JP2014192375A - Wavelength variable laser system and control method thereof - Google Patents

Wavelength variable laser system and control method thereof Download PDF

Info

Publication number
JP2014192375A
JP2014192375A JP2013067206A JP2013067206A JP2014192375A JP 2014192375 A JP2014192375 A JP 2014192375A JP 2013067206 A JP2013067206 A JP 2013067206A JP 2013067206 A JP2013067206 A JP 2013067206A JP 2014192375 A JP2014192375 A JP 2014192375A
Authority
JP
Japan
Prior art keywords
semiconductor laser
time
wavelength
injection current
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013067206A
Other languages
Japanese (ja)
Other versions
JP5963266B2 (en
Inventor
Makoto Shimokozono
真 下小園
Hiroyuki Ishii
啓之 石井
Nobuhiro Nunotani
伸浩 布谷
Kazutoshi Kato
和利 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Kyushu University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nippon Telegraph and Telephone Corp filed Critical Kyushu University NUC
Priority to JP2013067206A priority Critical patent/JP5963266B2/en
Publication of JP2014192375A publication Critical patent/JP2014192375A/en
Application granted granted Critical
Publication of JP5963266B2 publication Critical patent/JP5963266B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength variable laser system, along with a control method thereof, capable of wavelength change in a short time, with progress of degradation being slow, with long life.SOLUTION: A wavelength variable laser system includes a cooperative control device 101 for sending temperature information and injection current information, a temperature control device 102 for controlling temperature of a semiconductor laser 104 according to the temperature information, and an injection current control device 103 for controlling injection current of the semiconductor laser according to the injection current information. The cooperative control device sends the injection current information and the temperature information such that, when wavelength is changed to a long wavelength side, an injection current value is instantaneously increased at a first time for starting wavelength change so as to be a wavelength on long wavelength side after the wavelength change, and temperature of the semiconductor laser is gradually increased from the first time through a second time, so that a predetermined temperature is reached at the second time, meanwhile, the injection current value is gradually decreased so that a predetermined current value is reached at the second time, for maintaining a wavelength on the long wavelength side from after wavelength change through the second time.

Description

本発明は、半導体レーザの温度及び注入電流を制御して発振波長を変化させる波長可変レーザシステム及びその制御方法に関する。   The present invention relates to a tunable laser system that changes the oscillation wavelength by controlling the temperature and injection current of a semiconductor laser, and a control method therefor.

光通信では、一本の光ファイバに波長の異なる複数の光信号を通して大容量の情報を伝達する、いわゆる波長多重伝送が実用化され、この技術によって昨今の爆発的な情報の増加に対処している。さらに、波長多重伝送の高度化の形態として、伝送路の途中のノードに、特定の波長を分岐するための波長フィルタを設置することにより、送信する光信号の波長を変化させて予め行先のノードを選択するというネットワークがさらなる大容量化技術として期待されている。   In optical communications, so-called wavelength division multiplexing, which transmits large amounts of information through a plurality of optical signals with different wavelengths to a single optical fiber, has been put into practical use, and this technology addresses the recent explosive increase in information. Yes. Furthermore, as a form of sophistication of wavelength division multiplexing transmission, by installing a wavelength filter for branching a specific wavelength at a node in the middle of the transmission path, the wavelength of the optical signal to be transmitted can be changed in advance and the destination node The network that selects is expected as a technology for further increasing the capacity.

光通信で用いる光源としては、半導体レーザが一般的である。また、光信号の波長を変化させるには、半導体レーザの温度を変化させる方法が一般的である。例えば、長距離光通信で用いられる波長1550nmの分布帰還形半導体レーザ(DFBレーザ)の場合、DFBレーザの温度を1℃上昇させると、波長が約0.1nm増加する。この特徴を利用して、波長可変レーザが実用化されている。非特許文献1には、それぞれ波長の異なるDFBレーザを複数並べた半導体レーザアレイにおいて、それぞれのDFBレーザの温度を変化させることにより、複数のDFBレーザ全体で30nm以上の広い波長範囲の中で任意の波長を生成する技術が開示されている。   As a light source used in optical communication, a semiconductor laser is generally used. In order to change the wavelength of the optical signal, a method of changing the temperature of the semiconductor laser is generally used. For example, in the case of a distributed feedback semiconductor laser (DFB laser) having a wavelength of 1550 nm used in long-distance optical communication, when the temperature of the DFB laser is raised by 1 ° C., the wavelength increases by about 0.1 nm. Using this feature, a wavelength tunable laser has been put into practical use. In Non-Patent Document 1, in a semiconductor laser array in which a plurality of DFB lasers each having a different wavelength are arranged, the temperature of each DFB laser is changed, so that the plurality of DFB lasers can be arbitrarily selected within a wide wavelength range of 30 nm or more. A technique for generating a wavelength of λ is disclosed.

現在の光通信では、光信号の波長を長期間固定することにより、特定のノード間に波長パスを形成して長期間固定的に通信を行う、いわゆる波長パス方式がとられている。波長パス方式では、光通信ネットワークの故障時の波長パスの再構築や突発的な通信量の増大に対応した波長パスの追加などが必要になった場合には、光信号の波長を変えてこれに対応している。   In the current optical communication, a so-called wavelength path method is adopted in which the wavelength of an optical signal is fixed for a long period of time, thereby forming a wavelength path between specific nodes and performing communication for a long period of time. In the wavelength path method, when it becomes necessary to reconstruct a wavelength path in the event of a failure in an optical communication network or to add a wavelength path to cope with sudden increases in traffic, the wavelength of the optical signal can be changed. It corresponds to.

半導体レーザの温度を変えるには、数百マイクロメートル四方の半導体チップ全体の温度を変化させるため少なくとも数十秒の時間がかかる。そのため、波長パスの変更は少なくとも数十秒の時間をかけて行っている。波長パス方式では、波長パスを長期間固定するため、波長パスの変更に数十秒かかったとしても長期的に見た通信量のスループットへの影響はほとんど無視できる。   Changing the temperature of the semiconductor laser takes at least several tens of seconds to change the temperature of the entire semiconductor chip of several hundred micrometers. Therefore, the wavelength path is changed over at least several tens of seconds. In the wavelength path method, since the wavelength path is fixed for a long period of time, even if it takes several tens of seconds to change the wavelength path, the influence of the communication amount in the long term on the throughput is almost negligible.

一方、将来の通信方式の一つとして、波長を数十秒で順次切り替えていく光バースト方式が有望視されている。光バースト方式では、通信する情報を数十秒程度の長さの細かい光バーストに分割し、それぞれの光バーストには行先ごとに異なる波長を割り当てる。この方式では、ノードに対して光信号を行先ごとに振り分ける機能を持たせることができるため、消費電力の大きな電気処理が不要となるという利点がある。従って、波長を数十秒ごとに切り替える必要があるため、光バースト方式においては、数秒以下の時間内で波長が変化する半導体レーザが求められる。   On the other hand, as one of the future communication systems, an optical burst system that sequentially switches wavelengths in several tens of seconds is considered promising. In the optical burst method, information to be communicated is divided into fine optical bursts with a length of about several tens of seconds, and a different wavelength is assigned to each optical burst for each destination. This method has an advantage that electric processing with large power consumption is not required because a function for distributing the optical signal for each destination can be provided to the node. Accordingly, since it is necessary to switch the wavelength every several tens of seconds, a semiconductor laser whose wavelength changes within a time of several seconds or less is required in the optical burst method.

半導体レーザのレーザ波長を数秒以下で変化させる1つの方法として、半導体レーザに注入する電流を変化させる方法がある。半導体レーザは、数マイクロメートルの幅のストライプ状の導波路に電流を注入して半導体内の電子を増加させて発光させるものであり、注入電流を増加させると光強度が増加するが、導波路部分の局所的な温度も上昇して波長が増加する。例えば、長距離光通信で用いられる波長1550nmのDFBレーザの場合、DFBレーザの注入電流を1mA増加させると、波長が約0.1nm増加する。温度変化が起こる局所領域の熱容量が小さいため、局所的な温度変化は数秒以下の短時間で起こる。   One method for changing the laser wavelength of a semiconductor laser within a few seconds is to change the current injected into the semiconductor laser. A semiconductor laser emits light by injecting a current into a striped waveguide having a width of several micrometers to increase the number of electrons in the semiconductor. Increasing the injected current increases the light intensity. The local temperature of the part also rises and the wavelength increases. For example, in the case of a DFB laser having a wavelength of 1550 nm used in long-distance optical communication, if the injection current of the DFB laser is increased by 1 mA, the wavelength increases by about 0.1 nm. Since the heat capacity of the local region where the temperature change occurs is small, the local temperature change occurs in a short time of several seconds or less.

非特許文献2には、それぞれ波長の異なるDFBレーザを複数並べ、それぞれのDFBレーザの注入電流を変化させることにより、複数のDFBレーザ全体で30nm以上の広い波長範囲の中で、短時間でかつ任意の波長を生成する技術が開示されている。   In Non-Patent Document 2, by arranging a plurality of DFB lasers each having a different wavelength and changing the injection current of each DFB laser, the entire plurality of DFB lasers can be quickly and within a wide wavelength range of 30 nm or more. A technique for generating an arbitrary wavelength is disclosed.

H. Ishii他、「Spectral linewidth reduction in widely wavelength tunable DFB laser array」、IEEE Journal of Selected Topics in Quantum Electronics、2009年、Vol.15、No.3、p.514−520H. Ishii et al., “Spectral linewidth reduction in widely used wavelength tunable DFB laser array”, IEEE Journal of Selected Topics in Quantum Electronics, 2009, Vol. 15, No. 3, p. 514-520. 石井他、「電流制御によるチューナブルDFBレーザアレイの高出力動作」、電子情報通信学会総合大会、2005年、C−4−12、p.319Ishii et al., “High-power operation of tunable DFB laser array by current control”, IEICE General Conference, 2005, C-4-12, p.319.

