindrical portion 26 in the large diameter cylindrical portion 25 of the molded body 120f shown in FIG. Therefore, the die 260d is coaxially attached to the shape-retaining punch 240d and attached to a movable platen (not shown) in the upper part of the figure, and the die 260d is supported by a support sleeve 220d or the like. The shape-retaining punch 240d is moved forward by a predetermined amount. By doing so, the outer peripheral surface of the polygonal portion 23c with a hole is composed of the thick cylindrical portion 26 and the thin cylindrical portion 27f formed in the previous step behind the polygonal portion 23 in the molded body 120f of FIG. The large diameter cylindrical portion 25 is formed. Thus, after this molding step, the fourth step molded body 120d shown in FIG. 1-D is obtained. In addition, the process (this example 4th process) which shape | molds this 4th process molded object 120d is corresponded to the "3rd cold forging process" in the invention of Claim 4. Thereafter, as in the prior art, in the fifth step, deep hole drilling (drilling of the front hole) and stretching of the small diameter part are performed in the fifth step, and the hole bottom wall is punched in the sixth step.

(第5工程)
すなわち、第5工程においては、図6に示したように、第4工程成形体120dの小径部の外周面を拘束可能の円形穴203eと、この円形穴と同心で、環状棚面205eを介し、図13に示した成形体120fの多角形部23における外周面の多角形を内周面とする多角形穴(保形穴)207eを有するように形成されたダイ200eを用い、この円形穴203eにその成形体120dの小径部を挿入する(図6の中心線の左側参照)。そして、支持用パンチ220e,230eの前端で、この小径部を支持しておき、図13の成形体120fにおける大径円筒部25の内径と同径の外径の円柱部を有する共に、その円柱部の前端において小径円筒部21fの内径と同径で、所定長さの円柱部を有する深穴あけ用パンチ260eを打ち込む。これにより、同図の中心線の右側に示したように、深穴あけが行われると共に、その穴あけに対応して、小径筒部21e(図13の成形体の21fに相当する部位)として延伸された第5工程成形体120eが得られる(図1−E参照)。
(5th process)
That is, in the fifth step, as shown in FIG. 6, a circular hole 203e capable of constraining the outer peripheral surface of the small diameter portion of the fourth step molded body 120d, and concentric with the circular hole, via the annular shelf surface 205e. Using this die 200e formed so as to have a polygonal hole (shaped hole) 207e whose inner peripheral surface is the polygon of the outer peripheral surface of the polygonal portion 23 of the molded body 120f shown in FIG. A small diameter portion of the molded body 120d is inserted into 203e (see the left side of the center line in FIG. 6). The small diameter portion is supported by the front ends of the support punches 220e and 230e, and has a column portion having the same outer diameter as the inner diameter of the large diameter cylindrical portion 25 in the molded body 120f of FIG. A deep hole punch 260e having the same diameter as the inner diameter of the small-diameter cylindrical portion 21f and having a columnar portion with a predetermined length is driven in at the front end of the portion. As a result, as shown on the right side of the center line in the figure, deep hole drilling is performed, and in response to the drilling, a small diameter cylindrical portion 21e (a portion corresponding to 21f of the molded body in FIG. 13) is stretched. In addition, a fifth process molded body 120e is obtained (see FIG. 1-E).

