JP2014196705A - Hermetic rotary compressor - Google Patents

Hermetic rotary compressor Download PDF

Info

Publication number
JP2014196705A
JP2014196705A JP2013072657A JP2013072657A JP2014196705A JP 2014196705 A JP2014196705 A JP 2014196705A JP 2013072657 A JP2013072657 A JP 2013072657A JP 2013072657 A JP2013072657 A JP 2013072657A JP 2014196705 A JP2014196705 A JP 2014196705A
Authority
JP
Japan
Prior art keywords
flexible structure
bearing
groove
cylinder
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013072657A
Other languages
Japanese (ja)
Other versions
JP2014196705A5 (en
JP6066801B2 (en
Inventor
勝巳 遠藤
Katsumi Endo
勝巳 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51320093&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014196705(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013072657A priority Critical patent/JP6066801B2/en
Priority to CN201420143292.XU priority patent/CN203783900U/en
Publication of JP2014196705A publication Critical patent/JP2014196705A/en
Publication of JP2014196705A5 publication Critical patent/JP2014196705A5/ja
Application granted granted Critical
Publication of JP6066801B2 publication Critical patent/JP6066801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hermetic rotary compressor capable of relaxing a force for relatively moving a drive shaft in an axial direction and suppressing increases in noise and vibration if acceleration and higher pressure are intended while including a flexible structure cylinder for suppressing local wear of the drive shaft.SOLUTION: A hermetic rotary compressor 100 comprises: an upper bearing 1 and a lower bearing 2 forming a compression mechanism 101. The hermetic rotary compressor 100 comprises: an upper flexible structure 110 provided in the upper bearing 1, and including an upper flexible structure groove 13 opening to an upper bearing receiving seat surface 1a, formed in parallel to an upper bearing inner circumferential surface 1c, and having a circular cross-section; a circular upper flexible structure cylinder 12 formed between the upper bearing inner circumferential surface 1c and the upper flexible structure groove 13; and an upper flexible structure stepped portion 11 formed by causing an upper flexible structure end portion 12a to be located above the upper bearing receiving seat surface 1a over an entire periphery; and a lower flexible structure 120 similarly provided in the lower bearing 2, and including a lower flexible structure groove 23; a lower flexible structure cylinder 22; and a lower flexible structure stepped portion 21.

Description

本発明は密閉型回転圧縮機、特に、シリンダ内に配置されたローリングピストンを偏心回転させることによって流体を圧縮する圧縮機構を具備する密閉型回転圧縮機に関するものである。   The present invention relates to a hermetic rotary compressor, and more particularly to a hermetic rotary compressor including a compression mechanism that compresses a fluid by eccentrically rotating a rolling piston disposed in a cylinder.

従来、密閉型回転圧縮機は、冷媒ガスを吸入して吸入した冷媒を圧縮する圧縮機構と、圧縮機構を駆動させる電動機構と、が密閉容器に収容された構成となっている。
圧縮機構は、断面円形の内周面を具備する筒状体であるシリンダと、シリンダ内に配置された円筒状のローリングピストンと、ローリングピストンを偏心回転させる駆動軸(クランクシャフト)と、シリンダに形成された複数のベーン溝に進退自在に配置された複数のベーンと、駆動軸を回転自在に支持すると共に、シリンダの両端面に密着し、かつ、ローリングピストンの両端面との間およびベーンの両端面との間に、それぞれ僅かな隙間を形成する上軸受け(主軸受け)および下軸受け(副軸受け)と、を有している。
電動機構は密閉容器の内周面に設置された固定子と、固定子の内部に配置された回転子と、を有し、回転子に駆動軸が固定されている。
Conventionally, a hermetic rotary compressor has a configuration in which a compression mechanism that sucks refrigerant gas and compresses the sucked refrigerant and an electric mechanism that drives the compression mechanism are housed in a hermetic container.
The compression mechanism includes a cylinder that is a cylindrical body having a circular inner peripheral surface, a cylindrical rolling piston arranged in the cylinder, a drive shaft (crankshaft) that eccentrically rotates the rolling piston, and a cylinder A plurality of vanes arranged in a plurality of vane grooves formed to be movable forward and backward, and a drive shaft is rotatably supported, in close contact with both end faces of the cylinder, and between both end faces of the rolling piston and the vane An upper bearing (main bearing) and a lower bearing (sub bearing) that form a slight gap between the both end faces are provided.
The electric mechanism has a stator installed on the inner peripheral surface of the hermetic container and a rotor arranged inside the stator, and a drive shaft is fixed to the rotor.

すなわち、シリンダの内周面とローリングピストンの外周面と、隣接する一対のベーンと、上軸受けおよび下軸受けとによって形成される空間(以下「圧縮室」と称す)の体積が、ローリングピストンの偏心回転によって変動する構造になっている。
したがって、圧縮機構は、電動機構によってローリングピストンが偏心回転される際、体積が拡大する領域(回転位相)において冷媒ガスを吸入し、体積が縮小する領域(回転位相)において冷媒ガスを圧縮する。そして、圧縮された冷媒は、密閉容器内に吐出され、その後、密閉容器から外部の装置(例えば、冷凍装置等)に供給される。
That is, the volume of the space (hereinafter referred to as “compression chamber”) formed by the inner peripheral surface of the cylinder, the outer peripheral surface of the rolling piston, a pair of adjacent vanes, and the upper bearing and the lower bearing is the eccentricity of the rolling piston. The structure varies with rotation.
Therefore, when the rolling piston is eccentrically rotated by the electric mechanism, the compression mechanism sucks the refrigerant gas in the region where the volume is increased (rotation phase) and compresses the refrigerant gas in the region where the volume is reduced (rotation phase). The compressed refrigerant is discharged into the sealed container, and then supplied from the sealed container to an external device (for example, a refrigeration apparatus).

なお、複数の圧縮機構を具備する多段密閉型回転圧縮機は、隣接する圧縮機構同士の間に、上軸受けまたは下軸受けに代えて中間仕切り板が配置され、最も端に配置された圧縮機構にのみ上軸受けまたは下軸受けが配置されている。   Note that a multistage hermetic rotary compressor having a plurality of compression mechanisms has an intermediate partition plate disposed between adjacent compression mechanisms in place of the upper bearing or the lower bearing, and the compression mechanism disposed at the extreme end. Only the upper bearing or the lower bearing is arranged.

以上のような密閉型回転圧縮機は、圧縮機構が冷媒ガスを圧縮する際、圧縮荷重が駆動軸に作用し撓み(軸方向に対して垂直な方向への偏位)が発生するため、駆動軸の撓みによって上軸受けおよび下軸受けに局部摩耗が発生するおそれがあった。
このため、駆動軸の撓みを吸収する「柔構造」を、上軸受けおよび下軸受けの少なくとも一方に形成した密閉型回転圧縮機が開示されている(例えば、特許文献1参照)。
The hermetic rotary compressor as described above is driven when the compression mechanism compresses the refrigerant gas, because the compression load acts on the drive shaft and bends (deviation in a direction perpendicular to the axial direction). There is a possibility that local wear may occur in the upper and lower bearings due to the bending of the shaft.
For this reason, a hermetic rotary compressor in which a “flexible structure” that absorbs the deflection of the drive shaft is formed on at least one of the upper bearing and the lower bearing is disclosed (for example, see Patent Document 1).

特開2004−124834号公報(第4−5頁、図4)JP 2004-124834 A (page 4-5, FIG. 4)

特許文献1に開示された「柔構造」は、駆動軸(クランクシャフト)が撓み変形した場合に、上軸受けおよび下軸受けの軸受内径が容易に微小変形するようにしたものである。すなわち、上軸受けおよび下軸受けの内周面から、外側に少し離れた位置で、シリンダに当接する端面に開口する断面円形の溝(以下「柔構造溝」と称す)を形成しているから、上軸受けおよび下軸受けの内周面と柔構造溝との間に、薄肉の円筒部分(以下「柔構造円筒」と称す)が形成される。
したがって、駆動軸の撓み変形に応じて、柔構造円筒は容易に弾性変形(弾性的に移動)するから、柔構造円筒の内周面に作用する圧縮荷重は緩和され、局部摩耗の発生が抑えられている。
The “flexible structure” disclosed in Patent Document 1 is such that when the drive shaft (crankshaft) is bent and deformed, the bearing inner diameters of the upper bearing and the lower bearing are easily deformed minutely. That is, since a groove having a circular cross section (hereinafter referred to as “soft structure groove”) is formed at an end surface that contacts the cylinder at a position slightly away from the inner peripheral surfaces of the upper bearing and the lower bearing. A thin cylindrical portion (hereinafter referred to as “flexible structure cylinder”) is formed between the inner peripheral surfaces of the upper and lower bearings and the flexible structure groove.
Therefore, the flexible cylinder easily elastically deforms (elastically moves) in response to the bending deformation of the drive shaft, so that the compressive load acting on the inner peripheral surface of the flexible cylinder is relieved and local wear is suppressed. It has been.