しかしながら、注入電流を増加させることにより、半導体レーザが劣化し、寿命(故障と判定されるまでの時間)が短くなることが理論的にも実験的にも明らかになっている。従って、半導体レーザへの注入電流を変化させて波長を変化させる従来の方式では、注入電流量を多くする時間が一定の割合存在するため、その時間内で劣化が進行し、結果的に寿命が短くなり、運用中に故障する確率が高くなるという問題があった。   However, it has been theoretically and experimentally revealed that increasing the injection current deteriorates the semiconductor laser and shortens the lifetime (time until it is determined to be a failure). Therefore, in the conventional method of changing the wavelength by changing the injection current to the semiconductor laser, there is a certain percentage of time for increasing the injection current amount, so that the deterioration progresses within that time, and as a result, the lifetime is shortened. There was a problem that the probability of failure during operation became high.

本発明は、上記課題を解決するためのものであり、その目的は、数秒以内の短時間で波長変化が可能で、かつ劣化の進行が遅く寿命の長い波長可変レーザシステムを提供することである。   The present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a wavelength tunable laser system capable of changing the wavelength in a short time within a few seconds and having a slow deterioration and a long life. .

上記の目的を達成するために、本発明に係る波長可変レーザシステムは、半導体レーザと、前記半導体レーザを所望の設定温度に制御するための温度情報を送出し、前記半導体レーザへの注入電流量を所望の設定値に制御するための注入電流情報を送出する協調制御装置と、前記温度情報に従って前記半導体レーザの温度を制御する温度制御装置と、前記注入電流情報に従って前記半導体レーザへの注入電流を制御する注入電流制御装置とを備えた波長可変レーザシステムであって、前記協調制御装置は、前記半導体レーザのレーザ波長を短波長側から長波長側に変化させる場合、当該波長変化後に前記半導体レーザのレーザ波長が前記長波長側の波長となるように前記波長変化を開始する第1の時刻に前記注入電流値を瞬時に増加させ、前記第1の時刻から第2の時刻まで前記半導体レーザの温度を徐々に増加させながら前記半導体レーザの温度を前記第2の時刻で所定の温度にするとともに、前記第1の時刻から前記第2の時刻まで前記注入電流値を徐々に減少させながら前記注入電流値を前記第2の時刻で所定の電流値にし、前記半導体レーザのレーザ波長が前記長波長側の波長に変化した後から少なくとも前記第2の時刻まで前記長波長側の波長を維持するように、前記注入電流情報及び前記温度情報を送出することを特徴とする。   In order to achieve the above object, a wavelength tunable laser system according to the present invention transmits a semiconductor laser and temperature information for controlling the semiconductor laser to a desired set temperature, and an amount of current injected into the semiconductor laser. A cooperative control device for sending injection current information for controlling the current to a desired set value, a temperature control device for controlling the temperature of the semiconductor laser according to the temperature information, and an injection current into the semiconductor laser according to the injection current information The tunable laser system includes an injection current control device for controlling the semiconductor laser, wherein the cooperative control device changes the semiconductor laser after changing the wavelength when the laser wavelength of the semiconductor laser is changed from the short wavelength side to the long wavelength side. The injection current value is instantaneously increased at the first time when the wavelength change is started so that the laser wavelength of the laser becomes the wavelength on the long wavelength side. While gradually increasing the temperature of the semiconductor laser from the first time to the second time, the temperature of the semiconductor laser is set to a predetermined temperature at the second time, and from the first time to the second time The injection current value is gradually decreased until the time until the injection current value is set to a predetermined current value at the second time, and at least the first wavelength after the laser wavelength of the semiconductor laser is changed to the long wavelength side wavelength. The injection current information and the temperature information are transmitted so that the wavelength on the long wavelength side is maintained until the time of 2.

請求項2に記載の波長可変レーザシステムは、請求項1に記載の波長可変レーザシステムにおいて、前記半導体レーザは少なくとも第1の半導体レーザ部と第2の半導体レーザ部から構成され、前記協調制御装置は、前記第1の時刻に前記第1の半導体レーザ部への前記注入電流値を瞬時にゼロにすると同時に前記第2の半導体レーザ部の前記注入電流値を瞬時に増加させ、前記第1の時刻から前記第2の時刻まで前記第2の半導体レーザ部の前記注入電流値を徐々に減少させながら前記第2の半導体レーザ部の前記注入電流値を前記第2の時刻で前記所定の電流値にするように、前記注入電流情報及び前記温度情報を送出することを特徴とする。   The wavelength tunable laser system according to claim 2 is the wavelength tunable laser system according to claim 1, wherein the semiconductor laser includes at least a first semiconductor laser unit and a second semiconductor laser unit, and the cooperative control device Makes the injection current value to the first semiconductor laser unit instantaneously zero at the first time, and at the same time, instantaneously increases the injection current value of the second semiconductor laser unit, The injection current value of the second semiconductor laser unit is set to the predetermined current value at the second time while gradually decreasing the injection current value of the second semiconductor laser unit from time to the second time. As described above, the injection current information and the temperature information are transmitted.

請求項3に記載の波長可変レーザシステムは、半導体レーザと、前記半導体レーザを所望の設定温度に制御するための温度情報を送出し、前記半導体レーザへの注入電流量を所望の設定値に制御するための注入電流情報を送出する協調制御装置と、前記温度情報に従って前記半導体レーザの温度を制御する温度制御装置と、前記注入電流情報に従って前記半導体レーザへの注入電流を制御する注入電流制御装置とを備えた波長可変レーザシステムであって、前記協調制御装置は、前記半導体レーザのレーザ波長を長波長側から短波長側に変化させる場合、第1の時刻から当該波長変化を開始する第2の時刻まで前記長波長側の波長を維持しながら、前記第1の時刻から前記第2の時刻まで前記半導体レーザの温度を徐々に減少させて前記半導体レーザの温度を前記第2の時刻で所定の温度にするとともに、前記第1の時刻から前記第2の時刻まで前記注入電流値を徐々に増加させて前記注入電流値を前記第2の時刻で所定の電流値にし、前記第2の時刻に前記注入電流値を瞬時に減少させて前記波長変化後に前記半導体レーザのレーザ波長が前記短波長側の波長となるように、前記注入電流情報及び前記温度情報を送出することを特徴とする。   The wavelength tunable laser system according to claim 3 sends out a semiconductor laser and temperature information for controlling the semiconductor laser to a desired set temperature, and controls an injection current amount to the semiconductor laser to a desired set value. A cooperative control device for sending injection current information to control, a temperature control device for controlling the temperature of the semiconductor laser according to the temperature information, and an injection current control device for controlling the injection current into the semiconductor laser according to the injection current information When the laser wavelength of the semiconductor laser is changed from the long wavelength side to the short wavelength side, the cooperative control device starts the wavelength change from a first time. The semiconductor laser temperature is gradually decreased from the first time to the second time while maintaining the wavelength on the long wavelength side until the time of The temperature of the laser is set to a predetermined temperature at the second time, and the injection current value is gradually increased from the first time to the second time so that the injection current value is set at the second time. The injection current information and the injection current value are set to a predetermined current value, and the injection current value is instantaneously decreased at the second time so that the laser wavelength of the semiconductor laser becomes the short wavelength after the wavelength change. It is characterized by transmitting temperature information.

請求項4に記載の波長可変レーザシステムは、請求項3に記載の波長可変レーザシステムにおいて、前記半導体レーザは少なくとも第1の半導体レーザ部と第2の半導体レーザ部から構成され、前記協調制御装置は、前記第1の時刻から前記第2の時刻まで前記第1の半導体レーザ部の前記注入電流値を徐々に増加させながら前記第1の半導体レーザ部の前記注入電流値を前記第2の時刻で所定の電流値にし、前記第2の時刻に前記第1の半導体レーザ部の電流の前記注入電流値を瞬時にゼロにする同時に前記第2の半導体レーザ部の前記注入電流値を瞬時に増加させるように、前記注入電流情報及び前記温度情報を送出することを特徴とする。   The wavelength tunable laser system according to claim 4 is the wavelength tunable laser system according to claim 3, wherein the semiconductor laser includes at least a first semiconductor laser unit and a second semiconductor laser unit, and the cooperative control device Takes the injection current value of the first semiconductor laser unit from the first time to the second time while gradually increasing the injection current value of the first semiconductor laser unit from the first time to the second time. The injection current value of the current of the first semiconductor laser unit is instantaneously made zero at the second time, and at the same time, the injection current value of the second semiconductor laser unit is instantaneously increased. The injection current information and the temperature information are transmitted.

