JP2014193333A - 組織封止のための装置 - Google Patents

組織封止のための装置 Download PDF

Info

Publication number
JP2014193333A
JP2014193333A JP2014044741A JP2014044741A JP2014193333A JP 2014193333 A JP2014193333 A JP 2014193333A JP 2014044741 A JP2014044741 A JP 2014044741A JP 2014044741 A JP2014044741 A JP 2014044741A JP 2014193333 A JP2014193333 A JP 2014193333A
Authority
JP
Japan
Prior art keywords
microwave
tissue
antenna
jaw members
forceps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014044741A
Other languages
English (en)
Inventor
Jr William H Nau
エイチ. ナウ ジュニア ウィリアム
Francesca Rossetto
ロセット フランセスカ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Publication of JP2014193333A publication Critical patent/JP2014193333A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00196Moving parts reciprocating lengthwise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1823Generators therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

【課題】種々の型の組織を封止するためのマイクロ波鉗子を提供する。
【解決手段】少なくとも1つのシャフト部材12であって、該シャフト部材は、該シャフト部材の遠位端に配置されたエンドエフェクタアセンブリ400を有し、該エンドエフェクタアセンブリは、対向する顎部材410、420を備え、該顎部材は、互いに間隔を空けた関係である第一の位置から、少なくとも1つの引き続く位置へと移動可能であり、該引き続く位置において、該顎部材は、該顎部材の間に組織を把持するように協働し、該顎部材の各々は、封止表面412、422を備え、該封止表面のうちの少なくとも1つは、マイクロ波エネルギーの供給源に結合されたマイクロ波アンテナアセンブリ401を備える構成とする。
【選択図】図4A