しかしながら、近年の密閉型回転圧縮機には高速化や作動圧力の高圧化が求められ、高速化や高圧化によって、密閉型回転圧縮機では圧縮機構で圧縮した冷媒ガスを密閉容器内に吐出する前後において、圧縮室の圧力脈動の振幅が大きくなる。
圧縮室内の圧力脈動が大きくなると、駆動軸(少なくともローリングピストンが固定されている偏心部分)は、軸方向に押圧されて軸方向に相対移動することになる。
このとき、ローリングピストンの偏心回転を可能にするために、上軸受けの下面とローリングピストンの上端面との間、および下軸受けの上面とローリングピストンの下端面との間には、それぞれ僅かな隙間(クリアランス)が形成されているため、一方の隙間が拡大して、他方の隙間が縮小する現象が生じる。
However, recent sealed rotary compressors are required to have higher speeds and higher operating pressures. With higher speeds and higher pressures, closed rotary compressors discharge refrigerant gas compressed by a compression mechanism into sealed containers. Before and after, the amplitude of pressure pulsation in the compression chamber increases.
When the pressure pulsation in the compression chamber increases, the drive shaft (at least the eccentric portion to which the rolling piston is fixed) is pressed in the axial direction and relatively moved in the axial direction.
At this time, in order to enable the eccentric rotation of the rolling piston, a slight gap is formed between the lower surface of the upper bearing and the upper end surface of the rolling piston, and between the upper surface of the lower bearing and the lower end surface of the rolling piston. Since (clearance) is formed, a phenomenon occurs in which one gap is enlarged and the other gap is reduced.

そうすると、上軸受けおよび下軸受けの少なくとも一方に柔構造円筒が形成された場合、柔構造円筒の端面(上軸受けの下端面また下軸受けの上端面と同一面)と、ローリングピストンの端面との間の拡大した隙間を経由して、冷媒ガスが柔構造溝に漏れ(流入し)易くなる。そして、反対に、ローリングピストンの端面との間の隙間が縮小する際、柔構造溝から漏れ(流出し)難くなり、冷媒ガスはさらに圧縮されるため、柔構造溝の内部にも圧力脈動が繰り返し発生する。
そのため、柔構造溝の内部の圧力は、柔構造溝の底面(天井面)に作用する軸方向の力になるため、脈動が大きくなった場合、駆動軸を軸方向に相対移動させる力が強くなり、密閉型回転圧縮機の本体からの騒音が増加したり、本体の振動が増加したりするという問題があった。
Then, when a flexible cylinder is formed on at least one of the upper bearing and the lower bearing, the gap between the end surface of the flexible cylinder (the same surface as the lower end surface of the upper bearing or the upper end surface of the lower bearing) and the end surface of the rolling piston It becomes easy for the refrigerant gas to leak (flow) into the flexible structure groove through the enlarged gap. On the contrary, when the gap between the rolling piston and the end surface of the rolling piston is reduced, it is difficult to leak (flow out) from the flexible structure groove, and the refrigerant gas is further compressed. It occurs repeatedly.
For this reason, the pressure inside the flexible structure groove is an axial force acting on the bottom surface (ceiling surface) of the flexible structure groove. Therefore, when the pulsation increases, the force that relatively moves the drive shaft in the axial direction is strong. Therefore, there is a problem that noise from the main body of the hermetic rotary compressor increases and vibration of the main body increases.

この発明は、上記のような課題を解決するためになされたものであって、駆動軸の撓み(回転軸に対して垂直な方向の偏位)による駆動軸の局部摩耗を抑えるための柔構造円筒を具備しながらも、高速化や高圧化を図った際、駆動軸を軸方向に相対移動させる力を緩和して、騒音や振動の増加を抑えることができる密閉型回転圧縮機を提供することにある。   The present invention has been made to solve the above-described problems, and is a flexible structure for suppressing local wear of the drive shaft due to deflection of the drive shaft (deviation in a direction perpendicular to the rotation shaft). Provided is a hermetic rotary compressor that can reduce the increase in noise and vibration by relaxing the force to move the drive shaft in the axial direction when achieving high speed and high pressure while having a cylinder. There is.

本発明に係る密閉型回転圧縮機は、密閉容器に収容され、流体を吸入して吸入した流体を圧縮する圧縮機構と、該圧縮機構を駆動させる電動機構と、を有し、前記圧縮機構は、断面円形の内周面および互いに平行な端面を具備する筒状体であるシリンダと、該シリンダ内に配置された円筒状のローリングピストンと、該ローリングピストンが固定された偏心軸部を具備する駆動軸と、該駆動軸を回転自在に支持する上軸受けおよび下軸受けと、前記シリンダに形成された複数のベーン溝に進退自在に配置された複数のベーンと、を具備し、前記上軸受けは、前記駆動軸の前記偏心軸部よりも上方を回転自在に支持する上軸受け内周面と、前記シリンダの上端面に密着すると共に、前記ローリングピストンの上端面および前記複数のベーンの上端面に対向する上軸受けシート面を具備し、前記下軸受けは、前記駆動軸の前記偏心軸部よりも下方を回転自在に支持する下軸受け内周面と、前記シリンダの下端面に密着すると共に、前記ローリングピストンの下端面および前記複数のベーンの下端面に対向する下軸受けシート面を具備し、前記シリンダの内周面と、前記ローリングピストンの外周面と、前記複数のベーンと、前記上軸受けシート面および下軸受けシート面とによって形成される空間である複数の圧縮室が形成され、前記電動機構は、前記密閉容器の内周面に設置された固定子と、該固定子の内部に配置され、前記駆動軸に固定された回転子と、を具備し、前記電動機構が前記駆動軸を回転した際、前記ローリングピストンが偏心回転することによって、前記複数の圧縮室の体積がそれぞれ変動する密閉型回転圧縮機であって、前記上軸受けシート面に開口し、前記上軸受け内周面と平行に形成された断面円形の上柔構造溝と、前記上軸受け内周面と前記上柔構造溝との間に形成された円筒状の上柔構造円筒と、該上柔構造溝の内部圧力の増加を抑える上内圧逃がし手段とを具備する上柔構造、および前記下軸受けシート面に開口し、前記下軸受け内周面と平行に形成された断面円形の下柔構造溝と、前記下軸受け内周面と前記下柔構造溝との間に形成された円筒状の下柔構造円筒と、該下柔構造溝の内部圧力の増加を抑える下内圧逃がし手段とを具備する下柔構造の少なくとも一方を有することを特徴とする。   A hermetic rotary compressor according to the present invention includes a compression mechanism that is accommodated in a hermetic container, sucks fluid and compresses the sucked fluid, and an electric mechanism that drives the compression mechanism. A cylinder which is a cylindrical body having an inner peripheral surface having a circular cross section and end surfaces parallel to each other, a cylindrical rolling piston disposed in the cylinder, and an eccentric shaft portion to which the rolling piston is fixed. A drive shaft, an upper bearing and a lower bearing that rotatably support the drive shaft, and a plurality of vanes disposed in a plurality of vane grooves formed in the cylinder, the upper bearing being An upper bearing inner peripheral surface that rotatably supports the eccentric shaft portion of the drive shaft, and an upper end surface of the cylinder, and an upper end surface of the rolling piston and upper surfaces of the plurality of vanes. An upper bearing seat surface facing the surface, and the lower bearing is in close contact with a lower bearing inner peripheral surface that rotatably supports a lower side than the eccentric shaft portion of the drive shaft, and a lower end surface of the cylinder. A lower bearing seat surface facing a lower end surface of the rolling piston and a lower end surface of the plurality of vanes, an inner peripheral surface of the cylinder, an outer peripheral surface of the rolling piston, the plurality of vanes, and the upper A plurality of compression chambers, which are spaces formed by the bearing seat surface and the lower bearing seat surface, are formed, and the electric mechanism includes a stator installed on the inner peripheral surface of the hermetic container, and an interior of the stator. And a rotor fixed to the drive shaft, and when the electric mechanism rotates the drive shaft, the rolling piston rotates eccentrically, thereby the plurality of compression chambers. A hermetic rotary compressor whose volume varies, wherein the upper bearing sheet surface opens and is formed in parallel with the upper bearing inner peripheral surface, and the upper bearing inner peripheral surface has a circular cross-section soft structure groove. An upper flexible structure comprising a cylindrical upper flexible structure cylinder formed between the upper flexible groove and an upper internal pressure relief means for suppressing an increase in internal pressure of the upper flexible groove, and the lower bearing A cylindrical soft lower groove formed between the lower bearing inner peripheral surface and the lower flexible structure groove, which is open in the seat surface and formed in parallel with the lower bearing inner peripheral surface and having a circular cross section. It has at least one of the flexible structure which comprises a flexible structure cylinder and the lower internal pressure relief means which suppresses the increase in the internal pressure of this lower flexible structure groove | channel.