請求項5に記載の制御方法は、半導体レーザと、前記半導体レーザを所望の設定温度に制御するための温度情報を送出し、前記半導体レーザへの注入電流量を所望の設定値に制御するための注入電流情報を送出する協調制御装置と、前記温度情報に従って前記半導体レーザの温度を制御する温度制御装置と、前記注入電流情報に従って前記半導体レーザへの注入電流を制御する注入電流制御装置とを備えた波長可変レーザシステムの制御方法であって、前記半導体レーザのレーザ波長を短波長側から長波長側に変化させる場合、前記協調制御装置が、当該波長変化後に前記半導体レーザのレーザ波長が前記長波長側の波長となるように前記波長変化を開始する第1の時刻に前記注入電流値を瞬時に増加させる前記注入電流情報を送出する第1のステップと、前記協調制御装置が、前記第1の時刻から第2の時刻まで前記半導体レーザの温度を徐々に増加させながら前記半導体レーザの温度を前記第2の時刻で所定の温度にするとともに、前記第1の時刻から前記第2の時刻まで前記注入電流値を徐々に減少させながら前記注入電流値を前記第2の時刻で所定の電流値にし、前記半導体レーザのレーザ波長が前記長波長側の波長に変化した後から少なくとも前記第2の時刻まで前記長波長側の波長を維持する前記注入電流情報及び前記温度情報を送出する第2のステップとを備えたことを特徴とする。   According to a fifth aspect of the present invention, there is provided a control method for transmitting a semiconductor laser and temperature information for controlling the semiconductor laser to a desired set temperature, and controlling an injection current amount to the semiconductor laser to a desired set value. A coordinated control device for sending the injection current information, a temperature control device for controlling the temperature of the semiconductor laser according to the temperature information, and an injection current control device for controlling the injection current into the semiconductor laser according to the injection current information. In the control method of a tunable laser system provided, when the laser wavelength of the semiconductor laser is changed from a short wavelength side to a long wavelength side, the cooperative control device is configured such that the laser wavelength of the semiconductor laser is changed after the wavelength change. A first time for sending the injection current information for instantaneously increasing the injection current value at a first time when the wavelength change is started so that the wavelength becomes a longer wavelength side. And the coordinated control device, while gradually increasing the temperature of the semiconductor laser from the first time to the second time, to bring the temperature of the semiconductor laser to a predetermined temperature at the second time, The injection current value is set to a predetermined current value at the second time while gradually decreasing the injection current value from the first time to the second time, and the laser wavelength of the semiconductor laser is set to the long wavelength side. And a second step of sending out the injection current information and the temperature information for maintaining the wavelength on the long wavelength side at least until the second time after the change to the wavelength.

請求項6に記載の制御方法は、請求項5に記載の制御方法において、前記半導体レーザは少なくとも第1の半導体レーザ部と第2の半導体レーザ部から構成され、前記第1のステップは、前記協調制御装置が、前記第1の時刻に前記第1の半導体レーザ部への前記注入電流値を瞬時にゼロにすると同時に前記第2の半導体レーザ部の前記注入電流値を瞬時に増加させる前記注入電流情報を送出するステップを含み、前記第2のステップは、前記協調制御装置が、前記第1の時刻から前記第2の時刻まで前記第2の半導体レーザ部の前記注入電流値を徐々に減少させながら前記第2の半導体レーザ部の前記注入電流値を前記第2の時刻で前記所定の電流値にする前記注入電流情報を送出するステップを含むことを特徴とする。   The control method according to claim 6 is the control method according to claim 5, wherein the semiconductor laser is composed of at least a first semiconductor laser part and a second semiconductor laser part, and the first step includes The implanting control unit instantaneously increases the injection current value of the second semiconductor laser unit at the same time as the injection current value to the first semiconductor laser unit is instantaneously zeroed at the first time. A step of transmitting current information, wherein the cooperative control device gradually decreases the injected current value of the second semiconductor laser section from the first time to the second time. And sending the injection current information for setting the injection current value of the second semiconductor laser section to the predetermined current value at the second time.

請求項7に記載の制御方法は、半導体レーザと、前記半導体レーザを所望の設定温度に制御するための温度情報を送出し、前記半導体レーザへの注入電流量を所望の設定値に制御するための注入電流情報を送出する協調制御装置と、前記温度情報に従って前記半導体レーザの温度を制御する温度制御装置と、前記注入電流情報に従って前記半導体レーザへの注入電流を制御する注入電流制御装置とを備えた波長可変レーザシステムの制御方法であって、前記半導体レーザのレーザ波長を長波長側から短波長側に変化させる場合、前記協調制御装置が、第1の時刻から当該波長変化を開始する第2の時刻まで前記長波長側の波長を維持しながら、前記第1の時刻から前記第2の時刻まで前記半導体レーザの温度を徐々に減少させて前記半導体レーザの温度を前記第2の時刻で所定の温度にするとともに、前記第1の時刻から前記第2の時刻まで前記注入電流値を徐々に増加させて前記注入電流値を前記第2の時刻で所定の電流値にする前記注入電流情報及び前記温度情報を送出する第1のステップと、前記協調制御装置が、前記波長変化後に前記半導体レーザのレーザ波長が前記短波長側の波長となるように前記第2の時刻に前記注入電流値を瞬時に減少させる前記注入電流情報及び前記温度情報を送出する第2のステップとを備えたことを特徴とする。   A control method according to claim 7 is for sending a semiconductor laser and temperature information for controlling the semiconductor laser to a desired set temperature, and controlling an injection current amount to the semiconductor laser to a desired set value. A coordinated control device for sending the injection current information, a temperature control device for controlling the temperature of the semiconductor laser according to the temperature information, and an injection current control device for controlling the injection current into the semiconductor laser according to the injection current information. A control method for a tunable laser system provided, wherein when the laser wavelength of the semiconductor laser is changed from a long wavelength side to a short wavelength side, the cooperative control device starts the wavelength change from a first time. The temperature of the semiconductor laser is gradually decreased from the first time to the second time while maintaining the wavelength on the long wavelength side until the time of 2. The injection temperature value is increased at the second time by gradually increasing the injection current value from the first time to the second time. The first step of sending the injection current information and the temperature information to be a predetermined current value, and the cooperative control device so that the laser wavelength of the semiconductor laser becomes the wavelength on the short wavelength side after the wavelength change And a second step of sending out the injected current information and the temperature information for instantaneously decreasing the injected current value at the second time.

請求項8に記載の制御方法は、請求項7に記載の制御方法において、前記半導体レーザは少なくとも第1の半導体レーザ部と第2の半導体レーザ部から構成され、前記第1のステップは、前記協調制御装置が、前記第1の時刻から前記第2の時刻まで前記第1の半導体レーザ部の前記注入電流値を徐々に増加させて前記第1の半導体レーザ部の前記注入電流値を前記第2の時刻で前記所定の電流値にする前記注入電流情報を送出するステップを含み、前記第2のステップは、前記協調制御装置が、前記第2の時刻に前記第1の半導体レーザ部への前記注入電流値を瞬時にゼロにすると同時に前記第2の半導体レーザ部の前記注入電流値を瞬時に増加させる前記注入電流情報を送出するステップを含むことを特徴とする。   The control method according to claim 8 is the control method according to claim 7, wherein the semiconductor laser includes at least a first semiconductor laser part and a second semiconductor laser part, and the first step includes A coordinated control device gradually increases the injection current value of the first semiconductor laser unit from the first time to the second time, thereby changing the injection current value of the first semiconductor laser unit to the first time. The step of sending the injection current information to the predetermined current value at a time of 2, wherein the second step is performed by the cooperative control device to the first semiconductor laser unit at the second time. The method includes the step of sending the injection current information for instantaneously increasing the injection current value of the second semiconductor laser unit at the same time as making the injection current value zero instantaneously.

本発明の波長可変レーザシステムによれば、半導体レーザのレーザ波長を変化する際に、数秒以内の時間内で注入電流変化を行うことにより数秒以内での波長変化を行い、波長変化の前または後の数秒以上の時間内に、波長を一定に保ちながら注入電流と温度の両方を変化させることにより、結果的に注入電流量が多くなる時間の割合を減少させることで、数秒以内の短時間で波長変化が可能で、かつ劣化の進行が遅く寿命の長い波長可変レーザシステムを実現できる。   According to the wavelength tunable laser system of the present invention, when changing the laser wavelength of the semiconductor laser, the wavelength change within a few seconds is performed by changing the injection current within a time within a few seconds, and before or after the wavelength change. By changing both the injection current and the temperature while keeping the wavelength constant within a few seconds, the ratio of the time when the amount of injected current is increased is reduced, resulting in a short time within a few seconds. It is possible to realize a wavelength tunable laser system that can change the wavelength and that has a slow progress and a long lifetime.

本発明の第1の実施形態に係る波長可変レーザシステムの構成を示す図である。It is a figure which shows the structure of the wavelength tunable laser system which concerns on the 1st Embodiment of this invention. 第1の実施形態に係る波長可変レーザシステムにおいて、半導体レーザのレーザ波長を長波長側へ変化させる場合における、注入電流情報の設定値と温度情報の設定温度と半導体レーザのレーザ波長との時間変化の関係を示す図である。In the wavelength tunable laser system according to the first embodiment, when the laser wavelength of the semiconductor laser is changed to the longer wavelength side, the time change of the set value of the injection current information, the set temperature of the temperature information, and the laser wavelength of the semiconductor laser It is a figure which shows the relationship. 第1の実施形態に係る波長可変レーザシステムにおいて、半導体レーザのレーザ波長を短波長側へ変化させる場合における、注入電流情報の設定値と温度情報の設定温度と半導体レーザのレーザ波長との時間変化の関係を示す図である。In the wavelength tunable laser system according to the first embodiment, when the laser wavelength of the semiconductor laser is changed to the short wavelength side, the time change of the set value of the injection current information, the set temperature of the temperature information, and the laser wavelength of the semiconductor laser It is a figure which shows the relationship. 本発明の第2の実施形態に係る波長可変レーザシステムの構成を示す図である。It is a figure which shows the structure of the wavelength tunable laser system which concerns on the 2nd Embodiment of this invention. 第2の実施形態に係る波長可変レーザシステムにおいて、半導体レーザアレイ基板の温度を増加させながら電流注入する半導体レーザを切り替える場合における、注入電流情報の設定値と温度情報の設定温度と半導体レーザのレーザ波長との時間変化の関係を示す図である。In the wavelength tunable laser system according to the second embodiment, when switching the semiconductor laser to which current is injected while increasing the temperature of the semiconductor laser array substrate, the set value of the injection current information, the set temperature of the temperature information, and the laser of the semiconductor laser It is a figure which shows the relationship of the time change with a wavelength. 第2の実施形態に係る波長可変レーザシステムにおいて、半導体レーザアレイ基板の温度を減少させながら電流注入する半導体レーザを切り替える場合における、注入電流情報の設定値と温度情報の設定温度と半導体レーザのレーザ波長との時間変化の関係を示す図である。In the wavelength tunable laser system according to the second embodiment, the setting value of the injection current information, the setting temperature of the temperature information, and the laser of the semiconductor laser when switching the semiconductor laser to which current is injected while decreasing the temperature of the semiconductor laser array substrate It is a figure which shows the relationship of the time change with a wavelength.

