JP2014192274A - HIGH-OUTPUT GaN-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT - Google Patents

HIGH-OUTPUT GaN-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT Download PDF

Info

Publication number
JP2014192274A
JP2014192274A JP2013065332A JP2013065332A JP2014192274A JP 2014192274 A JP2014192274 A JP 2014192274A JP 2013065332 A JP2013065332 A JP 2013065332A JP 2013065332 A JP2013065332 A JP 2013065332A JP 2014192274 A JP2014192274 A JP 2014192274A
Authority
JP
Japan
Prior art keywords
layer
semiconductor light
type
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013065332A
Other languages
Japanese (ja)
Inventor
Kazufumi Tanaka
和史 田中
Toshiya Ide
俊哉 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013065332A priority Critical patent/JP2014192274A/en
Publication of JP2014192274A publication Critical patent/JP2014192274A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting element that allows obtaining a high-linearity radiation output corresponding to fluctuations in current density while suppressing reduction in light-emitting efficiency corresponding to an increase in the current density of the semiconductor light-emitting element, and allows obtaining a high radiation output even when the current density is increased.SOLUTION: A semiconductor light-emitting device composed of at least an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer includes: a P-type AlGaN layer, which is the p-type semiconductor layer on the light-emitting layer, having a magnesium (Mg) concentration of 1.0×10to 6.0×10atoms/cm; a first p-type GaN layer having a higher concentration of Mg than the p-type AlGaN layer on the p-type AlGaN layer; and a second p-type GaN layer having a similar extent of Mg as the p-type AlGaN layer on the first p-type GaN layer.

Description

本発明は、窒化物半導体発光素子に係わり、電流密度の増加に対応する発光効率低下を抑制するp型窒化物層の構造に関する。
The present invention relates to a nitride semiconductor light emitting device, and relates to a structure of a p-type nitride layer that suppresses a decrease in light emission efficiency corresponding to an increase in current density.

近年、半導体発光素子すなわちLED(Light Emitting Diode)は、発光効率の改善が著しく進み、照明用途にまで利用されるに至っている。ところで、半導体発光素子は動作電流の増加に対応して発光効率が低下する現象が起こる。より詳細には、動作電流を半導体発光素子の発光部面積で除した値である動作電流密度(以後、電流密度と言う)の増加に対応して発光効率が低下する現象である。   In recent years, semiconductor light-emitting elements, that is, LEDs (Light Emitting Diodes), have been remarkably improved in light emission efficiency and have been used for lighting applications. By the way, the semiconductor light emitting device has a phenomenon in which the light emission efficiency is lowered in response to an increase in operating current. More specifically, this is a phenomenon in which the luminous efficiency decreases in response to an increase in operating current density (hereinafter referred to as current density), which is a value obtained by dividing the operating current by the light emitting area of the semiconductor light emitting device.

この現象は、半導体発光素子の使用において様々な問題を起こす。例えば、電流密度の増減に対応した直線性の高い放射出力が得られない問題がある。また、電流密度を増加しても高い放射出力が得られない問題がある。   This phenomenon causes various problems in the use of the semiconductor light emitting device. For example, there is a problem that a radiation output with high linearity corresponding to increase / decrease in current density cannot be obtained. Further, there is a problem that a high radiation output cannot be obtained even if the current density is increased.

例えば、半導体発光素子の発光効率を向上する試みとして、特許文献1には「活性層上部にp型不純物を含む第1の窒化物半導体層が形成され、その第1の窒化物半導体層上部に、その第1の窒化物半導体層から離れるに従ってp型不純物濃度が次第に少なくなっている第2の窒化物半導体層を備え、その第2の窒化物半導体層上部に、第2の窒化物半導体層の平均p型不純物濃度よりも多量のp型不純物を含む第3の窒化物半導体層を有する」構造とすることで発光効率を向上する方法が開示されている。   For example, as an attempt to improve the light emission efficiency of a semiconductor light emitting device, Patent Document 1 discloses that “a first nitride semiconductor layer containing a p-type impurity is formed on an active layer, and the first nitride semiconductor layer is formed on the first nitride semiconductor layer. And a second nitride semiconductor layer having a p-type impurity concentration that gradually decreases as the distance from the first nitride semiconductor layer increases. The second nitride semiconductor layer is formed on the second nitride semiconductor layer. Discloses a method of improving the light emission efficiency by having a structure having a third nitride semiconductor layer containing a p-type impurity in a larger amount than the average p-type impurity concentration.

しかし、特許文献1に開示の方法では発光効率の改善は成されるが、電流密度の増減に対応した直線性の高い放射出力が得られない問題、電流密度を増加しても高い放射出力が得られない問題については改善に至っていない。   However, although the method disclosed in Patent Document 1 improves the light emission efficiency, there is a problem that a radiation output with high linearity corresponding to the increase or decrease of the current density cannot be obtained. Even if the current density is increased, a high radiation output is obtained. Problems that cannot be obtained have not been improved.

特開平11−068155号公報Japanese Patent Laid-Open No. 11-068155

そこで、半導体発光素子の電流密度の増加に対応する発光効率の低下を抑えつつ、電流密度の増減に対応した直線性の高い放射出力が得られる半導体発光素子を提供することにある。また、電流密度を増加しても高い放射出力が得られる半導体発光素子を提供することにある。
Accordingly, an object of the present invention is to provide a semiconductor light emitting device capable of obtaining a radiation output with high linearity corresponding to increase / decrease in current density while suppressing a decrease in light emission efficiency corresponding to an increase in current density of the semiconductor light emitting device. Another object of the present invention is to provide a semiconductor light emitting device that can obtain a high radiation output even when the current density is increased.

少なくともn型半導体層と発光層とp型半導体層からなる半導体発光装置であり、前記発光層の上のp型半導体層のマグネシウム(Mg)濃度が1.0×1019〜6.0×1019atoms/cmであるp型AlGaN層と、前記p型AlGaN層の上に、該p型AlGaN層より高濃度のMgを有する第1のp型GaN層と、前記第1のp型GaN層の上に、前記p型AlGaN層と同程度のMgを有する第2のp型GaN層と、を有する半導体発光装置。 A semiconductor light-emitting device comprising at least an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer, and the magnesium (Mg) concentration of the p-type semiconductor layer on the light-emitting layer is 1.0 × 10 19 to 6.0 × 10 A p-type AlGaN layer of 19 atoms / cm 3 ; a first p-type GaN layer having a higher concentration of Mg than the p-type AlGaN layer on the p-type AlGaN layer; and the first p-type GaN. A semiconductor light emitting device having a second p-type GaN layer having Mg on the same level as the p-type AlGaN layer on the layer.

前記発光層が井戸層と障壁層が交互に複数積層した多重量子井戸構造であって、前記多重井戸層は、前記障壁層から積層した構造であって、前記第1の障壁層のバンドギャップが、前記他の障壁層のバンドギャップより狭く、 前記井戸層のバンドギャップより広く、少なくともインジウム(In)を含有したGaN系結晶であること、を有する半導体発光装置。   The light emitting layer has a multiple quantum well structure in which a plurality of well layers and barrier layers are alternately stacked, wherein the multiple well layer has a structure in which the barrier layers are stacked, and the band gap of the first barrier layer is A semiconductor light emitting device, which is narrower than the band gap of the other barrier layer, wider than the band gap of the well layer, and is a GaN-based crystal containing at least indium (In).

前記発光層の前記井戸層と前記障壁層を1単位とし、少なくとも6単位以上16単位以下で積層した構造、を有する半導体発光装置。
A semiconductor light emitting device having a structure in which the well layer and the barrier layer of the light emitting layer are formed as one unit, and are stacked at least 6 units and 16 units or less.

発光層上に、Mg濃度が1.0×1019〜6.0×1019atoms/cmとしたp型AlGaN層を配置し、前記p型AlGaN層よりMg濃度が高い第1のp型GaNを配置し、前記p型AlGaN層とMg濃度が同程度の第2のp型GaNを配置した構造の半導体発光素子は、低い電流密度における発光効率が抑制され、高い電流密度における発光効率の低下を抑制できる。即ち、電流密度の増減に対応した直線性の高い放射出力が得られるようになる。また、電流密度を増加しても高い放射出力が得られるようになる。
A p-type AlGaN layer having a Mg concentration of 1.0 × 10 19 to 6.0 × 10 19 atoms / cm 3 is disposed on the light emitting layer, and a first p-type having a higher Mg concentration than the p-type AlGaN layer. The semiconductor light emitting device having a structure in which GaN is disposed and the second p-type GaN having the same Mg concentration as the p-type AlGaN layer is disposed, the light emission efficiency at a low current density is suppressed, and the light emission efficiency at a high current density is reduced. Reduction can be suppressed. That is, a radiation output with high linearity corresponding to the increase / decrease in current density can be obtained. Further, even if the current density is increased, a high radiation output can be obtained.

図1(A)は、電流密度と放射出力の関係図であり、図1(B)は、電流密度と外部量子効率の関係図である。FIG. 1A is a relationship diagram between current density and radiation output, and FIG. 1B is a relationship diagram between current density and external quantum efficiency. 図2は、実施例の半導体発光素子の概略図である。FIG. 2 is a schematic diagram of a semiconductor light emitting device of an example. 図3は、実施例の半導体発光素子の発光層の概略図である。FIG. 3 is a schematic view of a light emitting layer of the semiconductor light emitting device of the example. 図4は、MOCVD装置の概略図である。FIG. 4 is a schematic view of the MOCVD apparatus. 図5(A)は、結晶成長の手順を示した図であり、図5(B)は、素子化の手順を示した図である。FIG. 5A is a diagram showing a procedure for crystal growth, and FIG. 5B is a diagram showing a procedure for device formation. 図6は、実施例と比較例の外部量子効率をプロットした図である。FIG. 6 is a graph plotting the external quantum efficiencies of the example and the comparative example. 図7は、実施例2のSIMS分析の分析図である。FIG. 7 is an analysis diagram of SIMS analysis in Example 2.

