JP2014192007A - Electric contact material - Google Patents
Electric contact material Download PDFInfo
- Publication number
- JP2014192007A JP2014192007A JP2013066735A JP2013066735A JP2014192007A JP 2014192007 A JP2014192007 A JP 2014192007A JP 2013066735 A JP2013066735 A JP 2013066735A JP 2013066735 A JP2013066735 A JP 2013066735A JP 2014192007 A JP2014192007 A JP 2014192007A
- Authority
- JP
- Japan
- Prior art keywords
- component
- electrical contact
- contact material
- mass
- electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Manufacture Of Switches (AREA)
- Contacts (AREA)
Abstract
Description
本発明は、電気機器や電気回路等の接点に利用される電気接点材料に関し、特に直流電気回路の遮断器、断路器および開閉器等の各種開閉機器の接点に最適な電気接点材料に関する。 The present invention relates to an electrical contact material used for a contact of an electrical device or an electrical circuit, and more particularly to an electrical contact material optimum for a contact of various switching devices such as a circuit breaker, a disconnecting switch and a switch of a DC electrical circuit.
送配電や受配電網などの高圧大電流回路に使用する遮断器、断路器および開閉器等には、タングステン(以後W)と銅(以後Cu)の複合材料、Wと銀(以後Ag)の複合材料、炭化タングステン(以後WC)とAgの複合材料を用いた電気接点などが数多くの提案されている。 For circuit breakers, disconnectors and switches used in high-voltage, high-current circuits such as power transmission and distribution networks, tungsten (hereinafter referred to as W) and copper (hereinafter referred to as Cu) composite materials, W and silver (hereinafter referred to as Ag) Many proposals have been made on composite materials, electrical contacts using a composite material of tungsten carbide (hereinafter referred to as WC) and Ag.
大電流の開閉時には、開閉する二つの電気接点間にアーク(電弧)が生じる。 When a large current is opened and closed, an arc is generated between the two electrical contacts that are opened and closed.
いったん接点の開閉により生じたアークは、消弧までには時間がかかる。アークの両端となる接点部分は、消弧までの間に連続的に高熱にさらされる。この現象は、装置内をアークが消失しやすい雰囲気(例えばSF6ガス中)で満たしても解決されていない。 Once an arc is generated by opening and closing a contact, it takes time to extinguish the arc. The contact portions that are both ends of the arc are continuously exposed to high heat until the arc is extinguished. This phenomenon is not solved even if the inside of the apparatus is filled with an atmosphere in which an arc is likely to disappear (for example, in SF 6 gas).
接点材料は良導体の必要がある。それに加えて、電気接点はアークによって溶融・蒸発しにくい材料を用いる必要がある。単一素材を用いての前記問題の解決は難しい。そこで、良導体と高融点・高沸点の材料を組み合わせたCu−W材料、Ag−W材料、Ag−WC材料がその用途に主に用いられている。 The contact material must be a good conductor. In addition, the electrical contact must be made of a material that is not easily melted or evaporated by the arc. It is difficult to solve the problem using a single material. Therefore, Cu-W materials, Ag-W materials, and Ag-WC materials, which are a combination of a good conductor and a material having a high melting point and a high boiling point, are mainly used for the application.
優れた耐酸化性を有するAg−WC材料は中負荷の気中開閉器に、比較的優れた耐酸化性を有するAg−W材料は高負荷用の気中開閉器に、耐酸化性は劣るものの優れた耐消耗性を有すCu−W材料は、油中、ガス、真空遮断器において優れた機能を発揮する。 Ag-WC material with excellent oxidation resistance is a medium load aerial switch, Ag-W material with relatively superior oxidation resistance is a high load aerial switch, and oxidation resistance is inferior However, Cu-W materials having excellent wear resistance exhibit excellent functions in oil, gas, and vacuum circuit breakers.
一方、電流を遮断しない通電用接点としては、CuまたはAgなどの材料が使用されている。低圧用の気中遮断器、配線用遮断器のうち、大容量のものにはアーキングチップとしてAg−W材料、Ag−WC材料などが使用されている。メインコンタクト(主接点)としては、Ag−ニッケル(以後Ni)が使用されている。また、中容量以下のアーク・通電兼用接点としては、優れた通電性および耐溶着性を有するAg−WC材料、Ag−酸化カドミニウム(以後CdO)材料などが多用されている。 On the other hand, materials such as Cu or Ag are used as energization contacts that do not interrupt current. Among low-pressure air circuit breakers and wiring circuit breakers, those having a large capacity use Ag-W materials, Ag-WC materials, or the like as arcing chips. As the main contact (main contact), Ag-nickel (hereinafter referred to as Ni) is used. Further, as an arc / current-carrying contact having a medium capacity or less, an Ag-WC material, an Ag-cadmium oxide (hereinafter referred to as CdO) material having excellent current-carrying properties and welding resistance are frequently used.
また、風力や太陽光など自然エネルギーを利用した発電や電力損失の少ない直流送電、電気自動車などに使用される車載リレーなど直流での遮断が行なわれるケースも増えてきている。 In addition, there are an increasing number of cases where direct current interruption such as power generation using natural energy such as wind power and sunlight, direct current power transmission with low power loss, and in-vehicle relays used in electric vehicles and the like is performed.
解決されていない問題は、電気接点のアーク開閉による蒸発・消耗が大きく、寿命が十分でないことである。
The problem that has not been solved is that the evaporation / consumption due to the arc opening / closing of the electrical contacts is large and the life is not sufficient.
特許文献1および特許文献2は、いずれもホウ化物を添加することでアーク発生点の分散を試みているが、ホウ化物を使用すると高融点材料の焼成を阻害し、電気接点材料内部にスポットを生じさせるため、耐消耗性が悪くなる問題が残っている。
Patent Document 1 and Patent Document 2 both attempt to disperse the arc generation point by adding boride. However, when boride is used, firing of the high-melting-point material is inhibited, and spots are formed inside the electric contact material. As a result, the problem of poor wear resistance remains.