本発明に係る密閉型回転圧縮機は、上柔構造溝の内部圧力の増加を抑える上内圧逃がし手段を具備する上柔構造および下柔構造溝の内部圧力の増加を抑える下内圧逃がし手段を具備する下柔構造の少なくとも一方を有しているから、上柔構造溝または下柔構造溝に流入した流体は、上柔構造溝または下柔構造溝から流出し易くなっている。
したがって、高速化や作動圧力の高圧化によって、圧縮室の圧力脈動の振幅が増大して、駆動軸が軸方向に相対移動した場合でも、流体が上柔構造溝または下柔構造溝から容易に流出することによって、上柔構造溝または下柔構造溝の内部圧力の上昇が抑えられる。
したがって、駆動軸を軸方向に相対移動させる力が抑えられ、密閉型回転圧縮機の本体からの騒音や本体の振動の増大を抑えることができる。
The hermetic rotary compressor according to the present invention includes an upper flexible structure including an upper internal pressure relief means for suppressing an increase in internal pressure of the upper flexible groove and a lower internal pressure relief means for suppressing an increase in internal pressure of the lower flexible structure groove. Therefore, the fluid that has flowed into the upper soft structure groove or the lower soft structure groove easily flows out of the upper soft structure groove or the lower soft structure groove.
Therefore, even if the amplitude of the pressure pulsation in the compression chamber increases due to higher speed or higher operating pressure, and the drive shaft moves relatively in the axial direction, the fluid can be easily removed from the upper flexible groove or the lower flexible groove. By flowing out, an increase in the internal pressure of the upper flexible structure groove or the lower flexible structure groove is suppressed.
Accordingly, the force for moving the drive shaft in the axial direction can be suppressed, and noise from the main body of the hermetic rotary compressor and increase in vibration of the main body can be suppressed.

本発明の実施の形態1に係る密閉型回転圧縮機を模式的に説明する全体を示す側面視の断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing of the side view which shows the whole which illustrates typically the hermetic rotary compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る密閉型回転圧縮機を模式的に説明するものであって、(a)は一部を示す側面視の断面図、(b)は一部を拡大して示す側面視の断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 schematically illustrates a hermetic rotary compressor according to a first embodiment of the present invention, in which (a) is a side sectional view showing a part, and (b) is an enlarged part. Sectional drawing of a side view. 本発明の実施の形態2に係る密閉型回転圧縮機を模式的に説明するものであって、(a)は一部を示す側面視の断面図、(b)は一部を拡大して示す側面視の断面図、(c)は一部を抜き出して示す斜視図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 schematically illustrates a hermetic rotary compressor according to a second embodiment of the present invention, in which (a) is a side sectional view showing a part, and (b) is an enlarged part. Sectional drawing of a side view, (c) is a perspective view which extracts and shows a part. 本発明の実施の形態3に係る密閉型回転圧縮機を模式的に説明するものであって、(a)は一部を示す側面視の断面図、(b)は一部を拡大して示す側面視の断面図、(c)は一部を抜き出して示す斜視図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 schematically illustrates a hermetic rotary compressor according to a third embodiment of the present invention, in which (a) is a side sectional view showing a part, and (b) is an enlarged part. Sectional drawing of a side view, (c) is a perspective view which extracts and shows a part. 本発明の実施の形態4に係る密閉型回転圧縮機を模式的に説明する一部を示す側面視の断面図。Sectional drawing of the side view which shows a part which illustrates typically the sealed rotary compressor which concerns on Embodiment 4 of this invention.

[実施の形態1]
図1および図2は本発明の実施の形態1に係る密閉型回転圧縮機を模式的に説明するものであって、図1は全体を示す側面視の断面図、図2の(a)は一部を示す側面視の断面図、図2の(b)は一部を拡大して示す側面視の断面図である。なお、各図は模式的に(一部を誇張して)示されているため、本発明は示された形態に限定するものではない。
[Embodiment 1]
1 and 2 schematically illustrate a hermetic rotary compressor according to Embodiment 1 of the present invention. FIG. 1 is a cross-sectional side view showing the whole, and FIG. FIG. 2B is a cross-sectional view in side view showing a part, and FIG. In addition, since each figure is shown typically (a part is exaggerated), this invention is not limited to the shown form.

(密閉型回転圧縮機)
図1において、密閉型回転圧縮機100は、密閉容器9内に冷媒ガスを圧縮する圧縮機構101と、圧縮機構101を駆動する電動機構102とが組み込まれた構成である。
電動機構102は、密閉容器9の内周面に設置された固定子7と、固定子7の内部に回転自在に配置された回転子8とを備えた構成である。
圧縮機構101は、断面円形の内周面および互いに平行な端面を具備する筒状体であるシリンダ3と、シリンダ3内に配置された円筒状のローリングピストン5と、ローリングピストン5が固定された偏心軸部(図示しない)を具備する駆動軸4と、駆動軸4を回転自在に支持する上軸受け1および下軸受け2と、シリンダ3に形成された複数のベーン溝に進退自在に配置された複数のベーン6と、を具備している。
(Sealed rotary compressor)
In FIG. 1, the hermetic rotary compressor 100 has a configuration in which a compression mechanism 101 that compresses a refrigerant gas and an electric mechanism 102 that drives the compression mechanism 101 are incorporated in a hermetic container 9.
The electric mechanism 102 includes a stator 7 installed on the inner peripheral surface of the hermetic container 9 and a rotor 8 that is rotatably arranged inside the stator 7.
The compression mechanism 101 includes a cylinder 3 that is a cylindrical body having an inner peripheral surface having a circular cross section and end surfaces that are parallel to each other, a cylindrical rolling piston 5 disposed in the cylinder 3, and the rolling piston 5 fixed thereto. A drive shaft 4 having an eccentric shaft portion (not shown), an upper bearing 1 and a lower bearing 2 that rotatably support the drive shaft 4, and a plurality of vane grooves formed in the cylinder 3 are disposed so as to be able to advance and retract. A plurality of vanes 6.

(圧縮室)
上軸受け1は、駆動軸4の偏心軸部よりも上方を回転自在に支持する上軸受け内周面1cと、シリンダ3の上端面に密着すると共に、ローリングピストン5の上端面および複数のベーン6の上端面に対向して僅かな隙間を形成する上軸受けシート面1aとを具備している。また、同様に、下軸受け2は、駆動軸4の偏心軸部よりも下方を回転自在に支持する下軸受け内周面2cと、シリンダ3の下端面に密着すると共に、ローリングピストン5の下端面および複数のベーン6の下端面に対向して僅かな隙間を形成する下軸受けシート面2aとを具備している。
そして、シリンダ3の内周面と、ローリングピストン5の外周面と、複数のベーン6と、上軸受けシート面1aおよび下軸受けシート面2aとによって形成される複数の空間(以下「圧縮室」と称す)が形成されている。
(Compression chamber)
The upper bearing 1 is in close contact with the upper bearing inner peripheral surface 1c that rotatably supports the eccentric shaft portion of the drive shaft 4 and the upper end surface of the cylinder 3, and the upper end surface of the rolling piston 5 and a plurality of vanes 6 And an upper bearing sheet surface 1a that forms a slight gap opposite to the upper end surface. Similarly, the lower bearing 2 is in close contact with the lower bearing inner peripheral surface 2 c that rotatably supports the lower side of the eccentric shaft portion of the drive shaft 4 and the lower end surface of the cylinder 3, and the lower end surface of the rolling piston 5. And a lower bearing sheet surface 2a that is opposed to the lower end surfaces of the plurality of vanes 6 and forms a slight gap.
A plurality of spaces (hereinafter referred to as “compression chambers”) formed by the inner peripheral surface of the cylinder 3, the outer peripheral surface of the rolling piston 5, the plurality of vanes 6, and the upper bearing seat surface 1a and the lower bearing seat surface 2a. Is formed).

したがって、電動機構102によって駆動軸4が回転された際、ローリングピストン5が偏心回転するから、シリンダ3の内周面とローリングピストン5との外周面との距離は変動し、ローリングピストン5の外周面に先端が摺動するベーン6は、シリンダ3からの突出量が変動する。すなわち、特定の一対のベーン6に挟まれた特定の圧縮室に着目すると、ローリングピストン5が偏心回転によって、特定の圧縮室の体積は増加と減少とを繰り返している。
すなわち、特定の圧縮室の体積が増加する際に、吸入管103を経由して、冷媒を特定の圧縮室内に吸入し、圧縮室の体積が減少する際に、吸入した冷媒を圧縮し、再度増加する前に、上軸受け1に形成された吐出穴(図示しない)を経由して密閉容器9内に吐出している。そして、圧縮された冷媒は、密閉容器9内から吐出管104を経由して、圧縮された冷媒を利用する各設備に供給される。なお、吐出の際の振動ないし騒音を低減するため、吐出穴を覆うように吐出マフラー10が上軸受け1に設置されている。
Accordingly, when the drive shaft 4 is rotated by the electric mechanism 102, the rolling piston 5 rotates eccentrically, so that the distance between the inner peripheral surface of the cylinder 3 and the outer peripheral surface of the rolling piston 5 varies, and the outer periphery of the rolling piston 5 is changed. The amount of protrusion from the cylinder 3 of the vane 6 whose tip slides on the surface varies. That is, paying attention to a specific compression chamber sandwiched between a specific pair of vanes 6, the volume of the specific compression chamber repeatedly increases and decreases due to the eccentric rotation of the rolling piston 5.
That is, when the volume of a specific compression chamber increases, the refrigerant is sucked into the specific compression chamber via the suction pipe 103, and when the volume of the compression chamber decreases, the sucked refrigerant is compressed, and again Before the increase, the liquid is discharged into the sealed container 9 via a discharge hole (not shown) formed in the upper bearing 1. The compressed refrigerant is supplied from the inside of the sealed container 9 to each facility using the compressed refrigerant via the discharge pipe 104. A discharge muffler 10 is installed on the upper bearing 1 so as to cover the discharge hole in order to reduce vibration or noise during discharge.