まず、半導体発光素子の放射出力(P)、外部量子効率(ηext)と効率ドループについて説明する。図1(A)に電流密度と放射出力の関係図を示し、図1(B)に電流密度と外部量子効率の関係図を示す。   First, the radiation output (P), external quantum efficiency (ηext), and efficiency droop of the semiconductor light emitting device will be described. FIG. 1A shows a relationship between current density and radiation output, and FIG. 1B shows a relationship between current density and external quantum efficiency.

半導体発光素子の放射出力(P)は、電流密度(J)の増加に対応して増加する。例えば、図3(A)の実線で示すように、電流密度がJD0、Jstd、JD1、JD2の順に増加するのに対応して、放射出力もP0、Pstd、P1、P2の順に増加する。すなわち高い放射出力を得るには電流密度を高くすれば良い。しかし、その放射出力がその電流密度において高いか低いかは分からない。   The radiation output (P) of the semiconductor light emitting device increases corresponding to the increase of the current density (J). For example, as indicated by the solid line in FIG. 3A, the radiation output also increases in the order of P0, Pstd, P1, and P2 as the current density increases in the order of JD0, Jstd, JD1, and JD2. That is, to obtain a high radiation output, the current density should be increased. However, it is not known whether the radiation output is high or low at the current density.

半導体発光素子の発光効率を示す評価値に外部量子効率(ηext)がある。外部量子効率は、半導体発光素子の放射光量子数を注入電子数で除した値であり、電子から光量子への変換比率を表す。すなわち、外部量子効率を用いることで或る電流密度における放射出力が高いか低いかを判断できる。以後、本発明の説明の発光効率は外部量子効率を示すものとする。   There is an external quantum efficiency (ηext) as an evaluation value indicating the luminous efficiency of the semiconductor light emitting device. The external quantum efficiency is a value obtained by dividing the emitted light quantum number of the semiconductor light emitting device by the number of injected electrons, and represents the conversion ratio from electrons to photons. That is, it is possible to determine whether the radiation output at a certain current density is high or low by using the external quantum efficiency. Hereinafter, the light emission efficiency in the description of the present invention indicates the external quantum efficiency.

例えば、或る半導体発光素子の電流密度と放射出力の相関曲線である図1(A)の実線は、電流密度と外部量子効率の相関曲線で表すと図1(B)の実線になる。電流密度をJD0、Jstdの順に増加するのに対応して、外部量子効率はηD0、ηstdの順に増加する。さらに電流密度をJstd、JD1、JD2の順に増加するのに対応して、外部量子効率はηstd、ηD1、ηD2の順に減少する。このように、半導体発光素子の外部量子効率は低い電流密度側に極大値を持ち、高い電流密度になるほど低下する特徴を有する。よって、高い放射出力を得るには、高い電流密度で高い外部量子効率となれば良いことが分かる。   For example, a solid line in FIG. 1A which is a correlation curve between a current density and a radiation output of a certain semiconductor light emitting element is a solid line in FIG. 1B when represented by a correlation curve between the current density and the external quantum efficiency. Corresponding to increasing the current density in the order of JD0 and Jstd, the external quantum efficiency increases in the order of ηD0 and ηstd. Further, in response to increasing the current density in the order of Jstd, JD1, and JD2, the external quantum efficiency decreases in the order of ηstd, ηD1, and ηD2. As described above, the external quantum efficiency of the semiconductor light emitting device has a maximum value on the low current density side, and has a feature of decreasing as the current density becomes higher. Therefore, it can be seen that a high external quantum efficiency can be achieved with a high current density in order to obtain a high radiation output.

効率ドループは、外部量子効率の最大値から或る動作電流密度の外部量子効率を減じて外部量子効率の最大値で除した値であり、外部量子効率の低下比率を表す。この値が小さいほど電流密度に対応した直線性の高い放射出力が得られる。   The efficiency droop is a value obtained by subtracting the external quantum efficiency at a certain operating current density from the maximum value of the external quantum efficiency and dividing the result by the maximum value of the external quantum efficiency, and represents a reduction ratio of the external quantum efficiency. As this value is smaller, a radiation output with higher linearity corresponding to the current density can be obtained.

以上、電流密度の増減に対応した直線性の高い放射出力を得るには効率ドループが小ければ良く、電流密度が高い領域で高い放射出力を得るには外部量子効率が高ければ良いことが分かる。
As described above, it is understood that the efficiency droop is small to obtain a radiation output with high linearity corresponding to the increase / decrease of the current density, and that the external quantum efficiency is high to obtain a high radiation output in a region where the current density is high. .

次に、本発明の半導体発光素子の構造を図2に示し説明する。   Next, the structure of the semiconductor light emitting device of the present invention will be described with reference to FIG.

発明の半導体発光素子の構造は、基板201上にGaN系結晶であるn型窒化物層210と発光層206とp型窒化物層211で構成されている。n型窒化物層210は、低温GaN層202、高温GaN層203、n型GaN層204、SLS(Super Lattice Structure)層205からなっている。またp型窒化物層211は、p型AlGaN層207、第1のp型GaN層208a、第2のp型GaN層208b、コンタクトp型GaN層209からなっている。   The structure of the semiconductor light emitting device of the invention is composed of an n-type nitride layer 210, a light emitting layer 206, and a p-type nitride layer 211, which are GaN-based crystals, on a substrate 201. The n-type nitride layer 210 includes a low-temperature GaN layer 202, a high-temperature GaN layer 203, an n-type GaN layer 204, and an SLS (Super Lattice Structure) layer 205. The p-type nitride layer 211 includes a p-type AlGaN layer 207, a first p-type GaN layer 208a, a second p-type GaN layer 208b, and a contact p-type GaN layer 209.

n型GaN層204には、n型不純物としてシリコン(Si)をドープしている。p型窒化物層211には、p型不純物としてマグネシウム(Mg)をドープしている。p型AlGaN層207のMg濃度は、1.0×1019〜6.0×1019atoms/cmとしている。第1のp型GaN層208aのMg濃度は、p型AlGaN層207のMg濃度より高濃度でコンタクトp型GaN層209より低濃度としている。第2のp型GaN層208bのMg濃度は、p型AlGaN層207と同程度のMg濃度としている。そして、コンタクトp型GaN層209のMg濃度は、p型窒化物層211において最も高濃度としている。 The n-type GaN layer 204 is doped with silicon (Si) as an n-type impurity. The p-type nitride layer 211 is doped with magnesium (Mg) as a p-type impurity. The Mg concentration of the p-type AlGaN layer 207 is 1.0 × 10 19 to 6.0 × 10 19 atoms / cm 3 . The Mg concentration of the first p-type GaN layer 208 a is higher than that of the p-type AlGaN layer 207 and lower than that of the contact p-type GaN layer 209. The Mg concentration of the second p-type GaN layer 208b is set to the same Mg concentration as that of the p-type AlGaN layer 207. The Mg concentration of the contact p-type GaN layer 209 is the highest in the p-type nitride layer 211.

そして、n側電極214はn型GaN層204の上に配置している。p側透明電極212はコンタクトp型GaN層209上に配置し、その上にp側電極213を配置した構造としている。
The n-side electrode 214 is disposed on the n-type GaN layer 204. The p-side transparent electrode 212 is disposed on the contact p-type GaN layer 209, and the p-side electrode 213 is disposed thereon.

次に、本発明の半導体発光素子の構造を特徴付ける層の詳細について説明する。特には、p型AlGaN層207と第1のp型GaN層208aと第2のp型GaN層208bの構造により、電流密度の増減に対応した直線性の高い放射出力と、電流密度が高い領域で高い放射出力を得ることを可能としている。   Next, details of the layers characterizing the structure of the semiconductor light emitting device of the present invention will be described. In particular, the structure of the p-type AlGaN layer 207, the first p-type GaN layer 208a, and the second p-type GaN layer 208b has a high linearity radiation output corresponding to the increase and decrease of the current density, and a region where the current density is high. This makes it possible to obtain high radiation output.

p型AlGaN層207はAlGaN系結晶層であり、Mg濃度を1.0×1019atoms/cm以上、6.0×1019atoms/cm以下としている。このMg濃度範囲とすることで、p型AlGaN層207の結晶欠陥(元素配列の乱れ等)の発生を抑制して正孔移動度を高くできる。 The p-type AlGaN layer 207 is an AlGaN-based crystal layer and has an Mg concentration of 1.0 × 10 19 atoms / cm 3 or more and 6.0 × 10 19 atoms / cm 3 or less. By setting this Mg concentration range, the generation of crystal defects (such as disorder of element arrangement) in the p-type AlGaN layer 207 can be suppressed, and hole mobility can be increased.

Mg濃度が1.0×1019atoms/cm未満だと正孔濃度が不足し、6.0×1019atoms/cm超だと結晶欠陥密度が極めて高くなり第1のp型GaN208aの正孔の活性化率を低下することになる。また、厚みは電子のオーバーフローを抑制し、比抵抗を低く抑制できる10nm以上〜40nm程度が良く、好適には15nm〜30nm程度が良い。アルミニウム組成も同様な理由にて0.07〜0.2が良く、最適には、0.1〜0.15程度が良い。 If the Mg concentration is less than 1.0 × 10 19 atoms / cm 3 , the hole concentration is insufficient, and if it exceeds 6.0 × 10 19 atoms / cm 3 , the crystal defect density becomes extremely high, and the first p-type GaN 208a The activation rate of holes is reduced. Further, the thickness is preferably about 10 nm to 40 nm, preferably about 15 nm to 30 nm, which can suppress the overflow of electrons and can reduce the specific resistance. For the same reason, the aluminum composition is preferably 0.07 to 0.2, and most preferably about 0.1 to 0.15.