以下、本発明の各実施形態に係る波長可変レーザシステムについて説明する。   The wavelength tunable laser system according to each embodiment of the present invention will be described below.

<第1の実施形態>
本発明の第1の実施形態に係る波長可変レーザシステム100について、図1ないし図3を参照して説明する。
<First Embodiment>
A wavelength tunable laser system 100 according to a first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の第1の実施形態に係る波長可変レーザシステム100の構成を示す図である。図1には、協調制御装置101と、温度制御装置102と、注入電流制御装置103と、半導体レーザ104とを備えた波長可変レーザシステム100が示されている。   FIG. 1 is a diagram showing a configuration of a wavelength tunable laser system 100 according to the first embodiment of the present invention. FIG. 1 shows a wavelength tunable laser system 100 including a cooperative control device 101, a temperature control device 102, an injection current control device 103, and a semiconductor laser 104.

図1に示されるように、協調制御装置101は、半導体レーザ104を所望の設定温度に制御するための温度情報を温度制御装置102に送出し、半導体レーザ104への注入電流量を所望の設定値に制御するための注入電流情報を注入電流制御装置103へ送出する。温度制御装置102は、受け取った温度情報に従って半導体レーザ104が所望の設定温度になるように半導体レーザ104の温度を制御し、注入電流制御装置103は受け取った注入電流情報に従って半導体レーザ104の注入電流が所望の設定値になるように半導体レーザ104を制御する。   As shown in FIG. 1, the cooperative control device 101 sends temperature information for controlling the semiconductor laser 104 to a desired set temperature to the temperature control device 102, and sets the amount of current injected into the semiconductor laser 104 to a desired setting. The injection current information for controlling the value is sent to the injection current control device 103. The temperature control device 102 controls the temperature of the semiconductor laser 104 so that the semiconductor laser 104 reaches a desired set temperature according to the received temperature information, and the injection current control device 103 controls the injection current of the semiconductor laser 104 according to the received injection current information. The semiconductor laser 104 is controlled so that becomes a desired set value.

図2は、波長可変レーザシステム100において波長を長波長側に変化する場合における、注入電流情報の設定値と温度情報の設定温度と半導体レーザのレーザ波長との時間変化の関係を示す。図2(a)は時間に対する注入電流変化を示し、図2(b)は時間に対する温度変化を示し、図2(c)は時間に対する波長変化を示す。協調制御装置101は、温度情報および注入電流情報を協調制御して、注入電流値、温度及び波長が図2で示されるような値となるように、温度制御装置102および注入電流装置103へそれぞれ温度情報および注入電流情報を送出している。以下に示す図3についても同様である。   FIG. 2 shows the relationship between changes in time of the set value of the injection current information, the set temperature of the temperature information, and the laser wavelength of the semiconductor laser when the wavelength is changed to the long wavelength side in the wavelength tunable laser system 100. FIG. 2A shows changes in injection current with respect to time, FIG. 2B shows changes in temperature with respect to time, and FIG. 2C shows changes in wavelength with time. The cooperative control device 101 performs cooperative control of the temperature information and the injection current information, and supplies the temperature control device 102 and the injection current device 103 so that the injection current value, temperature, and wavelength are as shown in FIG. Temperature information and injection current information are sent out. The same applies to FIG. 3 shown below.

波長変化を開始する時刻をt1とする。図2(a)乃至(c)に示すように、時刻t1以前では、注入電流値Iは低位側電流値IL1であり、温度Tは低位側温度Tであり、半導体レーザ104の波長は短波長側の波長である。図2(a)に示すように時刻t1において注入電流値Iを低位側電流値IL1から高位側電流値IH1に瞬時に増加させると、図2(c)に示すように注入電流の増加に伴い数秒以内の短時間Δtで波長は長波長側へ変化する。ここで、高位側電流値IH1は、波長変化を開始する時刻t1のときの半導体レーザの低位側電流値IL1に基づいて、半導体レーザのレーザ波長が波長変化後に所望の値となるように設定することができる。 The time for starting the wavelength change is t1. As shown in FIGS. 2A to 2C, before the time t1, the injection current value I is the lower current value IL1 , the temperature T is the lower temperature TL , and the wavelength of the semiconductor laser 104 is This is the wavelength on the short wavelength side. If instantaneously increased to the high-side current value I H1 injection current value I at time t1 from the low-side current value I L1 as shown in FIG. 2 (a), an increase in the injection current, as shown in FIG. 2 (c) Accordingly, the wavelength changes to the long wavelength side in a short time Δt within several seconds. Here, the high-side current value I H1 is set so that the laser wavelength of the semiconductor laser becomes a desired value after the wavelength change based on the low-side current value IL1 of the semiconductor laser at the time t1 when the wavelength change is started. Can be set.

その後、図2(a)乃至(c)に示すように、時刻t1から時刻t2の間、波長が長波長側の一定の値を維持するように温度Tと注入電流値Iとの関係を保ちながら、かつ注入電流値Iが時刻t2以降において高位側電流値IH1以下の所定の低位側電流値IL2となるように徐々に注入電流値Iを減少させ、また時刻t2で高位側温度TH1となるように温度Tを徐々に上昇させる。ここで、高位側温度TH1は、時刻t2のときの低位側電流値IL2に基づいて半導体レーザ104の波長が所望の値となるように設定することができる。また、上記の波長が長波長側の一定の値を維持するような温度Tと注入電流値Iとの関係は、予め予備実験により波長が長波長側の一定の値を維持するような温度Tと注入電流値Iとの関係を求めておき、その関係を多項式で近似するなどの方法をとることにより求めることができる。 Thereafter, as shown in FIGS. 2A to 2C, the relationship between the temperature T and the injected current value I is maintained so that the wavelength is maintained at a constant value on the long wavelength side from time t1 to time t2. while, and the injection current I is decreased gradually injection current value I such that the high-side current value I H1 following the predetermined low-side current value I L2 after time t2, the high-side temperature T at time t2 The temperature T is gradually increased so as to be H1 . Here, the high side temperature T H1 may be the wavelength of the semiconductor laser 104 based on the low-side current value I L2 at time t2 is set to be a desired value. The relationship between the temperature T at which the above-mentioned wavelength maintains a constant value on the long wavelength side and the injection current value I is the temperature T at which the wavelength maintains a constant value on the long wavelength side in advance by preliminary experiments. And the injection current value I, and the relationship can be obtained by approximating the relationship with a polynomial.

その結果、時刻t2以降、半導体レーザ104は波長が所望の長波長側へ変化した状態を維持しつつ、注入電流値Iは高位側電流値IH1以下の所望の低位側電流値IL2とすることができる。すなわち、時刻t1において数秒以内の短時間Δtで瞬時に長波長側への波長変化を起こさせながら、時刻t1以降の数秒以上の時間で注入電流値Iが高位側電流値IH1以下になる。そのため、本発明においては、従来の注入電流変化のみによって波長を制御する場合のように波長を長波長側に維持するために波長変化以降で注入電流を常に高い状態に維持する必要がないため、注入電流量が多くなる時間の割合を減少させることができ、それにより半導体レーザ104の劣化の進行が遅くなり寿命が長く、その結果故障確率を低くすることが可能となる。 As a result, after time t2, the semiconductor laser 104 while keeping the state in which the wavelength has changed to a desired long wavelength side, the injection current value I is a high-side current value I H1 following the desired low-side current value I L2 be able to. That is, the injection current value I becomes equal to or lower than the high-order current value I H1 in the time of several seconds or more after the time t1, while causing the wavelength change to the long wavelength side instantaneously in a short time Δt within several seconds at the time t1. Therefore, in the present invention, it is not necessary to maintain the injection current always high after the wavelength change in order to maintain the wavelength on the long wavelength side as in the case of controlling the wavelength only by the conventional injection current change, The proportion of time during which the amount of injected current is increased can be reduced, whereby the progress of deterioration of the semiconductor laser 104 is delayed and the life is increased, and as a result, the failure probability can be lowered.

図3は、波長可変レーザシステム100において波長を短波長側に変化する場合における、注入電流情報の設定値と温度情報の設定温度と半導体レーザのレーザ波長との時間変化の関係を示す。図3(a)は時間に対する注入電流変化を示し、図3(b)は時間に対する温度変化を示し、図3(c)は時間に対する波長変化を示す。   FIG. 3 shows the relationship between changes in time of the set value of the injection current information, the set temperature of the temperature information, and the laser wavelength of the semiconductor laser when the wavelength is changed to the short wavelength side in the wavelength tunable laser system 100. 3A shows the change in the injection current with respect to time, FIG. 3B shows the change in temperature with respect to time, and FIG. 3C shows the change in wavelength with time.