(柔構造段差)
上軸受け1には、上軸受けシート面1aに開口し、上軸受け内周面1cと平行に形成された断面円形の上柔構造溝13と、上軸受け内周面1cと上柔構造溝13との間に形成された円筒状の上柔構造円筒12と、が形成されている。そして、上柔構造円筒12の端面である上柔構造端部12aが、全周に渡って上軸受けシート面1aよりも上方に位置することによって、上柔構造端部12aと上軸受けシート面1aとの間に上柔構造段差11が形成されている。なお、上柔構造溝13、上柔構造円筒12および上柔構造段差11を具備する構造を「上柔構造110」と称す。
同様に、下軸受け2には、下軸受けシート面2aに開口し、下軸受け内周面2cと平行に形成された断面円形の下柔構造溝23と、下軸受け内周面2cと下柔構造溝23との間に形成された円筒状の下柔構造円筒22と、が形成されている。そして、下柔構造円筒22の端面である下柔構造端部22aが、全周に渡って下軸受けシート面2aよりも下方に位置することによって、下柔構造端部22aと下軸受けシート面2aとの間に下柔構造段差21が形成されている。なお、下柔構造溝23、下柔構造円筒22および下柔構造段差21を具備する構造を「下柔構造120」と称す。
(Flexible structure step)
The upper bearing 1 has an upper flexible sheet groove 13 which is open to the upper bearing sheet surface 1a and is formed in parallel with the upper bearing inner peripheral surface 1c, and the upper bearing inner peripheral surface 1c and the upper flexible groove 13. And a cylindrical soft structure cylinder 12 formed between the two. The upper flexible structure end 12a, which is the end surface of the upper flexible structure cylinder 12, is positioned above the upper bearing sheet surface 1a over the entire circumference, so that the upper flexible structure end 12a and the upper bearing sheet surface 1a are located. The upper flexible structure level | step difference 11 is formed between these. The structure including the upper flexible structure groove 13, the upper flexible structure cylinder 12, and the upper flexible structure step 11 is referred to as “upper flexible structure 110”.
Similarly, the lower bearing 2 has an opening in the lower bearing sheet surface 2a, a circular soft groove 23 having a circular cross section formed in parallel with the lower bearing inner peripheral surface 2c, and the lower bearing inner peripheral surface 2c and the lower soft structure. A cylindrical soft structure cylinder 22 formed between the grooves 23 is formed. And the lower flexible structure end 22a which is an end surface of the lower flexible structure cylinder 22 is located below the lower bearing sheet surface 2a over the entire circumference, so that the lower flexible structure end 22a and the lower bearing sheet surface 2a are located. An inferior soft structure step 21 is formed between them. A structure including the lower flexible structure groove 23, the lower flexible structure cylinder 22, and the lower flexible structure step 21 is referred to as a “lower flexible structure 120”.

したがって、密閉型回転圧縮機100は、上内圧逃がし手段としての上柔構造段差11および下内圧逃がし手段としての下柔構造段差21が形成されているから、上柔構造溝13および下柔構造溝23に流入した冷媒は、上柔構造溝13および下柔構造溝23から流出し易くなっている。したがって、高速化や作動圧力の高圧化によって、圧縮室の圧力脈動の振幅が増大して、駆動軸4が軸方向に相対移動した場合でも、冷媒が上柔構造溝13および下柔構造溝23から容易に流出することによって、上柔構造溝13および下柔構造溝23の内部圧力の上昇が抑えられる。したがって、駆動軸4を軸方向に相対移動させる力が抑えられ、密閉型回転圧縮機100の密閉容器9からの騒音や振動の増大を抑えることができる。   Accordingly, the hermetic rotary compressor 100 has the upper flexible structure step 11 as the upper internal pressure relief means and the lower flexible structure step 21 as the lower internal pressure relief means. The refrigerant that has flowed into 23 is likely to flow out of the upper flexible groove 13 and the lower flexible groove 23. Therefore, even if the amplitude of the pressure pulsation in the compression chamber is increased due to the increase in speed or the operating pressure, and the drive shaft 4 is relatively moved in the axial direction, the refrigerant is in the upper flexible groove 13 and the lower flexible groove 23. By flowing out easily from the above, an increase in internal pressure of the upper flexible structure groove 13 and the lower flexible structure groove 23 is suppressed. Therefore, the force that relatively moves the drive shaft 4 in the axial direction is suppressed, and an increase in noise and vibration from the sealed container 9 of the hermetic rotary compressor 100 can be suppressed.

なお、以上は、上柔構造端部12aの全周に渡って上柔構造段差11が形成され、下柔構造端部22aの全周に渡って下柔構造段差21が形成されているが、本発明はこれに限定するものではなく、上柔構造端部12aに部分的な上柔構造段差11を1または複数個所に形成してもよいし、下柔構造端部22aに部分的な下柔構造段差21を1または複数個所に形成してもよい。
さらに、以上は、上軸受け1および下軸受け2の両方に、それぞれ上柔構造110および下柔構造120が形成されているが、本発明はこれに限定するものではなく、上軸受け1および下軸受け2の少なくとも一方に、上柔構造110または下柔構造120が形成されるものであってもよい。
In the above, the upper flexible structure step 11 is formed over the entire circumference of the upper flexible structure end portion 12a, and the lower flexible structure step 21 is formed over the entire circumference of the lower flexible structure end portion 22a. The present invention is not limited to this, and a partial upper flexible structure step 11 may be formed in one or a plurality of locations on the upper flexible structure end 12a, or a partial lower structure may be formed on the lower flexible structure end 22a. The flexible structure step 21 may be formed in one or a plurality of places.
Furthermore, the upper flexible structure 110 and the lower flexible structure 120 are formed on both the upper bearing 1 and the lower bearing 2, respectively, but the present invention is not limited to this, and the upper bearing 1 and the lower bearing are not limited thereto. The upper flexible structure 110 or the lower flexible structure 120 may be formed on at least one of the two.

[実施の形態2]
図3の(a)〜(c)は本発明の実施の形態2に係る密閉型回転圧縮機を模式的に説明するものであって、(a)は一部を示す側面視の断面図、(b)は一部を拡大して示す側面視の断面図、(c)は一部を抜き出して示す斜視図である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
[Embodiment 2]
FIGS. 3A to 3C schematically illustrate a hermetic rotary compressor according to Embodiment 2 of the present invention, in which FIG. (B) is sectional drawing of the side view which expands and shows a part, (c) is a perspective view which extracts and shows a part. In addition, the same code | symbol is attached | subjected to the part which is the same as that of Embodiment 1, or an equivalent part, and one part description is abbreviate | omitted.

(軸受け内周溝と柔構造連通溝)
図3の(a)〜(c)において、密閉型回転圧縮機200は、上軸受け1の上軸受け内周面1cに、上軸受けシート面1aから上端面1bの全長(全高)に渡って上軸受け内周溝14が形成され、上柔構造端部12aに部分的な段差である上柔構造連通溝15が形成され、上軸受け内周溝14と上柔構造連通溝15とが連通している。なお、上柔構造溝13、上柔構造円筒12、上軸受け内周溝14および上柔構造連通溝15を具備する構造を「上柔構造210」と称す。
また、同様に、密閉型回転圧縮機200は、下軸受け2の下軸受け内周面2cに、下軸受けシート面2aから下端面2bの全長(全高)に渡って下軸受け内周溝24が形成され、下柔構造端部22aに部分的な段差である下柔構造連通溝25が形成され、下軸受け内周溝24と下柔構造連通溝25とが連通している。なお、下柔構造溝23、下柔構造円筒22、下軸受け内周溝24および下柔構造連通溝25を具備する構造を「下柔構造220」と称す。
(Bearing inner peripheral groove and flexible structure communication groove)
3 (a) to 3 (c), the hermetic rotary compressor 200 is disposed on the upper bearing inner peripheral surface 1c of the upper bearing 1 from the upper bearing sheet surface 1a over the entire length (overall height) of the upper end surface 1b. The inner circumferential groove 14 of the bearing is formed, the upper flexible structure communication groove 15 that is a partial step is formed in the upper flexible structure end 12a, and the upper bearing inner circumferential groove 14 and the upper flexible structure communication groove 15 communicate with each other. Yes. The structure including the upper flexible structure groove 13, the upper flexible structure cylinder 12, the upper bearing inner circumferential groove 14, and the upper flexible structure communication groove 15 is referred to as “upper flexible structure 210”.
Similarly, in the hermetic rotary compressor 200, the lower bearing inner peripheral groove 24 is formed in the lower bearing inner peripheral surface 2c of the lower bearing 2 over the entire length (total height) from the lower bearing sheet surface 2a to the lower end surface 2b. In addition, a lower flexible structure communication groove 25 that is a partial step is formed in the lower flexible structure end 22a, and the lower bearing inner circumferential groove 24 and the lower flexible structure communication groove 25 communicate with each other. The structure including the lower flexible structure groove 23, the lower flexible structure cylinder 22, the lower bearing inner circumferential groove 24, and the lower flexible structure communication groove 25 is referred to as a “lower flexible structure 220”.

