JP7002033B2 - 2-cylinder type sealed compressor - Google Patents

2-cylinder type sealed compressor Download PDF

Info

Publication number
JP7002033B2
JP7002033B2 JP2016035037A JP2016035037A JP7002033B2 JP 7002033 B2 JP7002033 B2 JP 7002033B2 JP 2016035037 A JP2016035037 A JP 2016035037A JP 2016035037 A JP2016035037 A JP 2016035037A JP 7002033 B2 JP7002033 B2 JP 7002033B2
Authority
JP
Japan
Prior art keywords
shaft
sub
cylinder
thrust
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016035037A
Other languages
Japanese (ja)
Other versions
JP2017150424A (en
Inventor
志保 古谷
秀幸 堀畑
啓 椎崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016035037A priority Critical patent/JP7002033B2/en
Priority to EP17153366.4A priority patent/EP3214263A1/en
Priority to US15/427,899 priority patent/US10273957B2/en
Priority to CN201710090056.4A priority patent/CN107131125A/en
Publication of JP2017150424A publication Critical patent/JP2017150424A/en
Application granted granted Critical
Publication of JP7002033B2 publication Critical patent/JP7002033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/54Hydrostatic or hydrodynamic bearing assemblies specially adapted for rotary positive displacement pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/56Bearing bushings or details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/601Shaft flexion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/605Shaft sleeves or details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Description

本発明は空気調和機の室外機や冷凍機に用いられる2シリンダ型密閉圧縮機に関するものである。 The present invention relates to a two-cylinder type closed compressor used in an outdoor unit of an air conditioner or a refrigerator.

一般に、空気調和機の室外機や冷凍機に用いられる密閉圧縮機は、密閉容器内に電動機部と圧縮機構部とを備え、電動機部と圧縮機構部とをシャフトによって連結し、シャフトの偏心部に取り付けたピストンを、シャフトの回転によって公転運動させる。ピストンを内部に配置するシリンダの両端面には、主軸受と副軸受とが配置され、シャフトは主軸受と副軸受とによって支持されている。そして、多くの場合には、シャフトの軸径は、偏心部を除く軸部では同一である。
これに対して、特許文献1には、軸径が異なるシャフトが開示されている。
特許文献1では、偏心部に対して電動機部側を主軸部とし、反電動機部側を副軸部としたシャフトにおいて、副軸部の軸径を主軸部の軸径よりも小さくしている。
なお、特許文献1では、副軸受に転がり軸受を設ける場合を除いて、シャフトのスラスト荷重は、副軸部の下端で受けている。
Generally, a closed compressor used for an outdoor unit of an air conditioner or a refrigerator is provided with a motor unit and a compression mechanism unit in a closed container, and the motor unit and the compression mechanism unit are connected by a shaft to form an eccentric portion of the shaft. The piston attached to is revolved by the rotation of the shaft. A main bearing and an auxiliary bearing are arranged on both end faces of the cylinder in which the piston is arranged inside, and the shaft is supported by the main bearing and the auxiliary bearing. And, in many cases, the shaft diameter of the shaft is the same in the shaft portion excluding the eccentric portion.
On the other hand, Patent Document 1 discloses shafts having different shaft diameters.
In Patent Document 1, in a shaft having the motor portion side as the main shaft portion and the anti-motor portion side as the sub-shaft portion with respect to the eccentric portion, the shaft diameter of the sub-shaft portion is made smaller than the shaft diameter of the main shaft portion.
In Patent Document 1, the thrust load of the shaft is received at the lower end of the sub-shaft portion, except when the sub-bearing is provided with a rolling bearing.

特開2008-14150号公報Japanese Unexamined Patent Publication No. 2008-14150

ところで、従来から最も多く採用されてきている1シリンダ型の密閉圧縮機では、圧縮室から受ける応力は、電動機部側に配置している主軸部で受けており、副軸部で受ける応力は極めて小さい。
従って、特許文献1において開示されているように、副軸部の軸径を主軸部の軸径よりも小さくしても問題は生じにくい。
しかし、2シリンダ型の密閉圧縮機では、それぞれの圧縮室から受ける応力は、主軸部と副軸部とに分散されるため、副軸部にも大きな応力が加わることが解析の結果判明した。
By the way, in the one-cylinder type closed compressor that has been most often used in the past, the stress received from the compression chamber is received by the spindle portion arranged on the motor portion side, and the stress received by the sub-shaft portion is extremely high. small.
Therefore, as disclosed in Patent Document 1, even if the shaft diameter of the sub-shaft portion is made smaller than the shaft diameter of the main shaft portion, no problem occurs.
However, in the two-cylinder type closed compressor, the stress received from each compression chamber is distributed between the main shaft portion and the sub-shaft portion, so that a large stress is also applied to the sub-shaft portion as a result of analysis.

そこで本発明は、副軸部に加わる最大応力を低下させ、副軸部での摺動摩耗量を抑制することができる2シリンダ型密閉圧縮機を提供することを目的とする。 Therefore, an object of the present invention is to provide a two-cylinder type closed compressor capable of reducing the maximum stress applied to the sub-shaft portion and suppressing the amount of sliding wear on the sub-shaft portion.