波長変化を開始する時刻をt4とする。図3(a)乃至(c)に示すように、時刻t3以前では、注入電流値Iは低位側電流値IL3であり、温度Tは高位側温度TH2であり、半導体レーザ104の波長は長波長側の波長である。時刻t3から時刻t4の間、半導体レーザ104の波長が時刻t4以前の長波長側の一定の値を維持するように温度Tと注入電流値Iとの関係を保ちながら、かつ注入電流値Iが波長変化前の時刻t4で高位側電流値IH2となるように徐々に注入電流値Iを増加させ、また時刻t4で低位側温度TL2となるように温度Tを徐々に減少させる。ここで、高位側電流値IH2は、時刻t4のときの半導体レーザ104の低位側温度TL2に基づいて半導体レーザ104の波長が波長変化前の長波長側の値となるように設定することができる。また、低位側温度TL2は、時刻t4以降のときの低位側電流値IL4に基づいて半導体レーザ104の波長が波長変化後の所望の短波長側の値となるに設定することができる。 The time for starting the wavelength change is t4. As shown in FIGS. 3A to 3C, before the time t3, the injection current value I is the low-side current value IL3 , the temperature T is the high-side temperature TH2 , and the wavelength of the semiconductor laser 104 is This is the wavelength on the long wavelength side. Between time t3 and time t4, while maintaining the relationship between the temperature T and the injected current value I so that the wavelength of the semiconductor laser 104 maintains a constant value on the long wavelength side before time t4, the injected current value I is increases gradually injection current value I such that the high-side current value I H2 at time t4 before a wavelength change, also gradually decreases the temperature T so that the lower side temperature T L2 at time t4. Here, the high-side current value I H2, the wavelength of the semiconductor laser 104 is set to a value of the long-wavelength side of the front wavelength change based on the low side temperature T L2 of the semiconductor laser 104 at time t4 Can do. Further, the lower temperature T L2 can be set so that the wavelength of the semiconductor laser 104 becomes a desired short wavelength side value after the wavelength change based on the lower current value I L4 after time t4.

その後、図3(a)に示すように、時刻t4において、注入電流値Iを高位側電流値IH2から所望の低位側電流値IL4に瞬時に減少させると、図3(c)に示すように注入電流の減少に伴い数秒以内の短時間Δtで波長が短波長側へ変化する。 Thereafter, as shown in FIG. 3 (a), when the injection current value I is instantaneously decreased from the high-order current value IH2 to the desired low-order current value IL4 at time t4, as shown in FIG. 3 (c). Thus, as the injection current decreases, the wavelength changes to the short wavelength side in a short time Δt within several seconds.

その結果、時刻t3から時刻t4の間は、半導体レーザ104は短波長側への波長変化前の長波長側の波長状態を維持しつつ、注入電流値Iは高位側電流値IH2以下の値となる。すなわち、時刻t4において数秒以内の短時間Δtで瞬時に短波長側への波長変化を起こさせながら、時刻t4以前は注入電流値Iが高位側電流値IH2以下になる。そのため、本発明においては、従来の注入電流変化のみによって波長を制御する場合のように波長を長波長側に維持するために波長変化以前で注入電流を常に高い状態に維持する必要がないため、注入電流量が多くなる時間の割合を減少させることができ、半導体レーザ104の劣化の進行が遅くなり寿命が長く、その結果故障確率を低くすることが可能となる。 As a result, from time t3 to time t4, the semiconductor laser 104 maintains the wavelength state on the long wavelength side before the wavelength change to the short wavelength side, and the injection current value I is a value equal to or lower than the high-order side current value IH2. It becomes. That is, the injection current value I becomes equal to or lower than the high-order current value I H2 before the time t4 while causing the wavelength change to the short wavelength side instantaneously in a short time Δt within several seconds at the time t4. Therefore, in the present invention, since it is not necessary to always maintain the injection current in a high state before the wavelength change in order to maintain the wavelength on the long wavelength side as in the case of controlling the wavelength only by the conventional injection current change, The proportion of time during which the amount of injected current increases can be reduced, the progress of deterioration of the semiconductor laser 104 is slowed and the life is extended, and as a result, the failure probability can be lowered.

<第2の実施形態>
本発明の第2の実施形態に係る波長可変レーザシステムについて、図4乃至図6を参照して説明する。
<Second Embodiment>
A wavelength tunable laser system according to the second embodiment of the present invention will be described with reference to FIGS.

図4は、本発明の第2の実施形態に係る波長可変レーザシステム200の構成を示す図である。図4には、協調制御装置201と、温度制御装置202と、注入電流制御装置203と、半導体レーザアレイ基板204とを備えた波長可変レーザシステム200が示されている。半導体レーザアレイ基板204は、第1の半導体レーザ205及び第2の半導体レーザ206を備えている。   FIG. 4 is a diagram showing a configuration of a wavelength tunable laser system 200 according to the second embodiment of the present invention. FIG. 4 shows a wavelength tunable laser system 200 including a cooperative control device 201, a temperature control device 202, an injection current control device 203, and a semiconductor laser array substrate 204. The semiconductor laser array substrate 204 includes a first semiconductor laser 205 and a second semiconductor laser 206.

図4に示されるように、協調制御装置201は、半導体レーザアレイ基板204を所望の設定温度に制御するための温度情報を温度制御装置202に送出し、第1の半導体レーザ205及び第2の半導体レーザ206への注入電流量を所望の設定値に制御するための注入電流情報を注入電流制御装置203へ送出する。温度制御装置202は、受け取った温度情報に従って半導体レーザアレイ基板204が所望の設定温度になるように半導体レーザ204の温度を制御し、注入電流制御装置203は受け取った注入電流情報に従って第1の半導体レーザ205及び第2の半導体レーザ206の注入電流がそれぞれ所望の設定値となるように第1の半導体レーザ205及び第2の半導体レーザ206をそれぞれ制御する。   As shown in FIG. 4, the cooperative control apparatus 201 sends temperature information for controlling the semiconductor laser array substrate 204 to a desired set temperature to the temperature control apparatus 202, and the first semiconductor laser 205 and the second semiconductor laser 205 Injection current information for controlling the injection current amount to the semiconductor laser 206 to a desired set value is sent to the injection current control device 203. The temperature control device 202 controls the temperature of the semiconductor laser 204 so that the semiconductor laser array substrate 204 has a desired set temperature according to the received temperature information. The injection current control device 203 controls the first semiconductor according to the received injection current information. The first semiconductor laser 205 and the second semiconductor laser 206 are respectively controlled so that the injection currents of the laser 205 and the second semiconductor laser 206 become desired set values, respectively.

ここで、第1の半導体レーザ205及び第2の半導体レーザ206は互いに近接して半導体レーザアレイ基板204上にアレイ状に配置されている。したがって、温度制御装置202によって半導体レーザアレイ基板204が温度制御されることにより、注入電流によりそれぞれ温度が変化することを除いて、第1の半導体レーザ205及び第2の半導体レーザ206も同様に温度制御される。   Here, the first semiconductor laser 205 and the second semiconductor laser 206 are arranged in an array on the semiconductor laser array substrate 204 close to each other. Accordingly, the temperature of the semiconductor laser array substrate 204 is controlled by the temperature control device 202, and the temperature of the first semiconductor laser 205 and the second semiconductor laser 206 is also the same except that the temperature changes due to the injection current. Be controlled.

図5は、第2の実施形態に係る波長可変レーザシステム200において、半導体レーザアレイ基板の温度を増加させながら電流注入する半導体レーザを切り替える場合における、注入電流情報の設定値と温度情報の設定温度と半導体レーザのレーザ波長との時間変化の関係を示す。図5(a)乃至図5(c)は、第1の半導体レーザ205における時間に対する注入電流変化、温度変化及び波長変化をそれぞれ示し、図5(d)乃至図5(f)は、第2の半導体レーザ206における時間に対する注入電流変化、温度変化及び波長変化をそれぞれ示す。協調制御装置201は、温度情報および注入電流情報を協調制御して、注入電流値、温度及び波長が図5で示されるような値となるように、温度制御装置202および注入電流装置203へそれぞれ温度情報および注入電流情報を送出している。以下に示す図6についても同様である。   FIG. 5 shows a set value of injection current information and a set temperature of temperature information when switching a semiconductor laser for current injection while increasing the temperature of the semiconductor laser array substrate in the wavelength tunable laser system 200 according to the second embodiment. The relationship of the change with time of the laser wavelength of the semiconductor laser is shown. FIGS. 5A to 5C show the injection current change, the temperature change, and the wavelength change with time in the first semiconductor laser 205, respectively. FIGS. 5D to 5F show the second change. The change in injection current, change in temperature, and change in wavelength with respect to time in the semiconductor laser 206 of FIG. The coordinated control device 201 controls the temperature information and the injection current information in a coordinated manner, and supplies the temperature control device 202 and the injection current device 203 so that the injection current value, temperature, and wavelength are as shown in FIG. Temperature information and injection current information are sent out. The same applies to FIG. 6 shown below.

図5(a)及び図5(d)に示すように、波長変化を開始する時刻t1において、第1の半導体レーザ205の注入電流をゼロにし、同時に第2の半導体レーザ206に電流注入して、第1の半導体レーザ205から第2の半導体レーザ206に電流注入を切り替える。切り替えの時刻t1では、図5(e)に示すように、第2の半導体レーザ206の温度は、所望の波長を得るための所定の高位側温度TH1よりも低くなっている。そこで、所定の温度よりも低くても所望の波長が得られるように第2の半導体レーザ206への注入電流値を高位側電流値IH1にする。 As shown in FIGS. 5A and 5D, at the time t1 when the wavelength change is started, the injection current of the first semiconductor laser 205 is made zero, and at the same time, the current is injected into the second semiconductor laser 206. The current injection is switched from the first semiconductor laser 205 to the second semiconductor laser 206. At the switching time t1, as shown in FIG. 5 (e), the temperature of the second semiconductor laser 206 is lower than the predetermined high side temperature T H1 to obtain a desired wavelength. Therefore, the injection current value to the second semiconductor laser 206 is set to the high-side current value I H1 so that a desired wavelength can be obtained even when the temperature is lower than the predetermined temperature.