したがって、密閉型回転圧縮機200は、上柔構造210と下柔構造220とを有し、上内圧逃がし手段としての上軸受け内周溝14および上柔構造連通溝15と、下内圧逃がし手段としての下軸受け内周溝24および下柔構造連通溝25とが形成されている。すなわち、上柔構造溝13および下柔構造溝23に流入した冷媒は、上柔構造溝13および下柔構造溝23から密閉容器9内に流出し易くなっている。
したがって、高速化や作動圧力の高圧化によって、圧縮室の圧力脈動の振幅が増大して、駆動軸4が軸方向に相対移動した場合でも、冷媒が上柔構造溝13および下柔構造溝23からさらに容易に流出する。すなわち、上柔構造溝13および下柔構造溝23の内部圧力の上昇がさらに抑えられるから、駆動軸4を軸方向に相対移動させる力がさらに抑えられ、密閉型回転圧縮機100の密閉容器9からの騒音や振動の増大を抑えることができる。
Therefore, the hermetic rotary compressor 200 has the upper flexible structure 210 and the lower flexible structure 220, and the upper bearing inner circumferential groove 14 and the upper flexible structure communication groove 15 as upper internal pressure releasing means, and the lower internal pressure releasing means. The lower bearing inner circumferential groove 24 and the lower flexible structure communication groove 25 are formed. That is, the refrigerant that has flowed into the upper flexible structure groove 13 and the lower flexible structure groove 23 easily flows out from the upper flexible structure groove 13 and the lower flexible structure groove 23 into the sealed container 9.
Therefore, even if the amplitude of the pressure pulsation in the compression chamber is increased due to the increase in speed or the operating pressure, and the drive shaft 4 is relatively moved in the axial direction, the refrigerant is in the upper flexible groove 13 and the lower flexible groove 23. More easily spills from. That is, since the increase in the internal pressure of the upper flexible structure groove 13 and the lower flexible structure groove 23 is further suppressed, the force for moving the drive shaft 4 in the axial direction is further suppressed, and the sealed container 9 of the hermetic rotary compressor 100 is further suppressed. The increase in noise and vibration from can be suppressed.

なお、以上は、1個所に形成された上柔構造連通溝15および下柔構造連通溝25に、それぞれ1条の上軸受け内周溝14および下軸受け内周溝24が連通しているが、本発明はこれに限定するものではなく、2以上の個所に上柔構造連通溝15および下柔構造連通溝25を形成してもよく、また、上柔構造連通溝15および下柔構造連通溝25に、それぞれ2条以上の上軸受け内周溝14および下軸受け内周溝24を連通してもよい。
さらに、上柔構造連通溝15および下柔構造連通溝25に代えて、上柔構造段差11および下柔構造段差21(実施の形態1参照)を設けてもよい。
さらに、密閉型回転圧縮機200は、上柔構造210および下柔構造220の両方を有しているが、本発明はこれに限定するものではなく、何れか一方のみを有するものであってもよい。
In the above, one upper bearing inner circumferential groove 14 and one lower bearing inner circumferential groove 24 communicate with the upper flexible structure communicating groove 15 and the lower flexible structure communicating groove 25 formed in one place, The present invention is not limited to this, and the upper flexible structure communication groove 15 and the lower flexible structure communication groove 25 may be formed at two or more locations, and the upper flexible structure communication groove 15 and the lower flexible structure communication groove 25 may be formed. 25, two or more upper bearing inner circumferential grooves 14 and lower bearing inner circumferential grooves 24 may be communicated with each other.
Furthermore, instead of the upper flexible structure communication groove 15 and the lower flexible structure communication groove 25, an upper flexible structure step 11 and a lower flexible structure step 21 (see Embodiment 1) may be provided.
Further, the hermetic rotary compressor 200 has both the upper flexible structure 210 and the lower flexible structure 220, but the present invention is not limited to this, and may have only one of them. Good.

[実施の形態3]
図4の(a)〜(c)は本発明の実施の形態3に係る密閉型回転圧縮機を模式的に説明するものであって、(a)は一部を示す側面視の断面図、(b)は一部を拡大して示す側面視の断面図、(c)は一部を抜き出して示す斜視図である。なお、実施の形態2と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
[Embodiment 3]
FIGS. 4A to 4C schematically illustrate a hermetic rotary compressor according to Embodiment 3 of the present invention, and FIG. 4A is a side sectional view showing a part thereof, (B) is sectional drawing of the side view which expands and shows a part, (c) is a perspective view which extracts and shows a part. In addition, the same code | symbol is attached | subjected to the part which is the same as that of Embodiment 2, or an equivalent part, and one part description is abbreviate | omitted.

(軸受け内周溝と柔構造連通穴)
図4の(a)〜(c)において、密閉型回転圧縮機300は、実施の形態2において説明した密閉型回転圧縮機200に形成された上柔構造連通溝15および下柔構造連通溝25を、それぞれ上柔構造連通穴16および下柔構造連通穴26に変更したものである。
すなわち、上軸受け1には、上柔構造円筒12を貫通する上柔構造連通穴16が形成され、上柔構造溝13、上柔構造円筒12、上軸受け内周溝14および上柔構造連通穴16を具備する構造である「上柔構造310」が形成されている。また、下軸受け2には、下柔構造円筒22を貫通する下柔構造連通穴26が形成され、下柔構造溝23、下柔構造円筒22、下軸受け内周溝24および下柔構造連通穴26を具備する構造である「下柔構造320」が形成されている。
(Bearing inner circumferential groove and flexible structure communication hole)
4A to 4C, the hermetic rotary compressor 300 includes an upper flexible communication groove 15 and a lower flexible communication groove 25 formed in the hermetic rotary compressor 200 described in the second embodiment. Are changed to upper flexible structure communication holes 16 and lower flexible structure communication holes 26, respectively.
That is, the upper bearing 1 is formed with an upper flexible structure communication hole 16 penetrating the upper flexible structure cylinder 12, and the upper flexible structure groove 13, the upper flexible structure cylinder 12, the upper bearing inner circumferential groove 14, and the upper flexible structure communication hole. A “soft structure 310” that is a structure having 16 is formed. In addition, a lower flexible structure communication hole 26 penetrating the lower flexible structure cylinder 22 is formed in the lower bearing 2, and a lower flexible structure groove 23, a lower flexible structure cylinder 22, a lower bearing inner circumferential groove 24, and a lower flexible structure communication hole are formed. A “underflexible structure 320” that is a structure having 26 is formed.

そうすると、上柔構造端部12aが全長に渡って上軸受けシート面1aと同じ平面内にあり、下柔構造端部22aが全長に渡って下軸受けシート面2aと同じ平面内にあることから、圧縮室から上柔構造溝13および下柔構造溝23に冷媒が流入し難くなっていると共に、一旦流入した冷媒は、上柔構造連通穴16および上軸受け内周溝14と、下柔構造連通穴26および下軸受け内周溝24とをそれぞれ経由して、上柔構造溝13および下柔構造溝23から密閉容器9内に流出し易くなっている。   Then, the upper flexible structure end portion 12a is in the same plane as the upper bearing sheet surface 1a over the entire length, and the lower flexible structure end portion 22a is in the same plane as the lower bearing sheet surface 2a over the entire length, The refrigerant is difficult to flow into the upper flexible structure groove 13 and the lower flexible structure groove 23 from the compression chamber, and once the refrigerant flows, the upper flexible structure communication hole 16 and the upper bearing inner peripheral groove 14 are communicated with the lower flexible structure communication hole. It is easy to flow out from the upper flexible groove 13 and the lower flexible groove 23 into the sealed container 9 via the hole 26 and the lower bearing inner circumferential groove 24, respectively.

したがって、密閉型回転圧縮機300は、上内圧逃がし手段としての上柔構造連通穴16および上軸受け内周溝14と、下内圧逃がし手段としての下柔構造連通穴26および下軸受け内周溝24と、を具備しているから、高速化や作動圧力の高圧化によって、圧縮室の圧力脈動の振幅が増大して、駆動軸4が軸方向に相対移動した場合でも、上柔構造溝13および下柔構造溝に流入する冷媒の量が少量に抑えられると共に、一旦流入した冷媒は、上柔構造溝13および下柔構造溝23から密閉容器9内に容易に流出する。したがって、上柔構造溝13および下柔構造溝23の内部圧力の上昇がさらに抑えられるから、駆動軸4を軸方向に相対移動させる力がさらに抑えられ、密閉型回転圧縮機100の密閉容器9からの騒音や振動の増大を抑えることができる。
なお、上柔構造連通穴16および下柔構造連通穴26の数量や配置形態は、上柔構造連通溝15および下柔構造連通溝25(実施の形態2参照)に準じて変形してもよい。
さらに、密閉型回転圧縮機300は、上柔構造310および下柔構造320の両方を有しているが、本発明はこれに限定するものではなく、何れか一方のみを有するものであってもよい。
Therefore, the hermetic rotary compressor 300 includes the upper flexible communication hole 16 and the upper bearing inner circumferential groove 14 as upper internal pressure relief means, and the lower flexible structure communication hole 26 and the lower bearing inner circumferential groove 24 as lower inner pressure relief means. Therefore, even when the drive shaft 4 is relatively moved in the axial direction due to the increase in the pressure pulsation amplitude in the compression chamber due to the increase in speed or the increase in the operating pressure, the flexible structure groove 13 and While the amount of the refrigerant flowing into the lower flexible structure groove is suppressed to a small amount, the refrigerant that has once flowed in easily flows out from the upper flexible structure groove 13 and the lower flexible structure groove 23 into the sealed container 9. Therefore, the increase in the internal pressure of the upper flexible structure groove 13 and the lower flexible structure groove 23 is further suppressed, so that the force for moving the drive shaft 4 in the axial direction is further suppressed, and the sealed container 9 of the hermetic rotary compressor 100 is further suppressed. The increase in noise and vibration from can be suppressed.
The number and arrangement of the upper flexible structure communication holes 16 and the lower flexible structure communication holes 26 may be modified in accordance with the upper flexible structure communication grooves 15 and the lower flexible structure communication holes 25 (see Embodiment 2). .
Further, the hermetic rotary compressor 300 has both the upper flexible structure 310 and the lower flexible structure 320. However, the present invention is not limited to this, and may have only one of them. Good.