本発明の2シリンダ型密閉圧縮機は、第2偏心部の副軸部側には、スラスト受け部を形成し、副軸受には、スラスト受け部の端面が当接して摺動するスラスト面を形成し、スラスト面にリング溝を設け、副軸部の軸径を、主軸部の軸径よりも小さくし、スラスト受け部の軸径を、第2偏心部の軸径よりも小さく、主軸部の軸径よりも大きくし、副軸部の第2偏心部側端部には、シャフトの内部に形成された給油路に連通している連通路が開口し、連通路を開口させた位置では、副軸部の軸径より軸径を小さくし、副軸部の外周面が摺動する副軸受の内周面には、オイルを導くオイル溝を形成している。
スラスト面にリング溝を設けることで、副軸部に加わる最大応力を低下させ、副軸部での摺動摩耗量を抑制することができるため、副軸部の軸径を、主軸部の軸径よりも小さくでき、副軸部の軸径を、主軸部の軸径よりも小さくすることで、更に副軸部での摺動損失を低減できる。
また、本発明の2シリンダ型密閉圧縮機は、リング溝とスラスト面とで形成されるリング状エッジ部を面取りしたものである。
リング溝とスラスト面とで形成されるリング状エッジ部を面取りすることによって、スラスト受け部の端面の異常摩耗を抑制できる。
また、本発明の2シリンダ型密閉圧縮機は、リング溝より内周部の副軸受の端面を、リング溝の外周部の副軸受の端面より低くし、リング溝の外周部の副軸受の端面をスラスト面としている。
これによって、リング溝より内周部の副軸受の端面は、スラスト受け部の端面と接触しないため、リング溝より内周部の副軸受のリング状エッジ部によるスラスト受け部の端面の異常摩耗を抑制できる。
In the two-cylinder type closed compressor of the present invention, a thrust receiving portion is formed on the auxiliary shaft portion side of the second eccentric portion, and the auxiliary bearing has a thrust surface on which the end surface of the thrust receiving portion abuts and slides. Formed, a ring groove is provided on the thrust surface, the shaft diameter of the sub-shaft portion is made smaller than the shaft diameter of the main shaft portion , the shaft diameter of the thrust receiving portion is smaller than the shaft diameter of the second eccentric portion, and the main shaft portion is formed. At the end of the secondary shaft portion on the side of the second eccentric part, a communication passage that communicates with the oil supply passage formed inside the shaft is opened, and at the position where the communication passage is opened. The shaft diameter is made smaller than the shaft diameter of the sub-shaft portion, and an oil groove for guiding oil is formed on the inner peripheral surface of the sub-bearing on which the outer peripheral surface of the sub-shaft portion slides .
By providing a ring groove on the thrust surface, the maximum stress applied to the sub-shaft portion can be reduced and the amount of sliding wear on the sub-shaft portion can be suppressed. It can be made smaller than the diameter, and by making the shaft diameter of the sub-shaft portion smaller than the shaft diameter of the main shaft portion, the sliding loss at the sub-shaft portion can be further reduced.
Further, in the two-cylinder type closed compressor of the present invention, the ring-shaped edge portion formed by the ring groove and the thrust surface is chamfered.
By chamfering the ring-shaped edge portion formed by the ring groove and the thrust surface, abnormal wear of the end surface of the thrust receiving portion can be suppressed.
Further, in the two-cylinder type sealed compressor of the present invention, the end face of the sub-bearing on the inner peripheral portion of the ring groove is lower than the end face of the sub-bearing on the outer peripheral portion of the ring groove, and the end face of the sub-bearing on the outer peripheral portion of the ring groove is set. Is the thrust surface.
As a result, the end face of the auxiliary bearing in the inner peripheral portion from the ring groove does not come into contact with the end face of the thrust receiving portion, so that abnormal wear of the end surface of the thrust receiving portion due to the ring-shaped edge portion of the auxiliary bearing in the inner peripheral portion from the ring groove is caused. Can be suppressed.

以上のように本発明によれば、2シリンダ型密閉圧縮機において、副軸受に加わる最大応力を低下させ、副軸受での摺動摩耗量を抑制することができる。 As described above, according to the present invention, in the two-cylinder type closed compressor, the maximum stress applied to the auxiliary bearing can be reduced, and the amount of sliding wear in the auxiliary bearing can be suppressed.

本発明の実施の形態による2シリンダ型密閉圧縮機の断面図Cross-sectional view of a two-cylinder type closed compressor according to an embodiment of the present invention. 同2シリンダ型密閉圧縮機に用いるシャフトの側面図Side view of the shaft used in the 2-cylinder type sealed compressor 同2シリンダ型密閉圧縮機に用いる副軸受の側面断面図Side sectional view of the auxiliary bearing used in the 2-cylinder type sealed compressor 同2シリンダ型密閉圧縮機での副軸部における最大応力値の検証に用いる実施例と比較例との仕様を示す図The figure which shows the specification of the Example and the comparative example used for the verification of the maximum stress value in the subshaft part in the same 2-cylinder type closed compressor. 図4に示す実施例と比較例について、副軸部における最大応力値の検証結果を示すグラフA graph showing the verification results of the maximum stress value in the sub-shaft portion for the examples and comparative examples shown in FIG. 図4に示す実施例と比較例について、副軸部における応力分布を示す解析図An analysis diagram showing the stress distribution in the sub-shaft portion for the examples and comparative examples shown in FIG.

