JP2008103766A - High-speed wavelength variable distributed feedback semiconductor laser array, and distributed feedback semiconductor laser - Google Patents

High-speed wavelength variable distributed feedback semiconductor laser array, and distributed feedback semiconductor laser Download PDF

Info

Publication number
JP2008103766A
JP2008103766A JP2008005592A JP2008005592A JP2008103766A JP 2008103766 A JP2008103766 A JP 2008103766A JP 2008005592 A JP2008005592 A JP 2008005592A JP 2008005592 A JP2008005592 A JP 2008005592A JP 2008103766 A JP2008103766 A JP 2008103766A
Authority
JP
Japan
Prior art keywords
wavelength
distributed feedback
temperature
feedback semiconductor
dfb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008005592A
Other languages
Japanese (ja)
Inventor
Akio Sawara
明夫 佐原
Masabumi Koga
正文 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008005592A priority Critical patent/JP2008103766A/en
Publication of JP2008103766A publication Critical patent/JP2008103766A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a broadband variable wavelength light source which is fully used for a DWDM system and also carries out high-speed wavelength switching in ms order, while enabling it to establish mass production organization and also utilize a DFB-LD simple in controlling mechanism. <P>SOLUTION: A distributed feedback semiconductor laser array consists of: two or more distributed feedback semiconductor lasers under an identically controlled temperature; and an optical couplers which lead output light from two or more distributed feedback semiconductor lasers to one waveguide. The distributed feedback semiconductor laser array comprises a means for controlling the amount of inflow current of distributed feedback semiconductor lasers 21, and a means for measuring oscillating wavelength, wherein rough control of the wavelength of the distributed feedback semiconductor laser is performed by adjusting temperature, and after the temperature or wavelength of light entering within a desired limit, the trimming of the wavelength is performed by controlling the amount of inflow current by bringing the measured oscillating wavelength close to an oscillating target value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体レーザを用いた高速波長切替が可能な広帯域波長可変光源に関する。   The present invention relates to a broadband wavelength tunable light source capable of high-speed wavelength switching using a semiconductor laser.

光通信システムにおいて、伝送容量の大容量化を実現するには、多くの波長チャンネルを狭い間隔で高密度に多重するDWDM(高密度波長分割多重)伝送が必要であり、多くの波長チャンネルを発信できる波長可変光源が必要である。このDWDM伝送に必要な波長可変光源としては、分布帰還型半導体レーザ(DFB−LD)、分布反射型半導体レーザ(DBR−LD)、外部共振型半導体レーザ、面発光レーザ等がある。この中でDFB−LDは単一縦モードで発信すること、また、他のレーザと比較して製造が容易で信頼性が高く、波長の制御方法も容易であるという利点があるため、現在、光通信システムに多く用いられている。   In order to realize a large transmission capacity in an optical communication system, DWDM (High Density Wavelength Division Multiplexing) transmission that multiplexes many wavelength channels with high density at narrow intervals is required, and many wavelength channels are transmitted. A tunable light source is needed. As a wavelength tunable light source necessary for this DWDM transmission, there are a distributed feedback semiconductor laser (DFB-LD), a distributed reflection semiconductor laser (DBR-LD), an external resonant semiconductor laser, a surface emitting laser, and the like. Among them, DFB-LD has an advantage that it transmits in a single longitudinal mode, and is advantageous in that it is easy to manufacture and reliable compared to other lasers, and the wavelength control method is also easy. It is often used in optical communication systems.

DFB−LDは、温度制御によって3nm程度の波長を制御することができる。最近、このDFBレーザを複数個アレイ上に配置して広帯域の波長可変光源として用いることが報告されている(例えば、非特許文献1)。   The DFB-LD can control a wavelength of about 3 nm by temperature control. Recently, it has been reported that a plurality of DFB lasers are arranged on an array and used as a broadband wavelength tunable light source (for example, Non-Patent Document 1).

DFB−LDを用いたアレイの構成図を図1に示す。10はLD電流源、11はN個のDFB−LD、12はサーミスタよりなりDFB−LD11の温度をモニタするLD温度モニタ、13はDFB−LDの温度を調節するLD温度調節器、14はペルチェ素子よりなり、LD温度モニタ12がモニタする温度に基づきLD温度調節器を制御するLD温度制御回路、15は光カプラよりなり、各DFB−LD11から出力された光を合波する光合波器、16は利得素子、17は利得素子電流源である。   FIG. 1 shows a configuration diagram of an array using DFB-LD. 10 is an LD current source, 11 is N DFB-LDs, 12 is a thermistor and an LD temperature monitor that monitors the temperature of the DFB-LD 11, 13 is an LD temperature controller that adjusts the temperature of the DFB-LD, and 14 is a Peltier device. An LD temperature control circuit configured to control an LD temperature controller based on a temperature monitored by the LD temperature monitor 12, and an optical coupler configured of an optical coupler configured to multiplex light output from each DFB-LD 11, Reference numeral 16 denotes a gain element, and reference numeral 17 denotes a gain element current source.

上記文献ではDFB−LD11は16個配置されている。各DFB−LDの発振波長は同一温度下で3nm程度ずれるように設定する。LD電流源10より一つのDFB−LD11に対して電流を注入する。各DFB−LD11の出力光は光合波器15によって一つの光導波路に導かれる。その後、半導体光増幅器(SOA)によって光出力パワーを上げる。DFB−LD11の温度はLD温度モニタ12により検出され、LD温度制御回路14により制御されるLD温度調節器13により、通常、所望の温度に調節される。   In the above document, 16 DFB-LDs 11 are arranged. The oscillation wavelength of each DFB-LD is set to be shifted by about 3 nm at the same temperature. A current is injected from the LD current source 10 to one DFB-LD 11. The output light of each DFB-LD 11 is guided to one optical waveguide by the optical multiplexer 15. Thereafter, the optical output power is increased by a semiconductor optical amplifier (SOA). The temperature of the DFB-LD 11 is detected by the LD temperature monitor 12 and is usually adjusted to a desired temperature by the LD temperature controller 13 controlled by the LD temperature control circuit 14.

DFB−LD11の発振波長を切り替えるには以下の方法で行う。このDFB−LDアレイは47nm程度の波長を変化させることができる。47nm波長の波長可変範囲を16分割して、3nm程度異なる波長の光をそれぞれのDFB−LD11から発振させる。それぞれのDFB−LD11における上記の波長変化は温度調整により行う。この方法により47nmの波長可変範囲をカバーすることができる。   The oscillation wavelength of the DFB-LD 11 is switched by the following method. This DFB-LD array can change a wavelength of about 47 nm. The wavelength variable range of 47 nm wavelength is divided into 16 to oscillate light having different wavelengths by about 3 nm from the respective DFB-LDs 11. The above-described wavelength change in each DFB-LD 11 is performed by temperature adjustment. By this method, the wavelength variable range of 47 nm can be covered.

上記文献では、光合波器15に光カプラを用いている為、所望の波長の光を発振させるDFB−LD11を選択して電流を注入する。ここで、光合波器15の他に、MEMS−SW(Micro Electro-mechanical system)等による光セレクタを用いてDFB−LD11の出力光を一つ選択する方法も報告されている(例えば、非特許文献2)。   In the above document, since an optical coupler is used for the optical multiplexer 15, a DFB-LD 11 that oscillates light of a desired wavelength is selected and current is injected. Here, in addition to the optical multiplexer 15, a method of selecting one output light from the DFB-LD 11 using an optical selector such as a MEMS-SW (Micro Electro-mechanical system) has been reported (for example, non-patented). Reference 2).

DFB−LDにおける発振波長を変える方法としては、温度を変化させることで波長を変化させる方法の他に、DFB−LDへの活性層への注入電流量を変化させることで発振波長を変化させる方法が報告されている。例えば、特許文献1では、DFB−LDの発振波長を変化させる際に温度調節を行うが、注入電流量の調整も併用することで高速に波長を変化させる。特許文献2では、DFB−LDの発振光をアセチレン吸収線に調整するために、注入電流量を制御している。
特開平9−331107号公報 特開平11−354877号公報 H. Oohashi, et al, 2001 International Conference on Indium Phosphide and Related Materials Onference Proceedings, FB1-2, 2001 B. Pezeshki, et al, IEEE Photon. Tecnol. Lett., vol. 14, pp. 1557-1559, 2002
As a method of changing the oscillation wavelength in the DFB-LD, in addition to the method of changing the wavelength by changing the temperature, the method of changing the oscillation wavelength by changing the amount of current injected into the active layer to the DFB-LD. Has been reported. For example, in Patent Document 1, the temperature is adjusted when the oscillation wavelength of the DFB-LD is changed, but the wavelength is changed at a high speed by also using the adjustment of the injection current amount. In Patent Document 2, the amount of injected current is controlled to adjust the oscillation light of the DFB-LD to an acetylene absorption line.
JP 9-331107 A JP-A-11-354877 H. Oohashi, et al, 2001 International Conference on Indium Phosphide and Related Materials Onference Proceedings, FB1-2, 2001 B. Pezeshki, et al, IEEE Photon. Tecnol. Lett., Vol. 14, pp. 1557-1559, 2002

しかしながら、上記の波長可変光源には次のような問題点があった。   However, the above wavelength tunable light source has the following problems.