[実施の形態4]
図5は本発明の実施の形態4に係る密閉型回転圧縮機を模式的に説明する一部を示す側面視の断面図である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
[Embodiment 4]
FIG. 5 is a side sectional view showing a part of the hermetic rotary compressor according to the fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the part which is the same as that of Embodiment 1, or an equivalent part, and one part description is abbreviate | omitted.

(軸受け連通穴)
図5において、密閉型回転圧縮機400は、実施の形態3において説明した密閉型回転圧縮機300に形成された上柔構造連通穴16および下柔構造連通穴26を、それぞれ上軸受け連通穴17および下軸受け連通穴27に変更したものである。
すなわち、上軸受けシート面1aに平行で、上軸受け1のツバ部の外周面1dに開口し、上柔構造溝13に連通する上軸受け連通穴17が形成され、上柔構造溝13、上柔構造円筒12、上軸受け内周溝14および上軸受け連通穴17を具備する構造である「上柔構造410」が形成されている。また、同様に、下軸受けシート面2aに平行で、下軸受け2のツバ部の外周面2dに開口し、下柔構造溝23に連通する下軸受け連通穴27が形成され、下柔構造溝23、下柔構造円筒22、下軸受け内周溝24および下軸受け連通穴27を具備する構造である「下柔構造420」が形成されている。
(Bearing hole)
In FIG. 5, the hermetic rotary compressor 400 includes the upper flexible communication hole 16 and the lower flexible communication hole 26 formed in the hermetic rotary compressor 300 described in the third embodiment, respectively. And the lower bearing communication hole 27 is changed.
That is, an upper bearing communication hole 17 that is parallel to the upper bearing sheet surface 1 a and opens on the outer peripheral surface 1 d of the flange portion of the upper bearing 1 and communicates with the upper flexible groove 13 is formed. A “upper flexible structure 410” that is a structure including the structural cylinder 12, the upper bearing inner circumferential groove 14, and the upper bearing communication hole 17 is formed. Similarly, a lower bearing communication hole 27 that is parallel to the lower bearing sheet surface 2 a and that opens in the outer peripheral surface 2 d of the flange portion of the lower bearing 2 and communicates with the lower flexible structure groove 23 is formed. In addition, a “lower flexible structure 420” which is a structure including the lower flexible structure cylinder 22, the lower bearing inner circumferential groove 24, and the lower bearing communication hole 27 is formed.

このとき、上柔構造端部12aが全長に渡って上軸受けシート面1aと同じ平面内にあり、下柔構造端部22aが全長に渡って下軸受けシート面2aと同じ平面内にあることから、圧縮室から上柔構造溝13および下柔構造溝23に冷媒が流入し難くなっていると共に、一旦流入した冷媒は、上軸受け連通穴17および下軸受け連通穴27をそれぞれ経由して、上柔構造溝13および下柔構造溝23から密閉容器9内に流出し易くなっている。   At this time, the upper flexible structure end portion 12a is in the same plane as the upper bearing sheet surface 1a over the entire length, and the lower flexible structure end portion 22a is in the same plane as the lower bearing sheet surface 2a over the entire length. The refrigerant hardly flows into the upper flexible structure groove 13 and the lower flexible structure groove 23 from the compression chamber, and the once-flowed refrigerant passes through the upper bearing communication hole 17 and the lower bearing communication hole 27, respectively. The flexible structure groove 13 and the lower flexible structure groove 23 easily flow out into the sealed container 9.

したがって、密閉型回転圧縮機400は、上内圧逃がし手段としての上軸受け連通穴17と、下内圧逃がし手段としての下軸受け連通穴27と、を具備しているから、高速化や作動圧力の高圧化によって、圧縮室の圧力脈動の振幅が増大して、駆動軸4が軸方向に相対移動した場合でも、上柔構造溝13および下柔構造溝に流入する冷媒の量が少量に抑えられると共に、一旦流入した冷媒は、上柔構造溝13および下柔構造溝23から密閉容器9内に容易に流出する。したがって、上柔構造溝13および下柔構造溝23の内部圧力の上昇がさらに抑えられるから、駆動軸4を軸方向に相対移動させる力がさらに抑えられ、密閉型回転圧縮機100の密閉容器9からの騒音や振動の増大を抑えることができる。   Accordingly, the hermetic rotary compressor 400 includes the upper bearing communication hole 17 as the upper internal pressure relief means and the lower bearing communication hole 27 as the lower internal pressure relief means. As a result, the pressure pulsation amplitude in the compression chamber increases, and even when the drive shaft 4 moves relative to the axial direction, the amount of refrigerant flowing into the upper flexible structure groove 13 and the lower flexible structure groove is suppressed to a small amount. The refrigerant once flowing in easily flows out into the sealed container 9 from the upper flexible structure groove 13 and the lower flexible structure groove 23. Therefore, the increase in the internal pressure of the upper flexible structure groove 13 and the lower flexible structure groove 23 is further suppressed, so that the force for moving the drive shaft 4 in the axial direction is further suppressed, and the sealed container 9 of the hermetic rotary compressor 100 is further suppressed. The increase in noise and vibration from can be suppressed.

なお、上軸受け連通穴17と下軸受け連通穴27との数量や大きさは限定するものではなく、複数であってもよい。また、上軸受け連通穴17と下軸受け連通穴27との密閉容器9側の開口する位置は、ツバ部の外周面1dとツバ部の外周面2dとに限定するものではなく、円筒部の外周面1eと円筒部の外周面2eとであっても、あるいは、ツバ部の上面1fとツバ部の下面2fとであってもよい。さらに、上軸受け連通穴17と下軸受け連通穴27とは、それぞれ上軸受けシート面1aと下軸受けシート面2aに平行でなく、傾斜したものであってもよい。
なお、本発明は、外周面1d、外周面1eおよび上面1fをまとめて「外面」と総称し、外周面2d、外周面2eおよび下面2fをまとめて「外面」と総称している。
The number and size of the upper bearing communication hole 17 and the lower bearing communication hole 27 are not limited and may be plural. Further, the opening positions of the upper bearing communication hole 17 and the lower bearing communication hole 27 on the closed container 9 side are not limited to the outer peripheral surface 1d of the flange portion and the outer peripheral surface 2d of the flange portion. It may be the surface 1e and the outer peripheral surface 2e of the cylindrical portion, or may be the upper surface 1f of the flange portion and the lower surface 2f of the flange portion. Furthermore, the upper bearing communication hole 17 and the lower bearing communication hole 27 may be inclined rather than parallel to the upper bearing sheet surface 1a and the lower bearing sheet surface 2a, respectively.
In the present invention, the outer peripheral surface 1d, the outer peripheral surface 1e, and the upper surface 1f are collectively referred to as an “outer surface”, and the outer peripheral surface 2d, the outer peripheral surface 2e, and the lower surface 2f are collectively referred to as an “outer surface”.

(その他の実施の形態)
以上は1つのシリンダ3を具備するものについて説明しているが、本発明はこれに限定するものではなく、複数のシリンダ3を具備してもよい。このとき、最上段に配置されたシリンダ3の上端面および下端面には、上軸受け1および中間仕切り板がそれぞれ密着し、最下段に配置されたシリンダ3の下端面および上端面には、下軸受け2および中間仕切り板がそれぞれ密着する。そして、3つ以上のシリンダ3を具備する場合には、最上段および最下段に配置されたシリンダ3を除く中間に配置されたシリンダ3については、上端面および下端面には中間仕切り板が密着する(何れも、図示しない)。
(Other embodiments)
Although the above description has been given of the case where one cylinder 3 is provided, the present invention is not limited to this, and a plurality of cylinders 3 may be provided. At this time, the upper bearing 1 and the intermediate partition plate are in close contact with the upper end surface and the lower end surface of the cylinder 3 disposed at the uppermost stage, respectively, and the lower end surface and the upper end surface of the cylinder 3 disposed at the lowermost stage are The bearing 2 and the intermediate partition plate are in close contact with each other. When three or more cylinders 3 are provided, the intermediate partition plates are in close contact with the upper end surface and the lower end surface of the cylinder 3 disposed in the middle except the uppermost and lowermost cylinders 3. (Both not shown).