以下、本発明の実施の形態について図面を参照しながら説明する。
図1は、本発明の実施の形態による2シリンダ型密閉圧縮機の断面図である。
本実施の形態による2シリンダ型密閉圧縮機は、密閉容器10内に電動機部20と圧縮機構部30とを備えている。電動機部20と圧縮機構部30とはシャフト40によって連結されている。
電動機部20は、密閉容器10内面に固定される固定子21と、固定子21内で回転する回転子22とから構成される。
本実施の形態による2シリンダ型密閉圧縮機は、圧縮機構部30として、第1圧縮機構部30Aと第2圧縮機構部30Bとを有している。
第1圧縮機構部30Aは、第1シリンダ31Aと、第1シリンダ31A内に配置される第1ピストン32Aと、第1シリンダ31A内を仕切るベーン(図示せず)とを有し、第1ピストン32Aが第1シリンダ31A内で公転運動することで、低圧の冷媒ガスを吸入して圧縮する。
第1圧縮機構部30Aと同様に、第2圧縮機構部30Bは、第2シリンダ31Bと、第2シリンダ31B内に配置される第2ピストン32Bと、第2シリンダ31B内を仕切るベーン(図示せず)とを有し、第2ピストン32Bが第2シリンダ31B内で公転運動することで、低圧の冷媒ガスを吸入して圧縮する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a two-cylinder type closed compressor according to an embodiment of the present invention.
The two-cylinder type closed compressor according to the present embodiment includes an electric motor unit 20 and a compression mechanism unit 30 in a closed container 10. The motor unit 20 and the compression mechanism unit 30 are connected by a shaft 40.
The electric motor unit 20 includes a stator 21 fixed to the inner surface of the closed container 10 and a rotor 22 rotating in the stator 21.
The two-cylinder type closed compressor according to the present embodiment has a first compression mechanism unit 30A and a second compression mechanism unit 30B as the compression mechanism unit 30.
The first compression mechanism unit 30A has a first cylinder 31A, a first piston 32A arranged in the first cylinder 31A, and a vane (not shown) for partitioning the inside of the first cylinder 31A, and the first piston. The 32A revolves in the first cylinder 31A to suck in and compress the low-pressure refrigerant gas.
Similar to the first compression mechanism unit 30A, the second compression mechanism unit 30B has a vane (shown) that partitions the second cylinder 31B, the second piston 32B arranged in the second cylinder 31B, and the inside of the second cylinder 31B. The second piston 32B revolves in the second cylinder 31B to suck in and compress the low-pressure refrigerant gas.

第1シリンダ31Aの一方の面には主軸受51を配置し、第1シリンダ31Aの他方の面には中板52を配置している。
また、第2シリンダ31Bの一方の面には中板52を配置し、第2シリンダ31Bの他方の面には副軸受53を配置している。
すなわち、中板52は第1シリンダ31Aと第2シリンダ31Bとを仕切る。中板52は、シャフト40の径よりも大きな開口部を有する。
シャフト40は、回転子22を取り付けて主軸受51で支持される主軸部41と、第1ピストン32Aを取り付ける第1偏心部42と、第2ピストン32Bを取り付ける第2偏心部43と、副軸受53で支持される副軸部44とで構成される。
第1偏心部42と第2偏心部43とは180度の位相差を持って形成され、第1偏心部42と第2偏心部43との間には、連結軸部45を形成している。
The main bearing 51 is arranged on one surface of the first cylinder 31A, and the middle plate 52 is arranged on the other surface of the first cylinder 31A.
Further, a middle plate 52 is arranged on one surface of the second cylinder 31B, and an auxiliary bearing 53 is arranged on the other surface of the second cylinder 31B.
That is, the middle plate 52 partitions the first cylinder 31A and the second cylinder 31B. The middle plate 52 has an opening larger than the diameter of the shaft 40.
The shaft 40 includes a spindle portion 41 to which the rotor 22 is attached and supported by the main bearing 51, a first eccentric portion 42 to which the first piston 32A is attached, a second eccentric portion 43 to which the second piston 32B is attached, and an auxiliary bearing. It is composed of a sub-shaft portion 44 supported by 53.
The first eccentric portion 42 and the second eccentric portion 43 are formed with a phase difference of 180 degrees, and a connecting shaft portion 45 is formed between the first eccentric portion 42 and the second eccentric portion 43. ..

第1圧縮室33Aは、主軸受51と中板52との間で、第1シリンダ31A内周面と第1ピストン32A外周面との間に形成される。また、第2圧縮室33Bは、中板52と副軸受53との間で、第2シリンダ31B内周面と第2ピストン32B外周面との間に形成される。
第1圧縮室33Aと第2圧縮室33Bとの容積は同一である。すなわち、第1シリンダ31A内径と、第2シリンダ31B内径とは同一であり、第1ピストン32A外径と第2ピストン32B外径とは同一である。また、第1シリンダ31A内周高さと、第2シリンダ31B内周高さとは同一であり、第1ピストン32A高さと第2ピストン32B高さとは同一である。
密閉容器10内の底部にはオイル溜め11が形成され、シャフト40の下端部にはオイルピックアップ12を設けている。
また、シャフト40の内部には軸方向に給油路47が形成され、給油路47には、圧縮機構部30の摺動面にオイルを供給するための連通路が形成されている。
The first compression chamber 33A is formed between the main bearing 51 and the middle plate 52, between the inner peripheral surface of the first cylinder 31A and the outer peripheral surface of the first piston 32A. Further, the second compression chamber 33B is formed between the middle plate 52 and the auxiliary bearing 53, between the inner peripheral surface of the second cylinder 31B and the outer peripheral surface of the second piston 32B.
The volumes of the first compression chamber 33A and the second compression chamber 33B are the same. That is, the inner diameter of the first cylinder 31A and the inner diameter of the second cylinder 31B are the same, and the outer diameter of the first piston 32A and the outer diameter of the second piston 32B are the same. Further, the inner peripheral height of the first cylinder 31A and the inner peripheral height of the second cylinder 31B are the same, and the height of the first piston 32A and the height of the second piston 32B are the same.
An oil reservoir 11 is formed at the bottom of the closed container 10, and an oil pickup 12 is provided at the lower end of the shaft 40.
Further, an oil supply passage 47 is formed inside the shaft 40 in the axial direction, and a communication passage for supplying oil to the sliding surface of the compression mechanism portion 30 is formed in the oil supply passage 47.