DBR−LDについては高速な波長切替は実現可能であるが、活性層領域の他に反射領域、位相領域に注入する電流も同時に制御する必要がある為、制御系が複雑になるという問題点がある。外部共振型半導体レーザ、面発光レーザについては、波長切替を高速で行える手段としてMEMSによる波長切替機構が提案されているが、波長切替速度が数10ms〜数100ms程度と限界がある。   For DBR-LD, high-speed wavelength switching can be realized, but it is necessary to simultaneously control the current injected into the reflection region and the phase region in addition to the active layer region. is there. For external resonant semiconductor lasers and surface-emitting lasers, a wavelength switching mechanism using MEMS has been proposed as means for performing wavelength switching at high speed, but the wavelength switching speed is limited to several tens to several hundreds of ms.

DFB−LDを複数実装したDFB−LDアレイであるが、波長調整をDFB−LDの温度を調節することで行う為、波長切替時間に数10秒を要する。   Although it is a DFB-LD array in which a plurality of DFB-LDs are mounted, since wavelength adjustment is performed by adjusting the temperature of the DFB-LD, several tens of seconds are required for wavelength switching time.

注入電流を制御して波長を調整する方法では、高速な波長変化を実行することができるが、注入電流量で制御できる波長範囲はサブnmのオーダと限られているため、広帯域の波長可変光源として用いることはできない。   In the method of adjusting the wavelength by controlling the injection current, the wavelength can be changed at high speed. However, the wavelength range that can be controlled by the injection current amount is limited to the order of sub-nm, so a broadband wavelength tunable light source. Cannot be used as

本発明の目的は、量産体制を確立することができ、且つ、制御機構の簡便なDFB−LDを用いて、DWDMシステム用として十分に使用可能であり、且つ、msのオーダの高速波長切替が可能な広帯域の波長可変光源を提供することにある。   The object of the present invention is to establish a mass production system and use a DFB-LD with a simple control mechanism, which can be sufficiently used for a DWDM system, and is capable of high-speed wavelength switching on the order of ms. An object of the present invention is to provide a tunable light source having a wide bandwidth.

本発明では前記目的を達成するため、請求項1では、DFB−LDアレイにおいて注入電流で制御できない波長範囲の調整を温度調整で行い、注入電流で制御可能な範囲内に波長が収束した後は、注入電流調整での波長調整を行うことで、高速波長切替、及び、広帯域の波長可変光源を実現する。現在、全てを温度で波長調整を行っているDFB−LDアレイよりも、高速な波長切替が実現できる。 In the present invention, in order to achieve the above object, in claim 1, after adjusting the wavelength range that cannot be controlled by the injection current in the DFB-LD array by temperature adjustment, after the wavelength converges within the range that can be controlled by the injection current, By adjusting the wavelength by adjusting the injection current , high-speed wavelength switching and a broadband wavelength tunable light source are realized. Faster wavelength switching can be realized than the DFB-LD array, which currently performs wavelength adjustment for all temperatures.

DFB−LDにより、注入電流をΔIだけ変えたときの発振周波数(波長)の変化Δfの測定結果は以下の通りである。   The measurement result of the change Δf in the oscillation frequency (wavelength) when the injection current is changed by ΔI by the DFB-LD is as follows.

Figure 2008103766
Figure 2008103766

この式において、右辺第1項は活性層の屈折率が注入電流量により変化した分であり、msオーダ以下の高速で発振波長が変化する。右辺第2項は注入電流量を変化させることで、DFB−LDの温度が変化して、その温度変化に相当する発振波長の変化を示している。この項は温度変化を介しているため、secオーダで変化する。この波長変化量はDFB−LDの構造によって多少変わるが、特許文献1では第1項の係数が−1GHz/mAと報告されており、注入電流を変化させることで波長変化を高速に行うことができることが確認できる。   In this equation, the first term on the right side is the amount by which the refractive index of the active layer is changed by the amount of injected current, and the oscillation wavelength changes at a high speed of the order of ms or less. The second term on the right side shows the change in the oscillation wavelength corresponding to the temperature change by changing the temperature of the DFB-LD by changing the injection current amount. Since this term is via temperature change, it changes in sec order. Although the amount of wavelength change varies somewhat depending on the structure of the DFB-LD, Patent Document 1 reports that the coefficient of the first term is −1 GHz / mA, and the wavelength can be changed at high speed by changing the injection current. I can confirm that I can do it.

請求項2のDFB−LDアレイでは、注入電流量を制御する応答速度を、温度を調整する応答速度より速くすることにより、複数の負帰還制御を両立させる。In the DFB-LD array according to the second aspect, the response speed for controlling the injection current amount is made faster than the response speed for adjusting the temperature, thereby satisfying a plurality of negative feedback controls.

請求項1、2のDFB−LDアレイでは、発振波長が所望の波長になるように注入電流量を制御するため、注入電流量が大きい状態、または小さい状態で発振波長が目標波長に一致する可能性がある。注入電流量が大きい時は、消費電力が大きい及び素子劣化を加速させる欠点がある。一方、注入電流量が小さい時は、光SN特性が悪くなる欠点がある。このため、注入電流量はある適度な値に固定した方が良い。本発明の請求項では、注入電流量をある値に調整するために、DFB−LD温度を調整することで実現する。 In the DFB-LD array according to claims 1 and 2 , since the injection current amount is controlled so that the oscillation wavelength becomes a desired wavelength, the oscillation wavelength can match the target wavelength when the injection current amount is large or small. There is sex. When the amount of injected current is large, there are disadvantages in that power consumption is large and device deterioration is accelerated. On the other hand, when the amount of injected current is small, there is a drawback that the optical SN characteristic is deteriorated. For this reason, it is better to fix the injection current amount to a certain moderate value. According to the third aspect of the present invention, this is realized by adjusting the DFB-LD temperature in order to adjust the injection current amount to a certain value.

請求項1〜のDFB−LDアレイでは、注入電流を変化させるため波長可変光源からの出力パワーも変化する。本発明の請求項では、波長可変光源からの出力に利得素子を入れ、出力パワーが一定になるように利得を制御する。利得の制御は、注入電流制御よりも早い応答速度で制御を行うことで実現する。 In the DFB-LD array according to claims 1 to 3 , the output power from the wavelength tunable light source also changes in order to change the injection current. According to the fourth aspect of the present invention, a gain element is inserted in the output from the wavelength tunable light source, and the gain is controlled so that the output power becomes constant. Gain control is realized by performing control at a faster response speed than injection current control.

請求項では、請求項の利得素子の代わりに、利得が入力パワーに依存する素子を用いる。入力パワーが大きい時に利得が小さい利得素子を用いることで、注入電流量変化による光出力パワー変動を抑える。請求項と比較して利得素子の制御回路が不要な分だけ簡単な構成になり、波長可変光源の出力パワーが一定になる。 In the fifth aspect , instead of the gain element according to the fourth aspect, an element whose gain depends on the input power is used. By using a gain element with a small gain when the input power is large, fluctuations in the optical output power due to changes in the amount of injected current are suppressed. Compared with the fourth aspect of the present invention , the gain element control circuit is simpler than necessary and the output power of the wavelength tunable light source becomes constant.

請求項では、請求項1乃至5と同じ波長制御方法を単体のDFB−LDが行う。現在温度で波長調整を行っている単体DFB−LDよりも高速な波長切替が実現できる。 In the sixth aspect , a single DFB-LD performs the same wavelength control method as in the first to fifth aspects. High-speed wavelength switching can be realized compared to a single DFB-LD that is currently adjusting the wavelength at the temperature.

求項1記載のDFB−LDアレイによれば、注入電流により制御できない波長範囲を温度制御により制御するため、より広範囲で、尚且つ、高速波長切替可能な波長可変光源を実現できる。さらに、注入電流制御により波長の調整を高速に行うことができる為、各DFB−LDの動作温度にばらつきがあっても良く、DFB−LDの製造の困難さを低減させることができ、安価にDFB−LDアレイを実現することができる。 According to DFB-LD array Motomeko 1, a wavelength range that can not be controlled by the injection current for controlling the temperature control, a wider range, besides, can achieve high-speed wavelength switchable wavelength-tunable light source. Furthermore, since the wavelength can be adjusted at high speed by controlling the injection current, the operating temperature of each DFB-LD may vary, and the difficulty of manufacturing the DFB-LD can be reduced and inexpensively. A DFB-LD array can be realized.

また、請求項2記載のDFB−LD21アレイによれば、注入電流量を制御する応答速度を、温度を調整する応答速度より速くすることにより、複数の負帰還制御を両立させることができる。Further, according to the DFB-LD21 array of the second aspect, by making the response speed for controlling the injection current amount faster than the response speed for adjusting the temperature, it is possible to achieve a plurality of negative feedback controls.

また、請求項記載のDFB−LD21アレイによれば、注入電流で波長を制御することにより高速な波長切替が実現できるが、長い時間スケールで、注入電流量をある一定の量に調整することができる為、DFB−LDアレイの消費電力の低減、素子劣化の抑圧、光学特性の改善を行うことができる。 In addition, according to the DFB-LD21 array according to claim 3, high-speed wavelength switching can be realized by controlling the wavelength with the injection current, but the injection current amount is adjusted to a certain amount on a long time scale. Therefore, the power consumption of the DFB-LD array can be reduced, the element deterioration can be suppressed, and the optical characteristics can be improved.

また、請求項記載のDFB−LDアレイによれば、光出力パワーを一定にすることができる為、光通信システムに適した光源を実現することができる。 Further, according to the DFB-LD array of the fourth aspect , since the optical output power can be made constant, a light source suitable for the optical communication system can be realized.

また、請求項記載のDFB−LDアレイによれば、光出力パワーを一定にすることができる為、光通信システムに適した光源を実現することができる。 Further, according to the DFB-LD array of the fifth aspect , since the optical output power can be made constant, a light source suitable for an optical communication system can be realized.