(第6工程)
そして、第6工程においては、図7に示すように、第5工程成形体120eにおける深穴底の底壁を打抜きパンチで打抜けばよい。すなわち、延伸された小径筒部21eを挿入可能の円形穴203fを有するダイ200f、及び多角形部23の外周面拘束用のリング210fを用い、その円形穴203f内に、小径筒部21eの先端を支持する支持用スリーブ230fを挿入配置しておく。この状態の下で、円柱状をなす、底壁打抜きパンチ240fでその底壁を打抜く。かくして、図13に示した異径筒状成形体(第6工程成形体)120fを得ることができる(図1−F参照)。すなわち、この先端側に小径円筒部21fを、後端側に大径円筒部25を有すると共に、この両円筒部の先後の間に、外径が大径円筒部の外径より大きい多角形部23を有し、かつ、前記大径円筒部25は、この多角形部23と反対端側の後端から先端に向かう一定範囲が、それ以外の範囲より外径が小さく、前記一定範囲が肉厚の薄い薄肉円筒部27fに成形され、それ以外の範囲が肉厚の厚い厚肉円筒部26に成形されてなる異径筒状成形体120fを、成形上の問題もなく得ることができる。そして、このようにして得られた異径筒状成形体120fは、図10のものに比べると明らかなように、材料コストが節減できるし、その後の機械加工において、その大径円筒部25の外周面をカシメ加工に適するように切削する際、その後端寄り部位の薄肉円筒部27cについては、その切削工程が低減できるから、加工コストの節減が図られる。
(6th process)
And in a 6th process, as shown in FIG. 7, the bottom wall of the deep hole bottom in the 5th process molded object 120e should just be punched out with a punch. That is, using the die 200f having the circular hole 203f into which the extended small-diameter cylindrical part 21e can be inserted and the ring 210f for constraining the outer peripheral surface of the polygonal part 23, the tip of the small-diameter cylindrical part 21e is placed in the circular hole 203f. A support sleeve 230f for supporting the above is inserted and disposed. Under this condition, the bottom wall is punched with a bottom wall punching punch 240f having a cylindrical shape. Thus, the different diameter cylindrical molded body (sixth process molded body) 120f shown in FIG. 13 can be obtained (see FIG. 1-F). That is, the small-diameter cylindrical portion 21f is provided on the front end side, and the large-diameter cylindrical portion 25 is provided on the rear end side, and the polygonal portion having an outer diameter larger than the outer diameter of the large-diameter cylindrical portion between the two cylindrical portions. 23, and the large-diameter cylindrical portion 25 has a constant range from the rear end to the front end opposite to the polygonal portion 23, the outer diameter being smaller than the other ranges, and the constant range is It is possible to obtain the different-diameter cylindrical molded body 120f which is formed into the thin cylindrical portion 27f having a small thickness and is formed into the thick cylindrical portion 26 in which the other range is thick without any molding problems. Then, the different-diameter cylindrical molded body 120f obtained in this way can save the material cost as apparent from the case of FIG. 10, and in the subsequent machining, the large-diameter cylindrical portion 25 When the outer peripheral surface is cut so as to be suitable for caulking, the cutting process can be reduced for the thin cylindrical portion 27c near the rear end, so that the machining cost can be reduced.

なお、本発明で製造される異径筒状成形体は、上記実施の形態例における形状のものに限定されるものでもないし、その直径に対する軸線方向の長さ比についても、適宜に設計変更して適用できる。また、異径筒状成形体を切削して主体金具の完成品とする際の加工箇所も、上記例におけるものに限定されるものではない。すなわち、上記例では、大径円筒部のうち、厚肉円筒部の多角形寄り部位の外周面も切削して座屈変形用の薄肉円筒部ととする形状、構造の図9に示した主体金具であることを前提として具体化したが、このような変形を前提としない主体金具の製造に用いる異径筒状成形体であっても、本発明は適用できる。そして、このような座屈変形用の薄肉円筒部を形成しない場合においては、相対的に、その切削工程のさらなる低減が図られる。   The different-diameter cylindrical molded body produced by the present invention is not limited to the shape in the above embodiment, and the length ratio in the axial direction to the diameter is appropriately changed in design. Can be applied. Moreover, the processing part at the time of cutting a different diameter cylindrical molded object and making it the finished product of a metal shell is not limited to the thing in the said example. That is, in the above example, the main body shown in FIG. 9 of the shape and structure of the large-diameter cylindrical portion that cuts the outer peripheral surface of the thick-walled cylindrical portion near the polygon to form a thin cylindrical portion for buckling deformation. Although the present invention has been embodied on the assumption that it is a metal fitting, the present invention can be applied even to a different-diameter cylindrical molded body used for manufacturing a metal fitting that does not assume such deformation. And when not forming such a thin cylindrical part for buckling deformation, the further reduction of the cutting process is achieved relatively.