密閉容器10の側面には、第1吸入管13Aと第2吸入管13Bとが接続され、密閉容器10の上部には吐出管14が接続されている。
第1吸入管13Aは第1圧縮室33Aに、第2吸入管13Bは第2圧縮室33Bに、それぞれ接続されている。第1吸入管13Aおよび第2吸入管13Bの上流側には、アキュムレータ15を設けている。アキュムレータ15は、冷凍サイクルから戻ってきた冷媒を、液冷媒とガス冷媒に分離する。第1吸入管13Aおよび第2吸入管13Bにはガス冷媒が流れる。
シャフト40の回転によって、第1ピストン32Aおよび第2ピストン32Bは、第1圧縮室33Aおよび第2圧縮室33B内で公転運動を行う。
第1ピストン32Aおよび第2ピストン32Bの公転運動によって、第1吸入管13Aおよび第2吸入管13Bから第1圧縮室33Aおよび第2圧縮室33Bに吸入されたガス冷媒は、第1圧縮室33Aおよび第2圧縮室33Bで圧縮された後に密閉容器10内に吐出され、電動機部20を通過して上昇する間にオイルを分離し、吐出管14から密閉容器10外に吐出される。
また、シャフト40の回転によって、オイル溜め11から吸い上げたオイルは、連通路から圧縮機構部30に供給され、圧縮機構部30の摺動面の潤滑を行う。
The first suction pipe 13A and the second suction pipe 13B are connected to the side surface of the closed container 10, and the discharge pipe 14 is connected to the upper part of the closed container 10.
The first suction pipe 13A is connected to the first compression chamber 33A, and the second suction pipe 13B is connected to the second compression chamber 33B. An accumulator 15 is provided on the upstream side of the first suction pipe 13A and the second suction pipe 13B. The accumulator 15 separates the refrigerant returned from the refrigeration cycle into a liquid refrigerant and a gas refrigerant. A gas refrigerant flows through the first suction pipe 13A and the second suction pipe 13B.
Due to the rotation of the shaft 40, the first piston 32A and the second piston 32B revolve in the first compression chamber 33A and the second compression chamber 33B.
The gas refrigerant sucked into the first compression chamber 33A and the second compression chamber 33B from the first suction pipe 13A and the second suction pipe 13B by the revolving motion of the first piston 32A and the second piston 32B is the first compression chamber 33A. After being compressed in the second compression chamber 33B, it is discharged into the closed container 10, oil is separated while passing through the electric motor unit 20 and rising, and is discharged from the discharge pipe 14 to the outside of the closed container 10.
Further, the oil sucked up from the oil reservoir 11 by the rotation of the shaft 40 is supplied to the compression mechanism portion 30 from the communication passage to lubricate the sliding surface of the compression mechanism portion 30.

図2は、本実施の形態による2シリンダ型密閉圧縮機に用いるシャフトの側面図、図3は、同2シリンダ型密閉圧縮機に用いる副軸受の側面断面図である。
図2に示すように、シャフト40は、主軸部41と、第1偏心部42と、第2偏心部43と、副軸部44と、連結軸部45とで構成されている。第2偏心部43の副軸部44側には、スラスト受け部46を形成している。
図3に示すように、副軸受53には、図2に示すスラスト受け部46の端面が当接して摺動するスラスト面53A、53Bを形成している。スラスト面53A、53Bには、リング溝60を設けている。なお、スラスト面53Aは、リング溝60より内周部の副軸受53の端面によって形成され、スラスト面53Bは、リング溝60より外周部の副軸受53の端面によって形成されている。
FIG. 2 is a side view of a shaft used in the two-cylinder type closed compressor according to the present embodiment, and FIG. 3 is a side sectional view of an auxiliary bearing used in the two-cylinder type closed compressor.
As shown in FIG. 2, the shaft 40 includes a spindle portion 41, a first eccentric portion 42, a second eccentric portion 43, a sub-shaft portion 44, and a connecting shaft portion 45. A thrust receiving portion 46 is formed on the side of the sub-shaft portion 44 of the second eccentric portion 43.
As shown in FIG. 3, the auxiliary bearing 53 is formed with thrust surfaces 53A and 53B on which the end faces of the thrust receiving portion 46 shown in FIG. 2 abut and slide. Ring grooves 60 are provided on the thrust surfaces 53A and 53B. The thrust surface 53A is formed by the end surface of the auxiliary bearing 53 on the inner peripheral portion of the ring groove 60, and the thrust surface 53B is formed by the end surface of the auxiliary bearing 53 on the outer peripheral portion of the ring groove 60.

スラスト面53A、53Bにリング溝60を設けることで、副軸部44に加わる最大応力を低下させ、副軸部44での摺動摩耗量を抑制することができる。
リング溝60とスラスト面53A、53Bとで形成されるリング状エッジ部61A、61Bは、面取り処理を行うことが好ましい。なお、リング状エッジ部61Aはリング溝60の内周エッジであり、リング状エッジ部61Bはリング溝60の外周エッジである。
リング溝60とスラスト面53A、53Bとで形成されるリング状エッジ部61A、61Bを面取りすることによって、スラスト受け部46の端面の異常摩耗を抑制できる。
また、リング溝60より内周部の副軸受53の端面(スラスト面53A)を、リング溝60の外周部の副軸受53の端面(スラスト面53B)よりh1だけ低くし(段差h1)、スラスト面53Aには、スラスト受け部46の端面を当接させず、リング溝60の外周部の副軸受53の端面(スラスト面53B)をスラスト面とすることが好ましい。スラスト面53Aとスラスト面53Bとの段差h1は、リング溝60の深さh2より小さい。
リング溝60より内周部の副軸受53の端面を、スラスト受け部46の端面と接触させないことで、リング溝60より内周部の副軸受53のリング状エッジ部61Aによるスラスト受け部46の端面の異常摩耗を抑制できる。
By providing the ring grooves 60 on the thrust surfaces 53A and 53B, the maximum stress applied to the sub-shaft portion 44 can be reduced, and the amount of sliding wear on the sub-shaft portion 44 can be suppressed.
It is preferable that the ring-shaped edge portions 61A and 61B formed by the ring groove 60 and the thrust surfaces 53A and 53B are chamfered. The ring-shaped edge portion 61A is the inner peripheral edge of the ring groove 60, and the ring-shaped edge portion 61B is the outer peripheral edge of the ring groove 60.
By chamfering the ring-shaped edge portions 61A and 61B formed by the ring groove 60 and the thrust surfaces 53A and 53B, abnormal wear of the end surface of the thrust receiving portion 46 can be suppressed.
Further, the end surface (thrust surface 53A) of the auxiliary bearing 53 on the inner peripheral portion of the ring groove 60 is lowered by h1 (step h1) from the end surface (thrust surface 53B) of the auxiliary bearing 53 on the outer peripheral portion of the ring groove 60, and the thrust is increased. It is preferable that the end surface of the thrust receiving portion 46 is not brought into contact with the surface 53A, and the end surface (thrust surface 53B) of the auxiliary bearing 53 on the outer peripheral portion of the ring groove 60 is used as the thrust surface. The step h1 between the thrust surface 53A and the thrust surface 53B is smaller than the depth h2 of the ring groove 60.
By preventing the end surface of the auxiliary bearing 53 on the inner peripheral portion from the ring groove 60 from coming into contact with the end surface of the thrust receiving portion 46, the thrust receiving portion 46 by the ring-shaped edge portion 61A of the auxiliary bearing 53 on the inner peripheral portion from the ring groove 60 Abnormal wear of the end face can be suppressed.