また、請求項記載のDFB−LDによれば、波長の微調整を注入電流により制御を行う為、現状のDFB−LDよりも波長切替の高速化を行うことができる。 Further, according to the DFB-LD of the sixth aspect , since the fine adjustment of the wavelength is controlled by the injection current, the wavelength switching can be performed faster than the current DFB-LD.

以下、図面に基づいて本発明を説明する。 Hereinafter, the present onset Akira will be described with reference to the accompanying drawings.

図2は本発明の第1の参考例を示している。図2において、20はLD電流源、21はN個のDFB−LD、22はDFB−LD21の温度をモニタするLD温度モニタ、23はDFB−LD21の温度を調節するLD温度調節器、24はLD温度モニタ22がモニタする温度に基づきLD温度調節器23を制御するLD温度制御回路、25は各DFB−LD21から出力された光を合波する光合波器、26は光分波器、27は光分波器26の波長をモニタする波長モニタ、28はLD電流源20を制御するLD電流制御回路である。 FIG. 2 shows a first reference example of the present invention. In FIG. 2, 20 is an LD current source, 21 is N DFB-LDs, 22 is an LD temperature monitor for monitoring the temperature of the DFB-LD 21, 23 is an LD temperature controller for adjusting the temperature of the DFB-LD 21, and 24 is An LD temperature control circuit that controls the LD temperature controller 23 based on the temperature monitored by the LD temperature monitor 22, 25 is an optical multiplexer that multiplexes the light output from each DFB-LD 21, 26 is an optical demultiplexer, 27 Is a wavelength monitor that monitors the wavelength of the optical demultiplexer 26, and 28 is an LD current control circuit that controls the LD current source 20.

DFB−LD21は活性層領域に回折格子を形成した半導体レーザであり、活性層に電流を注入することにより単一縦モードの光を発信できるレーザである。1.5μm帯の光を発信する場合にはInGaAsP系半導体を用いる。光合波器25は複数の経路から出力される光を一つの経路にまとめる素子であり、光カプラ、AWG(Array Waveguide Grating)等を用いることができる。光分波器26は、一つの経路から入力される光を複数の経路に分岐する素子であり、光カプラ、ハーフミラー、ビームスプリッタ等が用いられる。波長モニタ27は入力光の波長を測定する装置または素子である。DFB−LD21、光合波器25、光分波器26、波長モニタ27間の光の経路では、光導波路、光ファイバ、空間系等を伝達する。LD温度調節器23はDFB−LD21の温度を調節する素子または装置であり、ペルチェ素子等が用いられる。図2ではLD温度調節器23で温度調整を行っている範囲が、DFB−LD21の部分であるが、DFB−LD21の他に光合波器25、光分波器26、波長モニタ27も含める場合もある。LD温度モニタ22はLD温度調節器23で調節を行ったDFB−LD21の温度を測定する素子または装置であり、サーミスタ等が用いられる。光分波器26、波長モニタ27の部分にLD温度調節器23とは別の温度調節器を用いる場合もある。DFB−LD21、光合波器25、LD温度調節器23、LD温度モニタ22は、一つのケースに実装する場合が多い。また、同じケースに光分波器26、波長モニタ27を含める場合もある。LD電流源20はDFB−LD21に電流を供給する装置であり、選択した1つのDFB−LD21に電流を注入する。LD電流制御回路28は、LD電流源20がDFB−LD21に注入する電流量を制御する装置であり、波長モニタ27で検出した発振光の波長から算出した量の電流を注入する。LD温度制御回路24はLD温度調節器を制御する装置である。   The DFB-LD 21 is a semiconductor laser in which a diffraction grating is formed in an active layer region, and is a laser that can emit light in a single longitudinal mode by injecting a current into the active layer. When transmitting light in the 1.5 μm band, an InGaAsP semiconductor is used. The optical multiplexer 25 is an element that collects light output from a plurality of paths into one path, and an optical coupler, an AWG (Array Waveguide Grating), or the like can be used. The optical demultiplexer 26 is an element that branches light input from one path into a plurality of paths, and an optical coupler, a half mirror, a beam splitter, or the like is used. The wavelength monitor 27 is a device or element that measures the wavelength of input light. The light path between the DFB-LD 21, the optical multiplexer 25, the optical demultiplexer 26, and the wavelength monitor 27 transmits an optical waveguide, an optical fiber, a spatial system, and the like. The LD temperature controller 23 is an element or device that adjusts the temperature of the DFB-LD 21, and a Peltier element or the like is used. In FIG. 2, the range in which the temperature is adjusted by the LD temperature controller 23 is the portion of the DFB-LD 21. There is also. The LD temperature monitor 22 is an element or device for measuring the temperature of the DFB-LD 21 adjusted by the LD temperature controller 23, and a thermistor or the like is used. A temperature controller different from the LD temperature controller 23 may be used for the optical demultiplexer 26 and the wavelength monitor 27. The DFB-LD 21, the optical multiplexer 25, the LD temperature controller 23, and the LD temperature monitor 22 are often mounted in one case. Further, the optical demultiplexer 26 and the wavelength monitor 27 may be included in the same case. The LD current source 20 is a device that supplies current to the DFB-LD 21 and injects current into one selected DFB-LD 21. The LD current control circuit 28 is a device that controls the amount of current that the LD current source 20 injects into the DFB-LD 21, and injects an amount of current calculated from the wavelength of the oscillation light detected by the wavelength monitor 27. The LD temperature control circuit 24 is a device that controls the LD temperature controller.

以下、構成部品の詳細及び動作原理について説明する。Nチャンネルの波長可変光源を実現する場合には、N個のDFB−LD21を用いる。各DFB−LDの発振波長が各チャンネルの波長に対応する。この時、各DFB−LD21が出来るだけ同一温度で所望のチャンネルの波長を発振できるようなDFB−LD21を実装する。複数のDFB−LD21の中で発振するDFB−LD21は1つのみであり、LD電流源20より発振させるDFB−LD21を選択して注入電流を流す。DFB−LD21の発振光が合波器25により一つの経路にまとめられた後、光分波器26によって発振光の一部が分岐される。分岐された光は波長モニタ27によって波長の測定に用いられる。この波長モニタ27では、全てのチャンネルの波長を測定する必要があり、また、光パワーが異なっても波長が測定できる機構である必要がある。光通信に用いられる光の波長はITUグリッドで定められており、50GHz、100GHz、200GHz間隔となっているため、ここの波長モニタ27としてファブリーペローエタロンフィルタを用いる方法が一例としてあげられる。ファブリーペローエタロンフィルタを用いる波長モニタ27の方法をあげると、全光パワーと、ファブリーペローエタロンフィルタの透過パワーの比を検出する方法、透過中心波長の異なる2種類のファブリーペローエタロンフィルタの透過出力の差を検出する方法等がある。ここで実際に発振している光の波長と、発振させたい目標波長とのずれを検出して、そのずれを負帰還制御により注入電流量を変えることで制御を行う。ここで、注入電流量と波長シフト量との関係は、式(1)で示した通りであり、注入電流量を調整することで発振波長を調整することができる。   Hereinafter, the details of components and the principle of operation will be described. In order to realize an N-channel variable wavelength light source, N DFB-LDs 21 are used. The oscillation wavelength of each DFB-LD corresponds to the wavelength of each channel. At this time, the DFB-LD 21 is mounted so that each DFB-LD 21 can oscillate a desired channel wavelength at the same temperature as much as possible. There is only one DFB-LD 21 that oscillates among the plurality of DFB-LDs 21. The DFB-LD 21 to be oscillated from the LD current source 20 is selected and an injection current is allowed to flow. After the oscillation light of the DFB-LD 21 is collected into one path by the multiplexer 25, a part of the oscillation light is branched by the optical demultiplexer 26. The branched light is used for wavelength measurement by the wavelength monitor 27. In this wavelength monitor 27, it is necessary to measure the wavelengths of all channels, and it is necessary to have a mechanism capable of measuring the wavelengths even if the optical power is different. The wavelength of light used for optical communication is determined by the ITU grid, and the intervals are 50 GHz, 100 GHz, and 200 GHz. Therefore, a method using a Fabry-Perot etalon filter as the wavelength monitor 27 is an example. The method of the wavelength monitor 27 using the Fabry-Perot etalon filter is as follows: a method of detecting the ratio of the total optical power and the transmission power of the Fabry-Perot etalon filter; and the transmission output of two types of Fabry-Perot etalon filters having different transmission center wavelengths. There are methods for detecting the difference. Here, a deviation between the wavelength of the actually oscillating light and the target wavelength to be oscillated is detected, and the deviation is controlled by changing the amount of injected current by negative feedback control. Here, the relationship between the injection current amount and the wavelength shift amount is as shown in the equation (1), and the oscillation wavelength can be adjusted by adjusting the injection current amount.

図2では、発振波長の測定のため分波器26で発振光の一部を分岐して波長検出する構成を示している。発振波長の測定方法としては、図2の他に光合波器の変わりにN×2光カプラを用いる方法、DFB−LD21と光合波器の間で光分波器26を入れて発振光を抽出する方法、DFB−LD21において合波器25とは反対側にも発振光を出しその光の波長を測定する方法等がある。後者二つの場合には、波長モニタ27をN個分準備するか、モニタ用のN個の経路を一つに束ねて図2と同一の波長モニタを用いる。波長モニタ27をN個分準備する場合には特定の波長を検出できる波長モニタで良い。   FIG. 2 shows a configuration in which a part of the oscillation light is branched and wavelength detection is performed by the duplexer 26 for measurement of the oscillation wavelength. As a method for measuring the oscillation wavelength, in addition to FIG. 2, an N × 2 optical coupler is used instead of the optical multiplexer, and an optical demultiplexer 26 is inserted between the DFB-LD 21 and the optical multiplexer to extract the oscillation light. And a method of emitting oscillation light on the side opposite to the multiplexer 25 in the DFB-LD 21 and measuring the wavelength of the light. In the latter two cases, N wavelength monitors 27 are prepared, or N monitoring paths are bundled into one to use the same wavelength monitor as in FIG. When N wavelength monitors 27 are prepared, a wavelength monitor that can detect a specific wavelength may be used.