1 上軸受け、1a シート面、1b 上端面、1c 内周面、1d 外周面、1e 外周面、1f 上面、2 下軸受け、2a シート面、2b 下端面、2c 内周面、2d 外周面、2e 外周面、2f 下面、3 シリンダ、4 駆動軸、5 ローリングピストン、6 ベーン、7 固定子、8 回転子、9 密閉容器、10 吐出マフラー、11 上柔構造段差、12 上柔構造円筒、12a 上柔構造端部、13 上柔構造溝、14 上軸受け内周溝、15 上柔構造連通溝、16 上柔構造連通穴、17 上軸受け連通穴、21 下柔構造段差、22 下柔構造円筒、22a 下柔構造端部、23 下柔構造溝、24 下軸受け内周溝、25 下柔構造連通溝、26 下柔構造連通穴、27 下軸受け連通穴、100 密閉型回転圧縮機(実施の形態1)、101 圧縮機構、102 電動機構、103 吸入管、104 吐出管、110 上柔構造(実施の形態1)、120 下柔構造(実施の形態1)、200 密閉型回転圧縮機(実施の形態2)、210 上柔構造(実施の形態2)、220 下柔構造(実施の形態2)、300 密閉型回転圧縮機(実施の形態3)、310 上柔構造(実施の形態3)、320 下柔構造(実施の形態3)、400 密閉型回転圧縮機(実施の形態4)、410 上柔構造(実施の形態4)、420 下柔構造(実施の形態4)。   1 upper bearing, 1a seat surface, 1b upper end surface, 1c inner peripheral surface, 1d outer peripheral surface, 1e outer peripheral surface, 1f upper surface, 2a seat surface, 2b lower end surface, 2c inner peripheral surface, 2d outer peripheral surface, 2e Outer peripheral surface, 2f bottom surface, 3 cylinder, 4 drive shaft, 5 rolling piston, 6 vane, 7 stator, 8 rotor, 9 sealed container, 10 discharge muffler, 11 flexible structure step, 12 flexible structure cylinder, 12a Flexible structure end, 13 Upper flexible structure groove, 14 Upper bearing inner circumferential groove, 15 Upper flexible structure communication groove, 16 Upper flexible structure communication hole, 17 Upper bearing communication hole, 21 Lower flexible structure step, 22 Lower flexible structure cylinder, 22a Lower flexible structure end, 23 Lower flexible structure groove, 24 Lower bearing inner circumferential groove, 25 Lower flexible structure communication groove, 26 Lower flexible structure communication hole, 27 Lower bearing communication hole, 100 Hermetic rotary compressor (embodiment) 1) DESCRIPTION OF SYMBOLS 101 Compression mechanism, 102 Electric mechanism, 103 Intake pipe, 104 Discharge pipe, 110 Upper flexible structure (Embodiment 1), 120 Lower flexible structure (Embodiment 1), 200 Hermetic rotary compressor (Embodiment 2) 210 Upper soft structure (Embodiment 2), 220 Lower soft structure (Embodiment 2), 300 Hermetic rotary compressor (Embodiment 3), 310 Upper soft structure (Embodiment 3), 320 Lower soft structure Structure (Embodiment 3), 400 Hermetic rotary compressor (Embodiment 4), 410 Upper flexible structure (Embodiment 4), 420 Lower flexible structure (Embodiment 4)

Claims (6)

密閉容器に収容され、流体を吸入して吸入した流体を圧縮する圧縮機構と、該圧縮機構を駆動させる電動機構と、を有し、
前記圧縮機構は、断面円形の内周面および互いに平行な端面を具備する筒状体であるシリンダと、該シリンダ内に配置された円筒状のローリングピストンと、該ローリングピストンが固定された偏心軸部を具備する駆動軸と、該駆動軸を回転自在に支持する上軸受けおよび下軸受けと、前記シリンダに形成された複数のベーン溝に進退自在に配置された複数のベーンと、を具備し、
前記上軸受けは、前記駆動軸の前記偏心軸部よりも上方を回転自在に支持する上軸受け内周面と、前記シリンダの上端面に密着すると共に、前記ローリングピストンの上端面および前記複数のベーンの上端面に対向する上軸受けシート面を具備し、
前記下軸受けは、前記駆動軸の前記偏心軸部よりも下方を回転自在に支持する下軸受け内周面と、前記シリンダの下端面に密着すると共に、前記ローリングピストンの下端面および前記複数のベーンの下端面に対向する下軸受けシート面を具備し、
前記シリンダの内周面と、前記ローリングピストンの外周面と、前記複数のベーンと、前記上軸受けシート面および下軸受けシート面とによって形成される空間である複数の圧縮室が形成され、
前記電動機構は、前記密閉容器の内周面に設置された固定子と、該固定子の内部に配置され、前記駆動軸に固定された回転子と、を具備し、
前記電動機構が前記駆動軸を回転した際、前記ローリングピストンが偏心回転することによって、前記複数の圧縮室の体積がそれぞれ変動する密閉型回転圧縮機であって、
前記上軸受けシート面に開口し、前記上軸受け内周面と平行に形成された断面円形の上柔構造溝と、前記上軸受け内周面と前記上柔構造溝との間に形成された円筒状の上柔構造円筒と、該上柔構造溝の内部圧力の増加を抑える上内圧逃がし手段とを具備する上柔構造、
および前記下軸受けシート面に開口し、前記下軸受け内周面と平行に形成された断面円形の下柔構造溝と、前記下軸受け内周面と前記下柔構造溝との間に形成された円筒状の下柔構造円筒と、該下柔構造溝の内部圧力の増加を抑える下内圧逃がし手段とを具備する下柔構造の少なくとも一方を有することを特徴とする密閉型回転圧縮機。
A compression mechanism that is housed in an airtight container and sucks the fluid and compresses the sucked fluid; and an electric mechanism that drives the compression mechanism,
The compression mechanism includes a cylinder that is a cylindrical body having a circular inner peripheral surface and end faces parallel to each other, a cylindrical rolling piston disposed in the cylinder, and an eccentric shaft to which the rolling piston is fixed. A drive shaft having a portion, an upper bearing and a lower bearing that rotatably support the drive shaft, and a plurality of vanes disposed in a plurality of vane grooves formed in the cylinder,
The upper bearing is in close contact with an upper bearing inner peripheral surface rotatably supported above the eccentric shaft portion of the drive shaft, an upper end surface of the cylinder, and an upper end surface of the rolling piston and the plurality of vanes. An upper bearing sheet surface facing the upper end surface of
The lower bearing is in close contact with an inner peripheral surface of a lower bearing that rotatably supports a portion below the eccentric shaft portion of the drive shaft, and a lower end surface of the cylinder, and a lower end surface of the rolling piston and the plurality of vanes A lower bearing sheet surface facing the lower end surface of
A plurality of compression chambers, which are spaces formed by the inner peripheral surface of the cylinder, the outer peripheral surface of the rolling piston, the plurality of vanes, and the upper and lower bearing seat surfaces, are formed,
The electric mechanism includes a stator installed on an inner peripheral surface of the sealed container, and a rotor disposed inside the stator and fixed to the drive shaft,
When the electric mechanism rotates the drive shaft, the rolling piston eccentrically rotates, whereby the volume of the plurality of compression chambers varies, respectively,
An upper flexible sheet groove having a circular cross section formed in the upper bearing sheet surface and parallel to the inner circumferential surface of the upper bearing, and a cylinder formed between the inner circumferential surface of the upper bearing and the upper flexible groove A soft structure comprising a cylindrical soft structure cylinder and an internal pressure relief means for suppressing an increase in internal pressure of the soft structure groove;
And an opening in the lower bearing sheet surface and formed between the lower bearing inner peripheral surface and the lower flexible structure groove having a circular cross section formed parallel to the lower bearing inner peripheral surface. A hermetic rotary compressor having at least one of a lower flexible structure including a cylindrical lower flexible structure cylinder and a lower internal pressure relief means for suppressing an increase in internal pressure of the lower flexible groove.
前記上内圧逃がし手段が、前記上軸受けシート面よりも上方に位置することによって前記上柔構造の端部と前記上軸受けシート面との間に形成され、前記上柔構造円筒の端面である上柔構造端部の全周に形成された上柔構造段差または前記上柔構造の端部の一部に形成された上柔構造連通溝であり、
前記下内圧逃がし手段が、前記下軸受けシート面よりも上方に位置することによって前記下柔構造の端部と前記下軸受けシート面との間に形成され、前記下柔構造円筒の端面である下柔構造端部の全周に形成された下柔構造段差または前記下柔構造の端部の一部に形成された下柔構造連通溝であることを特徴とする請求項1記載の密閉型回転圧縮機。
The upper internal pressure relief means is formed between the end portion of the upper flexible structure and the upper bearing sheet surface by being positioned above the upper bearing sheet surface, and is an end surface of the upper flexible structure cylinder. A flexible structure step formed on the entire circumference of the flexible structure end or a flexible structure communication groove formed on a part of the edge of the flexible structure,
The lower internal pressure relief means is formed between the end portion of the lower flexible structure and the lower bearing sheet surface by being positioned above the lower bearing sheet surface, and is an end surface of the lower flexible structure cylinder. 2. The hermetically sealed rotation according to claim 1, which is a lower flexible structure step formed on the entire circumference of the flexible structure end portion or a lower flexible structure communication groove formed on a part of the lower flexible structure end portion. Compressor.
前記上柔構造を有す場合に、前記上軸受け内周面に、前記上軸受けの上端面に開口し、前記上柔構造段差または上柔構造連通溝を経由して前記上柔構造溝に連通する上軸受け内周溝が形成され、
あるいは、前記下柔構造を有す場合に、前記下軸受け内周面に、前記下軸受けの下端面に開口し、前記下柔構造段差または下柔構造連通溝を経由して前記下柔構造溝に連通する下軸受け内周溝が形成されていることを特徴とする請求項2記載の密閉型回転圧縮機。
When the upper flexible structure is provided, the upper bearing inner peripheral surface opens to the upper end surface of the upper bearing and communicates with the upper flexible structure groove via the upper flexible structure step or the upper flexible structure communication groove. An upper bearing inner circumferential groove is formed,
Alternatively, in the case of having the lower flexible structure, the lower flexible structure groove opens to the inner peripheral surface of the lower bearing at the lower end surface of the lower bearing and passes through the lower flexible structure step or the lower flexible structure communication groove. 3. A hermetic rotary compressor according to claim 2, further comprising an inner peripheral groove formed in the lower bearing that communicates with the inner peripheral groove.
前記上内圧逃がし手段が、前記上軸受けを形成する上軸受け円筒を貫通する上柔構造貫通穴と、前記上軸受け内周面に形成され、前記上軸受けの上端面に開口し、前記上柔構造貫通穴を経由して前記上柔構造溝に連通する上軸受け内周溝とであって、
前記下内圧逃がし手段が、前記下軸受けを形成する下軸受け円筒を貫通する下柔構造貫通穴と、前記下軸受け内周面に形成され、前記下軸受けの下端面に開口し、前記下柔構造貫通穴を経由して前記下柔構造溝に連通する下軸受け内周溝とであることを特徴とする請求項1記載の密閉型回転圧縮機。
The upper internal pressure relief means is formed in an upper flexible structure through hole that penetrates an upper bearing cylinder that forms the upper bearing, and an upper peripheral surface of the upper bearing, and opens to an upper end surface of the upper bearing. An upper bearing inner circumferential groove communicating with the upper flexible structure groove via a through hole,
The lower internal pressure relief means is formed in a lower flexible structure through hole that penetrates a lower bearing cylinder that forms the lower bearing, and an inner peripheral surface of the lower bearing, and opens at a lower end surface of the lower bearing, and the lower flexible structure 2. The hermetic rotary compressor according to claim 1, wherein the inner rotary groove is a lower bearing inner peripheral groove communicating with the lower flexible structure groove via a through hole.
前記上内圧逃がし手段が、前記上軸受けの外面に開口し、前記上柔構造溝に連通する上軸受け連通穴であって、
前記下内圧逃がし手段が、前記下軸受けの外面に開口し、前記下柔構造溝に連通する下軸受け連通穴であることを特徴とする請求項1記載の密閉型回転圧縮機。
The upper internal pressure relief means is an upper bearing communication hole that opens to the outer surface of the upper bearing and communicates with the upper flexible structure groove,
2. The hermetic rotary compressor according to claim 1, wherein the lower internal pressure relief means is a lower bearing communication hole that opens to an outer surface of the lower bearing and communicates with the lower flexible structure groove.
前記シリンダが複数であって、該複数のシリンダが中間仕切り板を介して積層され、
前記複数のシリンダのうちの最上段のシリンダの上端面および下端面に、前記上軸受けおよび前記中間仕切り板がそれぞれ密着し、
前記複数のシリンダのうちの最下段のシリンダの下端面および上端面に、前記下軸受けおよび前記中間仕切り板がそれぞれ密着していることを特徴とする請求項1〜5の何れか一項に記載の密閉型回転圧縮機。
A plurality of the cylinders, and the plurality of cylinders are stacked via an intermediate partition plate;
The upper bearing and the intermediate partition plate are in close contact with the upper end surface and the lower end surface of the uppermost cylinder of the plurality of cylinders, respectively.
The lower bearing and the intermediate partition plate are in close contact with the lower end surface and the upper end surface of the lowermost cylinder of the plurality of cylinders, respectively. Hermetic rotary compressor.
JP2013072657A 2013-03-29 2013-03-29 Hermetic rotary compressor Active JP6066801B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013072657A JP6066801B2 (en) 2013-03-29 2013-03-29 Hermetic rotary compressor
CN201420143292.XU CN203783900U (en) 2013-03-29 2014-03-27 Airtight rotating compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072657A JP6066801B2 (en) 2013-03-29 2013-03-29 Hermetic rotary compressor