第1のp型GaN層208aはGaN系結晶層であり、Mg濃度をp型AlGaN層207より高くした。この構造により第1のp型GaN層208aの正孔濃度を、p型AlGaN層207の正孔濃度より高くできる。   The first p-type GaN layer 208 a is a GaN-based crystal layer, and the Mg concentration is higher than that of the p-type AlGaN layer 207. With this structure, the hole concentration of the first p-type GaN layer 208 a can be made higher than the hole concentration of the p-type AlGaN layer 207.

特に、第1のp型GaN層208aは、バンドギャップがp型AlGaN層207より狭いのでp型不純物であるMgの活性化率が高いこと、p型AlGaN層207の結晶欠陥密度を抑制したこと、GaN結晶が2元系結晶であり結晶欠陥の発生を抑制できることから、p型AlGaN層207より極めて高い正孔濃度が得られる。   In particular, since the first p-type GaN layer 208a has a narrower band gap than the p-type AlGaN layer 207, the activation rate of Mg as a p-type impurity is high, and the crystal defect density of the p-type AlGaN layer 207 is suppressed. Since the GaN crystal is a binary crystal and the generation of crystal defects can be suppressed, a much higher hole concentration than that of the p-type AlGaN layer 207 can be obtained.

Mg濃度は、6.0×1019atoms/cm以上2.0×1020atoms/cm以下が良く、好適には7.0×1019atoms/cm以上1.5×1020atoms/cm以下が良い。Mg濃度が6.0×1019atoms/cm未満だと正孔濃度が不足し、2.0×1020atoms/cm超だと結晶欠陥密度が高くなり正孔の活性化率が低下して比抵抗が高くなる。また、膜厚はp型AlGaN層207へ十分な正孔濃度を供給できる5nm以上50nm以下が良く、好適には15nmから35nm程度が良い。膜厚が5nm未満だとp型AlGaN層207へ十分な正孔濃度を供給できず、50nm超だと比抵抗が高くなる。 The Mg concentration is preferably 6.0 × 10 19 atoms / cm 3 or more and 2.0 × 10 20 atoms / cm 3 or less, preferably 7.0 × 10 19 atoms / cm 3 or more and 1.5 × 10 20 atoms. / Cm 3 or less is preferable. If the Mg concentration is less than 6.0 × 10 19 atoms / cm 3 , the hole concentration is insufficient, and if it exceeds 2.0 × 10 20 atoms / cm 3 , the crystal defect density increases and the hole activation rate decreases. As a result, the specific resistance increases. Further, the film thickness is preferably 5 nm or more and 50 nm or less that can supply a sufficient hole concentration to the p-type AlGaN layer 207, and preferably about 15 nm to 35 nm. If the film thickness is less than 5 nm, a sufficient hole concentration cannot be supplied to the p-type AlGaN layer 207, and if it exceeds 50 nm, the specific resistance increases.

第2のp型GaN層208bはGaN系結晶層であり、Mg濃度をp型AlGaN層207と同程度とした。この構造により、p型AlGaN層207より極めて高い正孔移動度が得られ、比抵抗を小さくできる。   The second p-type GaN layer 208b is a GaN-based crystal layer, and the Mg concentration is approximately the same as that of the p-type AlGaN layer 207. With this structure, extremely higher hole mobility than that of the p-type AlGaN layer 207 can be obtained, and the specific resistance can be reduced.

第2のp型GaN層208bは、バンドギャップがp型AlGaN層207より狭いのでp型不純物であるMgの活性化率が高いこと、p型AlGaN層207の結晶欠陥密度を抑制したことにより第1のp型GaN層207aの結晶欠陥密度も抑制できること、GaN結晶が2元系結晶であり結晶欠陥の発生を抑制できることから、p型AlGaN層207より極めて低い比抵抗が得られる。   Since the second p-type GaN layer 208b has a narrower band gap than the p-type AlGaN layer 207, the activation rate of Mg, which is a p-type impurity, is high, and the crystal defect density of the p-type AlGaN layer 207 is suppressed. Since the crystal defect density of the single p-type GaN layer 207a can be suppressed and the generation of crystal defects can be suppressed because the GaN crystal is a binary crystal, a specific resistance much lower than that of the p-type AlGaN layer 207 can be obtained.

Mg濃度は、1.0×1019atoms/cm以上6.0×1019atoms/cm以下の範囲が良い。Mg濃度が1.0×1019atoms/cm未満だと正孔濃度が不足し、6.0×1019atoms/cm超だと正孔移動度が低下して、何れの場合も比抵抗が高くなる。また膜厚は、コンタクトp型GaN層209から第1のp型GaN層208aへ均一に正孔供給ができれば良く30nm程度以上あれば良い。 The Mg concentration is preferably in the range of 1.0 × 10 19 atoms / cm 3 or more and 6.0 × 10 19 atoms / cm 3 or less. If the Mg concentration is less than 1.0 × 10 19 atoms / cm 3 , the hole concentration becomes insufficient, and if it exceeds 6.0 × 10 19 atoms / cm 3 , the hole mobility decreases. Resistance increases. The film thickness may be about 30 nm or more as long as holes can be uniformly supplied from the contact p-type GaN layer 209 to the first p-type GaN layer 208a.

コンタクトp型GaN層209はGaN系結晶層であり、Mg濃度はp型窒化物層211において最も高い濃度とした。この構造により、p側透明電極212からコンタクトp型GaN層209へ効率良く正孔が注入される。   The contact p-type GaN layer 209 is a GaN-based crystal layer, and the Mg concentration is the highest in the p-type nitride layer 211. With this structure, holes are efficiently injected from the p-side transparent electrode 212 into the contact p-type GaN layer 209.

以上のp型窒化物層211の構造とすること、電流密度が約25A/cm程度以下では、発光層206への正孔注入効率を抑制でき、電流密度が約25A/cm程度以上では、発光層206への正孔注入効率の低下を抑制できる。 With the structure of the p-type nitride layer 211 described above, when the current density is about 25 A / cm 2 or less, the efficiency of hole injection into the light emitting layer 206 can be suppressed, and when the current density is about 25 A / cm 2 or more. In addition, a decrease in the efficiency of hole injection into the light emitting layer 206 can be suppressed.

換言すれば、本発明の半導体発光素子構造は、電流密度が25A/cm程度以下における外部量子効率を抑制し(例えば図1(B)のJηstdがJηstd*になる)、電流密度が25A/cm程度以上における外部量子効率の低下を抑制する(例えば図1(B)のJη2がJη2*になる)ことを可能とした。同時に、効率ドループを小さくできる。すなわち、図1(B)の実線の外部量子効率曲線は一点鎖線の外部量子効率曲線になり、図1(A)の実線の放射出力曲線は一点鎖線の放射出力曲線になる。 In other words, the semiconductor light emitting device structure of the present invention suppresses external quantum efficiency when the current density is about 25 A / cm 2 or less (for example, Jηstd in FIG. 1B becomes Jηstd *), and the current density is 25 A / cm2. It is possible to suppress a decrease in external quantum efficiency at about cm 2 or more (for example, Jη2 in FIG. 1B becomes Jη2 *). At the same time, the efficiency droop can be reduced. That is, the solid external quantum efficiency curve in FIG. 1B is a one-dot chain external quantum efficiency curve, and the solid line radiation output curve in FIG. 1A is a one-dot chain radiation output curve.

このように、本発明の半導体発光素子構造は、電流密度の増減に対応した直線性の高い放射出力が得られることを可能とし、電流密度を増加しても高い放射出力が得られることを可能とした優れてたものである。   As described above, the semiconductor light emitting device structure of the present invention can obtain a high linearity radiation output corresponding to the increase or decrease of the current density, and can obtain a high radiation output even if the current density is increased. It was excellent.

次に、本発明の発光層206の構造と作用について図3を用いて説明する。   Next, the structure and operation of the light emitting layer 206 of the present invention will be described with reference to FIG.

発光層206は、多重量子井戸構造となっており、SLS層205の上に第1障壁層206aと第1井戸層206bが配置されてなる電子貯留層206eが構成され、その上に障壁層206cと井戸層206dが配置されてなる単位放射層206fが複数配置され、最後に障壁層206cが配置された構造となっている。   The light emitting layer 206 has a multiple quantum well structure, and an electron storage layer 206e in which a first barrier layer 206a and a first well layer 206b are arranged on the SLS layer 205 is formed, and a barrier layer 206c is formed thereon. A plurality of unit radiation layers 206f each having a well layer 206d are disposed, and finally a barrier layer 206c is disposed.

第1障壁層206aはインジウム(In)を含有したGaN系結晶層であり、そのバンドギャップは他の障壁層206cのバンドギャップより狭く、第1井戸層206bおよび井戸層206dのバンドギャップより広い。第1井戸層206bはインジウム(In)を含有したGaN系結晶層であり、そのバンドギャップは他の井戸層206dのバンドギャップより狭い。この構造により、第1障壁層206aと第1井戸層206bは電子を貯留することができる電子貯留層206eとしている。   The first barrier layer 206a is a GaN-based crystal layer containing indium (In), and its band gap is narrower than the band gaps of the other barrier layers 206c and wider than the band gaps of the first well layer 206b and the well layer 206d. The first well layer 206b is a GaN-based crystal layer containing indium (In), and its band gap is narrower than the band gap of the other well layer 206d. With this structure, the first barrier layer 206a and the first well layer 206b serve as an electron storage layer 206e that can store electrons.

電子貯留層206eは、この層から供給される電子とp型窒化物層211から供給される正孔が、複数の放射単位層206fで放射再結合する効率を向上させる。然るに、高い電流密度(例えば35A/cm以上)における外部量子効率の低下を抑制できる。 The electron storage layer 206e improves the efficiency with which the electrons supplied from this layer and the holes supplied from the p-type nitride layer 211 are radiatively recombined by the plurality of radiation unit layers 206f. However, it is possible to suppress a decrease in external quantum efficiency at a high current density (for example, 35 A / cm 2 or more).