Description

本開示は、種々の型の組織を封止するための鉗子に関する。より特定すると、本開示は、マイクロ波エネルギーを利用して組織を封止する、観血鉗子、腹腔鏡鉗子または内視鏡鉗子に関する。
多くの外科手術手順において、身体脈管(例えば、血管、管、癒着部、ファローピウス管など)が封止されて、その脈管を機能しなくするか、または閉鎖する。慣習的に、ステープル、クリップまたは縫合糸が、身体脈管を閉鎖するために使用されている。しかし、これらの慣習的な手順は、しばしば、異物を患者の内部に残す。患者内に残される異物を減少させ、そして身体脈管をより効率的に封止する努力において、熱プロセスにより封止するエネルギー技術が採用されている。
鉗子は、組織および脈管を封止するために特に有用である。なぜなら、鉗子は、組織を圧縮し、把持し、解剖し、そして/またはクランプするために、機械的作用を利用するからである。現行の脈管封止手順は、熱処理を利用して、組織を加熱して乾燥させ、身体脈管の閉鎖および封止を引き起こす。さらに、鉗子は、組織に付与される圧力の制御を可能にする。熱と、付与される圧力との組み合わせは、均一な、制御可能な封止を提供し、そして身体組織に対する横方向損傷を最小にして、このような封止を提供することが可能である。
本発明は、例えば、以下を提供する:
(項目1)
少なくとも1つのシャフト部材であって、該シャフト部材は、該シャフト部材の遠位端に配置されたエンドエフェクタアセンブリを有し、該エンドエフェクタアセンブリは、対向する顎部材を備え、該顎部材は、互いに間隔を空けた関係である第一の位置から、少なくとも1つの引き続く位置へと移動可能であり、該引き続く位置において、該顎部材は、該顎部材の間に組織を把持するように協働し、該顎部材の各々は、封止表面を備え、該封止表面のうちの少なくとも1つは、マイクロ波エネルギーの供給源に結合されたマイクロ波アンテナアセンブリを備える、シャフト部材、
を備える、組織を封止するためのマイクロ波鉗子。
(項目2)
第一のハンドルおよび第二のハンドルを備えるハンドルアセンブリであって、該第一のハンドルは、該第二のハンドルに対して移動可能である、ハンドルアセンブリ;ならびに
上記少なくとも1つのシャフト内に配置された押し棒であって、該押し棒は、一端において、該ハンドルアセンブリおよび上記エンドエフェクタアセンブリに作動可能に結合されており、該押し棒の長手軸方向の移動は、上記顎部材を、上記第一の位置から上記少なくとも1つの引き続く位置へと移動させる、押し棒、
をさらに備える、上記項目に記載のマイクロ波鉗子。
(項目3)
上記顎部材のうちの少なくとも1つの長さに沿って規定されたナイフチャネルであって、該ナイフチャネルに沿って切断機構を往復させるための寸法にされた、ナイフチャネル;および
上記シャフト部材のうちの1つに作動可能に結合されたアクチュエータであって、該アクチュエータは、該切断機構を第一の位置から少なくとも1つの引き続く位置まで選択的に前進させるためのものであり、該第一の位置において、該切断機構は、上記顎部材の間に保持された組織より近位に配置され、そして該引き続く位置において、該切断機構は、該顎部材の間に保持された組織より遠位に配置される、アクチュエータ、
をさらに備える、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目4)
上記マイクロ波アンテナアセンブリが、少なくとも1つの単極マイクロ波アンテナを備える、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目5)
上記顎部材の各々が、該顎部材の間にマイクロ波エネルギーを制限するように適合された遮蔽部材を備える、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目6)
上記マイクロ波アンテナアセンブリが、少なくとも2つの双極マイクロ波アンテナを備える、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目7)
上記対向する顎部材の各々が、少なくとも2つの双極マイクロ波アンテナのうちの1つを備える、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目8)
上記少なくとも2つの双極マイクロ波アンテナが、上記対向する顎部材のうちの1つの上記封止表面に配置されている、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目9)
上記マイクロ波アンテナアセンブリが、マイクロストリップアンテナを備え、該マイクロストリップアンテナが、上記対向する顎部材のうちの1つの上記封止表面にわたって屈曲している、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目10)
少なくとも1つのシャフト部材であって、該シャフト部材は、該シャフト部材の遠位端に配置されたエンドエフェクタアセンブリを有し、該エンドエフェクタアセンブリは、対向する第一の顎部材および第二の顎部材を備え、該顎部材は、互いに対して間隔を空けた関係である第二の位置から、少なくとも1つの引き続く位置へと移動可能であり、該引き続く位置において、該顎部材は、該顎部材の間に組織を把持するように協働し、該顎部材の各々は、封止表面を備える、シャフト部材;
マイクロ波エネルギー源に結合されるマイクロ波アンテナアセンブリであって、該マイクロ波アンテナアセンブリは、該第一の顎部材の該封止表面上に配置され、該マイクロ波アンテナアセンブリは、
接地部材であって、該マイクロ波エネルギー源の接地参照に結合され、そして該第一の顎部材内に配置されている、接地部材;
該接地部材に配置された誘電基材;および
パッチアンテナであって、該マイクロ波エネルギー源の能動素子に結合され、そして該誘電基材に配置されている、パッチアンテナ、
を備える、マイクロ波アンテナアセンブリ、
を備える、組織を封止するためのマイクロ波鉗子。
(項目11)
上記誘電基材が上記パッチアンテナの表面積より大きい表面積を有する、上記項目に記載のマイクロ波鉗子。
(項目12)
上記パッチアンテナが、該パッチアンテナに供給されるマイクロ波エネルギーの波長の約半分に実質的に等しい長さを有する、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目13)
少なくとも1つのシャフト部材であって、該シャフト部材は、該シャフト部材の遠位端に配置されたエンドエフェクタアセンブリを有し、該エンドエフェクタアセンブリは、対向する第一の顎部材および第二の顎部材を備え、該顎部材は、互いに対して間隔を空けた関係である第一の位置から、少なくとも1つの引き続く位置へと移動可能であり、該引き続く位置において、該顎部材は、該顎部材の間に組織を把持するように協働し、該顎部材の各々は、封止表面を備える、シャフト部材;
マイクロ波エネルギー源に結合されたマイクロ波アンテナアセンブリであって、該マイクロ波アンテナアセンブリは、該第一の顎部材の該封止表面に配置され、該マイクロ波アンテナアセンブリは、
スロットアンテナであって、該スロットアンテナは、該スロットアンテナを通して規定された実質的に矩形のスロットを有し、該矩形のスロットは、該マイクロ波エネルギー源の接地参照に結合された第一の長手軸方向の辺および該マイクロ波エネルギー源の能動素子に結合された第二の長手軸方向の辺を有する、スロットアンテナ、
を備える、マイクロ波アンテナアセンブリ、
を備える、組織を封止するためのマイクロ波鉗子。
(項目14)
上記マイクロ波アンテナアセンブリが、上記第一の顎部材に形成された空洞をさらに備え、該空洞が、上記矩形のスロットの上に重なり、そしてマイクロ波エネルギーを下向きに方向付けるように構成されている、上記項目に記載のマイクロ波鉗子。
(項目15)
上記スロットアンテナが、該スロットアンテナに供給されるマイクロ波エネルギーの波長の約半分に実質的に等しい長さを有する、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目16)
上記マイクロ波アンテナアセンブリが、
上記第一の顎部材と上記スロットアンテナとの間にスライド可能に配置された引き込み可能プレート
をさらに備える、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目17)
上記マイクロ波アンテナアセンブリが、
上記第一の顎部材と上記スロットアンテナとの間にスライド可能に配置された引き込み可能プレートであって、該引き込み可能プレートが、上記矩形のスロットを少なくとも部分的に覆うように引き込まれるように構成されている、引き込み可能プレート、
をさらに備える、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目18)
上記引き込み可能プレートが、上記矩形のスロットに供給されるマイクロ波エネルギーの波長の約半分に実質的に等しい該矩形のスロットの長さを維持するように引き込まれる、上記項目のうちのいずれかに記載のマイクロ波鉗子。
(項目19)
少なくとも1つのシャフト部材であって、該シャフト部材は、該シャフト部材の遠位端に配置されたエンドエフェクタアセンブリを有し、該エンドエフェクタアセンブリは、対向する顎部材を備え、該顎部材は、互いに対して間隔を空けた関係である第一の位置から、少なくとも1つの引き続く位置へと移動可能であり、該引き続く位置において、該顎部材は、該顎部材の間に組織を把持するように協働し、該顎部材の各々は、封止表面を備え、該封止表面のうちの少なくとも1つは、マイクロ波エネルギーの供給源に結合されたマイクロ波アンテナアセンブリを備え、該マイクロ波アンテナアセンブリは、マイクロ波エネルギーを組織に送達するための治療モード、および少なくとも1つの組織特性を測定するための検出モードにおいて作動するように構成されている、シャフト部材、
を備える、組織を封止するためのマイクロ波鉗子。
(項目20)
上記検出モードが、上記組織の温度を測定するための受信モードを含む、上記項目に記載のマイクロ波鉗子。
本開示は、組織を封止するためのマイクロ波鉗子を提供する。この鉗子は、シャフト部材を備え、このシャフト部材は、その遠位端に配置されたエンドエフェクタアセンブリを有する。このエンドエフェクタアセンブリは、対向する顎部材を備え、これらの顎部材は、互いに対して間隔を空けた関係である第一の位置から、少なくとも1つの引き続く位置へと移動可能であり、この引き続く位置において、これらの顎部材は、これらの顎部材の間に組織を把持するように協働する。これらの顎部材の各々は、封止表面を備え、これらの封止表面のうちの1つは、マイクロ波エネルギーの供給源に結合された1つ以上のマイクロ波アンテナを備える。
(要旨)
本開示は、組織を封止するためのマイクロ波鉗子を提供する。この鉗子は、シャフト部材を備え、このシャフト部材は、その遠位端に配置されたエンドエフェクタアセンブリを有する。このエンドエフェクタアセンブリは、対向する顎部材を備え、これらの顎部材は、互いに対して間隔を空けた関係である第一の位置から、少なくとも1つの引き続く位置へと移動可能であり、この引き続く位置において、これらの顎部材は、これらの顎部材の間に組織を把持するように協働する。これらの顎部材の各々は、封止表面を備え、これらの封止表面のうちの1つは、マイクロ波エネルギーの供給源に結合された1つ以上のマイクロ波アンテナアセンブリを備える。
このマイクロ波アンテナアセンブリは、マイクロ波エネルギー源に結合され得る。このマイクロ波アンテナアセンブリは、接地部材を備え得、この接地部材は、このマイクロ波エネルギー源の接地参照に結合され、そして第一の顎部材内に配置される。このマイクロ波アンテナアセンブリは、この接地部材に配置された誘電基材、およびこのマイクロ波エネルギー源の能動素子に結合され、そしてこの誘電基材に配置されたパッチアンテナを備える。
本開示の第一の局面によれば、マイクロ波アンテナアセンブリは、スロットアンテナを備え得、このスロットアンテナは、このスロットアンテナを通して規定される実質的に矩形のスロットを有し、この矩形のスロットは、マイクロ波エネルギー源の接地参照に結合された第一の長手軸方向の辺、およびマイクロ波エネルギー源の能動素子に結合された第二の長手軸方向の辺を有する。
本開示の別の局面によれば、組織を封止するためのマイクロ波鉗子が開示される。この鉗子は、シャフト部材を備え、このシャフト部材は、その遠位端に配置されたエンドエフェクタアセンブリを有する。このエンドエフェクタアセンブリは、対向する顎部材を備え、これらの顎部材は、互いに対して間隔を空けた関係である第一の位置から、少なくとも1つの引き続く位置に移動可能であり、この引き続く位置において、これらの顎部材は、これらの顎部材の間に組織を把持するように協働する。これらの顎部材の各々は、封止表面を備え、これらの封止表面のうちの1つは、マイクロ波エネルギーの供給源に結合された、1つ以上のマイクロ波アンテナアセンブリを備える。このマイクロ波アンテナアセンブリは、マイクロ波エネルギーを組織に送達するための治療モード、および少なくとも1つの組織特性を測定するための検出モードで作動するように構築される。
本開示の種々の実施形態が、図面を参照しながら本明細書中に記載される。
図1は、本開示の1つの実施形態による鉗子およびエネルギー発生器を備える組織封止システムの斜視図である。 図2は、図1の鉗子の遠位端の断面図である。 図3Aは、本開示の1つの実施形態によるマイクロ波エンドエフェクタアセンブリの図である。 図3Bは、本開示の1つの実施形態によるマイクロ波エンドエフェクタアセンブリの図である。 図4Aは、本開示の別の実施形態によるマイクロ波エンドエフェクタアセンブリの図である。 図4Bは、本開示の別の実施形態によるマイクロ波エンドエフェクタアセンブリの図である。 図5Aは、本開示の別の実施形態によるマイクロ波エンドエフェクタアセンブリの図である。 図5Bは、本開示の別の実施形態によるマイクロ波エンドエフェクタアセンブリの図である。 図6Aは、本開示の別の実施形態によるマイクロ波エンドエフェクタアセンブリの図である。 図6Bは、本開示の別の実施形態によるマイクロ波エンドエフェクタアセンブリの図である。 図6Cは、本開示の別の実施形態によるマイクロ波エンドエフェクタアセンブリの図である。
本開示の種々の実施形態が、添付の図面を参照しながら本明細書中以下に記載される。周知の機能または構築は、本開示を不必要な細部においてあいまいにすることを回避する目的で、詳細には記載されない。当業者は、本開示が、内視鏡器具または観血器具のいずれと共に使用するために適合されてもよいことを理解する。しかし、異なる電気的接続および機械的接続、ならびに電気的事項および機械的事項が、各特定の型の器具に対して適用される。脈管および組織の封止に関する新規局面は、一般に、観血設計と内視鏡設計との両方に関して一致する。図面および以下の説明において、用語「近位」とは、慣習的であるように、鉗子の使用者に近い方の端部をいい、一方で、用語「遠位」とは、鉗子の使用者から遠い方の端部をいう。
ここで図1を参照すると、本開示による組織封止システム2が示されており、このシステムは、発電機20に結合された鉗子10を備える。鉗子10は、マイクロ波エネルギーを使用して組織を封止するように適合される。発電機20は、種々の型のマイクロ波エネルギー(例えば、約300MHz〜約10,000MHz)を出力するように構成され得る。
鉗子10は、ケーブル11を介して発電機20に結合される。このケーブルは、鉗子と発電機との間でエネルギーを伝達し、そして信号を制御するように適合される。上記型のエネルギーを利用する鉗子10の種々の実施形態が、以下でより詳細に議論される。
鉗子10は、エンドエフェクタアセンブリ100を支持するように構成される。鉗子10は、代表的に、鉗子10およびエンドエフェクタアセンブリ100が手動で協働して組織を把持し、封止し、そして是認される場合には分割することを可能にする、種々の従来の特徴(例えば、ハウジング60、ハンドルアセンブリ75、回転アセンブリ80、トリガアセンブリ70)を備える。鉗子10は、一般に、ハウジング60およびハンドルアセンブリ75を備え、このハンドルアセンブリは、可動ハンドル62、およびハウジング60と一体的であるハンドル72を備える。ハンドル62は、エンドエフェクタアセンブリ100を起動して組織を把持および処置するために、ハンドル72に対して移動可能である。鉗子10はまた、シャフト12を備え、このシャフトは、エンドエフェクタアセンブリ100と機械的に係合する遠位端14、およびハウジング60の遠位端に配置された回転アセンブリ80の近くでハウジング60と機械的に係合する近位端16を有する。回転アセンブリ80は、シャフト12と機械的に関連する。回転アセンブリ80の移動は、シャフト12の同様の回転運動を付与し、これは次に、エンドエフェクタアセンブリ100を回転させる。
図2を参照すると、エンドエフェクタアセンブリ100は、2つの顎部材110および120を備え、これらの顎部材は、近位端111、121および遠位端113、123を有する。顎部材110および120は、ポスト160の周りで旋回可能であり、そして第一の位置(この位置において、顎部材110および120は、互いに対して間隔を空けている)から第二の位置(この位置において、顎部材110および120は閉じ、そして協働してこれらの顎部材の間に組織を把持する)へと移動可能である。以下でより詳細に議論されるように、エンドエフェクタアセンブリ100は、種々のエネルギー源と共に使用するために適合され得る。
シャフト12は、可動ハンドル62に作動可能に結合された押し棒101を収容し、その結果、ハンドル62がハンドル72に対して移動すると、押し棒101は、シャフト12内で近位または遠位のいずれかに長手軸方向に移動する。押し棒101は、シャフト12の遠位端14に配置された押しピン103を備える。顎部材110および120の各々は、それぞれの近位端に配置されたスロット105および107を備える。スロット105および107は、押しピン103と機械的に協働し、この押しピンは、スロット105および107の中で移動するように適合されている。ピン103ならびにスロット105および107は、カム−従動子の機械的リンク機構として作動する。押し棒101の移動は、ピン103をスロット105および107のそれぞれの中でスライドさせる。スロット105および107は、顎部材110および120の遠位端に対して角度を付けられ得、その結果、押し棒101が長手軸方向に近位方向または遠位方向に移動すると、部材110および120は、互いに向かってかまたは互いから離れるようにかのいずれかで、移動する。
鉗子10はまた、エンドエフェクタアセンブリ100内に配置されたナイフ200を前進させるトリガアセンブリ70を備える。一旦、組織シールが形成されると、使用者は、トリガアセンブリ70を起動させて、この組織をこの組織シールに沿って分離する。ナイフ200は、顎部材110と120との間に保持された組織を、組織封止部位において切断するための、鋭利な縁部205を備える。
各顎部材110および120は、それぞれの内側に面する表面に配置された封止表面112、122を備える。封止表面112および122は、協働して、エネルギーの適用の際に、これらの封止表面の間に保持された組織を封止する。封止表面112および122は、発電機20に接続され、この発電機は、これらの封止表面の間に保持された組織を通してエネルギーを連絡させる。
図3Aおよび図3Bは、本開示の1つの実施形態によるマイクロ波エンドエフェクタアセンブリ300を図示する。エンドエフェクタアセンブリ300は、同軸ケーブル210に結合され、この同軸ケーブルは、シャフト12およびケーブル11に収容される。ケーブル210は、内側絶縁体214により囲まれた内側導体212を備え、この内側絶縁体は次に、外側導体216(例えば、円筒形の伝導性シース)により囲まれる。内側導体212および外側導体216は、銅、金、ステンレス鋼または同様の伝導率値を有する他の伝導性金属から構築され得る。金属は、他の材料(例えば、他の伝導性材料)でめっきされて、それらの特性を改善し得る(例えば、伝導率の改善、エネルギー損失の減少など)。
エンドエフェクタアセンブリ300は、マイクロ波アンテナアセンブリ302を備え、このマイクロ波アンテナアセンブリは、封止表面312、322にそれぞれ配置された、1つ以上のマイクロ波アンテナ302a、302b、302cおよび302dを有する。1つの実施形態において、マイクロ波アンテナ302a〜302dは、このマイクロ波アンテナに供給されるマイクロ波エネルギーの波長の約1/4の長さlを有し得る。マイクロ波アンテナ302a〜302dは、発電機20に結合され、この発電機は、ケーブル210を通して鉗子10にマイクロ波エネルギーを供給するように適合される。同軸ケーブル210は、マイクロ波アンテナ302a〜302dのうちの1つ以上を内側導体212を通して発電機20の能動素子に結合して第一の極を形成し、そして残りのマイクロ波アンテナ302a〜302dを外側導体216を通して発電機の接地参照に接続して第二の極を形成する。
図3Bは、マイクロ波アンテナ302a〜302dが封止表面312および322の長さに延びる長手軸方向ストリップとして構成されている、封止表面312および322の上面図を示す。マイクロ波アンテナ302a〜302dは、任意の型の、伝導性の非反応性の金属(例えば、ステンレス鋼)から作製され得る。マイクロ波アンテナ302a〜302dは、単極配置または双極配置のいずれで構成されてもよい。単極配置において、1つのマイクロ波アンテナ(例えば、アンテナ302a)が、ケーブル210の内側導体212に接続され、そしてそれぞれの封止表面312に配置される。
双極配置において、2つ以上のマイクロ波アンテナ(例えば、アンテナ302aおよび302c)が使用され得る。これらのアンテナのうちの1つが、第一の極であり得(例えば、ケーブル210の内側導体212に結合され)、そして別のアンテナが、第二の極であり得る(例えば、ケーブル210の外側導体216に結合される)。1つの実施形態において、アンテナ302aが第一の極であり得、そしてアンテナ302cが第二の極であり得、その結果、マイクロ波エネルギーは、封止表面312から封止表面322へと流れる。組織がこの双極構成のアセンブリ300により封止される場合、アンテナ302aおよび302cは、封止手順の自動的な終了を提供し得る。封止が進行するにつれて、アンテナ302aと302cとを分離している組織が除去され、これによって、アンテナ302aと302cとの間の離隔距離を減少させる。アンテナ302aと302cとが圧縮力により互いの方へと移動させられるにつれて、これらのアンテナを通して伝達されるマイクロ波エネルギーは、これらのアンテナを通って反射して戻り、そして第一の極と第二の極(例えば、アンテナ302aおよび302c)の接近に起因して、その放射が自動的に停止する。
別の実施形態において、アンテナ302aおよび302bは、平坦な双極アンテナとして構成され得、その結果、アンテナ302aおよび302bは、並列して封止表面312に配置される。より具体的には、アンテナ302aが第一の極であり得、そしてアンテナ302bが第二の極であり得、その結果、エネルギーは、封止表面112を横切って流れる。
別の実施形態において、複数のアンテナが、第一の極および第二の極をそれぞれ形成し得る。2つのアンテナのうちのいずれかが第一の極を形成し得、残りのアンテナが第二の極を形成する。具体的には、アンテナ302aおよび302bが第一の極を形成し得、アンテナ302cおよび302dが第二の極を形成し、その結果、マイクロ波エネルギーは、封止表面312と322との間を流れる。別の実施形態において、第一の極は、アンテナ302aおよび302dを含み、一方で、第二の極は、アンテナ302bおよび302cを含む。当業者は、アンテナ302の他の種々の配置もまた可能であることを理解する。
顎部材310および320はまた、内部に配置された遮蔽部材304および306を備え、これらの遮蔽部材は、封止表面312および322をそれぞれ備える。遮蔽部材304および306の各々は、誘電部分307および311、ならびに誘電部分307および311のそれぞれを覆って配置された金属プレート309および313を備え得る。誘電部分307および311は、マイクロ波エネルギーの伝播を制限する誘電材料(例えば、セラミック)から形成され得る。遮蔽部材304および306は、比較的高い誘電特性という性質、および金属プレートの存在によって、マイクロ波エネルギーをアンテナ302a〜302dから、封止表面312と322との間に把持された組織の方へと反射させる。この配置は、任意の数のアンテナ302(例えば、1つのアンテナ)の使用を可能にする。なぜなら、マイクロ波エネルギーは、顎部材310と320との間に把持された組織の体積に制限されるからである。
エンドエフェクタアセンブリ300はまた、封止表面312に規定された、長手軸方向に配向されたチャネル315を備え、このチャネルは、この封止表面の近位端から遠位端まで延びる。チャネル315は、ナイフ200の、特定の切断面に沿った長手軸方向での往復を容易にして、形成された組織シールに沿って組織を効率的かつ正確に分離する。チャネル315は、封止表面322にもまた規定されてもよく、または単に、1つの封止表面(例えば、封止表面312)のみに配置されてもよい。
図4Aおよび図4Bは、本開示の別の実施形態によるマイクロ波エンドエフェクタアセンブリ400を図示する。エンドエフェクタアセンブリ400は、顎部材410および420を備え、これらの顎部材は、内部に配置された遮蔽部材404および406を有し、これらの遮蔽部材は、それぞれ封止表面412および422を備える。遮蔽部材404および406の各々は、それぞれ、誘電部分407および411、ならびに誘電部分407および411のそれぞれを覆って配置された金属プレート409および413を備え得る。誘電部分407および411は、マイクロ波エネルギーの伝播を制限する誘電材料(例えば、セラミック)から形成され得る。遮蔽部材404および406は、高い誘電特性という性質、および金属プレートの存在によって、マイクロ波エネルギーを、封止表面412と422との間に把持された組織の方へと反射させる。
エンドエフェクタアセンブリ400はまた、同軸ケーブル210に結合され、そしてマイクロ波アンテナアセンブリ401を備え、このマイクロ波アンテナアセンブリは、封止表面412に配置されたマイクロ波アンテナ402を有する。マイクロ波アンテナ402は、いわゆる「マイクロストリップ」アンテナであり得、これは、遮蔽部材404の封止表面422に埋め込まれる。アンテナ402は、封止表面422にわたって屈曲しており、その表面積および封止表面412の封止面積を最大にする。図4Bに示されるように、アンテナ402は、封止表面422の長手軸方向または横断方向にわたって屈曲し得る。アンテナ402は、単極アンテナであり得、この場合、マイクロ波エネルギーは、ケーブル210の導体のうちの1つを通してのみ、このアンテナに供給される。アンテナ402は、任意の型の伝導性の非反応性金属(例えば、ステンレス鋼)から作製され得る。
図5Aおよび図5Bは、本開示の別の実施形態によるマイクロ波エンドエフェクタアセンブリ500を図示する。エンドエフェクタアセンブリ500は、顎部材510および520を備え、これらの顎部材は、内部に配置された遮蔽部材504および506を有し、これらの遮蔽部材は、それぞれ封止表面512および522を備える。遮蔽部材504および506の各々は、それぞれ、誘電部分507および511、ならびに誘電部分507および511のそれぞれを覆って配置された金属プレート509および513を備え得る。誘電部分507および511は、マイクロ波エネルギーの伝播を制限する誘電材料(例えば、セラミック)から形成され得る。遮蔽部材504および506は、その比較的高い誘電特性という性質、および金属プレートの存在によって、マイクロ波エネルギーを、封止表面512と522との間に把持された組織の方へと反射させる。
エンドエフェクタアセンブリ500はまた、同軸ケーブル210に結合され、そして封止表面512に配置されたマイクロ波アンテナアセンブリ502を備える。マイクロ波アンテナアセンブリ502は、実質的に矩形の形状を有するパッチアンテナ515を備える。マイクロ波アンテナアセンブリ502はまた、誘電基材503および接地部材505を備える。パッチアンテナ515は、ケーブル210の内側導体212に結合され、そして接地部材505は、外側導体214に結合される。パッチアンテナ515および接地部材505は、基材503により電気的に絶縁される。基材503は、パッチアンテナ515より大きい表面積を有し得、その結果、パッチアンテナ515は、基材503によって完全に覆われて、マイクロ波エネルギーの伝播を、接地部材505から基材503までに制限する。別の実施形態において、基材503および接地部材505は、遮蔽部材504で置き換えられ得る。換言すれば、接地部材505は、遮蔽部材504に収容され得、次いでパッチアンテナ515が、この遮蔽部材の上に配置され得る。パッチアンテナ515は、任意の型の伝導性の非反応性の金属(例えば、ステンレス鋼)から作製され得る。接地部材505は、銅、金、ステンレス鋼、または類似の伝導率値を有する他の伝導性金属から構築され得る。これらの金属は、他の材料(例えば、他の伝導性材料)でめっきされて、それらの特性を改善し得る(例えば、伝導率の改善、エネルギー損失の減少など)。
パッチアンテナ515は、このパッチアンテナに供給されるマイクロ波エネルギーの波長の1/2に実質的に等しい長さlを有し得る。この波長はまた、基材503および/または遮蔽部材504の誘電特性に依存する。波長と、材料の誘電特性との間の関係は、式(1)により表される:
(1)λ=c/(f√ε
式(1)において、cは、光速を表す定数であり、fは、マイクロ波エネルギーの周波数であり、そしてεは、基材503および/または遮蔽部材504の誘電率である。式(1)は、波長λが、異なる周波数fおよび/または誘電材料εを選択することにより、変動し得ることを示す。
図6A〜図6Cは、本開示のなお別の実施形態によるマイクロ波エンドエフェクタアセンブリ600を図示する。エンドエフェクタアセンブリ600は、顎部材610および620を備え、これらの顎部材は、内部に配置された遮蔽部材604および606を有し、これらの遮蔽部材は、それぞれ、封止表面612および622を備える。遮蔽材料604および606の各々は、それぞれ、誘電部分607および611、ならびに誘電部分607および611のそれぞれを覆って配置された金属プレート609および613を備え得る。誘電部分607および611は、マイクロ波エネルギーの伝播を制限する誘電材料(例えば、セラミック)から形成され得る。遮蔽部材604および606は、比較的高い誘電特性という性質、および金属プレートの存在により、マイクロ波エネルギーを、封止表面612と622との間に把持された組織の方へと反射させる。
エンドエフェクタアセンブリ600はまた、同軸ケーブル210に結合され、そして封止表面612に配置されたマイクロ波アンテナアセンブリ602を備える。マイクロ波アンテナアセンブリ602は、図6Bに示されるように、実質的に矩形のスロット632を有するスロットアンテナ630を備える。スロットアンテナ630は、任意の型の伝導性の非反応性の金属(例えば、ステンレス鋼)から作製され得る。矩形のスロット632は、長さlおよび幅wを有する。
マイクロ波アンテナアセンブリ602はまた、顎部材610の遮蔽部材604に形成された空洞634を備え得る。1つの実施形態において、空洞634は、近位方向に延びて、ナイフ200の、特定の切断面に沿った長手軸方向での往復を容易にし得、形成された組織シールに沿って組織を効率的かつ正確に分離する。空洞634の長さl(図6A)および幅w(図6C)は、スロット632の長さlおよび幅w(図6B)と実質的に等しく、その結果、スロット632は、空洞634と実質的に重なる。矩形のスロット632はまた、第一の長手軸方向の辺633および第二の長手軸方向の辺635を備える。第一の面633は、ケーブル210の内側導体212に結合され、そして第二の面635は、外側導体214に結合され、その結果、第一の面633は、第一の極として働き、そして第二の面635は、第二の極として働く。マイクロ波エネルギーがスロットアンテナ630に供給されると、このマイクロ波エネルギーは、第一の面633から第二の面635を横切って空洞634内へと伝達される。さらに、スロット632と空洞634との重なりは、スロットアンテナ630から顎部材620に向けてのマイクロ波エネルギーの指向性の放射を可能にする。なぜなら、マイクロ波エネルギーは、空洞634により下方に跳ね返るからである。空洞634は、顎部材610および620の中心の方へのマイクロ波エネルギーの集中を可能にし、より狭い封止を提供する。
空洞634の長さlおよびスロット632の長さlは、これらに供給されるマイクロ波エネルギーの波長の1/2に実質的に等しい。この波長はまた、周囲の環境および/または遮蔽部材604の誘電特性に依存する。マイクロ波エネルギーが組織に適用されると、この組織が乾燥し、これが次に、周囲環境の誘電特性を変化させる。従って、上記式(1)により示されるように、周囲環境の誘電率間の関係に基づいて、組織に適用されるマイクロ波エネルギーの波長もまた影響を受ける。従って、空洞634の長さlとスロット632の長さlとマイクロ波エネルギーの波長の1/2との間の一致を維持するために、空洞634の長さlおよびスロット632の長さlが、作動中に調節され得る。
図6Bに最もよく示されるように、アンテナアセンブリ602は、遮蔽部材604とスロットアンテナ630との間に収容された引き込み可能プレート640を備える。引き込み可能プレート640は、遮蔽部材604とスロットアンテナ630との間で長手軸方向に移動可能であり、その結果、スロット632により空洞634に規定された開口部が、少なくとも部分的に覆われる。引き込み可能プレート640は、スロット632の幅wより大きい幅を有し、その結果、引き込み可能プレート640が遮蔽部材604とスロットアンテナ630との間をスライドする場合に、引き込み可能プレート640は、引き込み可能プレート640の延長の点までのスロット632を完全に覆う。引き込み可能プレート640の長さは、任意の適切な長さ(例えば、スロット632の長さl)であり得る。このことは、引き込み可能プレート640が完全に引き込まれた場合に、スロット632を完全に覆うことを可能にする。
作動中に、引き込み可能プレート640の引き込みは、周囲媒体の誘電特性が変化する場合に、アンテナアセンブリ602がマイクロ波エネルギーの波長に一致するように調節され得る。より具体的には、マイクロ波エネルギーの波長が誘電特性の変化に起因して変化する場合に、引き込み可能プレート640の引き込みの長さの調節は、空洞634の長さlおよびスロット632の長さlを調節して、これらの長さを、マイクロ波エネルギーの波長の1/2に実質的に等しく維持する。
マイクロ波アンテナアセンブリの上記実施形態はまた、特定の組織特性(例えば、温度および誘電特性)を測定するために利用され得る。このマイクロ波アンテナアセンブリは、マイクロ波エネルギーを送達して組織を封止するための治療モード、および組織特性を測定するための検出モードで作動するように構成される。
1つの実施形態において、このマイクロ波アンテナアセンブリは、受信モードのみで利用され得る。換言すれば、このアンテナアセンブリは、組織から発する電磁放射線の変化を検出するための放射計として構成され得る。次いで、電磁放射線の検出された変化が、組織の温度を計算するために、発電機20により処理される。
別の実施形態において、これらのマイクロ波アンテナアセンブリは、組織の誘電特性を検出するために構成され得る。これは、非治療マイクロ波エネルギーを組織に伝達し、次いで、反射電力および前進電力を測定することによって、達成され得る。反射電力および前進電力は、組織の誘電特性の指標であり、そして組織および他のシステム構成要素の誘電特性の変化に起因する、発電機20と組織との間のインピーダンスの不一致に基づいて測定され得る。より具体的には、インピーダンスの不一致は、発電機20からの電力の一部(いわゆる「反射電力」)が負荷に達しないようにし、そして送達される電力またはエネルギー(いわゆる「前進電力」)を、処置時間区間にわたって不規則または一貫しない様式で変動するようにする。発電機の実際の電力は、前進電力と反射電力との合計として表され得る。従って、組織の誘電特性により引き起こされるインピーダンスの不一致を、反射電力および前進電力を測定および分析することにより決定することが可能である。これは、非治療マイクロ波パルス(例えば、1GHz〜5GHz)を伝達し、次いで、発電機20における反射電力および前進電力を測定することにより達成され得る。次いで、発電機20は、システム構成要素(例えば、ケーブルおよびアンテナアセンブリの漂遊容量)により引き起こされるインピーダンスの不一致を考慮して、組織の誘電特性に起因する不一致の部分を計算する。次いで、これは、発電機20がこれらの特性を決定することを可能にする。
本開示の数個の実施形態が、図面に示され、そして/または本明細書中で議論されたが、本開示は、これらの実施形態に限定されることは意図されない。なぜなら、本開示は、当該分野が許容すると同程度に範囲が広いこと、および本明細書も同様に読まれることが意図されるからである。従って、上記説明は、限定であると解釈されるべきではなく、単に、特定の実施形態の例示であると解釈されるべきである。当業者は、添付の特許請求の範囲の趣旨および範囲内で、他の改変を予測する。
10 鉗子
12 シャフト
14 遠位端
16 近位端
60 ハウジング
62 可動ハンドル
70 トリガアセンブリ
72 ハンドル
75 ハンドルアセンブリ
80 回転アセンブリ
100 エンドエフェクタアセンブリ