DFB−LD21の温度調整は、LD温度モニタ22、LD温度調節器23、LD温度制御回路24によって行う。LD温度モニタ22ではサーミスタ等が用いられ、サーミスタの抵抗値を検出することでDFB−LD21の温度を測定することができる。LD温度調節器23にはペルチェ素子等が用いられる。ペルチェ素子への印加電圧または印加電流を変えることで、DFB−LD21の温度を調節することができる。LD温度制御回路24では、LD温度調節器23を通してDFB−LD温度を制御する機器であり、LD温度調節器23に一定の電圧を印加する制御(一定電圧制御)、またはLD温度モニタ22で測定した温度から負帰還制御を行い一定温度に保持する制御(一定温度制御)を行う。   The temperature adjustment of the DFB-LD 21 is performed by the LD temperature monitor 22, the LD temperature controller 23, and the LD temperature control circuit 24. The LD temperature monitor 22 uses a thermistor or the like, and the temperature of the DFB-LD 21 can be measured by detecting the resistance value of the thermistor. For the LD temperature controller 23, a Peltier device or the like is used. The temperature of the DFB-LD 21 can be adjusted by changing the applied voltage or applied current to the Peltier element. The LD temperature control circuit 24 is a device that controls the DFB-LD temperature through the LD temperature regulator 23, and controls the application of a constant voltage to the LD temperature regulator 23 (constant voltage control), or measures with the LD temperature monitor 22. The negative feedback control is performed from the measured temperature and the control to maintain the constant temperature (constant temperature control) is performed.

負帰還制御がLD温度制御とLD注入電流制御との両方を行っているが、これらの複数の負帰還制御を両立させる為には、各負帰還制御の応答速度を、LD温度制御の整定時間(Tt)、LD電流制御の整定時間(Ti)とすると、Tt>Tiとなるように設定する。ここで整定時間とは、ステップ応答が定常値の±5%以内の範囲に落ち着くまでに要する時間のことを呼び、速応性と収束性の両方を示すパラメータである。ペルチェ素子による温度制御の整定時間はsecオーダである一方、注入電流制御の整定時間はmsecオーダで行うことができる。   The negative feedback control performs both the LD temperature control and the LD injection current control. In order to make these multiple negative feedback controls compatible, the response speed of each negative feedback control is set to the settling time of the LD temperature control. If (Tt) and the LD current control settling time (Ti) are set, Tt> Ti is set. Here, the settling time refers to the time required for the step response to settle within the range of ± 5% of the steady value, and is a parameter indicating both rapid response and convergence. While the settling time for temperature control by the Peltier element is on the order of sec, the settling time for injection current control can be set on the order of msec.

LD注入電流の負帰還制御を開始すると、波長モニタで検出した波長をもとにmsecオーダで瞬時に発振波長を所望の波長に調整することができる。しかしながら(1)式によると、注入電流値を変えることで、LD温度もsecオーダでゆっくりと変化する。DFB−LD21の温度はLD温度モニタ22とLD温度調節器23により多少温度制御されているが、応答速度が遅いため温度制御しきれない分もあり、DFB−LD21の温度の変化に対する発振波長の変化が生じる。このDFB−LD21の温度変化による発振波長の変化に対しては、msecオーダの高速で波長モニタ27から注入電流へと負帰還制御を行っているため、常に所望の波長に波長調整されている状態になる。以上の機構により高速な波長切替が実現できる。   When negative feedback control of the LD injection current is started, the oscillation wavelength can be instantaneously adjusted to a desired wavelength in the order of msec based on the wavelength detected by the wavelength monitor. However, according to equation (1), the LD temperature also slowly changes in the order of seconds by changing the injection current value. The temperature of the DFB-LD 21 is somewhat controlled by the LD temperature monitor 22 and the LD temperature controller 23. However, since the response speed is slow, the temperature cannot be fully controlled. Change occurs. With respect to the change of the oscillation wavelength due to the temperature change of the DFB-LD 21, since the negative feedback control is performed from the wavelength monitor 27 to the injection current at a high speed on the order of msec, the wavelength is always adjusted to a desired wavelength. become. With the above mechanism, high-speed wavelength switching can be realized.

図2に示すような光合波器25の代わりに光セレクタを用いてチャンネルを選択する構成もある。光セレクタには、N×1の光スイッチが用いられ、PLC−TOSW(熱光学効果による屈折率変化を用いた、光導波路基板上に作製されたスイッチ)、MEMS(Micro electro-Mechanical System)によるスイッチ等を用いることができる。この時電流は、1つのDFB−LD21のみに注入しても良いし、全てのDFB−LD21に注入してもよい。   There is also a configuration in which a channel is selected using an optical selector instead of the optical multiplexer 25 as shown in FIG. The optical selector uses an N × 1 optical switch, which is based on PLC-TOSW (a switch fabricated on an optical waveguide substrate using a refractive index change due to a thermo-optic effect), and MEMS (Micro electro-Mechanical System). A switch or the like can be used. At this time, the current may be injected only into one DFB-LD 21 or may be injected into all DFB-LDs 21.

ここで、DFB−LDアレイに実装する各DFB−LD21の同一温度下における発振波長の目標発振波長からのずれの許容範囲について述べる。同一温度下における発振波長が目標発振波長からずれていても、注入電流を調整することにより高速に波長調整を行うことが出来るため、多少ずれていても良い利点がある。注入電流量で50mA程度制御できる場合、40GHz程度の範囲内であれば、msecオーダでの高速な波長調整が可能になる。その為、DFB−LDアレイに実装するDFB−LD21の発振波長の目標発振波長からのずれの許容量が±20GHz以内と大きくとることができる。DWDM用に用いる波長可変光源の目標発振波長からのずれの許容範囲を±2.5GHz以内とすると、注入電流制御無しでは±2.5GHz以内のDFB−LDを実装しなければならないが、注入電流制御を組み合わせることにより、±20GHz以内と許容範囲が大幅に広がる。このDFB−LDの発振波長の許容範囲の大幅な改善により、光源製造の負担を軽減でき、安価に波長可変光源を作製することが可能になる。   Here, an allowable range of deviation of the oscillation wavelength from the target oscillation wavelength under the same temperature of each DFB-LD 21 mounted on the DFB-LD array will be described. Even if the oscillation wavelength under the same temperature is deviated from the target oscillation wavelength, the wavelength can be adjusted at high speed by adjusting the injection current. When about 50 mA can be controlled by the amount of injected current, high-speed wavelength adjustment in the order of msec is possible within a range of about 40 GHz. Therefore, the allowable amount of deviation of the oscillation wavelength of the DFB-LD 21 mounted on the DFB-LD array from the target oscillation wavelength can be as large as ± 20 GHz. If the allowable range of deviation from the target oscillation wavelength of the wavelength tunable light source used for DWDM is within ± 2.5 GHz, a DFB-LD within ± 2.5 GHz must be mounted without injection current control. By combining control, the allowable range is greatly expanded within ± 20 GHz. By drastically improving the allowable range of the oscillation wavelength of the DFB-LD, the burden of light source production can be reduced, and a wavelength tunable light source can be manufactured at low cost.

以上述べたように図2の構成にすることで、msecオーダで高速に波長切替が行えるNチャンネルの波長可変光源が実現できる。Nチャンネルの選び方は、100GHz間隔でも、200GHz間隔でも可能であり、また、ITUグリッド上の任意のチャンネルを不等間隔に選択することも可能である。さらに、図2の構成にすることで、波長可変光源の製造の簡易化を行うことができる。   As described above, with the configuration shown in FIG. 2, an N-channel tunable light source capable of switching wavelengths at high speed in the order of msec can be realized. N channels can be selected at 100 GHz intervals or 200 GHz intervals, and any channel on the ITU grid can be selected at unequal intervals. Furthermore, the configuration of FIG. 2 can simplify the production of the wavelength tunable light source.

図3は本発明第2の参考例を示している。N個のDFB−LD21、光合波器25、光分波器26、波長モニタ27、LD温度モニタ22、LD温度調節器23、LD電流源20、LD電流制御回路28、LD温度制御回路34から構成される。本発明第1の参考例を説明する図2とは、LD温度制御回路が異なり、LD温度制御回路34においては、注入電流の量を考慮している点が異なる。 FIG. 3 shows a second reference example of the present invention. From N DFB-LD 21, optical multiplexer 25, optical demultiplexer 26, wavelength monitor 27, LD temperature monitor 22, LD temperature controller 23, LD current source 20, LD current control circuit 28, and LD temperature control circuit 34 Composed. The LD temperature control circuit is different from FIG. 2 for explaining the first reference example of the present invention, and the LD temperature control circuit 34 is different in that the amount of injected current is taken into consideration.