障壁層206cはGaN系結晶層であり、そのバンドギャップは、第1障壁層206aのバンドギャップより広い。井戸層206dはインジウム(In)を含有したGaN系結晶層であり、そのバンドギャップは第1井戸層206bのバンドギャップより広い。そして、障壁層206cと井戸層206dを単位放射層206fとして5単位から15単位を積層した構造としている。単位放射層206fが5単位未満では、高い電流密度(例えば35A/cm以上)における外部量子効率の低下を抑制できなくなる。また、15単位以上では抵抗が大きくなり、やはり効率が低下する。 The barrier layer 206c is a GaN-based crystal layer, and its band gap is wider than that of the first barrier layer 206a. The well layer 206d is a GaN-based crystal layer containing indium (In), and its band gap is wider than that of the first well layer 206b. The barrier layer 206c and the well layer 206d are unit radiating layers 206f, and 5 to 15 units are stacked. When the unit radiation layer 206f is less than 5 units, it is impossible to suppress a decrease in external quantum efficiency at a high current density (for example, 35 A / cm 2 or more). On the other hand, when the unit is 15 units or more, the resistance increases, and the efficiency also decreases.

本発明の半導体発光素子は、電流密度に対応した直線性の高い放射出力が得られるので、例えば、照明器具に用いれば簡便な駆動回路(電源回路)で調光が可能になる。また、高い電流密度においても高い放射出力が得られるので、例えば、大光量(大光束)を必要とする照明器具の小型化や省エネ化が可能になる。さらに、高い発光輝度の照明器具の製作が可能になる。   Since the semiconductor light-emitting device of the present invention can obtain a radiation output with high linearity corresponding to the current density, for example, if it is used in a lighting fixture, dimming can be performed with a simple drive circuit (power supply circuit). In addition, since a high radiation output can be obtained even at a high current density, for example, it is possible to reduce the size and energy of a lighting fixture that requires a large amount of light (a large luminous flux). Furthermore, it is possible to manufacture a lighting device with high emission brightness.

本発明の実施例について以下に説明する。本発明の半導体発光素子は、MOCVD法により半導体発光素子層を図5(A)示した手順で結晶成長した。また、図5(B)に示した手順で素子化した。   Examples of the present invention will be described below. In the semiconductor light emitting device of the present invention, the semiconductor light emitting device layer was crystal-grown by the procedure shown in FIG. Further, the device was formed by the procedure shown in FIG.

[ MOCVD装置 ]
まず、半導体発光素子の結晶成長に用いたMOCVD装置について図4に示して説明する。MOCVD装置100は、材料ガスを供給する材料ガス供給管102と押さえガスを供給する押さえ供給管104が、気密された反応容器101内部に配置された、対応する材料ガスノズル103と押さえガスノズル105に接続されており、材料ガスと押さえガスがサセプタ107に置かれた基板110に吹付けられる構造となっている。基板110は、サセプタ107を通じてヒーター108により所定の温度に加熱される。また基板110は、サセプタ107に接続された回転軸109によって毎分10回転で回転する。使用済みの材料ガスは排気管106を通じて排気される。
[MOCVD equipment]
First, an MOCVD apparatus used for crystal growth of a semiconductor light emitting device will be described with reference to FIG. In the MOCVD apparatus 100, a material gas supply pipe 102 for supplying a material gas and a pressure supply pipe 104 for supplying a pressure gas are connected to corresponding material gas nozzles 103 and pressure gas nozzles 105 arranged in an airtight reaction vessel 101. In this structure, the material gas and the pressing gas are sprayed onto the substrate 110 placed on the susceptor 107. The substrate 110 is heated to a predetermined temperature by the heater 108 through the susceptor 107. The substrate 110 is rotated at 10 revolutions per minute by a rotation shaft 109 connected to the susceptor 107. The used material gas is exhausted through the exhaust pipe 106.

[ 結晶成長の手順 ]
1.基板熱処理(P11)
基板110として、主面がc面の2インチ単結晶サファイア基板を、サセプタ107にセットし、毎分10回で回転した。続いて、反応容器101内部圧力を大気圧とした。以後の反応容器内部圧力は大気圧を保持した。次に、材料ガスノズル103から水素ガスを10SLM(L/min、0℃、1気圧)供給し、押えガスノズル105から水素ガスを10SLM供給した。そして、基板温度を1150℃まで昇温し、10分間水素雰囲気中で基板を熱処理した。
[Procedure for crystal growth]
1. Substrate heat treatment (P11)
As the substrate 110, a 2 inch single crystal sapphire substrate having a c-plane main surface was set on the susceptor 107 and rotated at 10 times per minute. Subsequently, the internal pressure of the reaction vessel 101 was set to atmospheric pressure. The subsequent pressure inside the reaction vessel was maintained at atmospheric pressure. Next, 10 SLM (L / min, 0 ° C., 1 atm) of hydrogen gas was supplied from the material gas nozzle 103, and 10 SLM of hydrogen gas was supplied from the presser gas nozzle 105. Then, the substrate temperature was raised to 1150 ° C., and the substrate was heat-treated in a hydrogen atmosphere for 10 minutes.

2.低温GaN層の形成(P12)
基板温度を700℃まで降温した後、材料ガスノズル103から水素ガスを1SLM、アンモニア(NH)ガスを5SLM、そしてトリメチルガリウム(TMGa)ガスを5SCCM(cc/min、0℃、1気圧)供給して、200秒間成長し、低温GaN層202としてGaN結晶層を形成した。
2. Formation of low-temperature GaN layer (P12)
After the substrate temperature is lowered to 700 ° C., 1 SLM of hydrogen gas, 5 SLM of ammonia (NH 3 ) gas, and 5 SCCM (cc / min, 0 ° C., 1 atm) of trimethyl gallium (TMGa) gas are supplied from the material gas nozzle 103. The GaN crystal layer was formed as the low temperature GaN layer 202 by growing for 200 seconds.

3.高温GaN層の形成(P13)
基板温度を1200℃まで昇温した後、材料ガスノズル103から水素ガスを2SLM、アンモニアガスを4SLM、そしてTMGaガスを15SCCM供給して、20分間成長し、高温GaN層203としてGaN結晶層を形成した。
3. Formation of high-temperature GaN layer (P13)
After raising the substrate temperature to 1200 ° C., 2 SLM of hydrogen gas, 4 SLM of ammonia gas, and 15 SCCM of TMGa gas were supplied from the material gas nozzle 103 and grown for 20 minutes to form a GaN crystal layer as the high temperature GaN layer 203. .

4.n型GaN層の形成(P14)
基板温度を1200℃のまま、反応ガスノズル103から水素ガスを2SLM、アンモニアガスを4SLM、そしてTMGaガスを15SCCM、n型不純物源としてのジシランガス(Si)ガスを0.2SCCM供給して、90分間成長し、膜厚約6mのn型GaN層204としてSiを含有したGaN結晶層を形成した。
4). Formation of n-type GaN layer (P14)
With the substrate temperature maintained at 1200 ° C., 2 SLM of hydrogen gas, 4 SLM of ammonia gas, 15 SCCM of TMGa gas, and 0.2 SCCM of disilane gas (Si 2 H 6 ) as an n-type impurity source are supplied from the reaction gas nozzle 103, Growing for 90 minutes, a GaN crystal layer containing Si was formed as an n-type GaN layer 204 having a thickness of about 6 m.

5.押さえガスの窒素ガス化(P15)
n型GaN層形成後、押えガスノズル105からの供給ガスを、水素ガスを10LSMから窒素ガスを10SLMに変更した。
5. Nitrogen gasification of holding gas (P15)
After forming the n-type GaN layer, the supply gas from the presser gas nozzle 105 was changed from 10 LSM for hydrogen gas to 10 SLM for nitrogen gas.

6.SLS(Super Lattice Structures)層の形成(P16)
基板温度を900℃まで降温した後、材料ガスノズル103から水素ガスを2SLM、アンモニアガスを4SLM、そしてトリエチルガリウム(TEGa)ガスを35SCCM供給して、50秒間成長し、第1のSLS層としてGaN結晶層を形成した。
基板温度を900℃のまま、材料ガスノズル103から水素ガスを2SLM、アンモニアガスを4SLM、そしてTEGaガスを35SCCM、トリメチルインジウム(TMIn)ガスを50SCCM供給して、50秒間成長し、第2のSLS層としてInGaN結晶層を形成した。SLS層205は、第1のSLS層と第2のSLS層を交互に4層成長し、最後に第1のSLS層を成長して形成した。
6). Formation of SLS (Super Lattice Structures) layer (P16)
After the substrate temperature is lowered to 900 ° C., 2 SLM of hydrogen gas, 4 SLM of ammonia gas, and 35 SCCM of triethylgallium (TEGa) gas are supplied from the material gas nozzle 103 and grown for 50 seconds, and a GaN crystal is formed as a first SLS layer. A layer was formed.
With the substrate temperature kept at 900 ° C., 2 SLM of hydrogen gas, 4 SLM of ammonia gas, 35 SCCM of TEGa gas, and 50 SCCM of trimethylindium (TMIn) gas are supplied from the material gas nozzle 103, and the second SLS layer is grown for 50 seconds. As a result, an InGaN crystal layer was formed. The SLS layer 205 was formed by alternately growing the first SLS layer and the second SLS layer in four layers, and finally growing the first SLS layer.