主軸部41の軸径をd1、第1偏心部42の軸径をd2、第2偏心部43の軸径をd3、副軸部44の軸径をd4、連結軸部45の軸径をd5とすると、副軸部44の軸径d4は、主軸部41の軸径d1より小さくしている。
また、スラスト受け部46の軸径d6は、第2偏心部43の軸径d3よりも小さく、主軸部41の軸径d1、連結軸部45の軸径d5、および副軸部44の軸径d4よりも大きくしている。
このように、スラスト面53A、53Bにリング溝60を設けることで、副軸部44に加わる最大応力を低下させることができ、その結果、副軸部44の軸径d4を、主軸部41の軸径d1よりも小さくできるため、副軸部44での摺動損失を低減できる。
なお、シャフト40のスラスト荷重を、副軸部44で受ける構成の場合には、上記のように副軸部44の軸径d4を小さくすると、シャフト40のスラスト荷重を受ける面積が小さくなり、安定して荷重を受けることができない。
しかしながら、本実施の形態による2シリンダ型密閉圧縮機のように、シャフト40のスラスト荷重を、スラスト受け部46の端面によって、副軸受53におけるスラスト面53A、53Bで受ける構成としたことで、副軸部44の軸径d4を、主軸部41の軸径d1よりも小さく、すなわち、副軸部44の軸径d4が小さくなっても、シャフト40のスラスト荷重を受ける面積を小さくする必要はないため、安定してシャフト40のスラスト荷重を受けることができる。
The shaft diameter of the main shaft portion 41 is d1, the shaft diameter of the first eccentric portion 42 is d2, the shaft diameter of the second eccentric portion 43 is d3, the shaft diameter of the sub-shaft portion 44 is d4, and the shaft diameter of the connecting shaft portion 45 is d5. Then, the shaft diameter d4 of the sub-shaft portion 44 is smaller than the shaft diameter d1 of the main shaft portion 41.
Further, the shaft diameter d6 of the thrust receiving portion 46 is smaller than the shaft diameter d3 of the second eccentric portion 43, and the shaft diameter d1 of the main shaft portion 41, the shaft diameter d5 of the connecting shaft portion 45, and the shaft diameter of the sub-shaft portion 44. It is larger than d4.
By providing the ring grooves 60 on the thrust surfaces 53A and 53B in this way, the maximum stress applied to the sub-shaft portion 44 can be reduced, and as a result, the shaft diameter d4 of the sub-shaft portion 44 can be changed to that of the spindle portion 41. Since the shaft diameter can be made smaller than d1, the sliding loss at the sub-shaft portion 44 can be reduced.
In the case of a configuration in which the thrust load of the shaft 40 is received by the sub-shaft portion 44, if the shaft diameter d4 of the sub-shaft portion 44 is reduced as described above, the area of the shaft 40 that receives the thrust load becomes smaller and stable. And cannot receive the load.
However, unlike the two-cylinder type closed compressor according to the present embodiment, the thrust load of the shaft 40 is received by the end surface of the thrust receiving portion 46 on the thrust surfaces 53A and 53B of the auxiliary bearing 53. Even if the shaft diameter d4 of the shaft portion 44 is smaller than the shaft diameter d1 of the main shaft portion 41, that is, even if the shaft diameter d4 of the sub-shaft portion 44 becomes smaller, it is not necessary to reduce the area of the shaft 40 that receives the thrust load. Therefore, the thrust load of the shaft 40 can be stably received.