本発明の技術的課題は、電気接点の開閉により発生するアークに対しての消耗の少ない電気接点材料を得ることである。
The technical problem of the present invention is to obtain an electrical contact material that is less consumed by an arc generated by opening and closing the electrical contact.
本発明の電気接点材料は、電気機器、電気回路の接点に用いる材料であって、高融点材料であるWおよびWCから選択する第1成分と、高電気伝導材料であるCuまたはAgかから選択する第2成分と、仕事関数の低い材料であるカルシウム(以後Ca)、ストロンチウム(以後Sr)、バリウム(以後Ba)、マグネシウム(以後Mg)および希土類金属のそれぞれのホウ酸化物から選択する少なくとも1種の第3成分と、接点の強度を向上させ接触抵抗を低減する材料であるカーボン(以後C)、クロム(以後Cr)、コバルト(以後Co)、Ni、鉄(以後Fe)、リン(以後P)、バナジウム(以後V)およびこれらの化合物からなる群から選択する少なくとも1種または2種以上の第4成分とを含有する。
The electrical contact material of the present invention is a material used for electrical equipment and electrical circuit contacts, and is selected from a first component selected from W and WC, which are high melting point materials, and Cu or Ag, which is a high electrical conductivity material. At least one selected from a second component to be selected and a low work function material of calcium (hereinafter referred to as Ca), strontium (hereinafter referred to as Sr), barium (hereinafter referred to as Ba), magnesium (hereinafter referred to as Mg) and rare earth metals. The third component of the species, and carbon (hereinafter C), chromium (hereinafter Cr), cobalt (hereinafter Co), Ni, iron (hereinafter Fe), phosphorus (hereinafter referred to as materials) that improve contact strength and reduce contact resistance. P), vanadium (hereinafter referred to as V) and at least one or two or more fourth components selected from the group consisting of these compounds.
本発明の電気接点材料は、前記第1成分が20〜90質量%、前記第2成分が80〜10質量%からなり、かつ前記第3成分および前記第4成分が合せて0.1〜14質量%以下であることが好ましい。 In the electrical contact material of the present invention, the first component is 20 to 90% by mass, the second component is 80 to 10% by mass, and the third component and the fourth component are 0.1 to 14 in total. It is preferable that it is below mass%.
本発明の電気接点材料の材料組織は大きく以下の2つに分類できる。
(組織1)前記第1成分、前記第3成分および前記第4成分が連続した開気孔を有する多孔体構造を有し、前記第2成分を前記開気孔に充填した材料組織
(組織2)前記第2成分マトリックス中に前記第1成分、前記第3成分および前記第4成分が分散している材料組織
本発明の電気接点材料の材料組織は、上のいずれでも構わない。
The material structure of the electrical contact material of the present invention can be roughly classified into the following two.
(Tissue 1) Material structure (tissue 2) having a porous structure in which the first component, the third component, and the fourth component have continuous open pores, and filling the open pores with the second component Material structure in which the first component, the third component, and the fourth component are dispersed in the second component matrix The material structure of the electrical contact material of the present invention may be any of the above.
本発明の電気接点材料は、前記多孔体は前記第1成分の平均粒子径、前記第3成分の平均粒子径が共に20μm以下であることが好ましい。 In the electrical contact material of the present invention, the porous body preferably has an average particle diameter of the first component and an average particle diameter of the third component of 20 μm or less.
本発明の電気接点材料は、前記第1成分はアルミニウム、カリウムおよびシリコンからなる群から選ばれた少なくとも1つの元素がドープされていることを許容する。 The electrical contact material of the present invention allows the first component to be doped with at least one element selected from the group consisting of aluminum, potassium, and silicon.
本発明の電気接点材料は、前記第2成分はCr、Co、Ni、Fe、Pからなる群から選択する少なくとも1種の金属と合金化していることを許容する。 The electrical contact material of the present invention allows the second component to be alloyed with at least one metal selected from the group consisting of Cr, Co, Ni, Fe, and P.
本発明の電気接点材料は、気孔率が10%以下であることが好ましい。 The electrical contact material of the present invention preferably has a porosity of 10% or less.
本発明の電気接点材料は、導電率が10%IACS以上であることが好ましい。 The electrical contact material of the present invention preferably has a conductivity of 10% IACS or more.
本発明係る電気接点材料は、特に直流電流遮断用電気接点として使用に適している。また、その際は、特に陰極としての使用が適している。
The electrical contact material according to the present invention is particularly suitable for use as an electrical contact for DC current interruption. In that case, the use as a cathode is particularly suitable.
本発明によれば電流遮断による電気接点の体積消耗量を減少させることができるようになる。
According to the present invention, it is possible to reduce the volume consumption of electrical contacts due to current interruption.
以下、本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
この電気接点材料は、高融点材料であるW、WCから選択する第1成分と、高電気導電材料であるCuおよびAgから選択する第2成分と、仕事関数の低い材料であるCa、Sr、Ba、Mgおよび希土類金属のそれぞれのホウ酸化物から選択する少なくとも1種の第3成分と、接点材料の強度に影響し、接触抵抗を低減させる材料であるC、Cr、Co、Ni、Fe、P、Vおよびこれらの化合物からなる群から選択する少なくとも1種または2種以上の第4成分とを含有する。
仕事関数の低いホウ化物や酸化物は放電特性を改善することで知られているが、ホウ酸化物はより一層の放電特性の改善をもたらす。また、ホウ酸化物はホウ化物や酸化物に比べ電気接点材料の緻密化を阻害しない。従って、前記第3成分はホウ酸化物とした。また、前記第4成分を加えるのは、電気接点材料に適切な強度を与えることで破損や変形の対策となり、電気接点材料の接触抵抗を低減するためである。
前記第1成分の配合割合は、前記第1成分が20〜90質量%、前記第2成分が80〜10質量%からなり、かつ前記第3成分および前記第4成分の合計が0.1質量%〜14質量%であることが好ましい。
This electrical contact material includes a first component selected from W and WC which are high melting point materials, a second component selected from Cu and Ag which are high electrical conductive materials, and Ca, Sr, which are materials having a low work function. C, Cr, Co, Ni, Fe, which is a material that affects the strength of the contact material and reduces contact resistance, with at least one third component selected from Ba, Mg, and rare earth metal borates. P, V and at least one or two or more fourth components selected from the group consisting of these compounds are contained.