その後、図5(d)乃至図5(f)に示すように、時刻t1から時刻t2の間、第2の半導体レーザ206の波長が一定となるように、第2の半導体レーザ206の温度Tと注入電流値Iとの関係を保ちながら、かつ注入電流値Iが時刻t2以降において高位側電流値IH1以下の所定の低位側電流値IL2となるように徐々に注入電流値Iを減少させ、また時刻t2で高位側温度TH1となるように温度Tを徐々に上昇させる。 Thereafter, as shown in FIGS. 5D to 5F, the temperature T of the second semiconductor laser 206 is set so that the wavelength of the second semiconductor laser 206 is constant from time t1 to time t2. reducing the injection current value while keeping the relationship between the I, and the injection current value I gradually injection current value I such that the high-side current value I H1 following the predetermined low-side current value I L2 at the time t2 after In addition, the temperature T is gradually increased so as to reach the higher temperature T H1 at time t2.

その結果、時刻t2以降、第2の半導体レーザ206は波長が所望の長波長側へ変化した状態を維持しつつ、注入電流値Iは高位側電流値IH1以下の所望の低位側電流値IL2とすることができる。すなわち、時刻t1において第1の半導体レーザ205から第2の半導体レーザ206へ注入電流を切り替えて数秒以内の短時間Δtで瞬時に長波長側への波長変化を起こさせながら、時刻t1以降の数秒以上の時間で注入電流値Iが高位側電流値IH1以下になる。そのため、本発明においては、注入電流量が多くなる時間の割合を減少させることができ、それにより第2の半導体レーザ206の劣化の進行が遅くなり寿命が長く、その結果故障確率を低くすることが可能となる。 As a result, after time t2, the second semiconductor laser 206 maintains the state in which the wavelength has changed to the desired long wavelength side, while the injection current value I is the desired low-side current value I that is equal to or less than the high-side current value IH1. L2 can be set. That is, several seconds after time t1 while switching the injection current from the first semiconductor laser 205 to the second semiconductor laser 206 at time t1 and causing a wavelength change to the long wavelength side instantaneously within a short time Δt within several seconds. The injection current value I becomes equal to or lower than the high-order current value I H1 in the above time. Therefore, in the present invention, the proportion of time during which the amount of injected current increases can be reduced, thereby slowing down the progress of the degradation of the second semiconductor laser 206 and extending the life, thereby reducing the failure probability. Is possible.

図6は、第2の実施形態に係る波長可変レーザシステム200において、半導体レーザアレイ基板の温度を減少させながら電流注入する半導体レーザを切り替える場合における、注入電流情報の設定値と温度情報の設定温度と半導体レーザのレーザ波長との時間変化の関係を示す。図6(a)乃至図6(c)は、第1の半導体レーザ205における時間に対する注入電流変化、温度変化及び波長変化をそれぞれ示し、図6(d)乃至図6(f)は、第2の半導体レーザ206における時間に対する注入電流変化、温度変化及び波長変化をそれぞれ示す。   FIG. 6 shows the setting value of the injection current information and the setting temperature of the temperature information when switching the semiconductor laser for current injection while decreasing the temperature of the semiconductor laser array substrate in the wavelength tunable laser system 200 according to the second embodiment. The relationship of the change with time of the laser wavelength of the semiconductor laser is shown. FIGS. 6A to 6C show an injection current change, a temperature change, and a wavelength change with respect to time in the first semiconductor laser 205, respectively. FIGS. 6D to 6F show the second change. The change in injection current, change in temperature, and change in wavelength with respect to time in the semiconductor laser 206 of FIG.

図6(a)及び図6(d)に示すように、波長変化を開始する時刻t4において、第1の半導体レーザ205の注入電流をゼロにし、同時に第2の半導体レーザ206に電流注入して、第1の半導体レーザ205から第2の半導体レーザ206に電流注入を切り替える。切り替えの時刻t4では、図6(e)に示すように、第2の半導体レーザ206から短波長側の所望の波長を得るためには、第2の半導体レーザ206の温度は時刻t3以前の高位側温度TH2よりも低く設定されていなければならない。 As shown in FIGS. 6A and 6D, at the time t4 when the wavelength change is started, the injection current of the first semiconductor laser 205 is set to zero, and the current is injected into the second semiconductor laser 206 at the same time. The current injection is switched from the first semiconductor laser 205 to the second semiconductor laser 206. At the switching time t4, as shown in FIG. 6E, in order to obtain a desired wavelength on the short wavelength side from the second semiconductor laser 206, the temperature of the second semiconductor laser 206 is a high level before the time t3. It must be set lower than the side temperature TH2 .

そこで、時刻t3から時刻t4の間、第1の半導体レーザ205の波長が時刻t4以前の長波長側の一定の値を維持するように温度Tと注入電流値Iとの関係を保ちながら、かつ第1の半導体レーザ205への注入電流値Iが波長変化前の時刻t4で高位側電流値IH2となるように徐々に注入電流値Iを増加させ、また時刻t4で第1の半導体レーザ205及び第2の半導体レーザ206の温度Tが低位側温度TL2となるように温度Tを徐々に減少させる。 Therefore, while maintaining the relationship between the temperature T and the injection current value I so that the wavelength of the first semiconductor laser 205 maintains a constant value on the long wavelength side before the time t4 from the time t3 to the time t4, and The injection current value I is gradually increased so that the injection current value I to the first semiconductor laser 205 becomes the high-order current value I H2 at time t4 before the wavelength change, and at time t4, the first semiconductor laser 205 is also increased. and the temperature T of the second semiconductor laser 206 gradually decreases the temperature T so that the lower side temperature T L2.

その結果、時刻t3から時刻t4の間は、第1の半導体レーザ205は短波長側への波長変化前の長波長側の波長状態を維持しつつ、注入電流値Iは高位側電流値IH2以下の値となる。すなわち、時刻t4において第1の半導体レーザ205から第2の半導体レーザ206へ注入電流を切り替えて数秒以内で瞬時に短波長側への波長変化を起こさせながら、時刻t4以前は注入電流値Iが高位側電流値IH2以下になる。そのため、注入電流量が多くなる時間の割合を減少させることができ、第2の半導体レーザ206の劣化の進行が遅くなり寿命が長く、その結果故障確率を低くすることが可能となる。 As a result, during the period from time t3 to time t4, the first semiconductor laser 205 maintains the wavelength state on the long wavelength side before the wavelength change to the short wavelength side, while the injection current value I is the higher current value I H2. It becomes the following values. That is, while the injection current is switched from the first semiconductor laser 205 to the second semiconductor laser 206 at time t4, the wavelength change to the short wavelength side instantaneously occurs within a few seconds, and before time t4, the injection current value I is The high-order current value IH2 or less. As a result, the proportion of time during which the amount of injected current increases can be reduced, the progress of deterioration of the second semiconductor laser 206 is delayed, the life is increased, and as a result, the failure probability can be lowered.

このように、波長可変レーザシステムにおいて、半導体レーザのレーザ波長を変化する際に、数秒以内の時間内で注入電流変化を行うことにより数秒以内での波長変化を行い、波長変化の前または後の数秒以上の時間内に、波長を一定に保ちながら注入電流と温度の両方を変化させることにより、結果的に注入電流量が多くなる時間の割合を減少させることで、数秒以内の短時間で波長変化が可能で、かつ劣化の進行が遅く寿命の長い波長可変レーザシステムを構築することが可能となる。   As described above, in the wavelength tunable laser system, when the laser wavelength of the semiconductor laser is changed, the wavelength change within a few seconds is performed by changing the injection current within a time within a few seconds, and before or after the wavelength change. By changing both the injection current and temperature while keeping the wavelength constant within a few seconds or longer, the ratio of the time when the amount of injected current increases is reduced, resulting in a shorter wavelength within a few seconds. It is possible to construct a wavelength tunable laser system that can change and that has a slow deterioration and a long lifetime.

なお、第2の実施形態に係る波長可変レーザシステム200では、2つの第1の半導体レーザ205及び第2の半導体レーザ206を備えた構成としたが、これに限定されることなく、半導体レーザアレイ基板に複数の半導体レーザを設けるように構成してもよい。   In the wavelength tunable laser system 200 according to the second embodiment, the two first semiconductor lasers 205 and the second semiconductor laser 206 are provided. However, the present invention is not limited thereto, and the semiconductor laser array is not limited thereto. A plurality of semiconductor lasers may be provided on the substrate.

以上、本発明に係る波長可変レーザシステムの各実施形態について詳述してきたが、具体的な構成は各実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更なども含まれる。   As mentioned above, although each embodiment of the wavelength tunable laser system according to the present invention has been described in detail, the specific configuration is not limited to each embodiment, and includes design changes and the like without departing from the gist of the present invention. It is.