なお、上記形態において例示したダイやパンチ、或いはスリーブ等の金型の形状、配置、上下位置、組合せ等は適宜のものとして具体化できる。また、成形工程において、ダイ、パンチやスリーブ、ノックアウト用のスリーブ(ピン、又はパンチ)の駆動は、適宜に、それらを連動して、前進、後進させればよい。また、上記例では、押出し用スリーブは、穴あけ用パンチの前進、後進にバネを介して連動するように取り付けておき、その穴あけ用パンチの前端が大径部の後端面に打ち込まれるときに、押出し用スリーブの前端寄り部位を、そのバネの作用によって大径部の後端面寄り部位に嵌り込ませてその外周面を拘束するようにしたが、押出し用スリーブは、バネによることなく、駆動、制御するものとしても勿論よい。すなわち、押出し用スリーブは、前記穴あけ用パンチに対し、周方向において一定の間隔が保持されるように外嵌め状態で、しかも、穴あけ用パンチに対して前進及び後進が可能に取り付けておき、穴あけ用パンチとは別に、前進、後進するように駆動制御してもよい。なお、バネを用いるとしても、そのバネは、圧縮コイルばねに限定されるものではなく、各種の公知のばねを用いることができる。   It should be noted that the shape, arrangement, vertical position, combination, etc. of the die, punch, or sleeve mold exemplified in the above embodiment can be embodied as appropriate. In the molding process, the die, punch, sleeve, and knockout sleeve (pin or punch) may be driven forward or backward in conjunction with each other as appropriate. Further, in the above example, the extruding sleeve is attached so as to interlock with the forward and backward movement of the punch for punching via a spring, and when the front end of the punch for punching is driven into the rear end surface of the large diameter portion, The portion near the front end of the pushing sleeve was fitted into the portion near the rear end face of the large diameter portion by the action of the spring to restrain the outer peripheral surface, but the pushing sleeve is driven by a spring, Of course, it may be controlled. In other words, the extruding sleeve is attached to the punch for punching so as to be fitted to the punch for punching so as to maintain a constant interval in the circumferential direction, and can be moved forward and backward with respect to the punch for punching. Separately from the punch for driving, drive control may be performed so as to move forward and backward. Even if a spring is used, the spring is not limited to a compression coil spring, and various known springs can be used.

21b 異径円柱状成形体の先端側の小径部
21f 小径円筒部
22b 異径円柱状成形体の後端側の大径部
23 多角形部
23c 穴付き多角形部
25 大径円筒部
27f 薄肉円筒部
26 厚肉円筒部
29b 大径部の後端面
120b 異径円柱状成形体
120c 穴付き多角形部付き異径成形体
120f 異径筒状成形体
200c 穴付き多角形部付き異径成形体を成形するのに用いられるダイ
207c 穴付き多角形部付き異径成形体を成形するのに用いられるダイの多角形穴
240c 大径円筒部の内周面成形用の穴あけ用パンチ
243c 大径円筒部の内周面成形用の穴あけ用パンチの外周面
245c 大径円筒部の内周面成形用の穴あけ用パンチの前端
250c 押出し用スリーブ
253c 押出し用スリーブの前端
290 バネ
21b Small diameter portion 21f on the front end side of the different diameter cylindrical molded body 21f Small diameter cylindrical portion 22b Large diameter portion on the rear end side of the different diameter cylindrical molded body
23 Polygonal portion 23c Polygonal portion with hole 25 Large diameter cylindrical portion 27f Thin cylindrical portion 26 Thick cylindrical portion 29b Rear end surface 120b of large diameter portion Different diameter cylindrical molded body 120c Different diameter molded body with hole polygonal portion 120f Different diameter cylindrical molded body 200c Die 207c used to mold a different diameter molded body with a polygonal part with a hole Polygonal hole 240c of a die used to mold a different diameter molded body with a polygonal part with a hole Drilling punch 243c for forming the inner peripheral surface of the large diameter cylindrical portion Outer peripheral surface 245c of the punch for punching the inner peripheral surface of the large diameter cylindrical portion Front end 250c of the punch for forming the inner peripheral surface of the large diameter cylindrical portion Extrusion Sleeve 253c Extrusion sleeve front end 290 Spring