7.発光層の形成(P17)
基板温度を850℃まで降温した後、材料ガスノズル103から窒素ガスを2SLM、アンモニアガスを4SLM、そしてTEGaガスを5SCCM、TMInガスを50SCCM供給して、150秒間成長し、厚み約5nmの第1障壁層206aとしてInGaN結晶層を形成した。基板温度を850℃のまま、材料ガスノズル103から窒素ガスを2SLM、アンモニアガスを4SLM、そしてTEGaガスを5SCCM、TMInガスを90SCCM供給して、150秒間成長し、厚み約4nmの第1井戸層206bと井戸層206dとしてInGaN結晶層を形成した。基板温度を850℃のまま、材料ガスノズル103から窒素ガスを2SLM、アンモニアガスを4SLM、そしてTEGaガスを5SCCM供給して、150秒間成長し、厚み約5nmの障壁層206cとしてGaN層を形成した。発光層206は、第1障壁層206aと第1井戸層206bを成長し、その後障壁層206cと井戸層206dを交互に8層成長し、最後に障壁層206cを成長して形成した。尚、第1井戸層206bのインジウム(In)組成は、第1障壁層206aの上に成長することで、他の井戸層206dのインジウム組成より高くなる。
7). Formation of light emitting layer (P17)
After the substrate temperature is lowered to 850 ° C., the material gas nozzle 103 supplies 2 SLM of nitrogen gas, 4 SLM of ammonia gas, 5 SCCM of TEGa gas, and 50 SCCM of TMIn gas, and grows for 150 seconds, the first barrier having a thickness of about 5 nm An InGaN crystal layer was formed as the layer 206a. With the substrate temperature kept at 850 ° C., 2 SLM of nitrogen gas, 4 SLM of ammonia gas, 5 SCCM of TEGa gas, and 90 SCCM of TMIn gas are supplied from the material gas nozzle 103, grown for 150 seconds, and the first well layer 206b having a thickness of about 4 nm. An InGaN crystal layer was formed as the well layer 206d. With the substrate temperature kept at 850 ° C., 2 SLM of nitrogen gas, 4 SLM of ammonia gas, and 5 SCCM of TEGa gas were supplied from the material gas nozzle 103 and grown for 150 seconds to form a GaN layer as a barrier layer 206c having a thickness of about 5 nm. The light emitting layer 206 was formed by growing the first barrier layer 206a and the first well layer 206b, then growing the barrier layer 206c and the well layer 206d alternately eight layers, and finally growing the barrier layer 206c. The indium (In) composition of the first well layer 206b becomes higher than the indium composition of the other well layers 206d by growing on the first barrier layer 206a.

8.押さえガスの水素ガス化(P18)
発光層形成後、押えガスノズル105からの供給ガスを、窒素ガスを10LSMから水素ガスを10SLMに変更した。
8). Hydrogen gas of holding gas (P18)
After forming the light emitting layer, the supply gas from the presser gas nozzle 105 was changed from 10 LSM for nitrogen gas to 10 SLM for hydrogen gas.

9.p型AlGaN層の形成(P19)
基板温度を1000℃まで昇温した後、材料ガスノズル103から水素ガスを3SLM、アンモニアガスを4SLM、そしてTMGaガスを1SCCM、トリメチルアルミニウム(TMAl)ガスを1SCCM、p型不純物源としてのビスシクロペンタジエニルマグネシウム(CpMg)ガスを30SCCM供給して、500秒間成長し、p型AlGaN層207として膜厚約30nm、Al組成約0.15のMgを含有したAlGaN結晶層を形成した。Mg濃度は、2.4×1019atoms/cm〜4.3×1019atoms/cmであった。
9. Formation of p-type AlGaN layer (P19)
After raising the substrate temperature to 1000 ° C., hydrogen gas is 3 SLM, ammonia gas is 4 SLM, TMGa gas is 1 SCCM, trimethylaluminum (TMAl) gas is 1 SCCM, and biscyclopentadiene as a p-type impurity source from the material gas nozzle 103. An enilmagnesium (Cp 2 Mg) gas was supplied at 30 SCCM and grown for 500 seconds to form an AlGaN crystal layer containing Mg having a thickness of about 30 nm and an Al composition of about 0.15 as the p-type AlGaN layer 207. Mg concentration was 2.4 × 10 19 atoms / cm 3 ~4.3 × 10 19 atoms / cm 3.

10.p型GaN層の形成(P20)
基板温度を1000℃まま、材料ガスノズル103から水素ガスを3SLM、アンモニアガスを4SLM、そしてTMGaガスを3.5SCCM、Cp2Mgガスを80SCCM供給して、40秒間成長し、第1のp型GaN層208aとして膜厚約8nmのMgを含有したGaN結晶層を形成した。Mg濃度は、7.0×1019atoms/cm〜1.0×1020atoms/cmであった。
10. Formation of p-type GaN layer (P20)
With the substrate temperature kept at 1000 ° C., 3SLM for hydrogen gas, 4SLM for ammonia gas, 3.5SCCM for TMGa gas, and 80SCCM for Cp2Mg gas are supplied from the material gas nozzle 103, grown for 40 seconds, and the first p-type GaN layer 208a is grown. As a result, a GaN crystal layer containing Mg having a thickness of about 8 nm was formed. Mg density | concentration was 7.0 * 10 < 19 > atoms / cm < 3 > -1.0 * 10 < 20 > atoms / cm < 3 >.

基板温度を1000℃まま、材料ガスノズル103から水素ガスを3SLM、アンモニアガスを4SLM、そしてTMGaガスを3.5SCCM、Cp2Mgガスを30SCCM供給して、360秒間成長し、第2のp型GaN層208bとして膜厚約72nmのMgを含有したGaN結晶層を形成した。Mg濃度は、2.4×1019atoms/cm〜4.3×1019atoms/cmであった。 With the substrate temperature kept at 1000 ° C., 3SLM for hydrogen gas, 4SLM for ammonia gas, and 3.5SCCM for TMGa gas and 30SCCM for Cp2Mg gas are supplied from the material gas nozzle 103 to grow for 360 seconds, and the second p-type GaN layer 208b is grown. As a result, a GaN crystal layer containing Mg having a thickness of about 72 nm was formed. Mg concentration was 2.4 × 10 19 atoms / cm 3 ~4.3 × 10 19 atoms / cm 3.

11.コンタクトp型GaN層の形成(P21)
基板温度を1000℃まま、材料ガスノズル103から水素ガスを3SLM、アンモニアガスを4SLM、そしてTMGaガスを1.75SCCM、Cp2Mgガスを200SCCM供給して、20秒間成長し、コンタクトp型GaN層209として膜厚約3nmのMgを含有したGaN結晶層を形成した。
11. Formation of contact p-type GaN layer (P21)
With the substrate temperature kept at 1000 ° C., hydrogen gas 3SLM, ammonia gas 4SLM, TMGa gas 1.75 SCCM and Cp2Mg gas 200 SCCM are supplied from the material gas nozzle 103 and grown for 20 seconds to form a contact p-type GaN layer 209. A GaN crystal layer containing Mg having a thickness of about 3 nm was formed.

以上の手順にて、半導体発光素子層を基板201の上に、低温GaN層202、高温GaN層203、n型GaN層204、SLS層205、発光層206、p型AlGaN層207、第1のp型GaN層208a、第2のp型GaN層208b、コンタクトp型GaN層209の順に成長した。   Through the above procedure, the semiconductor light emitting element layer is placed on the substrate 201, the low temperature GaN layer 202, the high temperature GaN layer 203, the n-type GaN layer 204, the SLS layer 205, the light emitting layer 206, the p-type AlGaN layer 207, the first The p-type GaN layer 208a, the second p-type GaN layer 208b, and the contact p-type GaN layer 209 were grown in this order.

[ 素子化の手順 ]
まず、半導体素子層の結晶成長済み基板をフォトリソグラフィー技術とドライエッチング技術により、n型GaN層204まで到達する深さの素子区画溝216を形成した(P21)。次に、フォトリソグラフィー技術とスパッタリング技術により、コンタクトp型GaN層209上にp側透明電極212を形成した(P22)。次に、フォトリソグラフィー技術と金属蒸着技術により、p側透明電極212の上にp側電極213を形成した(P23)。同じく、フォトリソグラフィー技術と金属蒸着技術により、素子区画溝216形成で露出したn型GaN層204上にn側電極214を形成した(P24)。最後に、スクライブ技術とブレーキング技術により、素子区画溝に沿って素子分離した(P25)。
[Elementization procedure]
First, an element partition groove 216 having a depth reaching the n-type GaN layer 204 was formed on the substrate on which the crystal of the semiconductor element layer had been grown by a photolithography technique and a dry etching technique (P21). Next, the p-side transparent electrode 212 was formed on the contact p-type GaN layer 209 by photolithography technique and sputtering technique (P22). Next, the p-side electrode 213 was formed on the p-side transparent electrode 212 by photolithography technique and metal vapor deposition technique (P23). Similarly, the n-side electrode 214 was formed on the n-type GaN layer 204 exposed by forming the element partition groove 216 by photolithography technique and metal deposition technique (P24). Finally, the elements were separated along the element partition grooves by the scribing technique and the breaking technique (P25).

以上の手順にて、半導体発光素子200を形成した。この半導体発光素子200のp側電極213からn側電極214に電流を流せば、p型窒化物層211から正孔が発光層206へ注入され、n型窒化物層210から電子が発光層206へ注入されて、発光層206で正孔と電子が放射再結合して、波長約440nm〜450nmにて発光する。   The semiconductor light emitting device 200 was formed by the above procedure. When a current is passed from the p-side electrode 213 to the n-side electrode 214 of the semiconductor light emitting device 200, holes are injected from the p-type nitride layer 211 into the light-emitting layer 206, and electrons from the n-type nitride layer 210 are emitted from the light-emitting layer 206. Then, holes and electrons are radiated and recombined in the light emitting layer 206 to emit light at a wavelength of about 440 nm to 450 nm.

実施例2の半導体発光素子200の結晶成長の手順、素子化の手順は実施例1と同じである。但し、第1のp型GaN層208aと第2のp型GaN層208bの成長時間、膜厚、Mg濃度は以下の(E2−1)と(E2−2)である。
(E2−1)第1のp型GaN層
・成長時間:100秒
・膜厚:20nm
・Mg濃度:7.0×1019atoms/cm〜1.0×1020atoms/cm
(E2−2)第2のp型GaN層
・成長時間:300秒
・膜厚:60nm
・Mg濃度:2.4×1019atoms/cm〜4.3×1019atoms/cm
The crystal growth procedure and device fabrication procedure of the semiconductor light emitting device 200 of the second embodiment are the same as those of the first embodiment. However, the growth time, film thickness, and Mg concentration of the first p-type GaN layer 208a and the second p-type GaN layer 208b are (E2-1) and (E2-2) below.
(E2-1) First p-type GaN layer • Growth time: 100 seconds • Film thickness: 20 nm
Mg concentration: 7.0 × 10 19 atoms / cm 3 to 1.0 × 10 20 atoms / cm 3
(E2-2) Second p-type GaN layer Growth time: 300 seconds Film thickness: 60 nm
Mg concentration: 2.4 × 10 19 atoms / cm 3 to 4.3 × 10 19 atoms / cm 3

実施例3の半導体発光素子200の結晶成長の手順、素子化の手順は実施例1と同じである。但し、第1のp型GaN層208aと第2のp型GaN層208bの成長時間、膜厚、Mg濃度は以下の(E3−1)と(E3−2)である。
(E3−1)第1のp型GaN層
・成長時間:150秒
・膜厚:30nm
・Mg濃度:7.0×1019atoms/cm〜1.0×1020atoms/cm
(E3−2)第2のp型GaN層
・成長時間:250秒
・膜厚:50nm
・Mg濃度:2.4×1019atoms/cm〜4.3×1019atoms/cm
(比較例1)
The crystal growth procedure and device fabrication procedure of the semiconductor light emitting device 200 of the third embodiment are the same as those of the first embodiment. However, the growth time, film thickness, and Mg concentration of the first p-type GaN layer 208a and the second p-type GaN layer 208b are (E3-1) and (E3-2) below.
(E3-1) First p-type GaN layer • Growth time: 150 seconds • Film thickness: 30 nm
Mg concentration: 7.0 × 10 19 atoms / cm 3 to 1.0 × 10 20 atoms / cm 3
(E3-2) Second p-type GaN layer Growth time: 250 seconds Film thickness: 50 nm
Mg concentration: 2.4 × 10 19 atoms / cm 3 to 4.3 × 10 19 atoms / cm 3
(Comparative Example 1)

比較例1の半導体発光素子200の結晶成長の手順、素子化の手順は実施例1と同じである。但し、p型AlGaN層207とし、p型GaN層208は単層構成にした。それぞれの結晶層の成長時間、膜厚、Mg濃度は以下の(C1−1)と(C1−2)である。なお、比較例1は特許文献1のp型窒化物層の構成を模した構造である。
(C1−1)p型AlGaN層
・成長時間:500秒
・膜厚:30nm
・Mg濃度:7.0×1019atoms/cm〜1.0×1020atoms/cm
(C1−2)p型GaN層
・成長時間:400秒
・膜厚:80nm
・Mg濃度:2.4×1019atoms/cm〜4.3×1019atoms/cm
The crystal growth procedure and device fabrication procedure of the semiconductor light emitting device 200 of Comparative Example 1 are the same as those of Example 1. However, the p-type AlGaN layer 207 was used, and the p-type GaN layer 208 was configured as a single layer. The growth time, film thickness, and Mg concentration of each crystal layer are the following (C1-1) and (C1-2). Comparative Example 1 has a structure simulating the configuration of the p-type nitride layer of Patent Document 1.
(C1-1) p-type AlGaN layer Growth time: 500 seconds Film thickness: 30 nm
Mg concentration: 7.0 × 10 19 atoms / cm 3 to 1.0 × 10 20 atoms / cm 3
(C1-2) p-type GaN layer • Growth time: 400 seconds • Film thickness: 80 nm
Mg concentration: 2.4 × 10 19 atoms / cm 3 to 4.3 × 10 19 atoms / cm 3

以上の手順にて実施例1〜3、比較例1の半導体発光素子200を製作した。なお、結晶成長条件と膜厚およびMg濃度の違いについては、表1に記載した。

Figure 2014192274
The semiconductor light emitting devices 200 of Examples 1 to 3 and Comparative Example 1 were manufactured by the above procedure. The crystal growth conditions and the differences in film thickness and Mg concentration are shown in Table 1.

Figure 2014192274

次に実施例1〜3と比較例1の評価結果について説明する。外部量子効率と電流密度および効率ドループの結果を表2に掲載した。また電流密度・外部量子効率曲線を図6に示した。図7には実施例2の半導体発光素子のSIMS(Secondary Ion Mass Spectrometry)の深さ方向分析の結果を示した。   Next, the evaluation results of Examples 1 to 3 and Comparative Example 1 will be described. Table 2 shows the results of external quantum efficiency, current density, and efficiency droop. The current density / external quantum efficiency curve is shown in FIG. FIG. 7 shows the result of SIMS (Secondary Ion Mass Spectrometry) depth direction analysis of the semiconductor light emitting device of Example 2.

まず、放射出力等の測定は分光光度計を用いた。試料はp側電極213とn側電極214を形成した段階(P24)の素子形成済み基板を用いた。また放射出力は、全放射束の一部を計測して評価値とした。よって外部量子効率は全放射束の値より小さい値となっている。

Figure 2014192274
First, a spectrophotometer was used for measurement of radiation output and the like. As the sample, an element-formed substrate at the stage where the p-side electrode 213 and the n-side electrode 214 were formed (P24) was used. The radiant power was evaluated by measuring a part of the total radiant flux. Therefore, the external quantum efficiency is smaller than the value of the total radiant flux.

Figure 2014192274

実施例1の外部量子効率の最大値とそのときの電流密度は、5.72%及び18.7A/cmであり、電流密度が35A/cmときの外部量子効率と効率ドループは、5.57%と2.61%であり、電流密度が70A/cmときの外部量子効率と効率ドループは、5.16%と9.73%であった。 The maximum value of the external quantum efficiency of Example 1 and the current density at that time are 5.72% and 18.7 A / cm 2. The external quantum efficiency and the efficiency droop when the current density is 35 A / cm 2 are 5 The external quantum efficiency and the efficiency droop when the current density was 70 A / cm 2 were 5.16% and 9.73%, respectively.

実施例2の外部量子効率の最大値とそのときの電流密度は、5.66%及び20.5A/cmであり、電流密度が35A/cmときの外部量子効率と効率ドループは、5.56%と1.77%であり、電流密度が70A/cm2ときの外部量子効率と効率ドループは、5.23%と7.51%であった。 The maximum value of the external quantum efficiency of Example 2 and the current density at that time are 5.66% and 20.5 A / cm 2 , and the external quantum efficiency and the efficiency droop when the current density is 35 A / cm 2 are 5 The external quantum efficiency and the efficiency droop when the current density was 70 A / cm 2 were 5.23% and 7.51%, respectively.

実施例3の外部量子効率の最大値とそのときの電流密度は、5.59%及び22.8A/cmであり、電流密度が35A/cmときの外部量子効率と効率ドループは、5.52%と1.32%であり、電流密度が70A/cm2ときの外部量子効率と効率ドループは、5.23%と6.35%であった。 The maximum value of the external quantum efficiency of Example 3 and the current density at that time are 5.59% and 22.8 A / cm 2 , and the external quantum efficiency and the efficiency droop when the current density is 35 A / cm 2 are 5 The external quantum efficiency and the efficiency droop when the current density was 70 A / cm 2 were 5.23% and 6.32%, and 5.23% and 6.35%, respectively.

比較例1の外部量子効率の最大値とそのときの電流密度は、5.75%及び15.8A/cmであり、電流密度が35A/cmときの外部量子効率と効率ドループは、5.51%と4.06%であり、電流密度が70A/cm2ときの外部量子効率と効率ドループは、5.06%と11.89%であった。 The maximum value of external quantum efficiency of Comparative Example 1 and the current density at that time are 5.75% and 15.8 A / cm 2 , and the external quantum efficiency and efficiency droop when the current density is 35 A / cm 2 are 5 The external quantum efficiency and the efficiency droop when the current density was 70 A / cm 2 were 5.06% and 4.06%, respectively, 5.06% and 11.89%.

以上の結果より、外部量子効率(ηext)の最大値は、比較例1、実施例1、実施例2、実施例3の順に小さくなり、その電流密度は順に大きくなる。このように、本発明の半導体発光素子構造を用いることで、低い電流密度(例えば25A/cm未満)での外部量子効率を低下できる。 From the above results, the maximum value of the external quantum efficiency (ηext) decreases in the order of Comparative Example 1, Example 1, Example 2, and Example 3, and the current density increases in order. Thus, the external quantum efficiency at a low current density (for example, less than 25 A / cm 2 ) can be reduced by using the semiconductor light emitting device structure of the present invention.

対して電流密度が70A/cmでは、外部量子効率は、比較例1、実施例1、実施例2、実施例3の順に大きくなり(小数点以下3桁目では実施例2より3が大きい)、効率ドループは小さくなっている。このように、本発明の半導体発光素子の構造を用いることで、高い電流密度での外部量子効率の低下を抑制できる。 On the other hand, when the current density is 70 A / cm 2 , the external quantum efficiency increases in the order of Comparative Example 1, Example 1, Example 2, and Example 3 (3 is larger than Example 2 in the third decimal place). The efficiency droop is getting smaller. Thus, by using the structure of the semiconductor light emitting device of the present invention, it is possible to suppress a decrease in external quantum efficiency at a high current density.

このように、外部量子効率の最大値が高い電流密度へシフトしながら外部量子効率が低下する効果と、高い電流密度(例えば70A/cm)で外部量子効率の低下を抑制する効果は、実施例においてp型AlGaN層207のMg濃度を2.4×1019atoms/cm〜4.3×1019atoms/cmとしたこと、第1のp型GaN層208aのMg濃度を7.0×1019atoms/cm〜1.0×1020atoms/cmとしたこと、第2のp型GaN層208bのMg濃度を2.4×1019atoms/cm〜4.3×1019atoms/cmとしたことで成しえている。また、これら効果は第1のp型GaN層208aの膜厚を8nm、20nm、30nmと厚くするに応じて拡充できる。結果、効率ドループを小さくすることも成しえている。但し、第1のp型GaN層208aの膜厚が50nmを超えると効率ドループは小さく保てるが、高い電流密度(例えば70A/cm)での外部量子効率の低下を抑制できなくなる。また、第2p型GaN層208bを取り除くと前述の効果は消失する。 Thus, the effect of reducing the external quantum efficiency while shifting the maximum value of the external quantum efficiency to a high current density and the effect of suppressing the reduction of the external quantum efficiency at a high current density (for example, 70 A / cm 2 ) are implemented. In the example, the Mg concentration of the p-type AlGaN layer 207 is set to 2.4 × 10 19 atoms / cm 3 to 4.3 × 10 19 atoms / cm 3, and the Mg concentration of the first p-type GaN layer 208a is set to 7. It was set to 0 × 10 19 atoms / cm 3 to 1.0 × 10 20 atoms / cm 3, and the Mg concentration of the second p-type GaN layer 208b was set to 2.4 × 10 19 atoms / cm 3 to 4.3 ×. 10 19 atoms / cm 3 is achieved. In addition, these effects can be enhanced as the thickness of the first p-type GaN layer 208a is increased to 8 nm, 20 nm, and 30 nm. As a result, the efficiency droop can be reduced. However, when the film thickness of the first p-type GaN layer 208a exceeds 50 nm, the efficiency droop can be kept small, but it becomes impossible to suppress a decrease in external quantum efficiency at a high current density (for example, 70 A / cm 2 ). Further, when the second p-type GaN layer 208b is removed, the above effect disappears.

また記載以外の多くのサンプルを試作評価した結果、外部量子効率の最大値が高い電流密度側へシフトすると、高い電流密度(試験値は70A/cm)における故障率(不灯、順方向立ち上り電圧不良、逆方向耐電圧不良、などの発生率)を半減できた。具体的には、外部量子効率の最大値の電流密度が18A/cm程度以上より故障率は減少し、20A/cm以上で故障率は半減した。 In addition, as a result of trial evaluation of many samples other than those described, when the maximum value of the external quantum efficiency is shifted to the higher current density side, the failure rate at high current density (test value is 70 A / cm 2 ) (non-lighting, forward rising) The incidence of voltage failures and reverse withstand voltage failures) was halved. Specifically, the failure rate decreased when the maximum current density of the external quantum efficiency was about 18 A / cm 2 or more, and the failure rate was halved at 20 A / cm 2 or more.

次に、電流密度と外部量子効率の関係をプロットを図6に示す。例えば、比較例1の外部量子効率は、CP1地点で最大を迎え、そこより非線形的に急激に低下してCP2に至る。対して、実施例3の外部量子効率は、ET1地点で最大を迎え、そこより緩やかに直線的に低下してET2に至る。すなわち、本発明の半導体発光素子の構造は、電流密度の増加に対応した外部量子効率の低下を抑制すると同時に低下率を線形化できる。駆動回路(電源回路)で調光する場合、効率ドループが0(ゼロ)に近ければ、半導体発光素子の駆動電流に対して放射出力を比例制御できるが、外部量子効率の低下率(効率ドループの増加率)を線形にすることでも放射出力の比例制御は可能になる。本発明の半導体発光素子において、外部量子効率の低下率の線形化は、電流密度が70A/cmにおける効率ドループを8%以下にすれば良い。 Next, a plot of the relationship between current density and external quantum efficiency is shown in FIG. For example, the external quantum efficiency of Comparative Example 1 reaches its maximum at the CP1 point, and then decreases nonlinearly and rapidly to CP2. On the other hand, the external quantum efficiency of Example 3 reaches its maximum at the ET1 point, and gradually decreases linearly there until reaching ET2. That is, the structure of the semiconductor light emitting device of the present invention can suppress the decrease in external quantum efficiency corresponding to the increase in current density and at the same time linearize the decrease rate. When dimming with a drive circuit (power supply circuit), if the efficiency droop is close to 0 (zero), the radiation output can be proportionally controlled with respect to the drive current of the semiconductor light emitting device. Proportional control of radiation output is also possible by making the increase rate (linear) linear. In the semiconductor light emitting device of the present invention, the rate of decrease in external quantum efficiency may be linearized by setting the efficiency droop at a current density of 70 A / cm 2 to 8% or less.

放射出力については、実施例1、実施例2、実施例3の外部量子効率の低下を抑制したことで、外部量子効率は、電流密度が図6のH地点(35A/cm)で比較例1を上回っている。さらに電流密度の増加に対応して差は開く。すなわち、高い電流密度(例えば35A/cm以上)で放射出力を高く維持できる。外部量子効率が最大になる電流密度が、半導体発光素子の常用電流密度(例えば35A/cm以上)より低い場合、外部量子効率の最大値が低下しても問題ない。 Regarding the radiant output, the external quantum efficiency is a comparative example at the H point (35 A / cm 2 ) in FIG. 6 by suppressing the decrease in the external quantum efficiency of Example 1, Example 2, and Example 3. It is above 1. Furthermore, the difference opens with increasing current density. That is, the radiation output can be kept high at a high current density (for example, 35 A / cm 2 or more). When the current density at which the external quantum efficiency is maximized is lower than the normal current density (for example, 35 A / cm 2 or more) of the semiconductor light emitting device, there is no problem even if the maximum value of the external quantum efficiency is lowered.

次に実施例2の半導体発光素子のSIMSの深さ方向プロファイルを図7(<ET2>)に示す。SIMSの深さ方向分解能はナノオーダーなので、半導体発光素子を構成する結晶層の元素成分信号は、各結晶層の界面で若干ブロードになる。   Next, the SIMS depth profile of the semiconductor light emitting device of Example 2 is shown in FIG. 7 (<ET2>). Since the resolution in the depth direction of SIMS is on the order of nanometers, the element component signal of the crystal layer constituting the semiconductor light emitting element is slightly broad at the interface of each crystal layer.

図中306は発光層206に対応し、307はp型AlGaN層207に対応し、308aは第1のp型GaN層208aに対応し、308bは第2のp型GaN層208bに対応し、309は第2のコンタクトp型GaN層209に対応している。   In the figure, 306 corresponds to the light emitting layer 206, 307 corresponds to the p-type AlGaN layer 207, 308a corresponds to the first p-type GaN layer 208a, 308b corresponds to the second p-type GaN layer 208b, Reference numeral 309 corresponds to the second contact p-type GaN layer 209.

実施例2のp型AlGaN層207のMg濃度は2.4×1019atoms/cm〜4.3×1019atoms/cmの範囲にあり、第1のp型GaN層208aのMg濃度は7.0×1019atoms/cm〜1.0×1020atoms/cmの範囲にあり、第2のp型GaN層208bのMg濃度は2.4×1019atoms/cm〜4.3×1019atoms/cmの範囲であり、本発明の半導体発光素子のMg濃度範囲であった。 The Mg concentration of the p-type AlGaN layer 207 of Example 2 is in the range of 2.4 × 10 19 atoms / cm 3 to 4.3 × 10 19 atoms / cm 3 , and the Mg concentration of the first p-type GaN layer 208a. Is in the range of 7.0 × 10 19 atoms / cm 3 to 1.0 × 10 20 atoms / cm 3 , and the Mg concentration of the second p-type GaN layer 208b is 2.4 × 10 19 atoms / cm 3 to The range was 4.3 × 10 19 atoms / cm 3 , which was the Mg concentration range of the semiconductor light emitting device of the present invention.

また、インジウム(In)の2次イオン強度信号の第1ピーク(図7のPmix)が、他のインジウムの信号ピークより強く、また幅広く観察されていることから、第1井戸層206bが他の井戸層206dよりインジウム組成が高いこと、そして第1障壁層206aと第1井戸層206bにて電子貯留層206eを形成していることが分かる。   In addition, since the first peak (Pmix in FIG. 7) of the secondary ion intensity signal of indium (In) is stronger than other indium signal peaks and has been observed widely, the first well layer 206b has other peaks. It can be seen that the indium composition is higher than that of the well layer 206d, and that the electron storage layer 206e is formed by the first barrier layer 206a and the first well layer 206b.

さらに、インジウム(In)の2次イオン強度信号の第1ピーク(図7のPmix)以外に8つの信号ピークがあることから、障壁層206cと井戸層206dから成る単位放射層が8単位形成されていることが分かる。   Further, since there are eight signal peaks other than the first peak (Pmix in FIG. 7) of the secondary ion intensity signal of indium (In), eight units of the unit radiation layer including the barrier layer 206c and the well layer 206d are formed. I understand that

以上、実施例2の半導体発光素子のSIMSの深さ方向分析の結果より、p型AlGaN層207、第1のp型GaN層208a、第2のp型GaN層208bのMg濃度、膜厚(図7参照)が確認できる。また、発光層206の電子貯留層206eの存在および単位放射層206fの数を確認できる。   As described above, from the result of SIMS depth analysis of the semiconductor light emitting device of Example 2, the Mg concentration and film thickness of the p-type AlGaN layer 207, the first p-type GaN layer 208a, and the second p-type GaN layer 208b ( (See FIG. 7). In addition, the existence of the electron storage layer 206e of the light emitting layer 206 and the number of unit emission layers 206f can be confirmed.

本発明の半導体発光素子構造は、低い電流密度(例えば25A/cm未満)の外部量子効率を抑制し、高い電流密度(例えば25A/cm超)の外部量子効率の低下を抑制を可能とし、電流密度の増減に対応した直線性の高い放射出力が得られる半導体発光素子であることは明らかであろう。また、電流密度を増加しても高い放射出力が得られる半導体発光素子であることは明らかであろう。 The semiconductor light emitting device structure of the present invention, a low current density (e.g., less than 25A / cm 2) to suppress the external quantum efficiency, a decrease in external quantum efficiency of the high current density (e.g., 25A / cm 2 greater) and allow for repression It will be apparent that this is a semiconductor light emitting device capable of obtaining a radiation output with high linearity corresponding to an increase or decrease in current density. It will be apparent that the semiconductor light emitting device can obtain a high radiation output even when the current density is increased.

以上、実施例に沿って本発明の素子構造と製造方法について説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
Although the element structure and the manufacturing method of the present invention have been described according to the embodiments, the present invention is not limited to these. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

200 半導体発光素子
201 基板
202 低温GaN層
203 高温GaN層12-0526出願書類(ver1.0)
204 n型GAN層
205 SLS層
206 発光層(MQW)
207 p型AlGaN層
208 p型GaN層
208a 第1のp型GaN層
208b 第2のp型GaN層
209 コンタクトp型GaN層
210 n型層
211 p型層
212 p側透明電極
213 p側電極
214 n側電極
200 Semiconductor Light Emitting Element 201 Substrate 202 Low Temperature GaN Layer 203 High Temperature GaN Layer 12-0526 Application Document (ver1.0)
204 n-type GAN layer 205 SLS layer 206 light emitting layer (MQW)
207 p-type AlGaN layer 208 p-type GaN layer 208a first p-type GaN layer 208b second p-type GaN layer 209 contact p-type GaN layer 210 n-type layer 211 p-type layer 212 p-side transparent electrode 213 p-side electrode 214 n-side electrode

Claims (8)

少なくともn型半導体層と発光層とp型半導体層からなる半導体発光装置であり、
前記発光層の上のp型半導体層が、マグネシウム(Mg)濃度が1.0×1019〜6.0×1019atoms/cmであるp型AlGaN層と、
前記p型AlGaN層の上に、該p型AlGaN層より高濃度のMgを有する第1のp型GaN層と、
前記第1のp型GaN層の上に、前記p型AlGaN層と同程度のMgを有する第2のp型GaN層と、
を有することを特徴とした半導体発光装置。
A semiconductor light-emitting device comprising at least an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer;
A p-type AlGaN layer having a magnesium (Mg) concentration of 1.0 × 10 19 to 6.0 × 10 19 atoms / cm 3 ;
A first p-type GaN layer having a higher concentration of Mg than the p-type AlGaN layer on the p-type AlGaN layer;
On the first p-type GaN layer, a second p-type GaN layer having the same Mg as the p-type AlGaN layer;
A semiconductor light emitting device comprising:
前記発光層が井戸層と障壁層が交互に複数積層した多重量子井戸構造であって、
前記多重井戸層は、前記障壁層から積層した構造であって、
前記第1の障壁層のバンドギャップが、前記他の障壁層のバンドギャップより狭く、前記井戸層のバンドギャップより広く、少なくともインジウムを含有したGaN系結晶であること、
を特徴とした請求項1の半導体発光装置。
The light emitting layer has a multiple quantum well structure in which a plurality of well layers and barrier layers are alternately stacked,
The multi-well layer is a structure laminated from the barrier layer,
A band gap of the first barrier layer is narrower than a band gap of the other barrier layer, wider than a band gap of the well layer, and is a GaN-based crystal containing at least indium;
The semiconductor light-emitting device according to claim 1.
前記発光層の前記井戸層と前記障壁層を1単位とし、少なくとも6単位以上16単位以下で積層したこと、
を特徴とした請求項1および2の半導体発光装置。
The well layer and the barrier layer of the light emitting layer are set as one unit, and are stacked at least 6 units to 16 units,
The semiconductor light-emitting device according to claim 1 or 2, wherein
前記第1のp型GaN層のMg濃度が6.0×1019atoms/cm以上2.0×1020atoms/cm以下であること、
を特徴とした請求項1乃至3の半導体発光装置。
Mg concentration of the first p-type GaN layer is 6.0 × 10 19 atoms / cm 3 or more and 2.0 × 10 20 atoms / cm 3 or less,
4. The semiconductor light emitting device according to claim 1, wherein:
前記第1のp型GaN層の膜厚が5nm以上50nm以下であること、
を特徴とした請求項1乃至4の半導体発光装置。
The film thickness of the first p-type GaN layer is 5 nm or more and 50 nm or less;
The semiconductor light-emitting device according to claim 1.
前記第2のp型GaN層のMg濃度が1.0×1019atoms/cm以上6.0×1019atoms/cm以下であること、
を特徴とした請求項1乃至5の半導体発光装置。
Mg concentration of the second p-type GaN layer is 1.0 × 10 19 atoms / cm 3 or more and 6.0 × 10 19 atoms / cm 3 or less,
6. The semiconductor light emitting device according to claim 1, wherein:
前記請求項1乃至6の半導体発光装置であって、
電流を流した場合の放射出力の外部量子効率の最大になる動作電流密度が18A/cm以上であること、
を特徴とした半導体発光装置。
The semiconductor light emitting device according to any one of claims 1 to 6,
The operating current density that maximizes the external quantum efficiency of the radiation output when a current is passed is 18 A / cm 2 or more,
A semiconductor light emitting device characterized by the above.
前記請求項1乃至7の半導体発光装置であって、
動作電流密度が70A/cmであるときの効率ドループが8%以下であること、
を特徴とした半導体発光装置。
The semiconductor light-emitting device according to any one of claims 1 to 7,
The efficiency droop when the operating current density is 70 A / cm 2 is 8% or less,
A semiconductor light emitting device characterized by the above.
JP2013065332A 2013-03-27 2013-03-27 HIGH-OUTPUT GaN-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT Pending JP2014192274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013065332A JP2014192274A (en) 2013-03-27 2013-03-27 HIGH-OUTPUT GaN-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013065332A JP2014192274A (en) 2013-03-27 2013-03-27 HIGH-OUTPUT GaN-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT

Publications (1)

Publication Number Publication Date
JP2014192274A true JP2014192274A (en) 2014-10-06

Family

ID=51838284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013065332A Pending JP2014192274A (en) 2013-03-27 2013-03-27 HIGH-OUTPUT GaN-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT

Country Status (1)

Country Link
JP (1) JP2014192274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10586893B2 (en) 2017-10-23 2020-03-10 Samsung Electronics Co., Ltd. Light emitting diode having decreased effective area of active layer, and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101532A1 (en) * 2004-04-16 2005-10-27 Nitride Semiconductors Co., Ltd. Gallium nitride based light-emitting device
WO2008153130A1 (en) * 2007-06-15 2008-12-18 Rohm Co., Ltd. Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
JP2009004569A (en) * 2007-06-21 2009-01-08 Sumitomo Electric Ind Ltd Group iii nitride-based semiconductor light emitting element
WO2011077473A1 (en) * 2009-12-21 2011-06-30 株式会社 東芝 Nitride semiconductor light-emitting element and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101532A1 (en) * 2004-04-16 2005-10-27 Nitride Semiconductors Co., Ltd. Gallium nitride based light-emitting device
WO2008153130A1 (en) * 2007-06-15 2008-12-18 Rohm Co., Ltd. Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
JP2009004569A (en) * 2007-06-21 2009-01-08 Sumitomo Electric Ind Ltd Group iii nitride-based semiconductor light emitting element
WO2011077473A1 (en) * 2009-12-21 2011-06-30 株式会社 東芝 Nitride semiconductor light-emitting element and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10586893B2 (en) 2017-10-23 2020-03-10 Samsung Electronics Co., Ltd. Light emitting diode having decreased effective area of active layer, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN107978661B (en) Nitrogen polarity blue-violet light LED chip with polarization induction p-type doped layer and preparation method
US8525221B2 (en) LED with improved injection efficiency
US6881602B2 (en) Gallium nitride-based semiconductor light emitting device and method
JP4341702B2 (en) Group III nitride semiconductor light emitting device
TWI451591B (en) Nitride-based light emitting device
TWI659547B (en) Manufacturing method of III-nitride semiconductor light-emitting element
JP5549338B2 (en) Nitrogen compound semiconductor LED for ultraviolet light radiation and method for producing the same
CN109119515B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
JP5279006B2 (en) Nitride semiconductor light emitting device
JP2015046598A (en) Semiconductor light emitting device including hole injection layer, and method of manufacturing the same
JP6227134B2 (en) Nitride semiconductor light emitting device
JP2005101533A (en) Light emitting device and manufacturing method therefor
JP2014096460A (en) Ultraviolet semiconductor light emitting element and manufacturing method thereof
JPWO2015146069A1 (en) Light emitting diode element
JP5568009B2 (en) Semiconductor light emitting device and manufacturing method thereof
TW201633562A (en) Method of manufacturing group iii nitride semiconductor light emitting element, and group iii nitride semiconductor light emitting element
JP2014187159A (en) Semiconductor light-emitting element
KR100531073B1 (en) Semiconductor light emitting device having nano-needle and method for manufacturing the same
CN109686821B (en) Preparation method of epitaxial wafer of light-emitting diode
JP2009224370A (en) Nitride semiconductor device
JP2014207328A (en) Semiconductor light-emitting device
JP2014183108A (en) Method of manufacturing semiconductor light-emitting element and semiconductor light-emitting element
JP2014192274A (en) HIGH-OUTPUT GaN-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT
CN109473525B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
JP2016143771A (en) Epitaxial wafer, semiconductor light-emitting element, light-emitting device, and manufacturing method of epitaxial wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404