101、201 協調制御装置
102、202 温度制御装置
103、203 注入電流制御装置
104 半導体レーザ
204 半導体レーザアレイ基板
205 第1の半導体レーザ
206 第2の半導体レーザ
101, 201 Cooperative control device 102, 202 Temperature control device 103, 203 Injection current control device 104 Semiconductor laser 204 Semiconductor laser array substrate 205 First semiconductor laser 206 Second semiconductor laser

Claims (8)

半導体レーザと、
前記半導体レーザを所望の設定温度に制御するための温度情報を送出し、前記半導体レーザへの注入電流量を所望の設定値に制御するための注入電流情報を送出する協調制御装置と、
前記温度情報に従って前記半導体レーザの温度を制御する温度制御装置と、
前記注入電流情報に従って前記半導体レーザへの注入電流を制御する注入電流制御装置と
を備えた波長可変レーザシステムであって、
前記協調制御装置は、前記半導体レーザのレーザ波長を短波長側から長波長側に変化させる場合、当該波長変化後に前記半導体レーザのレーザ波長が前記長波長側の波長となるように前記波長変化を開始する第1の時刻に前記注入電流値を瞬時に増加させ、前記第1の時刻から第2の時刻まで前記半導体レーザの温度を徐々に増加させながら前記半導体レーザの温度を前記第2の時刻で所定の温度にするとともに、前記第1の時刻から前記第2の時刻まで前記注入電流値を徐々に減少させながら前記注入電流値を前記第2の時刻で所定の電流値にし、前記半導体レーザのレーザ波長が前記長波長側の波長に変化した後から少なくとも前記第2の時刻まで前記長波長側の波長を維持するように、前記注入電流情報及び前記温度情報を送出することを特徴とする波長可変レーザシステム。
A semiconductor laser;
A cooperative controller that sends temperature information for controlling the semiconductor laser to a desired set temperature, and sends injection current information for controlling the amount of current injected into the semiconductor laser to a desired set value;
A temperature control device for controlling the temperature of the semiconductor laser according to the temperature information;
An tunable laser system comprising: an injection current control device that controls an injection current to the semiconductor laser according to the injection current information,
When the laser wavelength of the semiconductor laser is changed from the short wavelength side to the long wavelength side, the cooperative control device changes the wavelength so that the laser wavelength of the semiconductor laser becomes the wavelength on the long wavelength side after the wavelength change. The injection current value is instantaneously increased at the first time to start, and the temperature of the semiconductor laser is gradually increased from the first time to the second time while the temperature of the semiconductor laser is gradually increased. The semiconductor laser is set to a predetermined current value at the second time while gradually decreasing the injected current value from the first time to the second time. The injection current information and the temperature information are transmitted so that the wavelength on the long wavelength side is maintained at least until the second time after the laser wavelength changes to the wavelength on the long wavelength side. Tunable laser system according to claim.
請求項1に記載の波長可変レーザシステムにおいて、前記半導体レーザは少なくとも第1の半導体レーザ部と第2の半導体レーザ部から構成され、
前記協調制御装置は、前記第1の時刻に前記第1の半導体レーザ部への前記注入電流値を瞬時にゼロにすると同時に前記第2の半導体レーザ部の前記注入電流値を瞬時に増加させ、前記第1の時刻から前記第2の時刻まで前記第2の半導体レーザ部の前記注入電流値を徐々に減少させながら前記第2の半導体レーザ部の前記注入電流値を前記第2の時刻で前記所定の電流値にするように、前記注入電流情報及び前記温度情報を送出することを特徴とする波長可変レーザシステム。
2. The tunable laser system according to claim 1, wherein the semiconductor laser includes at least a first semiconductor laser part and a second semiconductor laser part,
The cooperative control device instantaneously increases the injection current value of the second semiconductor laser unit at the same time that the injection current value to the first semiconductor laser unit is instantaneously zero at the first time, While gradually decreasing the injection current value of the second semiconductor laser unit from the first time to the second time, the injection current value of the second semiconductor laser unit is set to the second time at the second time. The tunable laser system, wherein the injection current information and the temperature information are transmitted so as to have a predetermined current value.
半導体レーザと、
前記半導体レーザを所望の設定温度に制御するための温度情報を送出し、前記半導体レーザへの注入電流量を所望の設定値に制御するための注入電流情報を送出する協調制御装置と、
前記温度情報に従って前記半導体レーザの温度を制御する温度制御装置と、
前記注入電流情報に従って前記半導体レーザへの注入電流を制御する注入電流制御装置と
を備えた波長可変レーザシステムであって、
前記協調制御装置は、前記半導体レーザのレーザ波長を長波長側から短波長側に変化させる場合、第1の時刻から当該波長変化を開始する第2の時刻まで前記長波長側の波長を維持しながら、前記第1の時刻から前記第2の時刻まで前記半導体レーザの温度を徐々に減少させて前記半導体レーザの温度を前記第2の時刻で所定の温度にするとともに、前記第1の時刻から前記第2の時刻まで前記注入電流値を徐々に増加させて前記注入電流値を前記第2の時刻で所定の電流値にし、前記第2の時刻に前記注入電流値を瞬時に減少させて前記波長変化後に前記半導体レーザのレーザ波長が前記短波長側の波長となるように、前記注入電流情報及び前記温度情報を送出することを特徴とする波長可変レーザシステム。
A semiconductor laser;
A cooperative controller that sends temperature information for controlling the semiconductor laser to a desired set temperature, and sends injection current information for controlling the amount of current injected into the semiconductor laser to a desired set value;
A temperature control device for controlling the temperature of the semiconductor laser according to the temperature information;
An tunable laser system comprising: an injection current control device that controls an injection current to the semiconductor laser according to the injection current information,
In the case where the laser wavelength of the semiconductor laser is changed from the long wavelength side to the short wavelength side, the cooperative control device maintains the wavelength on the long wavelength side from the first time to the second time when the wavelength change is started. However, the temperature of the semiconductor laser is gradually decreased from the first time to the second time to bring the temperature of the semiconductor laser to a predetermined temperature at the second time, and from the first time. The injection current value is gradually increased until the second time to make the injection current value a predetermined current value at the second time, and the injection current value is instantaneously decreased at the second time to The wavelength tunable laser system, wherein the injection current information and the temperature information are transmitted so that a laser wavelength of the semiconductor laser becomes a wavelength on the short wavelength side after wavelength change.
請求項3に記載の波長可変レーザシステムにおいて、前記半導体レーザは少なくとも第1の半導体レーザ部と第2の半導体レーザ部から構成され、
前記協調制御装置は、前記第1の時刻から前記第2の時刻まで前記第1の半導体レーザ部の前記注入電流値を徐々に増加させながら前記第1の半導体レーザ部の前記注入電流値を前記第2の時刻で所定の電流値にし、前記第2の時刻に前記第1の半導体レーザ部の電流の前記注入電流値を瞬時にゼロにする同時に前記第2の半導体レーザ部の前記注入電流値を瞬時に増加させるように、前記注入電流情報及び前記温度情報を送出することを特徴とする波長可変レーザシステム。
The wavelength tunable laser system according to claim 3, wherein the semiconductor laser is composed of at least a first semiconductor laser part and a second semiconductor laser part,
The coordinated control device increases the injection current value of the first semiconductor laser unit while gradually increasing the injection current value of the first semiconductor laser unit from the first time to the second time. A predetermined current value is set at a second time, and the injection current value of the current of the first semiconductor laser unit is instantaneously made zero at the second time, and at the same time, the injection current value of the second semiconductor laser unit The wavelength tunable laser system is characterized in that the injection current information and the temperature information are transmitted so as to increase instantaneously.
半導体レーザと、
前記半導体レーザを所望の設定温度に制御するための温度情報を送出し、前記半導体レーザへの注入電流量を所望の設定値に制御するための注入電流情報を送出する協調制御装置と、
前記温度情報に従って前記半導体レーザの温度を制御する温度制御装置と、
前記注入電流情報に従って前記半導体レーザへの注入電流を制御する注入電流制御装置と
を備えた波長可変レーザシステムの制御方法であって、前記半導体レーザのレーザ波長を短波長側から長波長側に変化させる場合、
前記協調制御装置が、当該波長変化後に前記半導体レーザのレーザ波長が前記長波長側の波長となるように前記波長変化を開始する第1の時刻に前記注入電流値を瞬時に増加させる前記注入電流情報を送出する第1のステップと、
前記協調制御装置が、前記第1の時刻から第2の時刻まで前記半導体レーザの温度を徐々に増加させながら前記半導体レーザの温度を前記第2の時刻で所定の温度にするとともに、前記第1の時刻から前記第2の時刻まで前記注入電流値を徐々に減少させながら前記注入電流値を前記第2の時刻で所定の電流値にし、前記半導体レーザのレーザ波長が前記長波長側の波長に変化した後から少なくとも前記第2の時刻まで前記長波長側の波長を維持する前記注入電流情報及び前記温度情報を送出する第2のステップと
を備えたことを特徴とする制御方法。
A semiconductor laser;
A cooperative controller that sends temperature information for controlling the semiconductor laser to a desired set temperature, and sends injection current information for controlling the amount of current injected into the semiconductor laser to a desired set value;
A temperature control device for controlling the temperature of the semiconductor laser according to the temperature information;
An tunable laser system control method comprising: an injection current control device that controls an injection current to the semiconductor laser according to the injection current information, wherein the laser wavelength of the semiconductor laser is changed from a short wavelength side to a long wavelength side If you want to
The injection current that instantaneously increases the injection current value at a first time when the cooperative control device starts the wavelength change so that the laser wavelength of the semiconductor laser becomes the wavelength on the long wavelength side after the wavelength change. A first step of sending information;
The coordinated control device gradually increases the temperature of the semiconductor laser from the first time to the second time while setting the temperature of the semiconductor laser to a predetermined temperature at the second time, and the first time The injection current value is set to a predetermined current value at the second time while gradually decreasing the injection current value from the time to the second time, and the laser wavelength of the semiconductor laser is set to the wavelength on the long wavelength side. A control method comprising: a second step of sending the injection current information and the temperature information to maintain the wavelength on the long wavelength side from at least the second time until after the change.
請求項5に記載の制御方法において、前記半導体レーザは少なくとも第1の半導体レーザ部と第2の半導体レーザ部から構成され、
前記第1のステップは、前記協調制御装置が、前記第1の時刻に前記第1の半導体レーザ部への前記注入電流値を瞬時にゼロにすると同時に前記第2の半導体レーザ部の前記注入電流値を瞬時に増加させる前記注入電流情報を送出するステップを含み、
前記第2のステップは、前記協調制御装置が、前記第1の時刻から前記第2の時刻まで前記第2の半導体レーザ部の前記注入電流値を徐々に減少させながら前記第2の半導体レーザ部の前記注入電流値を前記第2の時刻で前記所定の電流値にする前記注入電流情報を送出するステップを含むことを特徴とする制御方法。
6. The control method according to claim 5, wherein the semiconductor laser is composed of at least a first semiconductor laser part and a second semiconductor laser part,
In the first step, the cooperative control device instantaneously sets the injection current value to the first semiconductor laser unit to zero at the first time, and at the same time, the injection current of the second semiconductor laser unit. Sending the injected current information to increase the value instantaneously;
In the second step, the cooperative control device causes the second semiconductor laser unit to gradually decrease the injection current value of the second semiconductor laser unit from the first time to the second time. A step of sending the injected current information to make the injected current value of the predetermined current value at the second time.
半導体レーザと、
前記半導体レーザを所望の設定温度に制御するための温度情報を送出し、前記半導体レーザへの注入電流量を所望の設定値に制御するための注入電流情報を送出する協調制御装置と、
前記温度情報に従って前記半導体レーザの温度を制御する温度制御装置と、
前記注入電流情報に従って前記半導体レーザへの注入電流を制御する注入電流制御装置と
を備えた波長可変レーザシステムの制御方法であって、前記半導体レーザのレーザ波長を長波長側から短波長側に変化させる場合、
前記協調制御装置が、第1の時刻から当該波長変化を開始する第2の時刻まで前記長波長側の波長を維持しながら、前記第1の時刻から前記第2の時刻まで前記半導体レーザの温度を徐々に減少させて前記半導体レーザの温度を前記第2の時刻で所定の温度にするとともに、前記第1の時刻から前記第2の時刻まで前記注入電流値を徐々に増加させて前記注入電流値を前記第2の時刻で所定の電流値にする前記注入電流情報及び前記温度情報を送出する第1のステップと、
前記協調制御装置が、前記波長変化後に前記半導体レーザのレーザ波長が前記短波長側の波長となるように前記第2の時刻に前記注入電流値を瞬時に減少させる前記注入電流情報及び前記温度情報を送出する第2のステップと
を備えたことを特徴とする制御方法。
A semiconductor laser;
A cooperative controller that sends temperature information for controlling the semiconductor laser to a desired set temperature, and sends injection current information for controlling the amount of current injected into the semiconductor laser to a desired set value;
A temperature control device for controlling the temperature of the semiconductor laser according to the temperature information;
A control method of a wavelength tunable laser system comprising: an injection current control device that controls an injection current to the semiconductor laser according to the injection current information, wherein the laser wavelength of the semiconductor laser is changed from a long wavelength side to a short wavelength side If you want to
The temperature of the semiconductor laser from the first time to the second time while the cooperative control device maintains the wavelength on the long wavelength side from the first time to the second time at which the wavelength change starts. Is gradually decreased to bring the temperature of the semiconductor laser to a predetermined temperature at the second time, and the injection current value is gradually increased from the first time to the second time to increase the injection current. A first step of sending the injected current information and the temperature information to make a value a predetermined current value at the second time;
The injection current information and the temperature information that the cooperative control device instantaneously decreases the injection current value at the second time so that the laser wavelength of the semiconductor laser becomes the wavelength on the short wavelength side after the wavelength change. And a second step of sending the message.
請求項7に記載の制御方法において、前記半導体レーザは少なくとも第1の半導体レーザ部と第2の半導体レーザ部から構成され、
前記第1のステップは、前記協調制御装置が、前記第1の時刻から前記第2の時刻まで前記第1の半導体レーザ部の前記注入電流値を徐々に増加させて前記第1の半導体レーザ部の前記注入電流値を前記第2の時刻で前記所定の電流値にする前記注入電流情報を送出するステップを含み、
前記第2のステップは、前記協調制御装置が、前記第2の時刻に前記第1の半導体レーザ部への前記注入電流値を瞬時にゼロにすると同時に前記第2の半導体レーザ部の前記注入電流値を瞬時に増加させる前記注入電流情報を送出するステップを含むことを特徴とする制御方法。
The control method according to claim 7, wherein the semiconductor laser includes at least a first semiconductor laser part and a second semiconductor laser part,
In the first step, the cooperative control device gradually increases the injection current value of the first semiconductor laser unit from the first time to the second time to increase the first semiconductor laser unit. Sending the injection current information to make the injection current value of the predetermined current value at the second time,
In the second step, the cooperative control device instantaneously sets the injection current value to the first semiconductor laser unit to zero at the second time, and at the same time, the injection current of the second semiconductor laser unit. A control method comprising the step of sending the injection current information for instantly increasing the value.
JP2013067206A 2013-03-27 2013-03-27 Tunable laser system and control method thereof Expired - Fee Related JP5963266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067206A JP5963266B2 (en) 2013-03-27 2013-03-27 Tunable laser system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067206A JP5963266B2 (en) 2013-03-27 2013-03-27 Tunable laser system and control method thereof