Claims (6)

先端側に小径円筒部を、後端側に大径円筒部を有すると共に、この両円筒部の先後の間に、外径が大径円筒部の外径より大きい多角形部を有し、かつ、前記大径円筒部は、この多角形部と反対端側の後端から先端に向かう一定範囲が、それ以外の範囲より外径が小さく、前記一定範囲が肉厚の薄い薄肉円筒部に成形され、それ以外の範囲が肉厚の厚い厚肉円筒部に成形されてなる異径筒状成形体の冷間鍛造による製造方法であって、
その冷間鍛造工程中に、
先端側が小径部で後端側が大径部をなす異径円柱状成形体を成形する冷間鍛造工程と、
この異径円柱状成形体における前記大径部の後端面に、前記大径円筒部の内周面成形用の穴あけ用パンチを打ち込むことによって、その後端面に底のある穴をあけると共に、該大径部の外周面を、ダイに設けられた多角形穴の内周面に押付けるようにして穴付き多角形部を膨出成形して穴付き多角形部付き異径成形体を成形する冷間鍛造工程と、
を含んでいる、前記異径筒状成形体の冷間鍛造による製造方法において、
前記異径円柱状成形体を成形する際、その大径部の外径を、前記薄肉円筒部の外径となるようにして成形しておき、
前記穴付き多角形部付き異径成形体を成形する冷間鍛造工程において、
自身の内側に前記大径部が嵌り込み可能であり、かつ、前記ダイにおける多角形穴に前端が嵌り込み可能の押出し用スリーブを、前記穴あけ用パンチに対し、周方向において一定の間隔が保持されるように外嵌め状態で、しかも、前進及び後進が可能に取り付けておくと共に、
前記穴あけ用パンチの前端が前記大径部の後端面に打ち込まれるときに、該押出し用スリーブの前端寄り部位を、該大径部の後端面寄り部位に嵌り込ませてその外周面を拘束するようにしておき、
前記穴あけ用パンチを、前記大径部の後端面に打ち込むことによって前記穴付き多角形部を成形する際に、該穴付き多角形部の後端であって、前記押出し用スリーブの前端寄り部位の内周面と該穴あけ用パンチの外周面との間に前記薄肉円筒部を押出し成形しておくことを特徴とする、異径筒状成形体の冷間鍛造による製造方法。
It has a small diameter cylindrical part on the front end side and a large diameter cylindrical part on the rear end side, and has a polygonal part whose outer diameter is larger than the outer diameter of the large diameter cylindrical part between the front and rear of both cylindrical parts, The large-diameter cylindrical portion is formed into a thin cylindrical portion with a constant range from the rear end to the tip opposite to the polygonal portion, the outer diameter being smaller than the other ranges, and the constant range being thin. The other range is a manufacturing method by cold forging of a different diameter cylindrical molded body formed into a thick thick cylindrical portion,
During the cold forging process,
A cold forging step of forming a different-diameter cylindrical molded body having a small diameter portion on the front end side and a large diameter portion on the rear end side;
By punching a punch for punching the inner peripheral surface of the large-diameter cylindrical portion into the rear end surface of the large-diameter portion in the different-diameter columnar molded body, The outer peripheral surface of the diameter portion is pressed against the inner peripheral surface of the polygonal hole provided in the die so that the polygonal portion with the hole is bulged to form a different diameter molded body with the polygonal portion with the hole. A forging process,
In the manufacturing method by cold forging of the different-diameter cylindrical molded body,
When molding the different-diameter columnar molded body, the outer diameter of the large diameter portion is molded to be the outer diameter of the thin cylindrical portion,
In the cold forging process of forming the different diameter molded body with a polygonal portion with a hole,
The pushing sleeve, in which the large-diameter portion can be fitted inside itself and the front end can be fitted in a polygonal hole in the die, is kept at a constant interval in the circumferential direction with respect to the punch for punching. It is attached so that it can be moved forward and backward in an externally fitted state,
When the front end of the punch for punching is driven into the rear end surface of the large-diameter portion, the portion near the front end of the pushing sleeve is fitted into the portion near the rear end surface of the large-diameter portion to restrain the outer peripheral surface. So that
When forming the polygonal portion with holes by driving the punch for punching into the rear end surface of the large-diameter portion, the rear end portion of the polygonal portion with holes and a portion closer to the front end of the extrusion sleeve A method for producing a tubular molded body having a different diameter by cold forging, wherein the thin cylindrical portion is extruded between an inner peripheral surface of the punch and an outer peripheral surface of the punch for punching.