Although borides and oxides having a low work function are known to improve discharge characteristics, borates provide further improvements in discharge characteristics. Further, borate does not inhibit densification of the electrical contact material compared to boride and oxide. Therefore, the third component was a borate. The reason why the fourth component is added is to provide an appropriate strength to the electrical contact material to prevent damage and deformation, and to reduce the contact resistance of the electrical contact material.
The blending ratio of the first component is 20 to 90% by mass for the first component, 80 to 10% by mass for the second component, and the total of the third component and the fourth component is 0.1% by mass. It is preferable that it is% -14 mass%.
本発明に係る電気接点材料において、材料組織は大きく以下の2つに分類できる。
(組織1)前記第1成分、前記第3成分および前記第4成分が連続した開気孔を有する多孔体構造を有し、前記第2成分が前記開気孔に充填した材料組織
(組織2)前記第2成分のマトリックス中に前記第1成分、前記第3成分および前記第4成分が分散している材料組織
本発明に係る電気接点材料の材料組織は、上のいずれでも構わない。
前記多孔体は、前記第1成分中に前記第3成分および前記第4成分が分散した組織を有することが好ましい。
特に、前記多孔体は前記第1成分の平均粒子径、前記第3成分の平均粒子径が共に20μm以下であることが好ましい。
前記多孔体の前記第1成分の平均粒子径が20μmを超えると、材料組織が不均質になり、良好な特性を発現することが困難になるおそれがある。前記多孔体の第3成分の平均粒子径が20μmを超える平均粒子径で存在すると、耐アーク特性のばらつきが大きくになるおそれがある。平均粒子径10μm以下であれば求める特性がより得られやすい。
In the electrical contact material according to the present invention, the material structure can be roughly classified into the following two.
(Tissue 1) Material structure in which the first component, the third component, and the fourth component have a porous structure having continuous open pores, and the second component fills the open pores (tissue 2) Material structure in which the first component, the third component, and the fourth component are dispersed in the matrix of the second component The material structure of the electrical contact material according to the present invention may be any of the above.
The porous body preferably has a structure in which the third component and the fourth component are dispersed in the first component.
In particular, the porous body preferably has an average particle diameter of the first component and an average particle diameter of the third component of 20 μm or less.
If the average particle size of the first component of the porous body exceeds 20 μm, the material structure becomes inhomogeneous, and it may be difficult to develop good characteristics. If the average particle size of the third component of the porous body is greater than 20 μm, the variation in arc resistance characteristics may increase. If the average particle size is 10 μm or less, the desired characteristics are more easily obtained.
前記第1成分が20質量%以上であれば、耐アーク特性が高く保てる。一方、前記第1成分が90質量%以下であれば、導電率が10%IACS以上を保てる。前記第1成分の配合量は30〜70質量%、前記第2成分は70〜30質量%であれば求める特性が得られやすい。 When the first component is 20% by mass or more, the arc resistance characteristics can be kept high. On the other hand, when the first component is 90% by mass or less, the electrical conductivity can be maintained at 10% IACS or more. If the blending amount of the first component is 30 to 70% by mass and the second component is 70 to 30% by mass, the desired characteristics are easily obtained.
前記第3成分と前記第4成分の合計が14質量%以下であれば、材料組織が不均質になりにくく、特性のばらつきが少なくなる傾向にある。前記第3成分と前記第4成分の合計が0.1%以上であれば、求める特性が得られやすい。 If the total of the third component and the fourth component is 14% by mass or less, the material structure is less likely to be inhomogeneous and the variation in characteristics tends to be reduced. If the total of the third component and the fourth component is 0.1% or more, the desired characteristics are easily obtained.
本発明の電気接点材料は、気孔率が10%以下であれば、耐アーク特性が得られやすい。気孔率が5%以下であれば求める特性は得られやすい。 When the porosity of the electrical contact material of the present invention is 10% or less, arc resistance characteristics are easily obtained. If the porosity is 5% or less, the desired characteristics are easily obtained.
本発明の電気接点材料は、導電率が10%IACS以上であれば、通電時の発熱が少なくなるために、耐温度上昇特性がより得られやすい。
次に、本発明に係る電気接点材料の製造方法の一例を説明する。
If the electrical contact material of the present invention has an electrical conductivity of 10% IACS or more, heat generation during energization is reduced, and thus a temperature rise resistance property is more easily obtained.
Next, an example of the manufacturing method of the electrical contact material according to the present invention will be described.
まず、高融点材料であるW、WCのいずれから選択する第1成分の粉末と、仕事関数の低い材料であるCa、Sr、Ba、Mgおよび希土類金属のそれぞれのホウ酸化物から選択する少なくとも1種の第3成分の粉末と、材料の強度に影響し、接触抵抗を低減する材料であるC、Cr、Co、Ni、Fe、P、Vおよびこれらの化合物からなる群から選択する少なくとも1種または2種以上の第4成分の粉末とを混合し、成形した後、窒素、アルゴンのような不活性ガス雰囲気、水素のような還元性ガス雰囲気、または真空雰囲気のいずれかの雰囲気中にて焼成して、前記第1成分に前記第3成分および前記第4成分が分散した多孔体を作製する。前記第4成分は、前記単体でもよいし、例えばNiPやVCなどの化合物としてもよい。 First, at least one selected from a powder of a first component selected from any of W and WC, which are high melting point materials, and each borate of Ca, Sr, Ba, Mg, and rare earth metals, which are materials having a low work function. A third component powder and at least one selected from the group consisting of C, Cr, Co, Ni, Fe, P, V, and these compounds, which are materials that affect the strength of the material and reduce contact resistance Alternatively, after mixing and molding two or more kinds of fourth component powders, in an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere such as hydrogen, or a vacuum atmosphere Firing is performed to produce a porous body in which the third component and the fourth component are dispersed in the first component. The fourth component may be the simple substance or a compound such as NiP or VC.