図2に示すように、主軸部41の第1偏心部42側端部には、シャフト40の内部に形成された給油路47に連通している第1連通路12Aが開口し、副軸部44の第2偏心部43側端部には、シャフト40の内部に形成された給油路47に連通している第2連通路12Bが開口している。
第1連通路12Aを開口させた位置では、主軸部41の軸径d1より軸径を小さくし、第2連通路12Bを開口させた位置では、副軸部44の軸径d4より軸径を小さくすることで、圧縮機構部30へのオイル供給を確実に行える。
第1偏心部42の側面には、シャフト40の内部に形成された給油路47に連通している第3連通路12Cが開口し、第2偏心部43の側面には、シャフト40の内部に形成された給油路47に連通している第4連通路12Dが開口している。
なお、シャフト40のスラスト荷重を副軸部44で受ける構成の場合には、シャフト40の内部に給油路47が構成されていることで、シャフト40のスラスト荷重を受ける副軸部44の面積は、給油路47の面積を除いた面積となる。本実施例では、シャフト40のスラスト荷重をスラスト受け部46の端面によって受ける構成としたことで、副軸部44の軸径d4が、主軸部41の軸径d1よりも小さくなっても、すなわち、副軸部44の軸径d4が小さくなっても、シャフト40のスラスト荷重を受ける面積を小さくする必要はないため、安定してシャフト40のスラスト荷重を受けることができる。
As shown in FIG. 2, at the end of the main shaft portion 41 on the side of the first eccentric portion 42, a first communication passage 12A communicating with the oil supply passage 47 formed inside the shaft 40 is opened, and a sub-shaft portion is formed. At the end of the 44 on the side of the second eccentric portion 43, a second passage 12B communicating with the oil supply passage 47 formed inside the shaft 40 is opened.
At the position where the first continuous passage 12A is opened, the shaft diameter is smaller than the shaft diameter d1 of the main shaft portion 41, and at the position where the second continuous passage 12B is opened, the shaft diameter is smaller than the shaft diameter d4 of the sub-shaft portion 44. By making it smaller, oil can be reliably supplied to the compression mechanism unit 30.
A third passage 12C communicating with the oil supply passage 47 formed inside the shaft 40 is opened on the side surface of the first eccentric portion 42, and the side surface of the second eccentric portion 43 is inside the shaft 40. The fourth connecting passage 12D communicating with the formed refueling passage 47 is open.
In the case of the configuration in which the thrust load of the shaft 40 is received by the sub-shaft portion 44, the area of the sub-shaft portion 44 that receives the thrust load of the shaft 40 is increased because the oil supply passage 47 is configured inside the shaft 40. , The area excluding the area of the refueling passage 47. In this embodiment, the thrust load of the shaft 40 is received by the end face of the thrust receiving portion 46, so that the shaft diameter d4 of the sub-shaft portion 44 is smaller than the shaft diameter d1 of the spindle portion 41, that is, Even if the shaft diameter d4 of the sub-shaft portion 44 becomes smaller, it is not necessary to reduce the area for receiving the thrust load of the shaft 40, so that the thrust load of the shaft 40 can be stably received.

なお、スラスト受け部46の高さをh3、第2連通路12Bを開口させた副軸部44の軸径d4より小さい軸径部の高さをh4とすると、軸径部の高さh4は、スラスト面53Aとスラスト面53Bとの段差h1より大きく、リング溝60の深さh2は、軸径部の高さh4より大きい。
また、副軸部44の外周面が摺動する副軸受53の内周面53Cには、オイルを導くオイル溝53Dを形成している。
Assuming that the height of the thrust receiving portion 46 is h3 and the height of the shaft diameter portion smaller than the shaft diameter d4 of the sub-shaft portion 44 having the second communication passage 12B opened is h4, the height h4 of the shaft diameter portion is The step h1 between the thrust surface 53A and the thrust surface 53B is larger than the step h1, and the depth h2 of the ring groove 60 is larger than the height h4 of the shaft diameter portion.
Further, an oil groove 53D for guiding oil is formed on the inner peripheral surface 53C of the auxiliary bearing 53 on which the outer peripheral surface of the auxiliary shaft portion 44 slides.

図4から図6は、本実施の形態による2シリンダ型密閉圧縮機での副軸部における最大応力値の検証結果を示している。
図4は、主軸部41の軸径d1と副軸部44の軸径d4とを同一としてリング溝60を形成していない比較例と、副軸部44の軸径d4を、主軸部41の軸径d1よりも小さくしてリング溝60を形成した実施例との仕様を示している。
実施例は副軸部44の軸径d4を主軸部41の軸径d1に対して94%としている。
4 to 6 show the verification results of the maximum stress value in the sub-shaft portion in the two-cylinder type closed compressor according to the present embodiment.
FIG. 4 shows a comparative example in which the shaft diameter d1 of the spindle portion 41 and the shaft diameter d4 of the sub-shaft portion 44 are the same and the ring groove 60 is not formed, and the shaft diameter d4 of the sub-shaft portion 44 is set to the spindle portion 41. The specifications with the embodiment in which the ring groove 60 is formed to be smaller than the shaft diameter d1 are shown.
In the embodiment, the shaft diameter d4 of the sub-shaft portion 44 is 94% of the shaft diameter d1 of the main shaft portion 41.

図5は、比較例および実施例について、副軸部44における最大応力値の検証結果を示すグラフであり、図6は、比較例および実施例について、副軸部44における応力分布を示す解析図である。
図5に示すように、比較例に対してリング溝60を形成した実施例では、副軸部44の軸径d4を、主軸部41の軸径d1よりも小さくしたにも関わらず、最大応力値は34%低下している。
FIG. 5 is a graph showing the verification results of the maximum stress value in the sub-shaft portion 44 for the comparative examples and the examples, and FIG. 6 is an analysis diagram showing the stress distribution in the sub-shaft portion 44 for the comparative examples and the examples. Is.
As shown in FIG. 5, in the embodiment in which the ring groove 60 is formed with respect to the comparative example, the maximum stress is obtained even though the shaft diameter d4 of the sub-shaft portion 44 is smaller than the shaft diameter d1 of the main shaft portion 41. The value has dropped by 34%.

本発明は、2シリンダ型密閉圧縮機を対象としているが、3個以上の複数個のシリンダを搭載した圧縮機でも適用可能である。 Although the present invention is intended for a two-cylinder type closed compressor, it can also be applied to a compressor equipped with a plurality of cylinders of three or more.