前記押出し用スリーブを、前記穴あけ用パンチに対し、該穴あけ用パンチの前進、後進にバネを介して連動するように取り付けておくと共に、前記穴あけ用パンチの前端が前記大径部の後端面に打ち込まれるときに、該押出し用スリーブの前端寄り部位を、前記バネの作用によって該大径部の後端面寄り部位に嵌り込ませてその外周面を拘束するようにしておくことを特徴とする、請求項1に記載の異径筒状成形体の冷間鍛造による製造方法。   The extruding sleeve is attached to the punch for punching so that the drilling punch moves forward and backward via a spring, and the front end of the punch for punching is attached to the rear end surface of the large-diameter portion. When driven, the front end portion of the pushing sleeve is fitted into the rear end surface portion of the large-diameter portion by the action of the spring, and the outer peripheral surface is restrained. The manufacturing method by cold forging of the different diameter cylindrical molded object of Claim 1. 前記押出し用スリーブは、少なくともその前端から基端に向かう一定範囲の外周面が、前記ダイの多角形の内周面に入り込み可能の多角形をなしていることを特徴とする、請求項1又は2のいずれか1項に記載の異径筒状成形体の冷間鍛造による製造方法。   2. The extrusion sleeve according to claim 1, wherein at least an outer peripheral surface in a certain range from the front end to the base end is a polygon that can enter the inner peripheral surface of the polygon of the die. The manufacturing method by cold forging of the different diameter cylindrical molded object of any one of 2. ガスセンサを構成するガスセンサ用主体金具の製造方法であって、
該ガスセンサ用主体金具は、先端側に小径円筒部を、後端側に大径円筒部を有すると共に、この両円筒部の先後の間に、外径が大径円筒部の外径より大きい多角形部を有し、かつ、前記大径円筒部は、この多角形部と反対端側の後端から先端に向かう一定範囲が、それ以外の範囲より外径が小さく、前記一定範囲が肉厚の薄い薄肉円筒部に成形され、それ以外の範囲が肉厚の厚い厚肉円筒部に成形されてなる異径筒状成形体から形成されてなり、
しかも、該異径筒状成形体は冷間鍛造によって成形され、該異径筒状成形体を形成する冷間鍛造工程中に、
先端側が小径部で後端側が大径部をなす異径円柱状成形体を成形する第1冷間鍛造工程と、
この異径円柱状成形体における前記大径部の後端面に、前記大径円筒部の内周面成形用の穴あけ用パンチを打ち込むことによって、その後端面に底のある穴をあけると共に、該大径部の外周面を、ダイに設けられた多角形穴の内周面に押付けるようにして穴付き多角形部を膨出成形して穴付き多角形部付き異径成形体を成形する第2冷間鍛造工程と、
を含んでいる、ガスセンサ用主体金具の製造方法であって、
前記異径円柱状成形体を成形する第1冷間鍛造工程において、その大径部の外径を、前記薄肉円筒部の外径となるようにして成形しておき、
前記穴付き多角形部付き異径成形体を成形する第2冷間鍛造工程において、
自身の内側に前記大径部が嵌り込み可能であり、かつ、前記ダイにおける多角形穴に前端が嵌り込み可能の押出し用スリーブを、前記穴あけ用パンチに対し、周方向において一定の間隔が保持されるように外嵌め状態で、しかも、前進及び後進が可能に取り付けておくと共に、
前記穴あけ用パンチの前端が前記大径部の後端面に打ち込まれるときに、該押出し用スリーブの前端寄り部位を、該大径部の後端面寄り部位に嵌り込ませてその外周面を拘束するようにしておき、
前記穴あけ用パンチを、前記大径部の後端面に打ち込むことによって前記穴付き多角形部を成形する際に、該穴付き多角形部の後端であって、前記押出し用スリーブの前端寄り部位の内周面と該穴あけ用パンチの外周面との間に前記薄肉円筒部を押出し成形しておき、
この後、この第2冷間鍛造工程で成形された前記穴付き多角形部における外周面のうち、該穴付き多角形部の後端から先端に向かう所定範囲の外周面を、前記大径部における前記厚肉円筒部の外径に縮小して後方に延伸させる押出し成形をする第3冷間鍛造工程を含めたことを特徴とする、ガスセンサ用主体金具の製造方法。
A method of manufacturing a metal shell for a gas sensor constituting a gas sensor,
The metal shell for gas sensor has a small-diameter cylindrical portion on the front end side and a large-diameter cylindrical portion on the rear end side, and an outer diameter larger than the outer diameter of the large-diameter cylindrical portion between the front and rear of both cylindrical portions. The large-diameter cylindrical portion has a square portion, and the large-diameter cylindrical portion has a certain range from the rear end to the tip side opposite to the polygonal portion, the outer diameter being smaller than the other ranges, and the certain range is thick. Formed into a thin thin cylindrical part, and the other range is formed from a different diameter cylindrical molded body formed into a thick thick cylindrical part,
Moreover, the different diameter cylindrical formed body is formed by cold forging, and during the cold forging step of forming the different diameter tubular formed body,
A first cold forging step of forming a different-diameter cylindrical molded body having a small diameter portion on the front end side and a large diameter portion on the rear end side;
By punching a punch for punching the inner peripheral surface of the large-diameter cylindrical portion into the rear end surface of the large-diameter portion in the different-diameter columnar molded body, The outer diameter surface of the diameter portion is pressed against the inner periphery surface of the polygonal hole provided in the die, and the polygonal portion with the hole is bulged to form a different diameter molded body with the polygonal portion with the hole. 2 cold forging process,
A method for manufacturing a metal shell for a gas sensor, comprising:
In the first cold forging step of forming the different-diameter columnar molded body, the outer diameter of the large-diameter portion is molded so as to be the outer diameter of the thin-walled cylindrical portion,
In the second cold forging step of forming the different diameter molded body with a polygonal portion with a hole,
The pushing sleeve, in which the large-diameter portion can be fitted inside itself and the front end can be fitted in a polygonal hole in the die, is kept at a constant interval in the circumferential direction with respect to the punch for punching. It is attached so that it can be moved forward and backward in an externally fitted state,
When the front end of the punch for punching is driven into the rear end surface of the large-diameter portion, the portion near the front end of the pushing sleeve is fitted into the portion near the rear end surface of the large-diameter portion to restrain the outer peripheral surface. So that
When forming the polygonal portion with holes by driving the punch for punching into the rear end surface of the large-diameter portion, the rear end portion of the polygonal portion with holes and a portion closer to the front end of the extrusion sleeve And extruding the thin cylindrical portion between the inner peripheral surface and the outer peripheral surface of the punch for punching,
Thereafter, out of the outer peripheral surface of the polygonal portion with holes formed in the second cold forging step, the outer peripheral surface of a predetermined range from the rear end to the tip of the polygonal portion with holes is changed to the large diameter portion. A method of manufacturing a metal shell for a gas sensor, comprising a third cold forging step in which extrusion molding is performed to reduce the outer diameter of the thick-walled cylindrical portion and extend backward.
前記押出し用スリーブを、前記穴あけ用パンチに対し、該穴あけ用パンチの前進、後進にバネを介して連動するように取り付けておくと共に、前記穴あけ用パンチの前端が前記大径部の後端面に打ち込まれるときに、該押出し用スリーブの前端寄り部位を、前記バネの作用によって該大径部の後端面寄り部位に嵌り込ませてその外周面を拘束するようにしておくことを特徴とする、請求項4に記載のガスセンサ用主体金具の製造方法。   The extruding sleeve is attached to the punch for punching so that the drilling punch moves forward and backward via a spring, and the front end of the punch for punching is attached to the rear end surface of the large-diameter portion. When driven, the front end portion of the pushing sleeve is fitted into the rear end surface portion of the large-diameter portion by the action of the spring, and the outer peripheral surface is restrained. The manufacturing method of the metal fitting for gas sensors of Claim 4. 前記押出し用スリーブは、少なくともその前端から基端に向かう一定範囲の外周面が、前記ダイの多角形の内周面に入り込み可能の多角形をなしていることを特徴とする、請求項4又は5のいずれか1項に記載のガスセンサ用主体金具の製造方法。   The extrusion sleeve has a polygonal shape in which at least an outer peripheral surface in a certain range from the front end to the base end is a polygon that can enter the inner peripheral surface of the polygon of the die. 6. A method for producing a metal shell for a gas sensor according to any one of 5 above.
JP2013225292A 2013-03-15 2013-10-30 Manufacturing method by cold forging of different diameter cylindrical molded body, and manufacturing method of metal shell for gas sensor Active JP6109709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013225292A JP6109709B2 (en) 2013-03-15 2013-10-30 Manufacturing method by cold forging of different diameter cylindrical molded body, and manufacturing method of metal shell for gas sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013053198 2013-03-15
JP2013053198 2013-03-15
JP2013225292A JP6109709B2 (en) 2013-03-15 2013-10-30 Manufacturing method by cold forging of different diameter cylindrical molded body, and manufacturing method of metal shell for gas sensor

Publications (2)

Publication Number Publication Date
JP2014198346A true JP2014198346A (en) 2014-10-23
JP6109709B2 JP6109709B2 (en) 2017-04-05

Family

ID=52355610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013225292A Active JP6109709B2 (en) 2013-03-15 2013-10-30 Manufacturing method by cold forging of different diameter cylindrical molded body, and manufacturing method of metal shell for gas sensor

Country Status (1)

Country Link
JP (1) JP6109709B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106064221A (en) * 2016-06-20 2016-11-02 安徽省瑞杰锻造有限责任公司 A kind of Forging Technology of GCr15 roller shell
JP2019093390A (en) * 2017-11-20 2019-06-20 関口産業株式会社 Metal component manufacturing device and manufacturing method of metal component
CN110052555A (en) * 2019-05-30 2019-07-26 东风汽车紧固件有限公司 A kind of cold forming method and its multi-station mold of interior cubic sleeve nut
CN114247839A (en) * 2021-12-21 2022-03-29 烟台万隆真空冶金股份有限公司 Composite production method of large-sized cylinder
KR102646502B1 (en) * 2023-10-17 2024-03-12 주식회사 비앤케이테크 Terminal manufacturing apparatus for connecting battery cell of electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3186209A (en) * 1960-04-14 1965-06-01 Nat Machinery Co Method of cold forming an elongated hollow article
JPH04371336A (en) * 1991-06-21 1992-12-24 Ngk Spark Plug Co Ltd Manufacture of metal parts comprising prinmarily spark plug
JPH0716693A (en) * 1993-07-02 1995-01-20 Ngk Spark Plug Co Ltd Manufacture of main metallic tool for spark plug
JP2002011543A (en) * 2000-06-30 2002-01-15 Ngk Spark Plug Co Ltd Manufacturing method of cylindrical metal piece
JP2003311367A (en) * 2002-04-19 2003-11-05 Ngk Spark Plug Co Ltd Flanged cylindrical metallic piece manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3186209A (en) * 1960-04-14 1965-06-01 Nat Machinery Co Method of cold forming an elongated hollow article
JPH04371336A (en) * 1991-06-21 1992-12-24 Ngk Spark Plug Co Ltd Manufacture of metal parts comprising prinmarily spark plug
JPH0716693A (en) * 1993-07-02 1995-01-20 Ngk Spark Plug Co Ltd Manufacture of main metallic tool for spark plug
JP2002011543A (en) * 2000-06-30 2002-01-15 Ngk Spark Plug Co Ltd Manufacturing method of cylindrical metal piece
JP2003311367A (en) * 2002-04-19 2003-11-05 Ngk Spark Plug Co Ltd Flanged cylindrical metallic piece manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106064221A (en) * 2016-06-20 2016-11-02 安徽省瑞杰锻造有限责任公司 A kind of Forging Technology of GCr15 roller shell
JP2019093390A (en) * 2017-11-20 2019-06-20 関口産業株式会社 Metal component manufacturing device and manufacturing method of metal component
JP7016145B2 (en) 2017-11-20 2022-02-04 関口産業株式会社 Metal parts manufacturing equipment and metal parts manufacturing method
CN110052555A (en) * 2019-05-30 2019-07-26 东风汽车紧固件有限公司 A kind of cold forming method and its multi-station mold of interior cubic sleeve nut
CN114247839A (en) * 2021-12-21 2022-03-29 烟台万隆真空冶金股份有限公司 Composite production method of large-sized cylinder
KR102646502B1 (en) * 2023-10-17 2024-03-12 주식회사 비앤케이테크 Terminal manufacturing apparatus for connecting battery cell of electric vehicle

Also Published As

Publication number Publication date
JP6109709B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6109709B2 (en) Manufacturing method by cold forging of different diameter cylindrical molded body, and manufacturing method of metal shell for gas sensor
JP6212349B2 (en) Spark plug metal shell manufacturing method, spark plug metal shell manufacturing method, and spark plug manufacturing method
US4352283A (en) Method of forming spark plug bodies
US7171837B2 (en) Hollow stepped shaft and method of forming the same
US10092940B2 (en) Method for forming a pressed component, method for manufacturing a pressed component, and die apparatus for forming a pressed component
US20030196468A1 (en) Method of making a flanged tubular metallic part
US8322184B2 (en) Method of producing metallic shell for spark plug
JP4819329B2 (en) Forging method, forged product and forging device
CN108568471B (en) Method for manufacturing and forming a cartridge case blank and set of punches and dies
JP3586896B2 (en) Manufacturing method of hollow parts with flange
JP6612600B2 (en) Manufacturing method by cold forging of cylindrical metal fittings with polygonal flanges
JP2008126231A (en) Forging apparatus and forging method
US10828686B2 (en) Method for manufacturing cylindrical body having different diameters by cold forging
JP4880563B2 (en) Manufacturing method of metal shell for spark plug
JP5080359B2 (en) Manufacturing method of hollow tooth profile parts
JP2010201442A (en) Helical internal gear machining method, and die
JP2009178738A (en) Apparatus and method for forging gear
JP2003225733A (en) Method and die for joining rod collar
JP2005279666A (en) Cylindrical body manufacturing method
JP5622157B2 (en) Manufacturing method of bleeder screw
RU2628596C1 (en) Forming system of axisymmetric parts with elongated axis
JP2561516B2 (en) Manufacturing method of fuel injector core
KR20220157244A (en) Method for forming subframe mounting pipe bolts for electric vehicle platform using standard forging technology
JP2004230460A (en) Method for manufacturing cylindrical metallic fixture with polygonal part
RU2021073C1 (en) Method for production of hollow step detail with flange in middle part and inside circular projection in flange zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R150 Certificate of patent or registration of utility model

Ref document number: 6109709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250