ホウ酸化物粉末については前述のホウ酸化物から選択するホウ酸化物粉末を準備する。 About the borate powder, the borate powder selected from the borate described above is prepared.
本実施形態のホウ酸化物粉末はCa、Sr、Ba、Mgや希土類金属の酸化物あるいは炭酸化物と炭化ホウ素や炭酸ホウ素などのホウ素を有する物質とを混合し、酸化雰囲気中で熱処理を行うことによって得ることができる。 The borate powder of this embodiment is a mixture of Ca, Sr, Ba, Mg, rare earth metal oxide or carbonate and a boron-containing substance such as boron carbide or boron carbonate, and heat-treated in an oxidizing atmosphere. Can be obtained by:
前記第1成分の粉末は、平均粒子径が1〜20μmのものを用いることが好ましい。 The first component powder is preferably one having an average particle diameter of 1 to 20 μm.
前記第3成分の粉末は、平均粒子径が1〜20μmのものを用いることが好ましい。 The powder of the third component is preferably one having an average particle diameter of 1 to 20 μm.
前記焼成時の温度は、前記第1成分がWである場合、1000〜1500℃、第1成分がWCである場合、800〜1300℃にすることが好ましい。焼成温度を前記焼成条件で製造すると良好な機械的特性を得られやすい。 The firing temperature is preferably 1000 to 1500 ° C. when the first component is W, and 800 to 1300 ° C. when the first component is WC. When the firing temperature is produced under the firing conditions, it is easy to obtain good mechanical properties.
次いで、前記多孔体とCuおよびAgのいずれから選択し、粉末状、粒子状、ペレット状およびプレート状のいずれかの形態を持つ第2成分とを例えばルツボのような容器に収容し、窒素、アルゴンのような不活性ガス雰囲気、水素のような還元性ガス雰囲気、または真空雰囲気のいずれかの雰囲気中にて、適当な温度で加熱して前記多孔体に前記第2成分を溶浸することによって電気接点材料を製造する。 Next, the porous body and any one of Cu and Ag are selected, and the second component having any one of a powder form, a particle form, a pellet form and a plate form is accommodated in a container such as a crucible, for example, Infiltrating the second component into the porous body by heating at an appropriate temperature in an inert gas atmosphere such as argon, a reducing gas atmosphere such as hydrogen, or a vacuum atmosphere. To produce an electrical contact material.
前記第2成分を溶浸するための加熱温度は、第2成分がCuである場合、1080℃以上、第2成分がAgである場合、960℃以上であることが好ましい。第2成分がCuである場合、前記加熱温度を1080℃未満にするとCuを前記多孔体に十分に溶浸させることが困難になる。第2成分がAgである場合、前記加熱温度を960℃未満にするとAgを前記多孔体に十分に溶浸させることが困難になる。温度が高すぎると材料内部に気孔が生じやすくなるため、第2成分がCuである場合1080〜1180℃、第2成分がAgである場合960〜1060℃であることが好ましい。 The heating temperature for infiltrating the second component is preferably 1080 ° C. or higher when the second component is Cu, and 960 ° C. or higher when the second component is Ag. When the second component is Cu, if the heating temperature is less than 1080 ° C., it is difficult to sufficiently infiltrate Cu into the porous body. When the second component is Ag, it is difficult to sufficiently infiltrate Ag into the porous body when the heating temperature is less than 960 ° C. If the temperature is too high, pores are likely to be generated inside the material. Therefore, when the second component is Cu, it is preferably 1800 to 1180 ° C., and when the second component is Ag, it is preferably 960 to 1060 ° C.
また、本発明に係る電気接点材料は前記第1成分、前記第2成分、前記第3成分および前記第4成分を混合、成形した後、窒素、アルゴンのような不活性ガス雰囲気、水素のような還元性ガス雰囲気、または真空雰囲気のいずれかの雰囲気中にて、例えば900〜1000℃の温度で焼成することによっても製造することが可能である。 In addition, the electrical contact material according to the present invention mixes and molds the first component, the second component, the third component, and the fourth component, and then forms an inert gas atmosphere such as nitrogen or argon, such as hydrogen. It can also be manufactured by firing at a temperature of, for example, 900 to 1000 ° C. in either a reducing gas atmosphere or a vacuum atmosphere.
以上に説明したように、本発明によれば高融点材料である前記第1成分と高電気伝導材料である前記第2成分、および接点の強度や接触抵抗に影響する材料である前記第4成分の系に前記第3成分として仕事関数が低く、高電子放出特性の高いホウ酸化物を配合、例えば前記第1成分中に分散させることにより、アークを分散させて、第2成分であるCuまたはAgの選択的な欠損を抑制させ、第1成分の脱落、損耗を大幅に低減できるため、耐アーク特性を向上できる。 As described above, according to the present invention, the first component, which is a high melting point material, the second component, which is a highly electrically conductive material, and the fourth component, which is a material that affects the strength and contact resistance of contacts. In this system, a borate having a low work function as the third component and a high electron emission characteristic is blended, for example, dispersed in the first component to disperse the arc, so that the second component Cu or Since the selective loss of Ag can be suppressed and the dropout and wear of the first component can be greatly reduced, the arc resistance can be improved.
また、極性が一定である直流遮断の場合、電子を放出する陰極側に仕事関数の低いホウ酸化物を含む電気接点を使用することで、アークを分散させて耐アーク特性を向上できる。 In the case of direct current interruption with a constant polarity, the arc resistance can be improved by dispersing the arc by using an electrical contact containing a borate having a low work function on the cathode side that emits electrons.