Publications (2)

Publication Number Publication Date
JP2014192375A true JP2014192375A (en) 2014-10-06
JP5963266B2 JP5963266B2 (en) 2016-08-03

Family

ID=51838359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067206A Expired - Fee Related JP5963266B2 (en) 2013-03-27 2013-03-27 Tunable laser system and control method thereof

Country Status (1)

Country Link
JP (1) JP5963266B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399607A1 (en) * 2017-05-02 2018-11-07 Nokia Solutions and Networks Oy A method of wavelength tuning for an onu and an onu
CN114167213A (en) * 2021-11-29 2022-03-11 国网江苏省电力有限公司扬州供电分公司 Flexible direct-current distribution line fault positioning method based on traveling waves

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331107A (en) * 1996-06-11 1997-12-22 Canon Inc Wavelength-variable light source, wavelength control method thereof, and wavelength multiplex transmission network
JP2001251013A (en) * 2000-03-06 2001-09-14 Fujitsu Ltd Wavelength variable stabilized laser
JP2002134829A (en) * 2000-10-30 2002-05-10 Fujitsu Ltd Light source apparatus and wave length controller thereof
JP2008103766A (en) * 2003-01-14 2008-05-01 Nippon Telegr & Teleph Corp <Ntt> High-speed wavelength variable distributed feedback semiconductor laser array, and distributed feedback semiconductor laser
JP2009231526A (en) * 2008-03-24 2009-10-08 Fujitsu Ltd Semiconductor laser control method and semiconductor laser control apparatus
JP2011044545A (en) * 2009-08-20 2011-03-03 Sony Corp Light emission device, temperature control method for the same, display device, and light irradiation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331107A (en) * 1996-06-11 1997-12-22 Canon Inc Wavelength-variable light source, wavelength control method thereof, and wavelength multiplex transmission network
JP2001251013A (en) * 2000-03-06 2001-09-14 Fujitsu Ltd Wavelength variable stabilized laser
JP2002134829A (en) * 2000-10-30 2002-05-10 Fujitsu Ltd Light source apparatus and wave length controller thereof
JP2008103766A (en) * 2003-01-14 2008-05-01 Nippon Telegr & Teleph Corp <Ntt> High-speed wavelength variable distributed feedback semiconductor laser array, and distributed feedback semiconductor laser
JP2009231526A (en) * 2008-03-24 2009-10-08 Fujitsu Ltd Semiconductor laser control method and semiconductor laser control apparatus
JP2011044545A (en) * 2009-08-20 2011-03-03 Sony Corp Light emission device, temperature control method for the same, display device, and light irradiation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399607A1 (en) * 2017-05-02 2018-11-07 Nokia Solutions and Networks Oy A method of wavelength tuning for an onu and an onu
WO2018202450A1 (en) * 2017-05-02 2018-11-08 Nokia Solutions And Networks Oy A method of wavelength tuning for an onu and an onu
CN114167213A (en) * 2021-11-29 2022-03-11 国网江苏省电力有限公司扬州供电分公司 Flexible direct-current distribution line fault positioning method based on traveling waves

Also Published As

Publication number Publication date
JP5963266B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
US9766403B2 (en) Apparatus and method for tuning and switching between optical components
JP6229474B2 (en) Semiconductor laser device, optical amplifier and determination method
JP2009231526A (en) Semiconductor laser control method and semiconductor laser control apparatus
JP2006066586A (en) Mode-locked laser diode and method of controlling wavelength thereof
US20090324254A1 (en) Optical transmission apparatus and method
JP5963266B2 (en) Tunable laser system and control method thereof
US10367333B2 (en) Increasing fabry-perot cavity free spectral range in hybrid lasers
WO2018202450A1 (en) A method of wavelength tuning for an onu and an onu
JP2005064300A (en) Wavelength-variable laser source
JP6180666B1 (en) Wavelength variable light source and wavelength switching control method for wavelength variable light source
JP2002076478A (en) Very high speed multi-wavelength laser device using sampled optical fiber grating
WO2021129854A1 (en) Wdm-based baseband signal transmission apparatus and method, storage medium, and electronic device
JP5029276B2 (en) Optical transmitter and temperature control method used therefor
JP6231934B2 (en) Wavelength control device for tunable laser
US11018474B2 (en) Laser temperature compensation system and driving method thereof
JP2007227723A (en) Device and controlling method for variable-wavelength light source
Matsumoto et al. Demonstration of 1-µm-band Si-Photonics-Based Quantum Dot Heterogeneous Tunable Laser
JP2017005034A (en) Wavelength variable laser array and wavelength control method for wavelength variable laser array
WO2021036856A1 (en) Multi-wavelength laser and wavelength control method
JP2015207738A (en) Wavelength-variable laser array and wavelength control method for wavelength-variable laser array
EP3379664B1 (en) A laser and method of controlling a laser to output a signal intermittently
Matsuura et al. Fast wavelength switching of fully heater-tuned CSG-DR lasers
JP2013236116A (en) Optical element wavelength control method and wavelength control device
Delorne 1.5-μm tunable DBR lasers for WDM multiplex spare function
Ye et al. Demonstration of 2-ms High-Reliability Wavelength Switching at TLA with Current/Temperature Cooperative Control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160623

R150 Certificate of patent or registration of utility model

Ref document number: 5963266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees