JP2014192388A - 光電変換素子用部材 - Google Patents
光電変換素子用部材 Download PDFInfo
- Publication number
- JP2014192388A JP2014192388A JP2013067488A JP2013067488A JP2014192388A JP 2014192388 A JP2014192388 A JP 2014192388A JP 2013067488 A JP2013067488 A JP 2013067488A JP 2013067488 A JP2013067488 A JP 2013067488A JP 2014192388 A JP2014192388 A JP 2014192388A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- semiconductor
- impurity element
- semiconductor portion
- conversion element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Photovoltaic Devices (AREA)
Abstract
【解決手段】金属酸化物半導体、シリコン系半導体、化合物半導体、有機半導体等により構成される半導体部2が、板状または膜状に形成される。その半導体部2の一面側に複数の微細な金属体3が配置される。プラズモン共鳴により入射光が金属体3に吸収され、電気エネルギーに変換される。さらに、半導体部2にドナー又はアクセプタとしてではない所定の不純物元素が導入される。これにより、光電変換素子用部材1を用いた光電変換素子の光電変換効率を向上できる。
【選択図】図1
Description
但し、式1に示すJphは単色光照射下での短絡電流密度(mA/cm2)であり、短絡電流を有効受光面積で除したものである。また、λは波長(nm)であり、Φは照射単色光の強度(mW/cm2)である。ここでは、半導体部に光を照射してから5秒後の分光感度特性(IPCE)を算出し、IPCEを評価することで光電変換効率を評価する。
2 半導体部
3 金属体
Claims (5)
- 板状または膜状に形成された半導体部と、
その半導体部にドナー又はアクセプタとしてではなく導入された所定の不純物元素と、
前記半導体部の一面側に配置された複数の微細な金属体とを備え、プラズモン共鳴を利用することを特徴とする光電変換素子用部材。 - 前記不純物元素は、前記半導体部に意図的に導入されていることを特徴とする請求項1記載の光電変換素子用部材。
- 前記不純物元素は、イオン注入により前記半導体部の格子欠陥を伴って導入されアニールが施されることを特徴とする請求項2記載の光電変換素子用部材。
- 前記不純物元素は、Feであることを特徴とする請求項3記載の光電変換素子用部材。
- 前記半導体部は、前記金属体が配置される一面側から20nm以上150nm以下の深さ位置に、導入された前記不純物元素の濃度分布の極大値を有していることを特徴とする請求項1から4のいずれかに記載の光電変換素子用部材。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013067488A JP2014192388A (ja) | 2013-03-27 | 2013-03-27 | 光電変換素子用部材 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013067488A JP2014192388A (ja) | 2013-03-27 | 2013-03-27 | 光電変換素子用部材 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014192388A true JP2014192388A (ja) | 2014-10-06 |
Family
ID=51838371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013067488A Pending JP2014192388A (ja) | 2013-03-27 | 2013-03-27 | 光電変換素子用部材 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014192388A (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09262482A (ja) * | 1996-01-22 | 1997-10-07 | Sekiyu Sangyo Kasseika Center | 光触媒、光触媒の製造方法および光触媒反応方法 |
JPH11197512A (ja) * | 1998-01-08 | 1999-07-27 | Sumitomo Chem Co Ltd | 光触媒薄膜、光触媒反応方法、並びに光触媒薄膜の製造方法 |
JP2000123778A (ja) * | 1998-10-14 | 2000-04-28 | Hitachi Ltd | イオン注入装置およびイオン注入方法 |
JP2005044758A (ja) * | 2003-07-25 | 2005-02-17 | National Institute Of Advanced Industrial & Technology | 可視光応答性の膜状多孔質半導体光電極 |
JP2007052933A (ja) * | 2005-08-15 | 2007-03-01 | Institute Of National Colleges Of Technology Japan | チタニア粒子のイオン注入方法及びイオン注入したチタニア薄膜電極の製造方法 |
JP2007265694A (ja) * | 2006-03-27 | 2007-10-11 | Japan Science & Technology Agency | 色素増感型太陽電池及びその製造方法 |
JP2009129552A (ja) * | 2007-11-20 | 2009-06-11 | Konica Minolta Holdings Inc | 色素増感型太陽電池 |
JP2010225478A (ja) * | 2009-03-24 | 2010-10-07 | Ulvac Japan Ltd | 光電変換素子及びその製造方法 |
WO2011027830A1 (ja) * | 2009-09-07 | 2011-03-10 | 国立大学法人北海道大学 | 光電変換装置、光検出装置、及び光検出方法 |
JP2011187426A (ja) * | 2010-03-11 | 2011-09-22 | Sony Corp | 色素増感型光電変換装置 |
JP2012216755A (ja) * | 2011-03-28 | 2012-11-08 | Toshiba Corp | 光電変換素子 |
-
2013
- 2013-03-27 JP JP2013067488A patent/JP2014192388A/ja active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09262482A (ja) * | 1996-01-22 | 1997-10-07 | Sekiyu Sangyo Kasseika Center | 光触媒、光触媒の製造方法および光触媒反応方法 |
US6077492A (en) * | 1996-01-22 | 2000-06-20 | Petroleum Energy Center | Photocatalyst, process for producing the photocatalyst, and photocatalytic reaction method |
JPH11197512A (ja) * | 1998-01-08 | 1999-07-27 | Sumitomo Chem Co Ltd | 光触媒薄膜、光触媒反応方法、並びに光触媒薄膜の製造方法 |
JP2000123778A (ja) * | 1998-10-14 | 2000-04-28 | Hitachi Ltd | イオン注入装置およびイオン注入方法 |
JP2005044758A (ja) * | 2003-07-25 | 2005-02-17 | National Institute Of Advanced Industrial & Technology | 可視光応答性の膜状多孔質半導体光電極 |
JP2007052933A (ja) * | 2005-08-15 | 2007-03-01 | Institute Of National Colleges Of Technology Japan | チタニア粒子のイオン注入方法及びイオン注入したチタニア薄膜電極の製造方法 |
JP2007265694A (ja) * | 2006-03-27 | 2007-10-11 | Japan Science & Technology Agency | 色素増感型太陽電池及びその製造方法 |
JP2009129552A (ja) * | 2007-11-20 | 2009-06-11 | Konica Minolta Holdings Inc | 色素増感型太陽電池 |
JP2010225478A (ja) * | 2009-03-24 | 2010-10-07 | Ulvac Japan Ltd | 光電変換素子及びその製造方法 |
WO2011027830A1 (ja) * | 2009-09-07 | 2011-03-10 | 国立大学法人北海道大学 | 光電変換装置、光検出装置、及び光検出方法 |
JP2011187426A (ja) * | 2010-03-11 | 2011-09-22 | Sony Corp | 色素増感型光電変換装置 |
JP2012216755A (ja) * | 2011-03-28 | 2012-11-08 | Toshiba Corp | 光電変換素子 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rothmann et al. | Microstructural characterisations of perovskite solar cells–from grains to interfaces: Techniques, features, and challenges | |
Howard et al. | Humidity-induced photoluminescence hysteresis in variable Cs/Br ratio hybrid perovskites | |
Chu et al. | Fabrication and characterization of Ni-Doped ZnO nanorod arrays for UV photodetector application | |
Van Hieu | Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures | |
Lee et al. | Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity | |
Hu et al. | Large-scale and rapid synthesis of ultralong ZnO nanowire films via anodization | |
Gupta et al. | Doping-induced room temperature stabilization of metastable β-Ag2WO4 and origin of visible emission in α-and β-Ag2WO4: low temperature photoluminescence studies | |
Nakajima et al. | Rapid formation of black titania photoanodes: pulsed laser-induced oxygen release and enhanced solar water splitting efficiency | |
Mao et al. | Synthesis and photoelectrochemical cell properties of vertically grown α-Fe 2 O 3 nanorod arrays on a gold nanorod substrate | |
Jeong et al. | Transparent zirconium-doped hematite nanocoral photoanode via in-situ diluted hydrothermal approach for efficient solar water splitting | |
Barison et al. | Characterisation of surface oxidation of nickel–titanium alloy by ion-beam and electrochemical techniques | |
Guo et al. | ZnO@ TiO2 core–shell nanorod arrays with enhanced photoelectrochemical performance | |
Cen et al. | New aspects of improving the performance of WO 3 thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region | |
Ruff et al. | Visible light photo response from N-doped anodic niobium oxide after annealing in ammonia atmosphere | |
Alfakes et al. | Enhanced photoelectrochemical performance of atomic layer deposited Hf-doped ZnO | |
Soares et al. | Understanding the fundamental electrical and photoelectrochemical behavior of a hematite photoanode | |
Abdellaoui et al. | Photocarrier recombination dynamics in BiVO4 for visible light-driven water oxidation | |
Bak et al. | Photoelectrochemical Performances of Hematite (α‐Fe2O3) Films Doped with Various Metals | |
Al Saqri et al. | Investigation of defects in indium doped TiO2 thin films using electrical and optical techniques | |
Kim et al. | Enhanced photocatalytic activity of TiO 2 modified by e-beam irradiation | |
Murkute et al. | Effects of phosphorus implantation time on the optical, structural, and elemental properties of ZnO thin films and its correlation with the 3.31-eV peak | |
Kolodziejak et al. | When eutectic composites meet photoelectrochemistry–Highly stable and efficient UV–visible hybrid photoanodes | |
Ruan et al. | Simultaneous doping and growth of Sn-doped hematite nanocrystalline films with improved photoelectrochemical performance | |
Li et al. | Preparation of CuInS2/TiO2 nanotube heterojunction arrays electrode and investigation of its photoelectrochemical properties | |
Luo et al. | Effects of Ag-ion implantation on the performance of DSSCs with a tri-layer TiO 2 film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161220 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170627 |