10 密閉容器
20 電動機部
21 固定子
22 回転子
30 圧縮機構部
30A 第1圧縮機構部
30B 第2圧縮機構部
31A 第1シリンダ
31B 第2シリンダ
32A 第1ピストン
32B 第2ピストン
40 シャフト
41 主軸部
42 第1偏心部
43 第2偏心部
44 副軸部
47 給油路
51 主軸受
52 中板
53 副軸受
53A スラスト面
53B スラスト面
60 リング溝
61A リング状エッジ部
61B リング状エッジ部
d1 主軸部の軸径
d2 第1偏心部の軸径
d3 第2偏心部の軸径
d4 副軸部の軸径
d5 連結軸部の軸径
d6 スラスト受け部の軸径
10 Airtight container 20 Electric motor part 21 Fixture 22 Rotator 30 Compression mechanism part 30A 1st compression mechanism part 30B 2nd compression mechanism part 31A 1st cylinder 31B 2nd cylinder 32A 1st piston 32B 2nd piston 40 Shaft 41 Main shaft part 42 1st eccentric part 43 2nd eccentric part 44 Sub-shaft part 47 Refueling path 51 Main bearing 52 Middle plate 53 Sub-bearing 53A Thrust surface 53B Thrust surface 60 Ring groove 61A Ring-shaped edge part 61B Ring-shaped edge part d1 Shaft diameter of main shaft part d2 Shaft diameter of the first eccentric part d3 Shaft diameter of the second eccentric part d4 Shaft diameter of the sub-shaft part d5 Shaft diameter of the connecting shaft part d6 Shaft diameter of the thrust receiving part

Claims (3)

密閉容器内に電動機部と圧縮機構部とを備え、
前記電動機部と前記圧縮機構部とはシャフトによって連結され、
前記電動機部は、前記密閉容器内面に固定される固定子と、前記固定子内で回転する回転子とを有し、
前記圧縮機構部として、第1圧縮機構部と第2圧縮機構部とを有し、
前記第1圧縮機構部は、第1シリンダと、前記第1シリンダ内に配置される第1ピストンとを有し、
前記第2圧縮機構部は、第2シリンダと、前記第2シリンダ内に配置される第2ピストンとを有し、
前記第1シリンダの一方の面には主軸受を配置し、前記第1シリンダの他方の面には中板を配置し、
前記第2シリンダの一方の面には前記中板を配置し、前記第2シリンダの他方の面には副軸受を配置し、
前記シャフトは、
前記回転子を取り付けて前記主軸受で支持される主軸部と、
前記第1ピストンを取り付ける第1偏心部と、
前記第2ピストンを取り付ける第2偏心部と、
前記副軸受で支持される副軸部と
で構成され、
前記第2偏心部の前記副軸部側には、スラスト受け部を形成し、
前記副軸受には、前記スラスト受け部の端面が当接して摺動するスラスト面を形成し、
前記スラスト面にリング溝を設け、
前記副軸部の軸径を、前記主軸部の軸径よりも小さくし
前記スラスト受け部の軸径を、前記第2偏心部の軸径よりも小さく、前記主軸部の前記軸径よりも大きくし、
前記副軸部の前記第2偏心部側端部には、前記シャフトの内部に形成された給油路に連通している連通路が開口し、
前記連通路を開口させた位置では、前記副軸部の前記軸径より軸径を小さくし、
前記副軸部の外周面が摺動する前記副軸受の内周面には、オイルを導くオイル溝を形成し
ことを特徴とする2シリンダ型密閉圧縮機。
A motor unit and a compression mechanism unit are provided in a closed container.
The motor unit and the compression mechanism unit are connected by a shaft.
The motor unit has a stator fixed to the inner surface of the closed container and a rotor that rotates in the stator.
The compression mechanism unit includes a first compression mechanism unit and a second compression mechanism unit.
The first compression mechanism unit has a first cylinder and a first piston arranged in the first cylinder.
The second compression mechanism unit has a second cylinder and a second piston arranged in the second cylinder.
A main bearing is arranged on one surface of the first cylinder, and a middle plate is arranged on the other surface of the first cylinder.
The middle plate is arranged on one surface of the second cylinder, and the auxiliary bearing is arranged on the other surface of the second cylinder.
The shaft
A spindle portion to which the rotor is attached and supported by the main bearing, and
The first eccentric part to which the first piston is attached and
The second eccentric part to which the second piston is attached and
It is composed of a sub-shaft supported by the sub-bearing.
A thrust receiving portion is formed on the sub-shaft portion side of the second eccentric portion.
The auxiliary bearing is formed with a thrust surface on which the end surface of the thrust receiving portion abuts and slides.
A ring groove is provided on the thrust surface.
The shaft diameter of the sub-shaft portion is made smaller than the shaft diameter of the main shaft portion .
The shaft diameter of the thrust receiving portion is made smaller than the shaft diameter of the second eccentric portion and larger than the shaft diameter of the spindle portion.
At the end of the sub-shaft portion on the side of the second eccentric portion, a communication passage communicating with the oil supply passage formed inside the shaft is opened.
At the position where the communication passage is opened, the shaft diameter is made smaller than the shaft diameter of the sub-shaft portion.
A two-cylinder type sealed compressor characterized in that an oil groove for guiding oil is formed on the inner peripheral surface of the auxiliary bearing on which the outer peripheral surface of the auxiliary shaft portion slides .
前記リング溝と前記スラスト面とで形成されるリング状エッジ部を面取りしたことを特徴とする請求項1に記載の2シリンダ型密閉圧縮機。 The two-cylinder type closed compressor according to claim 1, wherein the ring-shaped edge portion formed by the ring groove and the thrust surface is chamfered. 前記リング溝より内周部の前記副軸受の端面を、前記リング溝の外周部の前記副軸受の端面より低くし、前記リング溝の前記外周部の前記副軸受の前記端面を前記スラスト面としたことを特徴とする請求項1または請求項2に記載の2シリンダ型密閉圧縮機。
The end face of the sub-bearing on the inner peripheral portion of the ring groove is lower than the end face of the sub-bearing on the outer peripheral portion of the ring groove, and the end face of the sub-bearing on the outer peripheral portion of the ring groove is the thrust surface. The two-cylinder type closed compressor according to claim 1 or 2, wherein the two-cylinder type sealed compressor is characterized by the above.
JP2016035037A 2016-02-26 2016-02-26 2-cylinder type sealed compressor Active JP7002033B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016035037A JP7002033B2 (en) 2016-02-26 2016-02-26 2-cylinder type sealed compressor
EP17153366.4A EP3214263A1 (en) 2016-02-26 2017-01-26 Two-cylinder hermetic compressor
US15/427,899 US10273957B2 (en) 2016-02-26 2017-02-08 Two-cylinder hermetic compressor
CN201710090056.4A CN107131125A (en) 2016-02-26 2017-02-20 Double cylinder type closed compressors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016035037A JP7002033B2 (en) 2016-02-26 2016-02-26 2-cylinder type sealed compressor

Publications (2)

Publication Number Publication Date
JP2017150424A JP2017150424A (en) 2017-08-31
JP7002033B2 true JP7002033B2 (en) 2022-01-20

Family

ID=57909502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016035037A Active JP7002033B2 (en) 2016-02-26 2016-02-26 2-cylinder type sealed compressor

Country Status (4)

Country Link
US (1) US10273957B2 (en)
EP (1) EP3214263A1 (en)
JP (1) JP7002033B2 (en)
CN (1) CN107131125A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489173B2 (en) * 2017-08-09 2019-03-27 ダイキン工業株式会社 Rotary compressor
JP6432657B1 (en) * 2017-08-24 2018-12-05 株式会社富士通ゼネラル Rotary compressor
CN108087284B (en) 2017-12-01 2019-10-18 珠海格力电器股份有限公司 Pump assembly, compressor and air conditioner
WO2020121443A1 (en) * 2018-12-12 2020-06-18 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
WO2021019750A1 (en) * 2019-07-31 2021-02-04 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle device
CN112502973B (en) * 2020-11-18 2022-06-24 珠海格力节能环保制冷技术研究中心有限公司 Pump body subassembly, compressor and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124834A (en) 2002-10-03 2004-04-22 Mitsubishi Electric Corp Hermetically sealed rotary compressor
JP2014196705A (en) 2013-03-29 2014-10-16 三菱電機株式会社 Hermetic rotary compressor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2988267A (en) * 1957-12-23 1961-06-13 Gen Electric Rotary compressor lubricating arrangement
US4640669A (en) * 1984-11-13 1987-02-03 Tecumseh Products Company Rotary compressor lubrication arrangement
JPS6270686A (en) * 1985-09-20 1987-04-01 Sanyo Electric Co Ltd Multicylinder rotary compressor
CN2934666Y (en) * 2006-04-28 2007-08-15 西安庆安制冷设备股份有限公司 Rolling piston compressor
JP4864572B2 (en) * 2006-07-03 2012-02-01 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle apparatus using the same
JPWO2009031626A1 (en) * 2007-09-07 2010-12-16 東芝キヤリア株式会社 2-cylinder rotary compressor and refrigeration cycle apparatus
JPWO2009145232A1 (en) * 2008-05-28 2011-10-13 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle apparatus
WO2011016452A1 (en) * 2009-08-06 2011-02-10 ダイキン工業株式会社 Compressor
WO2011030809A1 (en) * 2009-09-11 2011-03-17 東芝キヤリア株式会社 Multiple cylinder rotary compressor and refrigeration cycle device
JP5449999B2 (en) * 2009-11-26 2014-03-19 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle equipment
JP5556450B2 (en) * 2010-07-02 2014-07-23 パナソニック株式会社 Rotary compressor
JP5263360B2 (en) * 2011-09-26 2013-08-14 ダイキン工業株式会社 Compressor
JP6022247B2 (en) * 2011-09-29 2016-11-09 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle apparatus
CN202926630U (en) * 2012-11-14 2013-05-08 广东美芝制冷设备有限公司 Rotary compressor and multi-cylinder rotary compressor
JP6419186B2 (en) * 2014-08-01 2018-11-07 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle apparatus
CN206017154U (en) * 2016-09-13 2017-03-15 西安庆安制冷设备股份有限公司 A kind of rotor-type compressor structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124834A (en) 2002-10-03 2004-04-22 Mitsubishi Electric Corp Hermetically sealed rotary compressor
JP2014196705A (en) 2013-03-29 2014-10-16 三菱電機株式会社 Hermetic rotary compressor

Also Published As

Publication number Publication date
EP3214263A1 (en) 2017-09-06
JP2017150424A (en) 2017-08-31
US10273957B2 (en) 2019-04-30
US20170248139A1 (en) 2017-08-31
CN107131125A (en) 2017-09-05

Similar Documents

Publication Publication Date Title
JP7002033B2 (en) 2-cylinder type sealed compressor
JP6664118B2 (en) 2-cylinder hermetic compressor
JP5441982B2 (en) Rotary compressor
JP5781019B2 (en) Rotary compressor
WO2016107601A1 (en) Vortex compressor
JP4842110B2 (en) Scroll compressor
JP6395929B2 (en) Scroll compressor
JP6134903B2 (en) Positive displacement compressor
JP6643712B2 (en) 2-cylinder hermetic compressor
WO2018168344A1 (en) Rotary compressor
JP2006241993A (en) Scroll compressor
JP5276514B2 (en) Compressor
KR102640864B1 (en) Scroll compressor
WO2020230230A1 (en) Rotary compressor
WO2016139735A1 (en) Rotary compressor
WO2016151769A1 (en) Hermetic rotary compressor
US10519953B2 (en) Rotary compressor
JP2010249046A (en) Screw compressor
WO2016139825A1 (en) Rotary compressor
JP2017053263A (en) Rotary Compressor
JP2018059515A (en) Rotary compressor
JP2021076067A (en) Rotary compressor
JP2017101634A (en) Scroll compressor
JP2009185706A (en) Compressor and method of manufacturing compressor
JP2020193567A (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200902

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210112

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210413

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211102

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211130

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211210

R151 Written notification of patent or utility model registration

Ref document number: 7002033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151