Publications (3)

Publication Number Publication Date
JP2014196705A true JP2014196705A (en) 2014-10-16
JP2014196705A5 JP2014196705A5 (en) 2015-09-24
JP6066801B2 JP6066801B2 (en) 2017-01-25

Family

ID=51320093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072657A Active JP6066801B2 (en) 2013-03-29 2013-03-29 Hermetic rotary compressor

Country Status (2)

Country Link
JP (1) JP6066801B2 (en)
CN (1) CN203783900U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017475A (en) * 2014-07-09 2016-02-01 ダイキン工業株式会社 Rotary compressor
JP2017150424A (en) * 2016-02-26 2017-08-31 パナソニックIpマネジメント株式会社 Two-cylinder type sealed compressor
WO2018066125A1 (en) * 2016-10-07 2018-04-12 三菱電機株式会社 Enclosed compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275808B (en) * 2015-11-20 2017-06-09 珠海格力节能环保制冷技术研究中心有限公司 A kind of rolling rotor compressor
JP6768553B2 (en) 2017-02-21 2020-10-14 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle equipment
CN107091233B (en) * 2017-06-30 2020-02-21 广东美芝制冷设备有限公司 Rotary compressor
CN110701046B (en) * 2019-11-12 2020-09-08 珠海格力电器股份有限公司 Compression cylinder assembly, rotary cylinder piston compressor and heat exchange equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218689U (en) * 1988-07-19 1990-02-07
JPH04116692U (en) * 1991-03-29 1992-10-19 ダイキン工業株式会社 rotary compressor
JPH0674176A (en) * 1992-08-26 1994-03-15 Hitachi Ltd Rotary compressor
JP2004124834A (en) * 2002-10-03 2004-04-22 Mitsubishi Electric Corp Hermetically sealed rotary compressor
JP2006152839A (en) * 2004-11-26 2006-06-15 Hitachi Home & Life Solutions Inc Rotary two-stage compressor and air conditioner using the compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218689U (en) * 1988-07-19 1990-02-07
JPH04116692U (en) * 1991-03-29 1992-10-19 ダイキン工業株式会社 rotary compressor
JPH0674176A (en) * 1992-08-26 1994-03-15 Hitachi Ltd Rotary compressor
JP2004124834A (en) * 2002-10-03 2004-04-22 Mitsubishi Electric Corp Hermetically sealed rotary compressor
JP2006152839A (en) * 2004-11-26 2006-06-15 Hitachi Home & Life Solutions Inc Rotary two-stage compressor and air conditioner using the compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017475A (en) * 2014-07-09 2016-02-01 ダイキン工業株式会社 Rotary compressor
JP2017150424A (en) * 2016-02-26 2017-08-31 パナソニックIpマネジメント株式会社 Two-cylinder type sealed compressor
CN107131125A (en) * 2016-02-26 2017-09-05 松下知识产权经营株式会社 Double cylinder type closed compressors
JP7002033B2 (en) 2016-02-26 2022-01-20 パナソニックIpマネジメント株式会社 2-cylinder type sealed compressor
WO2018066125A1 (en) * 2016-10-07 2018-04-12 三菱電機株式会社 Enclosed compressor

Also Published As

Publication number Publication date
CN203783900U (en) 2014-08-20
JP6066801B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6066801B2 (en) Hermetic rotary compressor
US9145890B2 (en) Rotary compressor with dual eccentric portion
WO2009093470A1 (en) Rotary fluid machine
JP5781019B2 (en) Rotary compressor
KR101094599B1 (en) Rotary Compressor
KR20140142046A (en) Scroll compressor
KR101523435B1 (en) Rotary compressor
JP4454318B2 (en) Compressor
KR101258090B1 (en) Scroll compressor
KR20180080885A (en) Rotary compressor
JP5984333B2 (en) Rotary compressor
KR20190011141A (en) Rotary compressor
JP2011074813A (en) Rotary compressor
JP6409910B1 (en) Scroll compressor
JP2009041382A (en) Rotary compressor and refrigerating cycle device using the same
KR102201409B1 (en) A rotary compressor
JP2013108375A (en) Rotary compressor
JP2014145261A (en) Discharge muffler structure and rotary compressor
JP6502078B2 (en) Compressor
JP2019035391A (en) Compressor
JP6017023B2 (en) Vane type compressor
KR20040036973A (en) Apparatus for reducing face pressor of enclossed compressor
JP6457303B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2013253568A (en) Two stage compressor
KR100624658B1 (en) Multi-cylinder type rotary compressor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6066801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250