第1の参考例ではLD温度が一定になるように、または、LD温度調節器23に一定電圧を印加するように制御を行っていた。図3では波長から負帰還制御を行った注入電流量をある値(注入電流量の目標値)に近づけるようにLD部分の温度調整を行う。ここで負帰還制御がLD温度制御とLD注入電流制御との両方を行っているが、これらの複数の負帰還制御を両立させる為には、各負帰還制御の整定時間を、LD温度制御の整定時間(Tt)、LD注入電流制御の整定時間(Ti)とすると、Tt>Tiとなるように制御を行う。ペルチェ素子の温度制御の整定時間はsecオーダであるのに対し、注入電流制御の整定時間msecオーダにすることで、両者の負帰還制御が実現する。 In the first reference example , control is performed so that the LD temperature becomes constant or a constant voltage is applied to the LD temperature controller 23. In FIG. 3, the temperature of the LD portion is adjusted so that the injection current amount subjected to negative feedback control from the wavelength approaches a certain value (target value of the injection current amount). Here, the negative feedback control performs both the LD temperature control and the LD injection current control. In order to make these plural negative feedback controls compatible, the settling time of each negative feedback control is set to the LD temperature control. If the settling time (Tt) and the LD injection current control settling time (Ti) are set, control is performed so that Tt> Ti. While the settling time for temperature control of the Peltier element is on the order of sec, negative feedback control of both is realized by setting the settling time for injection current control on the order of msec.

LD温度を注入電流値が目標値になるように制御する利点は以下の通りである。注入電流で波長を制御すると、注入電流が大きくなりすぎた状態、または小さくなりすぎた状態で目標波長に収束する可能性がある。注入電流が大きすぎると消費電力が大きいだけでなく、素子の劣化を早める原因となる。また、注入電流が小さすぎると、光出力パワーが弱く、光SN特性も悪くなる。その為、長期間使用する場合には、注入電流をある適度な量に調整した方が良い。図3の構成にすると、注入電流量が大きくなった状態または小さくなった状態で目標波長に収束しても、LD温度を調整することにより長い時間スケールで注入電流量をある値に調整することができるので、消費電力、素子劣化を抑えること及び良い光学特性を得ることができるのである。   The advantage of controlling the LD temperature so that the injection current value becomes the target value is as follows. When the wavelength is controlled by the injection current, there is a possibility that the target wavelength is converged when the injection current is too large or too small. If the injection current is too large, not only the power consumption is large, but also the deterioration of the element is accelerated. On the other hand, if the injection current is too small, the optical output power is weak and the optical SN characteristics are also deteriorated. Therefore, when using for a long time, it is better to adjust the injection current to an appropriate amount. With the configuration of FIG. 3, even if the injected current amount is converged to the target wavelength when the injected current amount is large or small, the injected current amount is adjusted to a certain value on a long time scale by adjusting the LD temperature. Therefore, power consumption, element deterioration can be suppressed, and good optical characteristics can be obtained.

図4は本発明第3の参考例を示している。N個のDFB−LD21、光合波器25、光分波器26、波長モニタ27、LD温度モニタ22、LD温度調節器23、LD電流源20、LD電流制御回路28、LD温度制御回路24、利得素子40、利得素子制御回路43、利得素子電流源42、パワーモニタ41から構成される。 FIG. 4 shows a third reference example of the present invention. N DFB-LDs 21, optical multiplexer 25, optical demultiplexer 26, wavelength monitor 27, LD temperature monitor 22, LD temperature controller 23, LD current source 20, LD current control circuit 28, LD temperature control circuit 24, A gain element 40, a gain element control circuit 43, a gain element current source 42, and a power monitor 41 are included.

本発明第1の参考例を示す図2とは、利得素子40、利得素子制御回路43、利得素子電流源42、パワーモニタ41が追加された点が異なる。利得素子40は、DFB−LD21より発振された光を増幅または減衰する素子であり、半導体光増幅器(SOA)、光減衰器等が用いられる。利得素子40は電流を供給することで作動するが、電流量を変えることで利得量を変化させることのできるものを用いる。利得素子40に電流を供給するのが利得素子電流源42である。ここで利得素子40が電圧供給で作動する素子であれば、利得素子電流源42の代わりに利得電圧源を用いる。また、利得素子電流源42からの電流供給量を調整するのが利得素子制御回路43である。パワーモニタ41は光分波器26によって分離した光のパワーを測定する素子または装置であり、フォトダイオード(PD)等により測定できる。 2 is different from FIG. 2 showing the first reference example of the present invention in that a gain element 40, a gain element control circuit 43, a gain element current source 42, and a power monitor 41 are added. The gain element 40 is an element that amplifies or attenuates the light oscillated from the DFB-LD 21, and a semiconductor optical amplifier (SOA), an optical attenuator, or the like is used. The gain element 40 operates by supplying a current, and a gain element that can change the gain amount by changing the current amount is used. A gain element current source 42 supplies current to the gain element 40. If the gain element 40 is an element that operates by voltage supply, a gain voltage source is used instead of the gain element current source 42. The gain element control circuit 43 adjusts the amount of current supplied from the gain element current source 42. The power monitor 41 is an element or device that measures the power of the light separated by the optical demultiplexer 26 and can be measured by a photodiode (PD) or the like.

以下に動作方法を説明する。DFB−LDアレイから出力される光の一部を光分波器26により抽出して、DFB−LDアレイから出力される光のパワーを測定する。利得素子制御回路43では、測定された光パワーが目標値に近づくように利得素子40の電流量を負帰還制御を行う。図4の構成では、DFB−LD21への注入電流量を制御して波長の調整を行っているため、利得素子40を一定出力パワー制御で作動させることで、DFB−LD21からの出力パワーが常に一定になる。   The operation method will be described below. A part of the light output from the DFB-LD array is extracted by the optical demultiplexer 26, and the power of the light output from the DFB-LD array is measured. The gain element control circuit 43 performs negative feedback control on the current amount of the gain element 40 so that the measured optical power approaches the target value. In the configuration of FIG. 4, since the wavelength is adjusted by controlling the amount of current injected into the DFB-LD 21, the output power from the DFB-LD 21 is always maintained by operating the gain element 40 with constant output power control. It becomes constant.

ここでは、利得素子制御、温度制御、LD注入電流制御と三つの負帰還制御を行っている。これらの負帰還制御をお互いに影響を及ぼさずに行う必要があるため、各負帰還制御の整定時間を、利得素子制御の整定時間(Ta)、LD温度制御の整定時間(Tt)、LD注入電流制御の整定時間(Ti)とすると、Tt>Ti>Taとなるように制御を行う。ペルチェ素子の温度制御の整定時間はsecオーダ、注入電流制御の整定時間をmsecオーダとして、利得素子制御の整定時間をサブmsecオーダ以下にする必要がある。   Here, gain element control, temperature control, LD injection current control, and three negative feedback controls are performed. Since these negative feedback controls need to be performed without affecting each other, the settling time of each negative feedback control is set as the gain element control settling time (Ta), the LD temperature control settling time (Tt), and the LD injection. Assuming that the current control settling time (Ti) is satisfied, control is performed so that Tt> Ti> Ta. The temperature control settling time of the Peltier element must be on the order of sec, the injection current control settling time on the order of msec, and the gain element control settling time on the order of sub msec or less.

図4では光パワーの測定のために分波器26で発振光の一部を分岐してパワー測定する構成を示している。光パワーの測定方法としては、図4の他にDFB−LD21と光合波器25の間に光分波器26を挿入し、発振光を抽出する方法、光合波器25の変わりにN×2光カプラを用いる方法、DFB−LD21において合波器25とは反対側に発振光を出しその光のパワーを測定する方法がある。いずれの場合でも、利得素子40で光パワーを制御する前に光パワーを測定する場合には、入力光パワーから必要な利得を算出して利得素子電流源42を制御する必要がある。   FIG. 4 shows a configuration in which a part of the oscillation light is branched by the branching filter 26 to measure the power for measuring the optical power. As an optical power measurement method, in addition to FIG. 4, an optical demultiplexer 26 is inserted between the DFB-LD 21 and the optical multiplexer 25 to extract oscillation light, and N × 2 instead of the optical multiplexer 25 is used. There is a method using an optical coupler and a method of emitting oscillation light on the opposite side of the multiplexer 25 in the DFB-LD 21 and measuring the power of the light. In any case, when the optical power is measured before the optical power is controlled by the gain element 40, it is necessary to calculate the necessary gain from the input optical power and control the gain element current source 42.

図4の構成では下の利点がある。図2、3の構成では注入電流量を変えて波長の制御を行う為、光出力パワーも注入電流量に応じて変化する。しかし、光通信用のDWDM伝送用に用いるためには光出力パワーが一定である必要がある。図4のように行うことで、一定の光出力パワーを得ることができる。   The configuration of FIG. 4 has the following advantages. 2 and 3, since the wavelength is controlled by changing the amount of injected current, the optical output power also changes according to the amount of injected current. However, the optical output power needs to be constant for use in DWDM transmission for optical communication. By performing as shown in FIG. 4, a constant optical output power can be obtained.

図5は本発明第4の参考例を示している。N個のDFB−LD21、光合波器25、光分波器26、波長モニタ27、LD温度モニタ22、LD温度調節器23、LD電流源20、LD電流制御回路28、LD温度制御回路24、飽和特性利得素子50、利得素子電流源51から構成される。第1の参考例を示す図2とは飽和特性利得素子51、利得素子電流源51が追加された点が異なる。飽和特性利得素子50は、入力光の強度により利得が変化する素子であり、入力光強度が大きいときは利得量は小さく、入力光強度が小さいときは利得量が大きくなる素子である。光半導体アンプ(SOA)を利得飽和領域で動作させる場合、このような飽和特性を示す。利得素子電流源51は、飽和特性利得素子50を駆動するための電流源であり、一定電流制御で駆動させる。 FIG. 5 shows a fourth reference example of the present invention. N DFB-LDs 21, optical multiplexer 25, optical demultiplexer 26, wavelength monitor 27, LD temperature monitor 22, LD temperature controller 23, LD current source 20, LD current control circuit 28, LD temperature control circuit 24, It comprises a saturation characteristic gain element 50 and a gain element current source 51. 2 is different from FIG. 2 showing the first reference example in that a saturation characteristic gain element 51 and a gain element current source 51 are added. The saturation characteristic gain element 50 is an element whose gain changes depending on the intensity of the input light. The gain amount is small when the input light intensity is large, and the gain amount is large when the input light intensity is small. Such saturation characteristics are exhibited when the optical semiconductor amplifier (SOA) is operated in the gain saturation region. The gain element current source 51 is a current source for driving the saturation characteristic gain element 50 and is driven by constant current control.

光出力パワーは注入電流量により決まるため、注入電流制御の速度で光パワーが変動する。飽和特性を示す飽和特性利得素子50は、この高速に変動する光パワーに追随しなければならず、応答速度が注入電流制御よりも高速になる必要がある。光増幅器は応答速度がnSオーダと高速であるためこのために用いることができる。   Since the optical output power is determined by the amount of injected current, the optical power varies at the speed of injection current control. The saturation characteristic gain element 50 exhibiting saturation characteristics must follow the optical power that fluctuates at a high speed, and the response speed needs to be faster than the injection current control. The optical amplifier can be used for this because the response speed is as high as nS order.

図5の構成にすることで、以下の利点がある。利点は本発明第3の参考例と同様に、注入電流量が変化しても一定の光出力パワーを得ることができる。さらに、図4のように、利得素子51の負帰還制御が必要でなくなるため、図4よりも簡単な構成で実現できる利点がある。 The configuration shown in FIG. 5 has the following advantages. Advantages similar to the present invention the third reference example, can amount injected current be varied to obtain a constant optical output power. Further, as shown in FIG. 4, since the negative feedback control of the gain element 51 is not required, there is an advantage that can be realized with a simpler configuration than that of FIG.

次に、第5の参考例における高速な波長変化を行うことのできるDFB−LDアレイを説明する。 Next, a DFB-LD array capable of performing a high-speed wavelength change in the fifth reference example will be described.

図6は、本参考例の説明を行う為に、注入電流量と発振波長との関係を示したものである。本発明第1の参考例を示す図2では、Nチャンネルの波長可変光源を実現するために、N個のDFB−LD21を用いた。この各DFB−LD21における注入電流量と発振波長との関係を示したのが図6(a)である。しかし、注入電流量を100mA程度制御できる場合、注入電流で制御できる波長可変範囲は約80GHzとなる。その為、50GHz間隔の波長可変光源を実現する場合、注入電流を制御する方法で1個のDFB−LD21につき2チャンネル発振させることができる。 FIG. 6 shows the relationship between the amount of injected current and the oscillation wavelength in order to explain this reference example . In FIG. 2 showing the first reference example of the present invention, N DFB-LDs 21 are used to realize an N-channel wavelength variable light source. FIG. 6A shows the relationship between the injected current amount and the oscillation wavelength in each DFB-LD 21. However, when the injection current amount can be controlled by about 100 mA, the wavelength variable range that can be controlled by the injection current is about 80 GHz. Therefore, when realizing a wavelength variable light source with an interval of 50 GHz, it is possible to oscillate two channels per DFB-LD 21 by controlling the injection current.

図6(b)は、この方法を用いた場合の各DFB−LD21における注入電流量と発振波長との関係を示したものである。このような方法を用いることにより、少ない数のDFB−LD21でより多くのチャンネルを発振できる波長可変光源を構築することができる。   FIG. 6B shows the relationship between the amount of injected current and the oscillation wavelength in each DFB-LD 21 when this method is used. By using such a method, it is possible to construct a wavelength tunable light source that can oscillate more channels with a smaller number of DFB-LDs 21.

図7は本発明の第6の参考例を示している。N個のDFB−LD21、光合波器25、LD温度モニタ22、LD温度調節器23、LD電流源21、LD温度制御回路24、LD電流値記録装置70から構成される。図7は、本発明第1の参考例を説明する図2から波長モニタで検出した発振波長を注入電流量に負帰還制御を行う箇所を省き、その代わりにLD電流値記録装置70が追加された点が異なる。図7では各DFB−LD21における各チャンネルを発振させる注入電流値をあらかじめ測定しておき、その注入電流量をLD電流値記録装置70に保存しておく。チャンネルを切り替える時には、電流値は保存されている注入電流値を読み出し、その値をLD電流源21に送ることで、その値の電流量をDFB−LD21に注入する。本構成では、注入電流の負帰還制御回路を省くことができ、簡単な構成で高速な波長可変光源を実現できる。 FIG. 7 shows a sixth reference example of the present invention. It is composed of N DFB-LDs 21, an optical multiplexer 25, an LD temperature monitor 22, an LD temperature controller 23, an LD current source 21, an LD temperature control circuit 24, and an LD current value recording device 70. FIG. 7 omits from FIG. 2 illustrating the first reference example of the present invention a portion where negative feedback control is performed using the oscillation wavelength detected by the wavelength monitor as an injection current amount, and an LD current value recording device 70 is added instead. Different points. In FIG. 7, the injection current value for oscillating each channel in each DFB-LD 21 is measured in advance, and the injection current amount is stored in the LD current value recording device 70. When switching the channel, the current value is read out from the stored injection current value, and the value is sent to the LD current source 21 to inject the current amount of that value into the DFB-LD 21. In this configuration, the negative feedback control circuit of the injection current can be omitted, and a high-speed wavelength variable light source can be realized with a simple configuration.

図7の構成において、さらに同一温度下における各DFB−LD21の発振波長の目標波長からのずれの許容範囲を狭くすること、及び、実際に発振する光の目標波長からのずれの許容範囲を広くすることにより、各DFB−LDに対して同一の注入電流量を設定することも可能になる。   In the configuration of FIG. 7, the allowable range of deviation of the oscillation wavelength of each DFB-LD 21 from the target wavelength under the same temperature is further narrowed, and the allowable range of deviation of the actually oscillated light from the target wavelength is widened. This makes it possible to set the same injection current amount for each DFB-LD.

図8は本発明の第の実施形態を示している。N個のDFB−LD21、光合波器25、光分波器26、波長モニタ27、LD温度モニタ22、LD温度調節器23、LD電流源20、LD電流制御回路28、LD温度制御回路24、判別回路80から構成される。 FIG. 8 shows a first embodiment of the present invention. N DFB-LDs 21, optical multiplexer 25, optical demultiplexer 26, wavelength monitor 27, LD temperature monitor 22, LD temperature controller 23, LD current source 20, LD current control circuit 28, LD temperature control circuit 24, The determination circuit 80 is configured.

本発明第1の参考例を説明する図2との違いは、図2では波長の調整に注入電流制御のみを用いていたのに対し、図8では波長の調整において粗調整に温度調整を用い、微調整に注入電流による調整を用いている点が異なる。図8で新たに加わっている判別回路80は、粗調整から微調整へ切り替えるか否かを判別する回路である。 The difference from FIG. 2 for explaining the first reference example of the present invention is that FIG. 2 uses only injection current control for wavelength adjustment, whereas FIG. 8 uses temperature adjustment for coarse adjustment in wavelength adjustment. The difference is that adjustment by injection current is used for fine adjustment. The newly added discriminating circuit 80 in FIG. 8 is a circuit that discriminates whether or not to switch from coarse adjustment to fine adjustment.

図8の構成の詳細を述べる。各DFB−LD21は約400GHz間隔で実装する。DFB−LD21は400GHzの範囲では温度制御により調整することができる。所望の波長に調整する場合、まず、LD温度調節器23によりDFB−LDの温度の調整を行い、波長の粗調整を行う。この時、LD温度モニタ22によってDFB−LD21温度を検出しながら調整する方法、または、波長モニタ27によって出力光の波長を検出しながら調整する方法どちらの方法でも良い。図8では、温度モニタ22よりDFB−LD21の温度を検出しながら調整する方法を示している。通常、ペルチェ素子の整定時間は数secオーダと時間がかかるが、PI制御等によりサブsecオーダの整定時間に改善することができる。LD温度モニタにおいて目標とする温度範囲内、または、波長モニタ27において目標とする波長範囲内に収まっているか否かは判別回路80にて判別する。LD温度モニタ22によりDFB−LD21の温度を検出して制御を行う場合には、所望の波長を発振する動作温度を事前に測定をしておき、その値または粗調整の目標温度範囲を記録媒体に保存しておく。判別回路80にて目標温度範囲または目標波長範囲に収束したことを判別すると、注入電流制御を開始する。注入電流制御とは、第1の参考例で述べたように温度を固定して注入電流の調整のみで波長制御を行う方法または第2の参考例で述べたように注入電流の調整で波長制御を行い、同時に温度調整により長い時間スパンで注入電流を目標値に近づける方法である。どちらの方法を用いても、注入電流制御に切り替えた後、msecオーダで瞬時に目標とする波長に調整することができる。粗調整から微調整へ切り替える条件となる温度範囲の一例であるが、注入電流量で調整できる波長範囲が±400GHz程度であれば、目標温度の±4℃の範囲になる。通常、ペルチェ素子等での温度制御は整定時間がsecオーダであるが、±4℃の範囲内に収束することはサブsecオーダで実現できる。上記温度範囲内に温度が収束すれば、注入電流制御に切り替えることによりmsオーダで目標値に波長を調整することが実現できる。 Details of the configuration of FIG. 8 will be described. Each DFB-LD 21 is mounted at intervals of about 400 GHz. The DFB-LD 21 can be adjusted by temperature control in the range of 400 GHz. When adjusting to a desired wavelength, first, the temperature of the DFB-LD is adjusted by the LD temperature controller 23, and the wavelength is roughly adjusted. At this time, either a method of adjusting while detecting the temperature of the DFB-LD 21 by the LD temperature monitor 22 or a method of adjusting while detecting the wavelength of the output light by the wavelength monitor 27 may be used. FIG. 8 shows a method of adjusting while detecting the temperature of the DFB-LD 21 from the temperature monitor 22. Usually, the settling time of the Peltier device takes several seconds, but it can be improved to a sub-sec order settling time by PI control or the like. The determination circuit 80 determines whether the temperature is within the target temperature range of the LD temperature monitor or within the target wavelength range of the wavelength monitor 27. When the temperature of the DFB-LD 21 is detected and controlled by the LD temperature monitor 22, the operating temperature for oscillating a desired wavelength is measured in advance, and the value or the target temperature range for coarse adjustment is recorded on the recording medium. Save to. When the determination circuit 80 determines that the temperature has converged to the target temperature range or the target wavelength range, the injection current control is started. The injection current control is a method of controlling the wavelength only by adjusting the injection current while fixing the temperature as described in the first reference example , or the wavelength control by adjusting the injection current as described in the second reference example. At the same time, the injection current is brought close to the target value over a long time span by adjusting the temperature. Whichever method is used, after switching to the injection current control, the target wavelength can be instantaneously adjusted in the order of msec. This is an example of a temperature range that is a condition for switching from coarse adjustment to fine adjustment. If the wavelength range that can be adjusted by the amount of injected current is about ± 400 GHz, the target temperature is within ± 4 ° C. Normally, temperature control using a Peltier device or the like has a settling time of the order of sec, but it can be realized in a sub-sec order to converge within a range of ± 4 ° C. If the temperature converges within the above temperature range, the wavelength can be adjusted to the target value in ms order by switching to injection current control.

粗調整から微調整への切り替えの判別方法について説明する。粗調整における温度の制御において、目標温度への調整を行う際に、応答速度をできるだけ早く設計する必要があるが、オーバーシュートを粗調整の目標温度範囲内に収めておくことが望ましい。これは、粗調整から微調整へ切替る判別の際に、LD温度モニタ22で検出した温度が目標温度範囲内に入っているか否かを判別するだけでよく、判定方法が簡単になる。逆にオーバーシュートが粗調整の目標範囲外になる場合には、微調整から粗調整への元に戻す切替機構が必要になる。前記の例の±4℃の粗調整目標範囲は比較的広い目標範囲であるため、制御回路の設計が容易に行える。波長モニタ27を用いて粗調整を行う場合も同じように行う。   A method for determining the switching from the coarse adjustment to the fine adjustment will be described. In the temperature control in the coarse adjustment, when adjusting to the target temperature, it is necessary to design the response speed as fast as possible, but it is desirable to keep the overshoot within the target temperature range of the coarse adjustment. In this case, it is only necessary to determine whether or not the temperature detected by the LD temperature monitor 22 is within the target temperature range in the determination of switching from the coarse adjustment to the fine adjustment, and the determination method becomes simple. Conversely, when the overshoot falls outside the target range for coarse adjustment, a switching mechanism for returning from fine adjustment to coarse adjustment is required. Since the rough adjustment target range of ± 4 ° C. in the above example is a relatively wide target range, the control circuit can be easily designed. The same applies when performing coarse adjustment using the wavelength monitor 27.

図8で示す構成にすると、以下の利点がある。1つのDFB−LD21につき400GHzの波長範囲で発振することができる為、複数のDFB−LD21を用いることで非常に広範囲の波長範囲、または、非常に多くの波長チャンネルで発振することができる。さらに、温度調整のみでは、波長調整に数sec程度と非常に時間がかかるのに対し、粗調整のみを温度調整で行い、微調整を注入電流制御で行うことで、サブsecオーダの波長切替速度と改善を行うことができる。   The configuration shown in FIG. 8 has the following advantages. Since one DFB-LD 21 can oscillate in a wavelength range of 400 GHz, by using a plurality of DFB-LDs 21, it is possible to oscillate in a very wide wavelength range or in a very large number of wavelength channels. Furthermore, the wavelength adjustment takes a very long time of about several seconds with only the temperature adjustment, whereas only the coarse adjustment is performed with the temperature adjustment, and the fine adjustment is performed with the injection current control, so that the wavelength switching speed on the order of sub-sec. And can make improvements.

図9は本発明の第の実施形態を示している。図9では、1個DFB−LD21、光分波器26、波長モニタ27、LD温度モニタ22、LD温度調節器23、LD電流源20、LD電流制御回路28、LD温度制御回路24、判別回路80から構成される。本発明第の実施形態を示す図8とは、DFB−LD21が1個であること、光合波器25がないことが異なる。 FIG. 9 shows a second embodiment of the present invention. In FIG. 9, one DFB-LD 21, an optical demultiplexer 26, a wavelength monitor 27, an LD temperature monitor 22, an LD temperature adjuster 23, an LD current source 20, an LD current control circuit 28, an LD temperature control circuit 24, and a discrimination circuit. 80. 8 differs from FIG. 8 showing the first embodiment of the present invention in that there is one DFB-LD 21 and there is no optical multiplexer 25.

波長切替の方法は第の実施形態と同様であり、まず波長の粗調整をLD温度調節器23により温度を調整する。その後、DFB−LDの温度または波長が一定範囲に収束されると判別回路80で収束された事を確認して、注入電流制御による微調整を開始する。このような第の実施形態と同様の機構により、単体のDFB−LD21において約400GHzの範囲の波長切替時間をサブsecオーダに改善することができる。 The wavelength switching method is the same as in the first embodiment. First, the temperature is adjusted by the LD temperature controller 23 for coarse wavelength adjustment. Thereafter, when the temperature or wavelength of the DFB-LD is converged within a certain range, it is confirmed by the discrimination circuit 80 that fine adjustment by injection current control is started. With the same mechanism as in the first embodiment, the wavelength switching time in the range of about 400 GHz can be improved to the sub-sec order in the single DFB-LD 21.

従来例のDFB−LDアレイを示す構成図Configuration diagram showing a conventional DFB-LD array 第1の参考例のDFB−LDアレイの構成図Configuration diagram of DFB-LD array of first reference example 第2の参考例のDFB−LDアレイの構成図Configuration diagram of DFB-LD array of second reference example 第3の参考例のDFB−LDアレイの構成図Configuration diagram of DFB-LD array of third reference example 第4の参考例のDFB−LDアレイの構成図Configuration diagram of DFB-LD array of fourth reference example (a)第1の参考例における注入電流量と発振波長との関係を示した図 (b)第5の参考例における注入電流量と発振波長との関係を示した図(A) The figure which showed the relationship between the injection current amount and oscillation wavelength in a 1st reference example (b) The figure which showed the relationship between the injection current amount and oscillation wavelength in a 5th reference example 第6の参考例のDFB−LDアレイの構成図Configuration diagram of DFB-LD array of sixth reference example の実施形態のDFB−LDアレイの構成図Configuration diagram of the DFB-LD array of the first embodiment の実施形態のDFB−LDの構成図Configuration diagram of DFB-LD of second embodiment

符号の説明Explanation of symbols

10、20…LD電流源、11、21…DFB−LD、12、22…LD温度モニタ、13、23…LD温度調節器、14、24…LD温度制御回路、15、25…光合波器、16、40…利得素子、17、42、51…利得素子電流源、26…光分波器、27…波長モニタ、28…LD電流制御回路、34…LD温度制御回路、41…パワーモニタ、43…利得素子制御回路、50…飽和特性利得素子、70…LD電流値記録装置、80…判別回路。   DESCRIPTION OF SYMBOLS 10, 20 ... LD current source 11, 21 ... DFB-LD, 12, 22 ... LD temperature monitor, 13, 23 ... LD temperature controller, 14, 24 ... LD temperature control circuit, 15, 25 ... Optical multiplexer, DESCRIPTION OF SYMBOLS 16, 40 ... Gain element 17, 42, 51 ... Gain element current source, 26 ... Optical demultiplexer, 27 ... Wavelength monitor, 28 ... LD current control circuit, 34 ... LD temperature control circuit, 41 ... Power monitor, 43 ... gain element control circuit, 50 ... saturation characteristic gain element, 70 ... LD current value recording device, 80 ... discrimination circuit.

Claims (6)

同一の温度制御にある複数の分布帰還型半導体レーザと、複数の分布帰還型半導体レーザからの出力光を1つの導波路に導く光合波器で構成されている分布帰還型半導体レーザアレイにおいて、
分布帰還型半導体レーザの注入電流量を制御する手段と、発振波長を測定する手段とを具備し、
分布帰還型半導体レーザの波長の粗調整を温度を調整することで行い、温度または光の波長がある範囲内に入った後は、測定した発振波長を発振目標値に近付けるように注入電流量を制御することにより波長の微調整を行う
ことを特徴とする分布帰還型半導体レーザアレイ。
In a distributed feedback semiconductor laser array composed of a plurality of distributed feedback semiconductor lasers under the same temperature control and an optical multiplexer that guides output light from the plurality of distributed feedback semiconductor lasers to one waveguide,
Means for controlling the amount of injected current of the distributed feedback semiconductor laser, and means for measuring the oscillation wavelength;
Rough adjustment of the wavelength of the distributed feedback semiconductor laser is performed by adjusting the temperature.After the temperature or light wavelength falls within a certain range, the amount of injected current is adjusted so that the measured oscillation wavelength approaches the oscillation target value. A distributed feedback semiconductor laser array, wherein the wavelength is finely adjusted by controlling .
前記注入電流量を制御する応答速度は、前記温度を調整する応答速度より速い応答速度にするThe response speed for controlling the injection current amount is set to be faster than the response speed for adjusting the temperature.
ことを特徴とする請求項1記載の分布帰還型半導体レーザアレイ。2. The distributed feedback semiconductor laser array according to claim 1, wherein:
前記波長の微調整において発振光の波長を目標値に近づけるように制御されている注入電流量を、注入電流量の目標値に近づけるように分布帰還型半導体レーザの温度を制御する
ことを特徴とする請求項1または2記載の分布帰還型半導体レーザアレイ。
The temperature of the distributed feedback semiconductor laser is controlled so that the injection current amount controlled to bring the wavelength of the oscillation light closer to the target value in the fine adjustment of the wavelength is made closer to the target value of the injection current amount. The distributed feedback semiconductor laser array according to claim 1 or 2 .
光出力パワーを制御する手段と、光出力パワーを測定する手段とを具備し、
注入電流を制御する応答速度よりも速い応答速度で光出力パワーを一定に保つように光出力パワーを制御する
こと特徴とする請求項1乃至3何れか1項記載の分布帰還型半導体レーザアレイ。
Means for controlling the optical output power, and means for measuring the optical output power,
Distributed feedback semiconductor laser array according to claim 1 to 3 any one of claims to this and features at a higher response speed than the response speed for controlling the optical output power to keep the optical output power constant to control the injection current.
入力光に対して、利得が光入力パワーに依存し、光入力パワーが大きくなるほど利得が小さくなるため、注入電流量変化による光出力パワーの変動を抑える手段を具備する
ことを特徴とする請求項1乃至3何れか1項記載の分布帰還型半導体レーザアレイ。
The gain depends on the optical input power with respect to the input light, and the gain decreases as the optical input power increases, and therefore means for suppressing fluctuations in the optical output power due to changes in the amount of injected current is provided. 4. The distributed feedback semiconductor laser array according to any one of 1 to 3 .
分布帰還型半導体レーザアレイの代わりに単体の分布帰還型半導体レーザを用いる
ことを特徴とする請求項1乃至5何れか1項記載の分布帰還型半導体レーザ。
Distributed feedback semiconductor laser array distributed feedback semiconductor laser according to claim 1 to 5 any one of claims, characterized by using a distributed feedback semiconductor laser of a single instead of a.
JP2008005592A 2003-01-14 2008-01-15 High-speed wavelength variable distributed feedback semiconductor laser array, and distributed feedback semiconductor laser Pending JP2008103766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008005592A JP2008103766A (en) 2003-01-14 2008-01-15 High-speed wavelength variable distributed feedback semiconductor laser array, and distributed feedback semiconductor laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003006118A JP2004221267A (en) 2003-01-14 2003-01-14 High-speed variable wavelength distributed feedback semiconductor laser array and distributed feedback semiconductor laser
JP2008005592A JP2008103766A (en) 2003-01-14 2008-01-15 High-speed wavelength variable distributed feedback semiconductor laser array, and distributed feedback semiconductor laser

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003006118A Division JP2004221267A (en) 2003-01-14 2003-01-14 High-speed variable wavelength distributed feedback semiconductor laser array and distributed feedback semiconductor laser

Publications (1)

Publication Number Publication Date
JP2008103766A true JP2008103766A (en) 2008-05-01

Family

ID=32896598

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003006118A Pending JP2004221267A (en) 2003-01-14 2003-01-14 High-speed variable wavelength distributed feedback semiconductor laser array and distributed feedback semiconductor laser
JP2008005592A Pending JP2008103766A (en) 2003-01-14 2008-01-15 High-speed wavelength variable distributed feedback semiconductor laser array, and distributed feedback semiconductor laser

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003006118A Pending JP2004221267A (en) 2003-01-14 2003-01-14 High-speed variable wavelength distributed feedback semiconductor laser array and distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (2) JP2004221267A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049672A (en) * 2012-09-03 2014-03-17 Kddi Corp Frequency stabilization device and method of multiple semiconductor lasers in ultrahigh density frequency multiplex transmission system
JP5567176B1 (en) * 2013-03-25 2014-08-06 ミハル通信株式会社 Semiconductor light emitting device controller
JP2014192375A (en) * 2013-03-27 2014-10-06 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable laser system and control method thereof
WO2015093693A1 (en) * 2013-12-18 2015-06-25 주식회사 포벨 Dwdm system using cyclic awg
US10554013B2 (en) 2015-02-12 2020-02-04 Furukawa Electric Co., Ltd. Semiconductor laser apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049674A (en) * 2004-08-06 2006-02-16 Nippon Telegr & Teleph Corp <Ntt> Light source for optical communication and control method therefor
JP4625661B2 (en) * 2004-08-11 2011-02-02 日本オプネクスト株式会社 Semiconductor optical device, laser module, and optical transceiver
JP5034572B2 (en) * 2007-03-09 2012-09-26 日本電気株式会社 Light source device
SE534444C2 (en) * 2008-10-28 2011-08-23 Syntune Ab Communication system comprising a tunable laser.
JP5228879B2 (en) * 2008-12-17 2013-07-03 三菱電機株式会社 Optical transmitter
JP5079680B2 (en) * 2008-12-24 2012-11-21 日本電信電話株式会社 Optical transmitter, transmission wavelength confirmation method, and transmission wavelength setting method
JP2011258703A (en) * 2010-06-08 2011-12-22 Furukawa Electric Co Ltd:The Control method of wavelength variable laser element and wavelength variable laser device
WO2012074146A1 (en) * 2010-11-30 2012-06-07 (주)쏠리테크 Passive wavelength division multiplexing device for automatic wavelength locking and system thereof
US9703300B2 (en) * 2014-04-11 2017-07-11 Fujitsu Limited Temperature regulation circuit
CN110620331B (en) * 2019-09-26 2021-05-28 哈尔滨工业大学 DFB array high-speed large-range continuous tunable method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177626A (en) * 1987-01-19 1988-07-21 Nippon Telegr & Teleph Corp <Ntt> Optical timing extracting circuit
JPH0391982A (en) * 1989-09-05 1991-04-17 Anritsu Corp Wavelength variable stabilized light source
JPH05327105A (en) * 1992-05-20 1993-12-10 Topcon Corp Light source equipment of stabilized wavelength
JPH0685783A (en) * 1992-08-31 1994-03-25 Fujitsu Ltd Optical fd transmitter
JPH11251673A (en) * 1998-02-27 1999-09-17 Nec Corp Wavelength control circuit for laser signal circuit
JP2001230475A (en) * 2000-02-16 2001-08-24 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable laser beam source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177626A (en) * 1987-01-19 1988-07-21 Nippon Telegr & Teleph Corp <Ntt> Optical timing extracting circuit
JPH0391982A (en) * 1989-09-05 1991-04-17 Anritsu Corp Wavelength variable stabilized light source
JPH05327105A (en) * 1992-05-20 1993-12-10 Topcon Corp Light source equipment of stabilized wavelength
JPH0685783A (en) * 1992-08-31 1994-03-25 Fujitsu Ltd Optical fd transmitter
JPH11251673A (en) * 1998-02-27 1999-09-17 Nec Corp Wavelength control circuit for laser signal circuit
JP2001230475A (en) * 2000-02-16 2001-08-24 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable laser beam source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049672A (en) * 2012-09-03 2014-03-17 Kddi Corp Frequency stabilization device and method of multiple semiconductor lasers in ultrahigh density frequency multiplex transmission system
JP5567176B1 (en) * 2013-03-25 2014-08-06 ミハル通信株式会社 Semiconductor light emitting device controller
JP2014192375A (en) * 2013-03-27 2014-10-06 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable laser system and control method thereof
WO2015093693A1 (en) * 2013-12-18 2015-06-25 주식회사 포벨 Dwdm system using cyclic awg
US10554013B2 (en) 2015-02-12 2020-02-04 Furukawa Electric Co., Ltd. Semiconductor laser apparatus

Also Published As

Publication number Publication date
JP2004221267A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP2008103766A (en) High-speed wavelength variable distributed feedback semiconductor laser array, and distributed feedback semiconductor laser
US7257142B2 (en) Semi-integrated designs for external cavity tunable lasers
US6763053B2 (en) Laser having multiple reflectivity band reflector
US6735224B2 (en) Planar lightwave circuit for conditioning tunable laser output
US20050053103A1 (en) Seeking and tracking control for locking to transmision peak for a tunable laser
JP4255611B2 (en) Light source device and wavelength control device for light source device
JP4290541B2 (en) Tunable light source and optical transmitter
JP4330063B2 (en) Tunable laser light source
JP6274322B2 (en) LASER DEVICE AND LASER DEVICE CONTROL METHOD
EP2031716A2 (en) Wavelength control of laser light
US20030053512A1 (en) Single lasing-reflectivity peak reflector
JP5333238B2 (en) Tunable laser device and wavelength switching method thereof
JP6735666B2 (en) Optical source
JP2012033895A (en) Semiconductor laser module and control method thereof
JP4630128B2 (en) Semiconductor laser device and wavelength control method
JP2010123643A (en) Semiconductor array element, laser module, optical transmitting module, and optical transmitting apparatus
JP5515447B2 (en) Waveguide-type wavelength locker and optical module manufacturing method
US20030026532A1 (en) Reflectively coupled zigzag waveguide device for wavelength locking
JP6849524B2 (en) Semiconductor laser light source
JP5435447B2 (en) Laser element and laser module
JP2000183452A (en) Wavelength selective laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110615

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828