Claims (1)

  1. 明細書に記載の発明。
JP2014044741A 2009-03-24 2014-03-07 組織封止のための装置 Withdrawn JP2014193333A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/410,195 US20100249769A1 (en) 2009-03-24 2009-03-24 Apparatus for Tissue Sealing
US12/410,195 2009-03-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010068936A Division JP5579474B2 (ja) 2009-03-24 2010-03-24 組織封止のための装置

Publications (1)

Publication Number Publication Date
JP2014193333A true JP2014193333A (ja) 2014-10-09

Family

ID=42289472

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010068936A Expired - Fee Related JP5579474B2 (ja) 2009-03-24 2010-03-24 組織封止のための装置
JP2014044741A Withdrawn JP2014193333A (ja) 2009-03-24 2014-03-07 組織封止のための装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010068936A Expired - Fee Related JP5579474B2 (ja) 2009-03-24 2010-03-24 組織封止のための装置

Country Status (3)

Country Link
US (2) US20100249769A1 (ja)
EP (4) EP3090698B1 (ja)
JP (2) JP5579474B2 (ja)

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
ES2332143T3 (es) 2001-04-06 2010-01-27 Covidien Ag Obturador y divisor de vasos con miembros de tope no conductivos.
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7276068B2 (en) * 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US7131970B2 (en) 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7628791B2 (en) 2005-08-19 2009-12-08 Covidien Ag Single action tissue sealer
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
AU2006225175B2 (en) 2005-09-30 2012-08-30 Covidien Ag Insulating boot for electrosurgical forceps
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7776037B2 (en) * 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US8475453B2 (en) 2006-10-06 2013-07-02 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US8777945B2 (en) * 2007-06-29 2014-07-15 Covidien Lp Method and system for monitoring tissue during an electrosurgical procedure
EP2676626B1 (en) 2008-01-31 2019-11-20 Covidien LP Polyp removal device
US8357158B2 (en) 2008-04-22 2013-01-22 Covidien Lp Jaw closure detection system
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US9226791B2 (en) * 2012-03-12 2016-01-05 Advanced Cardiac Therapeutics, Inc. Systems for temperature-controlled ablation using radiometric feedback
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US8968358B2 (en) 2009-08-05 2015-03-03 Covidien Lp Blunt tissue dissection surgical instrument jaw designs
USD630324S1 (en) 2009-08-05 2011-01-04 Tyco Healthcare Group Lp Dissecting surgical jaw
US8357159B2 (en) 2009-09-03 2013-01-22 Covidien Lp Open vessel sealing instrument with pivot assembly
US8568412B2 (en) * 2009-09-09 2013-10-29 Covidien Lp Apparatus and method of controlling cutting blade travel through the use of etched features
US8439911B2 (en) 2009-09-09 2013-05-14 Coviden Lp Compact jaw including through bore pivot pin
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US8343151B2 (en) * 2009-10-09 2013-01-01 Covidien Lp Vessel sealer and divider with captured cutting element
US8480671B2 (en) * 2010-01-22 2013-07-09 Covidien Lp Compact jaw including split pivot pin
US8858553B2 (en) * 2010-01-29 2014-10-14 Covidien Lp Dielectric jaw insert for electrosurgical end effector
US9028474B2 (en) 2010-03-25 2015-05-12 Covidien Lp Microwave surface coagulator with retractable blade
US8439913B2 (en) 2010-04-29 2013-05-14 Covidien Lp Pressure sensing sealing plate
US10265118B2 (en) 2010-05-04 2019-04-23 Covidien Lp Pinion blade drive mechanism for a laparoscopic vessel dissector
US8409246B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8469992B2 (en) 2010-06-02 2013-06-25 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491624B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8540749B2 (en) 2010-06-02 2013-09-24 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491625B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8409247B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8430877B2 (en) 2010-06-02 2013-04-30 Covidien Lp Apparatus for performing an electrosurgical procedure
US8585736B2 (en) 2010-06-02 2013-11-19 Covidien Lp Apparatus for performing an electrosurgical procedure
US8469991B2 (en) 2010-06-02 2013-06-25 Covidien Lp Apparatus for performing an electrosurgical procedure
US8647343B2 (en) 2010-06-23 2014-02-11 Covidien Lp Surgical forceps for sealing and dividing tissue
US8795269B2 (en) 2010-07-26 2014-08-05 Covidien Lp Rotary tissue sealer and divider
US8888775B2 (en) 2010-08-10 2014-11-18 Covidien Lp Surgical forceps including shape memory cutter
US8652135B2 (en) 2010-08-23 2014-02-18 Covidien Lp Surgical forceps
US8663222B2 (en) 2010-09-07 2014-03-04 Covidien Lp Dynamic and static bipolar electrical sealing and cutting device
US8734445B2 (en) 2010-09-07 2014-05-27 Covidien Lp Electrosurgical instrument with sealing and dissection modes and related methods of use
US9017372B2 (en) 2010-10-01 2015-04-28 Covidien Lp Blade deployment mechanisms for surgical forceps
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US9198724B2 (en) * 2011-04-08 2015-12-01 Covidien Lp Microwave tissue dissection and coagulation
US8852186B2 (en) 2011-08-09 2014-10-07 Covidien Lp Microwave sensing for tissue sealing
WO2013022077A1 (ja) * 2011-08-10 2013-02-14 国立大学法人 滋賀医科大学 マイクロ波手術器具
US9168051B2 (en) * 2011-09-30 2015-10-27 Ethicon Endo-Surgery, Inc. Laparoscopic device with three jaws
US9259268B2 (en) * 2011-12-06 2016-02-16 Covidien Lp Vessel sealing using microwave energy
EP2792327B1 (en) * 2011-12-14 2018-10-24 National University Corporation Shiga University OF Medical Science Tissue suturing device
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
GB2503673A (en) * 2012-07-03 2014-01-08 Creo Medical Ltd Electrosurgical device with convex under surface
US9192421B2 (en) 2012-07-24 2015-11-24 Covidien Lp Blade lockout mechanism for surgical forceps
US10206583B2 (en) * 2012-10-31 2019-02-19 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
GB201317713D0 (en) * 2013-10-07 2013-11-20 Creo Medical Ltd Electrosurgical device
GB201322844D0 (en) * 2013-12-23 2014-02-12 Creo Medical Ltd Electrosurgical device
GB201323171D0 (en) * 2013-12-31 2014-02-12 Creo Medical Ltd Electrosurgical apparatus and device
US10231776B2 (en) 2014-01-29 2019-03-19 Covidien Lp Tissue sealing instrument with tissue-dissecting electrode
US20160345896A1 (en) * 2014-02-06 2016-12-01 Meridian Medical Systems, Llc System for identifying tissue characteristics or properties utilizing radiometric sensing
US20160038224A1 (en) 2014-08-11 2016-02-11 Covidien Lp Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US20160038220A1 (en) 2014-08-11 2016-02-11 Covidien Lp Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US10813685B2 (en) 2014-09-25 2020-10-27 Covidien Lp Single-handed operable surgical instrument including loop electrode with integrated pad electrode
WO2017031712A1 (en) 2015-08-26 2017-03-02 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
GB2543039A (en) 2015-10-02 2017-04-12 Creo Medical Ltd Electrosurgical device
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US10426543B2 (en) 2016-01-23 2019-10-01 Covidien Lp Knife trigger for vessel sealer
GB2550375B (en) * 2016-05-17 2021-12-01 Creo Medical Ltd Electrosurgical cutting tool
GB2552925A (en) * 2016-05-17 2018-02-21 Creo Medical Ltd Electrosurgical instrument
US10682154B2 (en) 2016-08-02 2020-06-16 Covidien Lp Cutting mechanisms for surgical end effector assemblies, instruments, and systems
DE102016218401A1 (de) 2016-09-23 2018-03-29 Olympus Winter & Ibe Gmbh Elektrochirurgiesystem
CN109862843B (zh) * 2016-09-29 2022-06-28 国立大学法人滋贺医科大学 组织接合器
GB201705171D0 (en) * 2017-03-30 2017-05-17 Creo Medical Ltd Elecrosurgical instrument
GB2567469A (en) 2017-10-13 2019-04-17 Creo Medical Ltd Electrosurgical apparatus
GB2567480A (en) * 2017-10-13 2019-04-17 Creo Medical Ltd Electrosurgical resector tool
EP3834761A4 (en) * 2018-08-06 2021-11-03 Saney Seiko Inc. MEDICAL TREATMENT INSTRUMENT
USD904611S1 (en) 2018-10-10 2020-12-08 Bolder Surgical, Llc Jaw design for a surgical instrument
GB2594438A (en) 2019-12-05 2021-11-03 Creo Medical Ltd Electrosurgical instrument, generator and apparatus
GB202213942D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus
GB202213951D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus
GB202213944D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus
GB202213950D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instruments
GB202213948D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus
GB202213954D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334860B1 (en) * 1998-12-18 2002-01-01 Karl Storz Gmbh & Co. Kg Bipolar medical instrument
US6679882B1 (en) * 1998-06-22 2004-01-20 Lina Medical Aps Electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
JP2008018226A (ja) * 2006-07-11 2008-01-31 Olympus Medical Systems Corp 処置装置
JP2008054926A (ja) * 2006-08-31 2008-03-13 Shiga Univ Of Medical Science マイクロ波手術器

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315510A (en) * 1979-05-16 1982-02-16 Cooper Medical Devices Corporation Method of performing male sterilization
US4534347A (en) * 1983-04-08 1985-08-13 Research Corporation Microwave coagulating scalpel
US4829313A (en) * 1984-11-15 1989-05-09 Chaparral Communications Drive system and filament for a twistable septum in a feedhorn
US5344435A (en) * 1988-07-28 1994-09-06 Bsd Medical Corporation Urethral inserted applicator prostate hyperthermia
US5681282A (en) * 1992-01-07 1997-10-28 Arthrocare Corporation Methods and apparatus for ablation of luminal tissues
US5277201A (en) * 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5562720A (en) * 1992-05-01 1996-10-08 Vesta Medical, Inc. Bipolar/monopolar endometrial ablation device and method
US6024743A (en) * 1994-06-24 2000-02-15 Edwards; Stuart D. Method and apparatus for selective treatment of the uterus
US5505730A (en) * 1994-06-24 1996-04-09 Stuart D. Edwards Thin layer ablation apparatus
US5529067A (en) * 1994-08-19 1996-06-25 Novoste Corporation Methods for procedures related to the electrophysiology of the heart
US6142994A (en) * 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
EP2070486A1 (en) * 1994-12-13 2009-06-17 Torben Lorentzen An electrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal
US6051751A (en) * 1995-01-20 2000-04-18 Spire Corporation Arthroplasty process for securely anchoring prostheses to bone, and arthroplasty products therefor
US5707369A (en) * 1995-04-24 1998-01-13 Ethicon Endo-Surgery, Inc. Temperature feedback monitor for hemostatic surgical instrument
US6095149A (en) * 1996-08-13 2000-08-01 Oratec Interventions, Inc. Method for treating intervertebral disc degeneration
JP2001508318A (ja) * 1996-02-02 2001-06-26 トランスバスキュラー インコーポレイテッド 間隙性経血管介入のための装置、システム及び方法
US5662110A (en) * 1996-04-03 1997-09-02 Microwave Medical Systems, Inc. Microwave detection apparatus for locating cancerous tumors particularly breast tumors
JP4225624B2 (ja) * 1998-08-27 2009-02-18 オリンパス株式会社 高周波処置装置
US6245062B1 (en) * 1998-10-23 2001-06-12 Afx, Inc. Directional reflector shield assembly for a microwave ablation instrument
US6224593B1 (en) * 1999-01-13 2001-05-01 Sherwood Services Ag Tissue sealing using microwaves
US6152923A (en) * 1999-04-28 2000-11-28 Sherwood Services Ag Multi-contact forceps and method of sealing, coagulating, cauterizing and/or cutting vessels and tissue
US20030069570A1 (en) * 1999-10-02 2003-04-10 Witzel Thomas H. Methods for repairing mitral valve annulus percutaneously
US6485489B2 (en) * 1999-10-02 2002-11-26 Quantum Cor, Inc. Catheter system for repairing a mitral valve annulus
US6689131B2 (en) * 2001-03-08 2004-02-10 Tissuelink Medical, Inc. Electrosurgical device having a tissue reduction sensor
US6471696B1 (en) * 2000-04-12 2002-10-29 Afx, Inc. Microwave ablation instrument with a directional radiation pattern
US20020107514A1 (en) * 2000-04-27 2002-08-08 Hooven Michael D. Transmural ablation device with parallel jaws
EP1349510A4 (en) * 2000-12-15 2005-07-13 Tony R Brown DEVICE AND METHOD FOR TREATING RF AT AURICULAR FIBRILLATION
US7101372B2 (en) * 2001-04-06 2006-09-05 Sherwood Sevices Ag Vessel sealer and divider
WO2003020339A2 (en) * 2001-09-05 2003-03-13 Tissuelink Medical, Inc. Fluid assisted medical devices, fluid delivery systems and controllers for such devices, and methods
US6773409B2 (en) * 2001-09-19 2004-08-10 Surgrx Llc Surgical system for applying ultrasonic energy to tissue
JP4104314B2 (ja) * 2001-10-04 2008-06-18 オリンパス株式会社 外科手術用処置具
US20030216732A1 (en) * 2002-05-20 2003-11-20 Csaba Truckai Medical instrument with thermochromic or piezochromic surface indicators
US6926716B2 (en) * 2001-11-09 2005-08-09 Surgrx Inc. Electrosurgical instrument
US7753908B2 (en) * 2002-02-19 2010-07-13 Endoscopic Technologies, Inc. (Estech) Apparatus for securing an electrophysiology probe to a clamp
US6656175B2 (en) * 2001-12-11 2003-12-02 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
US6817999B2 (en) * 2002-01-03 2004-11-16 Afx, Inc. Flexible device for ablation of biological tissue
US6602252B2 (en) * 2002-01-03 2003-08-05 Starion Instruments Corporation Combined dissecting, cauterizing, and stapling device
US20030158548A1 (en) * 2002-02-19 2003-08-21 Phan Huy D. Surgical system including clamp and apparatus for securing an energy transmission device to the clamp and method of converting a clamp into an electrophysiology device
US6932816B2 (en) * 2002-02-19 2005-08-23 Boston Scientific Scimed, Inc. Apparatus for converting a clamp into an electrophysiology device
US7967839B2 (en) * 2002-05-20 2011-06-28 Rocky Mountain Biosystems, Inc. Electromagnetic treatment of tissues and cells
US20040073256A1 (en) * 2002-08-09 2004-04-15 Kevin Marchitto Activated surgical fasteners, devices therefor and uses thereof
US7270664B2 (en) * 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7931649B2 (en) * 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7083620B2 (en) * 2002-10-30 2006-08-01 Medtronic, Inc. Electrosurgical hemostat
US7128741B1 (en) * 2003-04-04 2006-10-31 Megadyne Medical Products, Inc. Methods, systems, and devices for performing electrosurgical procedures
JP4035100B2 (ja) * 2003-06-09 2008-01-16 徹 谷 医療用処置具及びこれを備えた医療用処置装置
US7179254B2 (en) * 2004-03-09 2007-02-20 Ethicon, Inc. High intensity ablation device
JP2005312807A (ja) * 2004-04-30 2005-11-10 Olympus Corp エネルギー治療装置
US7837685B2 (en) * 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US8882766B2 (en) * 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US20070225697A1 (en) * 2006-03-23 2007-09-27 Ketan Shroff Apparatus and methods for cardiac ablation
US7846158B2 (en) * 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US7776037B2 (en) * 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US20080015575A1 (en) * 2006-07-14 2008-01-17 Sherwood Services Ag Vessel sealing instrument with pre-heated electrodes
US20080033428A1 (en) * 2006-08-04 2008-02-07 Sherwood Services Ag System and method for disabling handswitching on an electrosurgical instrument
GB0620061D0 (en) * 2006-10-10 2006-11-22 Medical Device Innovations Ltd Oesophageal treatment apparatus and method
CA2702275C (en) * 2006-10-10 2016-04-26 Medical Device Innovations Limited Surgical antenna
US7951149B2 (en) * 2006-10-17 2011-05-31 Tyco Healthcare Group Lp Ablative material for use with tissue treatment device
EP2082694B1 (en) * 2006-11-09 2011-04-27 National University Corporation Shiga University OF Medical Science Microwave endoscope forceps
US20080215050A1 (en) * 2007-03-02 2008-09-04 Ethicon Endo-Surgery, Inc. Tissue engaging hemostasis device
US8089417B2 (en) * 2007-06-01 2012-01-03 The Royal Institution For The Advancement Of Learning/Mcgill University Microwave scanning system and miniaturized microwave antenna
US8343144B2 (en) * 2008-02-11 2013-01-01 Expandoheat, Llc Apparatus and method for vessel sealing and tissue coagulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679882B1 (en) * 1998-06-22 2004-01-20 Lina Medical Aps Electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
US6334860B1 (en) * 1998-12-18 2002-01-01 Karl Storz Gmbh & Co. Kg Bipolar medical instrument
JP2008018226A (ja) * 2006-07-11 2008-01-31 Olympus Medical Systems Corp 処置装置
JP2008054926A (ja) * 2006-08-31 2008-03-13 Shiga Univ Of Medical Science マイクロ波手術器

Also Published As

Publication number Publication date
EP2868287B1 (en) 2017-05-03
EP2233098B1 (en) 2015-01-07
US20100249769A1 (en) 2010-09-30
EP2868287A1 (en) 2015-05-06
US20170172657A1 (en) 2017-06-22
JP2010221037A (ja) 2010-10-07
EP2233098A1 (en) 2010-09-29
JP5579474B2 (ja) 2014-08-27
EP2641559A1 (en) 2013-09-25
EP3090698A1 (en) 2016-11-09
EP3090698B1 (en) 2018-08-29
EP2641559B1 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5579474B2 (ja) 組織封止のための装置
AU2019202738B2 (en) Electrosurgical forceps for delivering rf and/or microwave energy into biological tissue
US9259268B2 (en) Vessel sealing using microwave energy
CN108633251B (zh) 活检钳工具
CN109303607B (zh) 用于从非共振不平衡有损耗的传输线结构传递微波能量的电外科钳

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160708

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160930

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20170529