また、主材料が高融点材料である前記第1成分と高電気伝導材料である前記第2成分からなるため、耐溶着性に優れ、接触抵抗が低く、かつ良好な電気伝導性を有する。 In addition, since the main material is the first component, which is a high melting point material, and the second component, which is a high electrical conductive material, it has excellent welding resistance, low contact resistance, and good electrical conductivity.
したがって、本発明によれば耐溶着性に優れ、接触抵抗が低く、かつ良好な電気伝導性を有するとともに、優れた耐アーク特性を有する電気接点材料を提供することができる。
Therefore, according to the present invention, it is possible to provide an electrical contact material having excellent welding resistance, low contact resistance, good electrical conductivity, and excellent arc resistance.
(電気接点材料試料の作製)
以下、本発明に係る電気接点材料の好ましい実施例を説明する。
(Preparation of electrical contact material sample)
Hereinafter, preferred embodiments of the electrical contact material according to the present invention will be described.
まず、平均粒子径が4μmのW粉末、平均粒子径が1μmの粉末状のNiおよび平均粒子径が7μmの粉末状のホウ酸化ストロンチウム粉末を用意した。 First, W powder having an average particle diameter of 4 μm, powdered Ni having an average particle diameter of 1 μm, and powdered strontium borate powder having an average particle diameter of 7 μm were prepared.
前記ホウ酸化ストロンチウムは、平均粒子径が5μmのSrBO3とB2O3とを質量比で2:1の割合で混合し、大気雰囲気にて1050℃で30分間焼成して得られたものを使用した。 The strontium borate is obtained by mixing SrBO 3 and B 2 O 3 having an average particle diameter of 5 μm at a mass ratio of 2: 1 and firing at 1050 ° C. for 30 minutes in an air atmosphere. used.
これらの粉末を、ヘンシェルミキサーにて30分間混合し、混合粉末を得た。このとき、ホウ酸化ストロンチウムの配合量を変更することで6種類の粉末を製作した。 These powders were mixed with a Henschel mixer for 30 minutes to obtain a mixed powder. At this time, six types of powders were manufactured by changing the blending amount of strontium borate.
次に混合粉末を50MPaの圧力にて金型プレスを行い、板状の成形体を得た。 Next, the mixed powder was die-pressed at a pressure of 50 MPa to obtain a plate-like molded body.
耐熱容器に成形体が十分収まる凹状部の部位を設けてその中に成形体を設置し、H2雰囲気1150℃にて60分間焼結を行なうことによって、連続した開気孔を有する多孔体を得た。 A porous body having continuous open pores is obtained by providing a concave portion where the molded body can be sufficiently accommodated in a heat-resistant container, placing the molded body therein, and performing sintering for 60 minutes at 1150 ° C. in an H 2 atmosphere. It was.
この多孔体上に、溶浸には十分量の板状のCuを設置し、この状態でH2雰囲気、1100℃にて20分間溶浸を行い、前記連続した開気孔中にCuを充填した構造の電気接点材料を得た。 On this porous body, a sufficient amount of plate-like Cu was installed for infiltration, and in this state, infiltration was performed at H 2 atmosphere at 1100 ° C. for 20 minutes, and the continuous open pores were filled with Cu. The structure electrical contact material was obtained.
得られた材料から溶浸しきれなかった余分なCuを取り除き、フライス盤にて切削加工を行なって直方体の試験片に成形し、試験に用いる電気接点を作製した。WとNiの合計質量は70質量%、溶浸したCuは30質量%であった。また、WとNiはそれぞれ69.6質量%、0.4質量%であった。この試験片の気孔率は3%未満であった。この試験片の導電率を測定したところ、導電率は50%IACSであった。 Excessive Cu that could not be infiltrated from the obtained material was removed, and cutting was performed with a milling machine to form a rectangular parallelepiped test piece, and an electrical contact used for the test was produced. The total mass of W and Ni was 70 mass%, and the infiltrated Cu was 30 mass%. Moreover, W and Ni were 69.6 mass% and 0.4 mass%, respectively. The porosity of this test piece was less than 3%. When the electrical conductivity of this test piece was measured, the electrical conductivity was 50% IACS.
前記電気接点に含まれるホウ酸化ストロンチウムは0質量%を比較試料1とし、0.1質量%、0.5質量%、1.0質量%、1.5質量%、2.0質量%と添加した試料を、それぞれ、試料1〜試料5とした。 The strontium borate contained in the electrical contact is 0% by mass as a comparative sample 1, and 0.1% by mass, 0.5% by mass, 1.0% by mass, 1.5% by mass and 2.0% by mass are added. The obtained samples were designated as Sample 1 to Sample 5, respectively.
前記試料1〜5の断面をXRD(X線回折)で組成分析すると、Niは単体としては観察できなかった。ホウ酸化物をXRDにて測定したところ、ピーク強度比で90%のSr2B2O5と、10%のSrB2O4がみられた。 When the cross sections of Samples 1 to 5 were compositionally analyzed by XRD (X-ray diffraction), Ni could not be observed as a simple substance. When the borate was measured by XRD, 90% Sr 2 B 2 O 5 and 10% SrB 2 O 4 were found in the peak intensity ratio.
前記比較例1および試料例1〜5を直方体の真鍮の台座に、JIS規格で定められるろう材BAg−24でろう付を行ったものを試験片として、2種類の電気試験を実施した。
(実施例1)
実施例1として、可動側を陽極、固定側を陰極とし、同じ試験片を使い、試験電圧をAC230V、試験電流2500A、通電時間0.5サイクル、試験間隔30秒、接点サイズ2mm×5mm×5mmという条件で遮断試験を5回行い、試験片の質量損耗量から体積損耗率を算出して比較を行った(図1、2)。
Two types of electrical tests were carried out using Comparative Example 1 and Sample Examples 1 to 5 as a test piece that was brazed to a brass pedestal having a rectangular parallelepiped shape with a brazing material BAg-24 defined by JIS standards.
Example 1
In Example 1, the movable side is the anode, the fixed side is the cathode, the same test piece is used, the test voltage is 230 VAC, the test current is 2500 A, the energization time is 0.5 cycles, the test interval is 30 seconds, and the contact size is 2 mm × 5 mm × 5 mm. The blockage test was conducted 5 times under the condition, and the volume wear rate was calculated from the mass wear amount of the test piece and compared (FIGS. 1 and 2).
比較試料1に比べて試料1の陰極は明らかに消耗が少なく、また試料2の陰極は約65%、試料3〜5の陰極は約40%の消耗量となり、特に試料4が最も消耗が少ない結果となった。また、図には示していないが、比較試料にホウ酸化ストロンチウムを5質量%加えた試料を製作し、同様の試験を行った結果、比較試料1に比べて約80%の消耗量となった。
(実施例2)
極性の影響と可動側固定側の影響を比較するために、試料4(ホウ酸化ストロンチウム1.5質量%)を使用し、極性を入れ替えて実施例1と同様の試験を行った。(図3、4)
試験結果より、可動固定に関わらず、陰極側の体積消耗量が陽極側の体積消耗量と比較して60%〜70%に抑えられることがわかった。
(実施例3)
実施例3として、可動側を陽極、固定側を陰極とし、実施例1と同じ試験片を使い、試験電圧をAC230V、試験電流100A、通電時間1秒、試験間隔2秒、試験片サイズ2mm×8mm×8mmという条件で開閉試験を20,000回行い、試験片の接触抵抗を比較した。
Compared with comparative sample 1, the cathode of sample 1 is clearly less consumed, the cathode of sample 2 is about 65%, and the cathodes of samples 3 to 5 are about 40% of consumption, especially sample 4 is the least consumed. As a result. Although not shown in the figure, a sample in which 5% by mass of strontium borate was added to the comparative sample was manufactured and the same test was performed. As a result, the amount of consumption was about 80% that of Comparative Sample 1. .
(Example 2)
In order to compare the influence of the polarity and the influence of the movable side fixed side, the same test as in Example 1 was performed using Sample 4 (1.5% by mass of strontium borate) and changing the polarity. (Figs. 3 and 4)
From the test results, it was found that the volume consumption on the cathode side was suppressed to 60% to 70% compared to the volume consumption on the anode side, regardless of the movable fixation.
(Example 3)
As Example 3, the movable side is the anode, the fixed side is the cathode, the same test piece as in Example 1 is used, the test voltage is 230 VAC, the test current is 100 A, the energization time is 1 second, the test interval is 2 seconds, the test piece size is 2 mm × The open / close test was performed 20,000 times under the condition of 8 mm × 8 mm, and the contact resistances of the test pieces were compared.
前記試料1〜5は前記比較試料1と比べて接触抵抗の増加が低く、20,000回開閉後の接触抵抗値は比較試料1の70%程度まで低下した。
前記実施例1〜3のいずれの試験においても溶着は発生しなかった。
(実施例4)
前記実施例1で使用した試験片のW部分をWCに入れ替えた試験片を比較試料2、試料6〜10として試験を実施した。
比較試料2に比べて試料6の陰極は明らかに消耗が少なく、また試料7の陰極は約65%、試料8〜10の陰極は約40%の消耗量となり、特に試料4が最も消耗が少ない結果となった。
(実施例5)
前記実施例3で使用した試験片のW部分をWCに入れ替えた試験片を比較試料2、試料6〜10として試験を実施した。
前記試料6〜10は前記比較試料2と比べて接触抵抗の増加が低く、20,000回開閉後の接触抵抗値は比較試料2の70%程度まで低下した結果となった。
前記実施例4、5のいずれの試験においても溶着は発生しなかった。
(実施例6)
まず平均粒子径が2μmのW粉末(第1成分)と、平均粒子径が2μmのAg(第2成分)、平均粒子径が7μmのホウ酸化ストロンチウム粉末(第3成分)、平均粒子径が100μm以下のC粉末と平均粒子径が2μmのVC粉末(第4成分)をヘンシェルミキサーにて30分間混合し、混合粉末を得た。このとき、ホウ酸化ストロンチウムの配合量を変更することで6種類の粉末を製作した。
In Samples 1 to 5, the increase in contact resistance was lower than that in Comparative Sample 1, and the contact resistance value after opening and closing 20,000 times was reduced to about 70% of Comparative Sample 1.
In any of the tests of Examples 1 to 3, no welding occurred.
Example 4
The test was carried out using the test piece obtained by replacing the W portion of the test piece used in Example 1 with WC as Comparative Sample 2 and Samples 6-10.
The cathode of sample 6 is clearly less consumed than comparative sample 2, the cathode of sample 7 is about 65%, and the cathodes of samples 8 to 10 are about 40%, especially sample 4 is the least consumed. As a result.
(Example 5)
The test was carried out using the test piece obtained by replacing the W portion of the test piece used in Example 3 with WC as Comparative Sample 2 and Samples 6-10.
The samples 6 to 10 had a lower increase in contact resistance than the comparative sample 2, and the contact resistance value after opening and closing 20,000 times was reduced to about 70% of the comparative sample 2.
In any of the tests of Examples 4 and 5, no welding occurred.
(Example 6)
First, W powder (first component) having an average particle size of 2 μm, Ag (second component) having an average particle size of 2 μm, strontium borate powder (third component) having an average particle size of 7 μm, and an average particle size of 100 μm The following C powder and VC powder (fourth component) having an average particle diameter of 2 μm were mixed with a Henschel mixer for 30 minutes to obtain a mixed powder. At this time, six types of powders were manufactured by changing the blending amount of strontium borate.
次に混合粉末を50MPaの圧力にて金型プレスを行い、板状の成形体を得た。 Next, the mixed powder was die-pressed at a pressure of 50 MPa to obtain a plate-like molded body.
耐熱容器に成形体が十分収まる凹状部の部位を設けてその中に成形体を設置し、H2雰囲気1150℃にて60分間焼結を行なうことによって、Ag中にW粒子、ホウ酸化ストロンチウム粒子およびC粒子が分散した構造を有する材料を得た。
得られた材料を金型に入れ、圧力をかけ高密度化した後に、フライス盤にて切削加工を行なって直方体の試験片に成形し、試験に用いる電気接点を作製した。WCと第4成分の合計質量は21質量%(WC12質量%、C3質量%、VC6質量%)、Agの質量は79質量%であった。この試験片気孔率は3%未満であった。この試験片の導電率を測定したところ、導電率は40%IACSであった。
By providing a concave portion where the molded body can be sufficiently accommodated in a heat-resistant container, placing the molded body therein, and sintering for 60 minutes at 1150 ° C. in an H 2 atmosphere, W particles and strontium borate particles in Ag And a material having a structure in which C particles are dispersed.
The obtained material was put into a mold and pressed to increase the density, and then cut with a milling machine to form a rectangular parallelepiped test piece, thereby producing an electrical contact used for the test. The total mass of WC and the fourth component was 21 mass% (WC 12 mass%, C 3 mass%, VC 6 mass%), and the mass of Ag was 79 mass%. The test piece porosity was less than 3%. When the electrical conductivity of this test piece was measured, the electrical conductivity was 40% IACS.
前記電気接点に含まれるホウ酸化ストロンチウムは第1成分および第2成分と比較して0質量%を比較試料3とし、0.1質量%、0.5質量%、1.0質量%、1.5質量%、2.0質量%、5.0質量%であり、それぞれ、試料11〜試料16とする。 The strontium borate contained in the electrical contact is 0% by mass as a comparative sample 3 compared to the first component and the second component, 0.1% by mass, 0.5% by mass, 1.0% by mass, and 1. They are 5 mass%, 2.0 mass%, and 5.0 mass%, and are designated as Sample 11 to Sample 16, respectively.
前記試料11〜16の断面をEPMA(電子線マイクロアナライザ)にて観察すると、ホウ酸化物はその大部分がAgとWCの粒界に存在していることが確認された。ホウ酸化物をXRDにて測定したところ、ピーク強度比で90%のSr2B2O5と、10%のSrB2O4がみられた。 When the cross sections of the samples 11 to 16 were observed with an EPMA (electron beam microanalyzer), it was confirmed that most of the borate was present at the grain boundaries of Ag and WC. When the borate was measured by XRD, 90% Sr 2 B 2 O 5 and 10% SrB 2 O 4 were found in the peak intensity ratio.
前記比較例3および試料例11〜16を使用して実施例1と同じ試験を実施した。
試験の結果は、比較試料3に比べて試料11はほとんど変わらず、試料12は約90%、試料13〜16は約80%、試料16は約90%の消耗量となり、特に試料14が最も消耗が少なかった。
The same test as in Example 1 was performed using Comparative Example 3 and Sample Examples 11-16.
As a result of the test, the sample 11 is hardly changed compared to the comparative sample 3, the sample 12 is about 90%, the samples 13 to 16 are about 80%, and the sample 16 is about 90%. There was little consumption.
前記試料11〜16は前記比較試料3と比べて接触抵抗の増加が低く、20,000回開閉後の接触抵抗値は比較試料4の80%程度まで低下した。
試料の11〜16は、いずれの試験においても溶着が発生しなかった。
The samples 11 to 16 showed a lower increase in contact resistance than the comparative sample 3, and the contact resistance value after opening and closing 20,000 times decreased to about 80% of the comparative sample 4.
In Samples 11 to 16, no welding occurred in any of the tests.
Claims (9)
WおよびWCから選択する第1成分と、
CuおよびAgから選択する第2成分と、
Ca、Sr、Ba、Mgおよび希土類金属のいずれかのホウ酸化物から選択する少なくとも1種または2種以上の第3成分と、
C、Cr、Co、Ni、FeおよびPの単体またはいずれか2種以上からなる化合物からなる群から選択する少なくとも1種または2種以上から選択する第4成分
とを含有する電気接点材料。 A material used for electrical contacts,
A first component selected from W and WC;
A second component selected from Cu and Ag;
At least one or two or more third components selected from any borate of Ca, Sr, Ba, Mg and rare earth metals;
An electrical contact material containing at least one selected from the group consisting of C, Cr, Co, Ni, Fe and P alone or a compound consisting of any two or more thereof, and a fourth component selected from two or more.
前記第2成分が80〜20質量%、
前記第3成分と前記第4成分が合せて0.1質量%以上14質量%以下である
請求項1から請求項3のいずれか1項に記載の電気接点材料。 20 to 90% by mass of the first component,
80 to 20% by mass of the second component,
The electrical contact material according to any one of claims 1 to 3, wherein the third component and the fourth component together are 0.1 mass% or more and 14 mass% or less.
請求項1から請求項4のいずれか1項に記載の電気接点材料。 5. The electrical contact material according to claim 1, wherein an average particle diameter of the first component and an average particle diameter of the third component are both 20 μm or less.
前記第2成分を開気孔中に充填した構造を有する
請求項1から請求項5のいずれか1項に記載の電気接点材料。 The first component, the third component and the fourth component have a shape of a porous body having continuous open pores,
The electrical contact material according to any one of claims 1 to 5, having a structure in which the second component is filled in open pores.
前記第1成分および前記第3成分および前記第4成分が分散した構造を有する請求項1から請求項5のいずれか1項に記載の電気接点材料。 In the matrix of the second component,
The electrical contact material according to claim 1, wherein the electrical contact material has a structure in which the first component, the third component, and the fourth component are dispersed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013066735A JP6200669B2 (en) | 2013-03-27 | 2013-03-27 | Electrical contact material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013066735A JP6200669B2 (en) | 2013-03-27 | 2013-03-27 | Electrical contact material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014192007A true JP2014192007A (en) | 2014-10-06 |
JP6200669B2 JP6200669B2 (en) | 2017-09-20 |
Family
ID=51838076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013066735A Active JP6200669B2 (en) | 2013-03-27 | 2013-03-27 | Electrical contact material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6200669B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105018768A (en) * | 2015-07-31 | 2015-11-04 | 陕西斯瑞工业有限责任公司 | High-performance copper chromium contactor material and preparing method thereof |
JP2016076063A (en) * | 2014-10-06 | 2016-05-12 | ホーチキ株式会社 | Alarm system |
JP2016191902A (en) * | 2015-03-30 | 2016-11-10 | 信越化学工業株式会社 | Pellicle |
KR101843233B1 (en) * | 2015-12-08 | 2018-03-28 | 희성금속 주식회사 | Manufacturing method for electric contact material |
KR20180086781A (en) * | 2017-01-23 | 2018-08-01 | 현대자동차주식회사 | Electrical contact material |
CN110976887A (en) * | 2019-12-17 | 2020-04-10 | 哈尔滨东大高新材料股份有限公司 | AgWC (T)/CuC (X) contact material and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111411280A (en) * | 2020-03-03 | 2020-07-14 | 福达合金材料股份有限公司 | Copper tungsten carbide diamond composite electrical contact material and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS619539A (en) * | 1984-06-22 | 1986-01-17 | Tanaka Kikinzoku Kogyo Kk | Electrical contact material and its manufacture |
JPH0254819A (en) * | 1988-08-19 | 1990-02-23 | Toshiba Corp | Contact material for vacuum valve |
JP2002294384A (en) * | 2001-03-28 | 2002-10-09 | Toshiba Corp | Electrical contact material |
JP2002327232A (en) * | 2001-04-27 | 2002-11-15 | Toshiba Corp | Composite material for electrical contact, manufacturing method therefor, and electrical switching device |
WO2012053486A1 (en) * | 2010-10-18 | 2012-04-26 | 日本タングステン株式会社 | Electrode for electric discharge machining |
-
2013
- 2013-03-27 JP JP2013066735A patent/JP6200669B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS619539A (en) * | 1984-06-22 | 1986-01-17 | Tanaka Kikinzoku Kogyo Kk | Electrical contact material and its manufacture |
JPH0254819A (en) * | 1988-08-19 | 1990-02-23 | Toshiba Corp | Contact material for vacuum valve |
JP2002294384A (en) * | 2001-03-28 | 2002-10-09 | Toshiba Corp | Electrical contact material |
JP2002327232A (en) * | 2001-04-27 | 2002-11-15 | Toshiba Corp | Composite material for electrical contact, manufacturing method therefor, and electrical switching device |
WO2012053486A1 (en) * | 2010-10-18 | 2012-04-26 | 日本タングステン株式会社 | Electrode for electric discharge machining |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016076063A (en) * | 2014-10-06 | 2016-05-12 | ホーチキ株式会社 | Alarm system |
JP2016191902A (en) * | 2015-03-30 | 2016-11-10 | 信越化学工業株式会社 | Pellicle |
CN105018768A (en) * | 2015-07-31 | 2015-11-04 | 陕西斯瑞工业有限责任公司 | High-performance copper chromium contactor material and preparing method thereof |
KR101843233B1 (en) * | 2015-12-08 | 2018-03-28 | 희성금속 주식회사 | Manufacturing method for electric contact material |
KR20180086781A (en) * | 2017-01-23 | 2018-08-01 | 현대자동차주식회사 | Electrical contact material |
KR102224011B1 (en) | 2017-01-23 | 2021-03-05 | 현대자동차 주식회사 | Electrical contact material |
CN110976887A (en) * | 2019-12-17 | 2020-04-10 | 哈尔滨东大高新材料股份有限公司 | AgWC (T)/CuC (X) contact material and preparation method thereof |
CN110976887B (en) * | 2019-12-17 | 2022-02-11 | 哈尔滨东大高新材料股份有限公司 | AgWC (T)/CuC (X) contact material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6200669B2 (en) | 2017-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6200669B2 (en) | Electrical contact material | |
JP4759987B2 (en) | Electrode and electrical contact and its manufacturing method | |
JP2007018835A (en) | Electric contact for vacuum circuit breaker and its manufacturing method | |
US20050092714A1 (en) | Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vaccum circuit breaker | |
EP0354997B1 (en) | Contact forming material for a vacuum interrupter | |
WO2014136617A1 (en) | Electrical contact and breaker | |
US20160141126A1 (en) | Electrical Contact for Vacuum Interrupter and Process for Producing Same | |
JP6253494B2 (en) | Contact material for vacuum valve and vacuum valve | |
US20060081560A1 (en) | Vacuum circuit breaker, vacuum interrupter, electric contact and method of manufacturing the same | |
JP6145285B2 (en) | Electrical contact material, method for producing the same, and electrical contact | |
JP2011108380A (en) | Electric contact for vacuum valve, and vacuum interrupter using the same | |
JPS6359217B2 (en) | ||
KR100199429B1 (en) | The contact materials for gas circuit breaker and methods of the same | |
JP2006147263A (en) | Electrode for vacuum circuit breaker, vacuum valve, and manufacture thereof | |
JP6669327B1 (en) | Electrical contacts, vacuum valves with electrical contacts | |
JP4249356B2 (en) | Electrical contact material | |
JP2006228684A (en) | Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof | |
US20060169370A1 (en) | Electrical contact material and method for making same | |
JP2002294384A (en) | Electrical contact material | |
KR20210056548A (en) | Manufacturing method of Ta-Cu alloy and Ta-Cu alloy using thereof | |
JP2015069825A (en) | Contact material and circuit breaker using the same | |
JP3442644B2 (en) | Contact material for vacuum valve | |
JP6302276B2 (en) | Electrical contact materials, electrical contact pairs and circuit breakers | |
JP2003183749A (en) | Vacuum circuit-breaker and contact material for this | |
JP2911594B2 (en) | Vacuum valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161101 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20161221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170828 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6200669 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |