JP2014191841A - SiO2 FILM COATING ALUMINUM PLATE AND METHOD FOR PRODUCING THE SAME - Google Patents

SiO2 FILM COATING ALUMINUM PLATE AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2014191841A
JP2014191841A JP2013066668A JP2013066668A JP2014191841A JP 2014191841 A JP2014191841 A JP 2014191841A JP 2013066668 A JP2013066668 A JP 2013066668A JP 2013066668 A JP2013066668 A JP 2013066668A JP 2014191841 A JP2014191841 A JP 2014191841A
Authority
JP
Japan
Prior art keywords
film
aluminum plate
sio
temperature
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013066668A
Other languages
Japanese (ja)
Other versions
JP6085209B2 (en
Inventor
Tetsuo Suzuki
哲雄 鈴木
Naoya Fujiwara
直也 藤原
Takayuki Hirano
貴之 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013066668A priority Critical patent/JP6085209B2/en
Publication of JP2014191841A publication Critical patent/JP2014191841A/en
Application granted granted Critical
Publication of JP6085209B2 publication Critical patent/JP6085209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a SiOfilm coating aluminum plate excellent in hardness and thermal resistance, and a method for producing the same.SOLUTION: An aluminum plate includes a SiOfilm formed thereon. When the temperature of the aluminum plate on which inorganic polysilazane containing liquid is coated is 100 to 250°C, an addition of steam is started, and it is calcinated.

Description

本発明は、各種電子機器用基板や磁気記録媒体(磁気ディスク)用基板など、電気電子機器用材料として好適なSiO膜被覆アルミニウム板、及びその製造方法に関するものである。 The present invention relates to a SiO 2 film-coated aluminum plate suitable as a material for electrical and electronic equipment such as various electronic equipment substrates and magnetic recording medium (magnetic disk) substrates, and a method for producing the same.

アルミニウム板(純アルミニウムとアルミニウム合金を含む、以下同じ)は入手コストが低く、また非磁性でかつ、加工性などにも優れている。そのため、各種電子機器用基板や磁気記録媒体用基板など様々な電気電子機器用材料として汎用されている。   An aluminum plate (including pure aluminum and an aluminum alloy, the same applies hereinafter) is low in cost of acquisition, non-magnetic, and excellent in workability. Therefore, it is widely used as various materials for electric and electronic devices such as various electronic device substrates and magnetic recording medium substrates.

アルミニウム板には、用途に応じた特性を付与するために表面処理等が施されることがある。例えば磁気記録媒体用基板には、表面が平滑で、硬度に優れていることが要求されている。こうした要求特性を付与するために例えば非特許文献1に記載されているような製造方法でアルミニウム板表面に無電解NiPめっきが施されることがある(NiPめっきアルミニウム板)。   The aluminum plate may be subjected to surface treatment or the like in order to impart characteristics according to the application. For example, a substrate for a magnetic recording medium is required to have a smooth surface and excellent hardness. In order to give such required characteristics, electroless NiP plating may be applied to the surface of the aluminum plate by a manufacturing method as described in Non-Patent Document 1, for example (NiP plated aluminum plate).

例えば磁気記録媒体は、NiPめっきアルミニウム板(基板)に、軟磁性裏打ち層、中間層(結晶粒制御層、結晶配向制御層など)などが形成され、その上に記録層として磁性膜が成膜され、更に表面保護層(硬質カーボンなど)が形成されている。   For example, in a magnetic recording medium, a soft magnetic backing layer, an intermediate layer (crystal grain control layer, crystal orientation control layer, etc.), etc. are formed on a NiP plated aluminum plate (substrate), and a magnetic film is formed thereon as a recording layer. Furthermore, a surface protective layer (such as hard carbon) is formed.

近年、磁気記録媒体は大容量化が進んでおり、記録密度を飛躍的に高める次世代磁気記録媒体の開発が行われている。磁気記録媒体の高密度化を進めようとすると、磁性粒子を微細化する必要がある。しかしながら微細化すると、磁気記録データの一部が周囲の熱の影響で消失してしまう熱揺らぎの問題が生じるため、磁性膜の保磁力を高めた磁気記録媒体が提案されている。もっとも保磁力を高めると従来のヘッドではデータの記録が困難となる。そのため、レーザで記録媒体を加熱しながらデータを記録する熱アシスト記録方式が注目されている。この記録方式では、磁気記録媒体に形成した磁性膜の加熱部分の保磁力を低下させているためデータの記録が可能であり、また非加熱部分は保磁力が高いため、熱揺らぎを解消できる。   In recent years, the capacity of magnetic recording media has been increasing, and next-generation magnetic recording media that dramatically increase recording density have been developed. To increase the density of the magnetic recording medium, it is necessary to make the magnetic particles finer. However, when miniaturization occurs, there arises a problem of thermal fluctuation in which part of the magnetic recording data disappears due to the influence of the surrounding heat. Therefore, a magnetic recording medium in which the coercive force of the magnetic film is increased has been proposed. However, when the coercive force is increased, it becomes difficult to record data with a conventional head. For this reason, attention has been paid to a heat-assisted recording method in which data is recorded while a recording medium is heated by a laser. In this recording method, data can be recorded because the coercivity of the heated portion of the magnetic film formed on the magnetic recording medium is reduced, and thermal fluctuation can be eliminated because the non-heated portion has high coercivity.

このような熱アシスト記録方式に適した磁気記録媒体の製造過程においては、磁性膜の成膜温度など製造時の熱履歴が300℃以上、更には350℃以上になることがある。現在汎用されているNiPめっきアルミニウム板の場合、下地のアルミニウム板の耐熱性は370℃以上であるが、NiPめっきは300℃以上に加熱されると結晶化して磁性を持つようになるため、事実上300℃程度までしか対応できず、基板の耐熱温度が磁気記録媒体製造上の大きな制約となっている。   In the process of manufacturing a magnetic recording medium suitable for such a heat-assisted recording method, the thermal history during manufacturing, such as the film formation temperature of the magnetic film, may be 300 ° C. or higher, and further 350 ° C. or higher. In the case of NiP-plated aluminum plates that are currently widely used, the heat resistance of the underlying aluminum plate is 370 ° C or higher, but NiP plating crystallizes and becomes magnetic when heated to 300 ° C or higher. It can only handle up to about 300 ° C., and the heat-resistant temperature of the substrate is a major limitation in the production of magnetic recording media.

このような問題に対して、第三成分の添加によるNiPめっき皮膜の耐熱性改善が試みられているが(特許文献1)、せいぜい320℃程度までの耐熱性であり、十分な耐熱性改善効果が得られていない。   In order to solve this problem, an attempt has been made to improve the heat resistance of the NiP plating film by adding a third component (Patent Document 1), but it has a heat resistance of up to about 320 ° C. and has a sufficient heat resistance improvement effect. Is not obtained.

そのため、現行のNiPめっきに代わる、非磁性で高硬度かつ耐熱性にも優れた皮膜として非晶質のSiO2膜が着目されている。 For this reason, an amorphous SiO 2 film has attracted attention as a nonmagnetic, high hardness, and excellent heat resistance alternative to the current NiP plating.

SiO2膜の成膜方法としては、化学蒸着法(CVD法)や気相成長法(スパッタリング法)などの乾式シリカコーティング法や、ゾル−ゲル法やシリカ前駆体を塗工して焼成するなどの湿式シリカコーティング法が知られている。 As a method for forming the SiO 2 film, a dry silica coating method such as a chemical vapor deposition method (CVD method) or a vapor phase growth method (sputtering method), a sol-gel method or a silica precursor is applied and baked. Wet silica coating methods are known.

乾式シリカコーティング法によってSiO2膜を成膜する場合、例えばCVD法ではシランガスなどの有毒ガスの使用に伴う危険性が生じることがある。またスパッタリング法では成膜に時間がかかり、設備も大型化するなどの難点があった。 When the SiO 2 film is formed by the dry silica coating method, for example, the CVD method may cause a risk associated with the use of a toxic gas such as silane gas. Further, the sputtering method has a problem that it takes time to form a film and the equipment is enlarged.

一方、上記問題が生じない成膜方法として、湿式シリカコーティング法が採用されているが、例えばゾル−ゲル法で成膜した場合、縮合反応による質量減少および体積収縮が大きく、SiO膜にピンホール欠陥が形成される問題があった。 On the other hand, a wet silica coating method has been adopted as a film forming method that does not cause the above problem. For example, when a film is formed by a sol-gel method, mass reduction and volume shrinkage due to a condensation reaction are large, and pinning is performed on the SiO 2 film. There was a problem that hole defects were formed.

ゾルーゲル法のように、大きな質量減少が生じない湿式シリカコーティング法として、前駆体としてポリシラザン含有溶液を塗工・硬化させてSiO2膜を成膜する技術が各種提案されている。 Various techniques for forming a SiO 2 film by applying and curing a polysilazane-containing solution as a precursor have been proposed as a wet silica coating method that does not cause a large mass loss as in the sol-gel method.

例えば特許文献2には、アルミニウム板表面に、ポリシラザン含有溶液(前駆体)をコーティングし、これをN2、NH3、または大気雰囲気中で200〜400℃の温度範囲で焼成して窒化珪素質連続薄膜を成膜する技術が開示されている。 For example, in Patent Document 2, a polysilazane-containing solution (precursor) is coated on the surface of an aluminum plate, and this is fired in a temperature range of 200 to 400 ° C. in N 2 , NH 3 , or air atmosphere to produce silicon nitride. A technique for forming a continuous thin film is disclosed.

また特許文献3には、シクロシラザン高分子物質含有溶液(前駆体)を塗工した基板を400〜450℃に加熱して塗膜を不溶・不融に変化させた後、更に酸素または水蒸気雰囲気中で約900℃に加熱することでSiO2膜を形成する技術が開示されている。 Patent Document 3 discloses that a substrate coated with a cyclosilazane polymer substance-containing solution (precursor) is heated to 400 to 450 ° C. to change the coating to insoluble and infusible, and then an oxygen or water vapor atmosphere. Among them, a technique for forming a SiO 2 film by heating to about 900 ° C. is disclosed.

更に特許文献4には、ポリシラザン溶液(前駆体)を基材上に塗工した後、0℃〜100℃の温度でアミン類及び水蒸気と接触させた後、乾燥雰囲気中で焼成することでSiO2膜を成膜する技術が開示されている。 Further, in Patent Document 4, after a polysilazane solution (precursor) is coated on a substrate, it is brought into contact with amines and water vapor at a temperature of 0 ° C. to 100 ° C., and then baked in a dry atmosphere to produce SiO 2. A technique for forming two films is disclosed.

特開2012−195021号公報JP 2012-195021 A 特開平4−252420号公報JP-A-4-252420 特開昭62−88327号公報JP-A-62-88327 特許第4053105号公報Japanese Patent No. 4053105

砥粒加工学会誌、Vol.43、No.11、1999年11月、p.475〜479Journal of Abrasive Technology, Vol. 43, no. 11, November 1999, p. 475-479

上記したポリシラザン含有溶液を塗工・硬化させてSiO2膜を成膜する技術(特許文献2〜4)を用いてアルミニウム板表面にSiO2膜を成膜した場合、次のような問題点が生じることがわかった。 When depositing the SiO 2 film on the surface of the aluminum plate using techniques (Patent Documents 2 to 4) for forming the SiO 2 film of the above polysilazane-containing solution is coated and cured, the following problems are I found it to happen.

例えば特許文献2の技術では、膜硬度が不十分であり(2.1GPa程度)、またSiO2膜に亀裂が生じたり、アルミニウム板からSiO2膜が剥離するなどの問題が生じるため歩留が低かった。 For example, in the technique of Patent Document 2, the film hardness is insufficient (about 2.1 GPa), and there are problems such as cracks in the SiO 2 film and separation of the SiO 2 film from the aluminum plate. It was low.

また特許文献3の技術では、シリカ転化のための加熱温度が900℃とアルミニウム板の融点よりも高いため、アルミニウム板への適用は不可能であった。   Moreover, in the technique of patent document 3, since the heating temperature for silica conversion is 900 degreeC and higher than melting | fusing point of an aluminum plate, the application to an aluminum plate was impossible.

更に特許文献4の技術では、アミン類と接触させるための設備と乾燥雰囲気中で熱処理する設備が必要なため製造コスト増加要因となる。   Furthermore, the technique of Patent Document 4 requires a facility for contacting with amines and a facility for heat treatment in a dry atmosphere, which causes an increase in manufacturing cost.

本発明は上記のような事情に着目してなされたものであって、その目的は、硬度および耐熱性に優れたSiO2膜被覆アルミニウム板、及びその製造方法を提供することである。 The present invention has been made paying attention to the above-described circumstances, and an object thereof is to provide a SiO 2 film-coated aluminum plate excellent in hardness and heat resistance, and a method for producing the same.

上記課題を解決し得た本発明とは、SiO膜が成膜されたアルミニウム板であって、無機ポリシラザン含有液が塗工されたアルミニウム板の温度が100〜250℃のときに水蒸気の添加を開始し、焼成されたものであることに要旨を有する。 The present invention capable of solving the above problems is the addition of water vapor when the temperature of the aluminum plate coated with the inorganic polysilazane-containing liquid is 100 to 250 ° C., on which the SiO 2 film is formed. It has a gist that it has been fired.

本発明では、前記焼成時の最終温度は、370℃以下であることも好ましい実施態様である。   In the present invention, it is also a preferred embodiment that the final temperature during the firing is 370 ° C. or lower.

また本発明は、アルミニウム板表面に無機ポリシラザン含有液を塗工した後、アルミニウム基板を連続的に昇温焼成してSiO膜が成膜されたアルミニウム板の製造方法において、前記焼成は、前記アルミニウム板の温度が100〜250℃のときに水蒸気の添加を開始することに要旨を有する。 Further, the present invention provides a method for producing an aluminum plate in which an inorganic polysilazane-containing liquid is applied to the surface of an aluminum plate, and then an aluminum substrate is continuously heated and fired to form a SiO 2 film. The gist is that the addition of water vapor is started when the temperature of the aluminum plate is 100 to 250 ° C.

本発明では、前記焼成時の最終温度は、370℃以下であることも好ましく、また前記アルミニウム板表面の圧延面を除去してから、前記無機ポリシラザン含有液を塗工するものであることも好ましい実施態様である。   In the present invention, the final temperature at the time of firing is preferably 370 ° C. or less, and it is also preferable to apply the inorganic polysilazane-containing liquid after removing the rolled surface of the aluminum plate surface. This is an embodiment.

本発明は、アルミニウム板表面に無機ポリシラザン含有溶液を塗工した後、アルミニウム板を加熱して、所定の温度で水蒸気の添加を開始しているため、耐熱性(好ましくは300℃以上、より好ましくは350℃以上、更に好ましくは400℃以上)に優れており、またガラス並みの硬度(好ましくは4.0GPa以上、より好ましくは5.0GPa以上、好ましくは8.0GPa以下)を有するSiO2膜被覆アルミニウム板、及びその製造方法を提供することができる。 In the present invention, the inorganic polysilazane-containing solution is applied to the surface of the aluminum plate, and then the aluminum plate is heated to start addition of water vapor at a predetermined temperature. 350 ° C. or more, further has preferably excellent 400 ° C. or higher), also the hardness of the comparable glass (preferably 4.0GPa or more, more preferably 5.0GPa or more, SiO 2 film preferably has a 8.0GPa or less) A coated aluminum plate and a manufacturing method thereof can be provided.

したがって本発明のSiO2膜被覆アルミニウム板は、高い硬度と耐熱性が要求される磁気記録媒体用基板や電子機器用基板など様々な電気電子機器用途へのアルミニウム板の利用に対する制約を大きく緩和することができる。 Therefore, the SiO 2 film-coated aluminum plate of the present invention greatly relaxes restrictions on the use of the aluminum plate for various electrical and electronic equipment applications such as magnetic recording medium substrates and electronic device substrates that require high hardness and heat resistance. be able to.

以下、本発明について説明するが、本発明において「焼成温度」とは、SiO2膜を成膜するときのアルミニウム板自体の温度であり、アルミニウム板に熱電対を設置して測定される温度である。 Hereinafter, the present invention will be described. In the present invention, the “firing temperature” is the temperature of the aluminum plate itself when the SiO 2 film is formed, and is the temperature measured by installing a thermocouple on the aluminum plate. is there.

また「耐熱性評価温度」とは、SiO膜で被覆したアルミニウム板を磁気記録媒体用基板等、各種加工・製造課程などで高温環境下に曝されたときのアルミニウム板自体の温度であり、上記と同様熱電対により測定されるアルミニウム板の温度である。 The “heat resistance evaluation temperature” is the temperature of the aluminum plate itself when the aluminum plate coated with the SiO 2 film is exposed to a high temperature environment in various processing / manufacturing processes such as a magnetic recording medium substrate, It is the temperature of the aluminum plate measured with a thermocouple as described above.

なお、本発明ではSiO2膜や磁性膜などを成膜する際の装置や雰囲気等の設定温度と焼成温度(アルミニウム板の温度)や耐熱性評価温度(アルミニウム板の温度)は一致しないことがある。例えば本発明の実施例ではSiO2膜が成膜されたアルミニウム板の耐熱性を評価するため、予めアルミニウム板に熱電対を取り付けて、電気炉内の温度とアルミニウム板の温度との関係を調べ、アルミニウム板の温度が製造過程の熱履歴を模擬した温度になるように電気炉の温度を設定しているため、電気炉の温度がアルミニウム板の温度と一致していない場合がある。 In the present invention, the set temperature of the apparatus and atmosphere when forming the SiO 2 film, magnetic film, etc., and the firing temperature (aluminum plate temperature) and heat resistance evaluation temperature (aluminum plate temperature) may not match. is there. For example, in an embodiment of the present invention, in order to evaluate the heat resistance of an aluminum plate on which a SiO 2 film is formed, a thermocouple is attached to the aluminum plate in advance, and the relationship between the temperature in the electric furnace and the temperature of the aluminum plate is examined. Since the temperature of the electric furnace is set so that the temperature of the aluminum plate becomes a temperature simulating the thermal history of the manufacturing process, the temperature of the electric furnace may not match the temperature of the aluminum plate.

本発明者らは、ガラスと同程度の硬度(4.0〜8.0GPa)を有し、且つNiPめっき皮膜を凌駕する耐熱性に優れたSiO2膜の形成について鋭意研究を重ねた。具体的には無機ポリシラザンに着目し、無機ポリシラザン含有溶液(前駆体)を塗工・焼成して成膜したSiO2膜被覆アルミニウム板について検討した。 The inventors of the present invention have made extensive studies on the formation of a SiO 2 film having a hardness comparable to that of glass (4.0-8.0 GPa) and excellent heat resistance that surpasses the NiP plating film. Specifically, focusing on inorganic polysilazane, an SiO 2 film-coated aluminum plate formed by coating and baking an inorganic polysilazane-containing solution (precursor) was studied.

無機ポリシラザンをシリカ転化反応させて得られるSiO2膜は、アルミニウム板よりも硬質であり、アルミニウム板の表面硬度を高めることができるためである。更にSiO2膜は該耐熱性にも優れており、耐熱評価温度を向上できるためである。 This is because the SiO 2 film obtained by subjecting inorganic polysilazane to a silica conversion reaction is harder than the aluminum plate and can increase the surface hardness of the aluminum plate. Furthermore, the SiO 2 film is excellent in the heat resistance, and the heat evaluation temperature can be improved.

まず、シリコンウェハ上に無機ポリシラザンを塗工してSiO2膜を成膜した場合、大気雰囲気中で400℃以上の温度で焼成してもSiO2膜に亀裂が生じたり、SiO2膜が剥離することはなかった(表1のNo.11)。 First, when a SiO 2 film by coating the inorganic polysilazane on a silicon wafer, cracks or generated in the SiO 2 film even by firing at a temperature above 400 ° C. in an air atmosphere, the SiO 2 film separation (No. 11 in Table 1).

ところがアルミニウム板上に無機ポリシラザンを塗工してSiO2膜を成膜した場合、300℃程度の焼成温度(焼成時のアルミニウム板温度)になるとSiO2膜に亀裂が生じたり、SiO2膜がアルミニウム板から剥離するなどの問題が生じることがわかった(表1のNo.3)。 However, when an inorganic polysilazane is coated on an aluminum plate to form a SiO 2 film, when the firing temperature reaches about 300 ° C. (the aluminum plate temperature during firing), the SiO 2 film cracks or the SiO 2 film It was found that problems such as peeling from the aluminum plate occurred (No. 3 in Table 1).

一方、アルミニウム板に成膜する場合でも、焼成温度を250℃以下に設定すると、SiO2膜の亀裂等は生じないが、十分な硬度や耐熱性が得られないという問題が生じた(表1のNo.1、2)。 On the other hand, even when the film is formed on an aluminum plate, if the firing temperature is set to 250 ° C. or lower, cracks or the like of the SiO 2 film does not occur, but there is a problem that sufficient hardness and heat resistance cannot be obtained (Table 1). No. 1, 2).

そこで、本発明者らがSiO2膜の成膜条件について検討した結果、アルミニウム板にSiO2膜を成膜するための前駆体として無機ポリシラザンを用いると共に、シリカ転化反応に必要な酸素源として水蒸気を添加し、更に水蒸気の添加開始タイミング(温度範囲)を適切に制御することで、上記課題を達成できることを見出し、本発明に至った。その経緯は次の通りである。 Therefore, as a result of studying the film forming conditions of the SiO 2 film, the present inventors have used inorganic polysilazane as a precursor for forming the SiO 2 film on the aluminum plate, and water vapor as an oxygen source necessary for the silica conversion reaction. It was found that the above-mentioned problems can be achieved by adding water and further appropriately controlling the addition start timing (temperature range) of water vapor. The background is as follows.

SiO2膜の成膜において、前駆体として無機ポリシラザンを用いることや、酸素源として水蒸気を用いること自体は公知であり、高温下で無機ポリシラザンと水が反応してシリカ転化反応が進行することが知られている(下記式(1))。 In the formation of a SiO 2 film, it is known to use inorganic polysilazane as a precursor or to use water vapor as an oxygen source, and the silica conversion reaction may proceed due to the reaction between inorganic polysilazane and water at high temperatures. It is known (the following formula (1)).

−(SiH−HN)n−+2nHO→nSiO+nNH;2nH・・・式(1)
(nは任意の整数)
- (SiH 2 -HN) n- + 2nH 2 O → nSiO 2 + nNH 3; 2nH 2 ··· Equation (1)
(N is an arbitrary integer)

また酸素源として水蒸気を添加した場合、大気中で加熱する場合と比べて効率的にシリカ転化できる。そのため、アルミニウム板が変形する温度よりも最終焼成温度を低く設定できることに着目した。   Further, when water vapor is added as an oxygen source, silica can be converted more efficiently than when heated in the atmosphere. Therefore, attention was paid to the fact that the final firing temperature can be set lower than the temperature at which the aluminum plate is deformed.

もっともアルミニウム板の熱膨張係数(おおむね、24×10-6/K前後)がSiO膜の熱膨張係数(1×10-7〜1×10-6/K程度)よりも大きいため、焼成温度に加熱する過程でアルミニウム板とSiO膜の熱膨張差が大きくなるとSiO膜の亀裂や剥離が生じることがわかった。 However, since the thermal expansion coefficient of the aluminum plate (generally, around 24 × 10 −6 / K) is larger than the thermal expansion coefficient of the SiO 2 film (about 1 × 10 −7 to 1 × 10 −6 / K), the firing temperature It was found that when the difference in thermal expansion between the aluminum plate and the SiO 2 film increases during the heating process, the SiO 2 film cracks and peels off.

そこで、上記熱膨張差に起因するSiO膜の亀裂や剥離を抑制できる製造条件について研究を重ねた。その結果、焼成温度に加熱する過程において、焼成時のアルミニウム板の温度が100℃〜250℃のときに水蒸気の添加を開始し、更に十分なシリカ転化に必要な焼成温度まで加熱してSiO膜を成膜すればよいことがわかった。そしてこのような条件で製造したSiO膜被覆アルミニウム板は従来よりも高い硬度と耐熱性を奏することがわかった。 Therefore, research was repeated on manufacturing conditions capable of suppressing cracks and peeling of the SiO 2 film caused by the difference in thermal expansion. As a result, in the process of heating to firing temperature, temperature of the aluminum plate during firing the addition of water vapor to begin at 100 ℃ ~250 ℃, SiO 2 is heated to a firing temperature required to more fully silica conversion It has been found that a film may be formed. The SiO 2 film-coated aluminum plate produced in such conditions has been found possible to obtain a high hardness and heat resistance than conventional.

このように特定の温度範囲で水蒸気を添加する理由は、次の通りである。アルミニウム板の温度が100℃未満で水蒸気の添加を開始すると、例えば、水蒸気分圧65%の雰囲気が、90℃以下の配管や炉内壁等に触れると結露を起こすことがある。そのため、水蒸気の導入路(配管)や焼成炉内壁、アルミニウム板に結露が生じると、上記シリカ転化反応を再現性よく安定して効率的に行うことができない。   The reason why water vapor is added in a specific temperature range is as follows. When the addition of water vapor is started when the temperature of the aluminum plate is less than 100 ° C., for example, an atmosphere having a water vapor partial pressure of 65% may cause dew condensation if it touches piping or the inner wall of a furnace at 90 ° C. or lower. For this reason, if condensation occurs on the water vapor introduction path (pipe), the inner wall of the firing furnace, or the aluminum plate, the silica conversion reaction cannot be performed stably and efficiently with good reproducibility.

一方、アルミニウム板の温度が250℃を超えてから水蒸気を添加しても、水蒸気を添加するまでの昇温過程で無機ポリシラザンが大気中の酸素と反応して部分的にSiO膜へ転化し、強度が不十分な状態で成膜されてしまうため、水蒸気を添加する前にSiO膜の亀裂や剥離が生じる。 On the other hand, even if water vapor is added after the temperature of the aluminum plate exceeds 250 ° C., the inorganic polysilazane reacts with oxygen in the atmosphere and partially converts to SiO 2 film during the temperature rising process until the water vapor is added. Since the film is formed with insufficient strength, the SiO 2 film is cracked or peeled off before the water vapor is added.

したがって水蒸気の添加は焼成時のアルミニウム板の温度が100℃〜250℃の温度域で開始する必要があることがわかった。   Therefore, it was found that the addition of water vapor needs to start at a temperature range of 100 ° C. to 250 ° C. of the aluminum plate during firing.

なお、上記効果を得るために本発明では、水蒸気を所定の温度(焼成温度:100℃〜250℃)で添加を開始した後、シリカ転化が終了する最終焼成温度まで連続して、あるいは断続的に水蒸気の添加を継続するものである。すなわち、本発明では、焼成時のアルミニウム板の温度が250℃を超えても最終焼成温度(焼成時の最終温度に到達した後の保持時間含む)まで、上記転化に十分な水蒸気雰囲気となるように水蒸気の供給を連続的、もしくは間欠的に供給することが望ましい。例えば250℃で水蒸気の添加を停止して乾燥雰囲気になると、250℃超の温度範囲では水蒸気との反応が停止するためSiO2膜への転化が不十分となる。 In order to obtain the above effect, in the present invention, after adding water vapor at a predetermined temperature (calcination temperature: 100 ° C. to 250 ° C.), continuously or intermittently until the final calcination temperature at which the silica conversion is completed. The addition of water vapor is continued. That is, in this invention, even if the temperature of the aluminum plate at the time of baking exceeds 250 ° C., the water vapor atmosphere is sufficient for the conversion until the final baking temperature (including the holding time after reaching the final temperature at the time of baking). It is desirable to supply water vapor continuously or intermittently. For example, when the addition of water vapor is stopped at 250 ° C. and a dry atmosphere is obtained, the reaction with water vapor stops in a temperature range above 250 ° C., so that the conversion to the SiO 2 film becomes insufficient.

以下、本発明のアルミニウム板の製造方法について説明する。   Hereinafter, the manufacturing method of the aluminum plate of this invention is demonstrated.

本発明で用いるアルミニウム板は特に限定されず、用途に応じた各種公知のアルミニウム合金板(市販品も用いることができ、市販品として例えば、AA5086、KS5C86、KS5D86など)や純アルミニウム板を用いることができる。またアルミニウム板としては耐熱性の高いアルミニウム合金を用いることが好ましい。   The aluminum plate used in the present invention is not particularly limited, and various known aluminum alloy plates (commercially available products can be used, such as AA5086, KS5C86, KS5D86, etc.) or pure aluminum plates depending on the application. Can do. As the aluminum plate, it is preferable to use an aluminum alloy having high heat resistance.

上記アルミニウム板の板厚は特に限定されず、板厚は通常用いられている厚みとすればよい。例えば直径が3.5インチの磁気記録媒体用アルミニウム基板では、厚みは1.2〜1.8mm程度であるがこれに限定されない。   The plate thickness of the aluminum plate is not particularly limited, and the plate thickness may be a commonly used thickness. For example, an aluminum substrate for a magnetic recording medium having a diameter of 3.5 inches has a thickness of about 1.2 to 1.8 mm, but is not limited thereto.

上記アルミニウム板は、所望の形状に打ち抜き、焼鈍処理を施しておくことが推奨される。焼鈍処理を施すことによってアルミニウム板の形状が固定され、残留応力を除去できる。焼鈍処理は、例えば、300℃以上の温度で行えばよい。   It is recommended that the aluminum plate is punched into a desired shape and annealed. By performing the annealing treatment, the shape of the aluminum plate is fixed, and the residual stress can be removed. The annealing process may be performed at a temperature of 300 ° C. or higher, for example.

上記アルミニウム板表面には、圧延等に起因した表面変質層が形成されていることがあるため、必要に応じてこの表面変質層を研削あるいは切削加工により圧延面を除去しておくことが望ましい。アルミニウム板表面の圧延面を除去してから、無機ポリシラザン含有液を塗工すると、無機ポリシラザン含有液の塗工によるレベリング効果によって、SiO2膜成膜後のアルミニウム板表面粗度を低減して平滑性を向上できる(図1)。表面変質層の除去量は特に限定されないが、例えば片面当り10〜20μm程度でよい。 Since the surface alteration layer resulting from rolling or the like may be formed on the surface of the aluminum plate, it is desirable to remove the rolling surface by grinding or cutting the surface alteration layer as necessary. When the inorganic polysilazane-containing solution is applied after removing the rolled surface of the aluminum plate surface, the leveling effect of the inorganic polysilazane-containing solution is reduced to reduce the surface roughness of the aluminum plate after the SiO 2 film is formed. Can be improved (FIG. 1). The amount of removal of the surface altered layer is not particularly limited, but may be, for example, about 10 to 20 μm per side.

無機ポリシラザン含有液の塗工によるレベリング効果とは、表面平滑性を向上させる効果である。すなわち、表面変質層除去後のアルミニウム板の表面に形成されている微細な凹凸面に無機ポリシラザン含有溶液を塗工すると、無機ポリシラザン含有溶液が凹部に浸透し、アルミニウム基板表面を平滑することができる。   The leveling effect by coating the inorganic polysilazane-containing liquid is an effect of improving the surface smoothness. That is, when the inorganic polysilazane-containing solution is applied to the fine irregular surface formed on the surface of the aluminum plate after the surface alteration layer is removed, the inorganic polysilazane-containing solution penetrates into the recesses, and the aluminum substrate surface can be smoothed. .

本発明では上記レベリング効果によって表面平滑性を向上できるため、厳密には表面変質層除去後のアルミニウム板の表面性状を制御する必要がない。しかしながら必要に応じて所望の表面平滑度(例えば10nm程度)となるように表面研磨加工を施してから、無機ポリシラザン含有溶液を塗工してもよく、この場合は更にSiO2膜成膜後の表面粗度を低減し、平滑性を一層良好なものとできる。 In the present invention, since the surface smoothness can be improved by the leveling effect, strictly speaking, it is not necessary to control the surface properties of the aluminum plate after the surface alteration layer is removed. However, an inorganic polysilazane-containing solution may be applied after performing surface polishing so as to obtain a desired surface smoothness (for example, about 10 nm) if necessary. In this case, after the SiO 2 film is formed, The surface roughness can be reduced and the smoothness can be further improved.

[無機ポリシラザン含有溶液の塗工]
上記所望の形状に加工した後は、アルミニウム板表面(任意の面)に無機ポリシラザン含有溶液を塗工する。
[Coating of inorganic polysilazane-containing solution]
After processing into the desired shape, an inorganic polysilazane-containing solution is applied to the aluminum plate surface (arbitrary surface).

無機ポリシラザンとは、「−(SiH2NH)−」を基本構成単位とし、基本構成単位内にメチル基などの有機質成分を含まず、鎖状、環状、若しくはこれらの複合構造からなり、高温下で酸素や水分と反応して硬質のSiO2に転化する材料である(例えば特開昭60−145903号公報を参照)。 Inorganic polysilazane has “— (SiH 2 NH) —” as a basic structural unit, does not contain organic components such as methyl groups in the basic structural unit, and is composed of a chain, a ring, or a composite structure thereof. It is a material that reacts with oxygen and moisture to convert to hard SiO 2 (see, for example, Japanese Patent Application Laid-Open No. 60-145903).

上記無機ポリシラザンとしては、具体的には、ペルヒドロポリシラザンを好適に用いることができる。上記無機ポリシラザンとしては、数平均分子量が、例えば、500〜2500程度のものを用いることが好ましい。   Specifically, as the inorganic polysilazane, perhydropolysilazane can be preferably used. As said inorganic polysilazane, it is preferable to use that whose number average molecular weight is about 500-2500, for example.

上記無機ポリシラザン含有溶液としては、無機ポリシラザンを溶解している溶液を用いればよく、溶媒としては、例えば、ジブチルエーテル、キシレン、トルエンなどの有機溶媒を用いることができる。無機ポリシラザン含有溶液に含まれる無機ポリシラザンの濃度は、特に限定されないが、例えば溶液全体の質量に対して、好ましくは10質量%以上、より好ましくは20質量%以上である。   As the inorganic polysilazane-containing solution, a solution in which inorganic polysilazane is dissolved may be used, and as the solvent, for example, an organic solvent such as dibutyl ether, xylene, or toluene can be used. Although the density | concentration of the inorganic polysilazane contained in an inorganic polysilazane containing solution is not specifically limited, For example, Preferably it is 10 mass% or more with respect to the mass of the whole solution, More preferably, it is 20 mass% or more.

無機ポリシラザン含有溶液は、更に、無機ポリシラザンからSiO2への転化を促進するための触媒を含んでいることが好ましく、例えば、パラジウム触媒を添加することによって、SiO2膜を比較的低温で形成できるため、アルミニウム板の耐熱温度内でSiO2膜を形成できる。 The inorganic polysilazane-containing solution preferably further contains a catalyst for accelerating the conversion of inorganic polysilazane to SiO 2. For example, a SiO 2 film can be formed at a relatively low temperature by adding a palladium catalyst. Therefore, the SiO 2 film can be formed within the heat resistance temperature of the aluminum plate.

上記無機ポリシラザン含有溶液は、市販品を用いてもよく、例えば、AZエレクトロニックマテリアルズ社などから入手できる。また、入手した溶液を濃縮してから用いてもよい。   A commercial item may be used for the said inorganic polysilazane containing solution, for example, it can obtain from AZ Electronic Materials. Moreover, you may use, after concentrating the obtained solution.

なお、ポリシラザンとしては、無機ポリシラザンの他、基本構成単位内にメチル基などの有機質成分を含んだ有機ポリシラザンも知られているが、低温での三次元Si−O結合の形成が難しく、シリカ転化が十分に進まず、また有機ポリシラザンは無機ポリシラザンよりも耐熱性が劣るため、本発明では、有機ポリシラザンは使用していない。   As polysilazane, in addition to inorganic polysilazane, organic polysilazane containing an organic component such as methyl group in the basic structural unit is also known, but it is difficult to form a three-dimensional Si-O bond at low temperature, and silica conversion However, since organic polysilazane is inferior in heat resistance to inorganic polysilazane, organic polysilazane is not used in the present invention.

上記アルミニウム基板表面に上記無機ポリシラザン含有溶液を塗工する方法は特に限定されず、公知の方法を採用できる。例えば、スピンコート、ディップコート、スプレーコートなどの方法を適用できる。   The method for applying the inorganic polysilazane-containing solution to the surface of the aluminum substrate is not particularly limited, and a known method can be employed. For example, methods such as spin coating, dip coating, and spray coating can be applied.

上記無機ポリシラザン含有溶液の塗布量は特に限定されない。したがって塗布量は、成膜するSiO2膜の厚みに応じて適宜調整すればよい。 The coating amount of the inorganic polysilazane-containing solution is not particularly limited. Therefore, the coating amount may be appropriately adjusted according to the thickness of the SiO 2 film to be formed.

なお、成膜後のSiO2膜の膜厚は特に限定されない。アルミニウム板に形成したSiO2膜の膜厚が薄いと、アルミニウム板に疵が付きやすくなり、保護膜としての機能が低下する。したがってSiO2膜の膜厚は好ましくは1μm以上、より好ましくは2μm以上である。一方、膜厚の上限は特に限定されないが、SiO2膜が厚くなるとシリカ転化反応に要する時間が増大するため、例えば好ましくは15μm以下、より好ましくは12μm以下である。 The film thickness of the SiO 2 film after film formation is not particularly limited. If the film thickness of the SiO 2 film formed on the aluminum plate is thin, the aluminum plate tends to be wrinkled, and the function as a protective film is lowered. Therefore, the thickness of the SiO 2 film is preferably 1 μm or more, more preferably 2 μm or more. On the other hand, the upper limit of the film thickness is not particularly limited. However, since the time required for the silica conversion reaction increases as the SiO 2 film becomes thicker, for example, it is preferably 15 μm or less, more preferably 12 μm or less.

上記無機ポリシラザン含有溶液を塗工した後、必要に応じて、乾燥させて溶媒を除去することが好ましい。乾燥方法としては特に限定されないが、例えば大気中、或いは乾燥雰囲気中(すなわち、乾燥空気、乾燥窒素など水蒸気を含まない雰囲気)で所望の温度で乾燥させて溶剤を除去すればよい。   After coating the inorganic polysilazane-containing solution, it is preferable to remove the solvent by drying as necessary. The drying method is not particularly limited. For example, the solvent may be removed by drying at a desired temperature in the air or in a dry atmosphere (that is, an atmosphere not containing water vapor such as dry air or dry nitrogen).

[焼成]
アルミニウム板は上記無機ポリシラザン含有液を塗工した後、或いは更に乾燥させた後、焼成炉(電気炉などの加熱炉)に挿入し、加熱して無機ポリシラザンをシリカ転化させてSiO2を主体とする硬質皮膜(SiO2膜)を形成する。
[Baking]
The aluminum plate is coated with the inorganic polysilazane-containing liquid, or further dried, and then inserted into a firing furnace (heating furnace such as an electric furnace) and heated to convert the inorganic polysilazane to silica to mainly contain SiO 2. A hard film (SiO 2 film) is formed.

焼成炉内に挿入したアルミニウム板は最終焼成温度まで加熱されるが、本発明では上記したようにアルミニウム板の温度が100〜250℃(好ましくは150〜250℃)の間で焼成炉内に水蒸気の添加を開始して炉内を水蒸気雰囲気にする。なお、水蒸気を添加するまでは大気雰囲気でよい。   The aluminum plate inserted into the firing furnace is heated to the final firing temperature. In the present invention, as described above, the temperature of the aluminum plate is between 100 to 250 ° C. (preferably 150 to 250 ° C.), and steam is introduced into the firing furnace. Then, the inside of the furnace is made a steam atmosphere. It should be noted that an air atmosphere may be used until water vapor is added.

水蒸気の供給方法は特に限定されないが、例えば焼成炉の外部に設けた高温気化器に所定量の水を滴下しながら所定流量の空気等を流通させることで、水蒸気分圧を制御した雰囲気ガス(水蒸気ガス)を焼成炉内に供給すればよい。   The method for supplying water vapor is not particularly limited. For example, an atmospheric gas (water vapor partial pressure controlled by flowing a predetermined amount of air or the like while dropping a predetermined amount of water in a high-temperature vaporizer provided outside the firing furnace ( Water vapor gas) may be supplied into the firing furnace.

焼成炉内に供給する水蒸気量は焼成炉のサイズや焼成するアルミニウム板の数、サイズなどによって異なるため特に限定されない。水蒸気は、少なくとも無機ポリシラザンを供給した水分と反応(シリカ転化反応)させて後記する強度、及び耐熱性を有するSiO2を主体する皮膜(SiO2膜)が成膜できるように適宜供給量を調整すればよい。また供給する水蒸気分圧も特に限定されず、例えば水蒸気分圧20〜70%程度でよい。 The amount of water vapor supplied into the firing furnace is not particularly limited because it varies depending on the size of the firing furnace, the number of aluminum plates to be fired, the size, and the like. The supply amount of water vapor is appropriately adjusted so that a film (SiO 2 film) mainly composed of SiO 2 having the strength and heat resistance can be formed by reacting with water supplied with at least inorganic polysilazane (silica conversion reaction). do it. The water vapor partial pressure to be supplied is not particularly limited, and may be, for example, about 20 to 70%.

なお、SiO2を主体とする皮膜であることは、加熱前後における皮膜のFT−IR(フーリエ変換型赤外分光光度計)スペクトルを測定したときに、Si−H結合、N−H結合に起因するピーク強度が減少ないしピークが消滅し、Si−O結合に起因するピークが生成ないしピーク強度が増大していることから確認できる。水蒸気雰囲気にせずに焼成した場合、例えば表1のNo.11でも1120cm-1付近に現われるSi−O結合の特性吸収の吸光係数に比べて、2300cm-1および3400cm-1付近に現われるSi−H結合およびN−H結合の特性吸収の吸光係数は1/50程度まで減少する。これに対して、加湿雰囲気で焼成した場合、例えば表1のNo.5のように水蒸気雰囲気で焼成した場合、Si−H結合、およびN−H結合の特性吸収は検出限界以下になる。 The film mainly composed of SiO 2 is caused by Si—H bond and N—H bond when the FT-IR (Fourier transform infrared spectrophotometer) spectrum of the film before and after heating is measured. It can be confirmed from the fact that the peak intensity decreases or disappears, and the peak due to the Si—O bond is generated or the peak intensity is increased. When firing without a steam atmosphere, for example, No. 1 in Table 1. 11, the absorption coefficients of the characteristic absorptions of Si—H bonds and N—H bonds appearing near 2300 cm −1 and 3400 cm −1 are 1/10, compared with the absorption coefficient of the characteristic absorption of Si—O bonds appearing near 1120 cm −1. Decrease to about 50. In contrast, when firing in a humidified atmosphere, for example, No. 1 in Table 1. When firing in a water vapor atmosphere as in No. 5, the characteristic absorption of Si—H bonds and N—H bonds falls below the detection limit.

その後も水蒸気を供給して焼成炉内を水蒸気雰囲気に維持しつつ所定の最終焼成温度まで加熱してシリカ転化させることで、硬質なSiO2膜で被覆されたアルミニウム板を得ることができる。 After that, steam is supplied and heated to a predetermined final firing temperature while maintaining the inside of the firing furnace in a steam atmosphere to convert to silica, whereby an aluminum plate coated with a hard SiO 2 film can be obtained.

焼成時の最終温度の上限(最終焼成温度)は特に限定されないが、最終焼成温度が高過ぎるとアルミニウム板が変形するため、アルミニウム板の耐熱温度(変形開始温度)よりも低い温度に設定する必要がある。アルミニウム板の耐熱温度は合金成分などによって多少変動するが、概ね370℃を超えるとアルミニウム板の耐力が室温の1/4程度まで低下して変化し易くなるため、好ましくは370℃以下である。一方、無機ポリシラザンのシリカ転化は200℃以上になると促進され、更に高温になるほど硬度も高くなるため、最終焼成温度の下限は好ましくは200℃以上、より好ましくは250℃以上である。   The upper limit (final firing temperature) of the final temperature during firing is not particularly limited, but if the final firing temperature is too high, the aluminum plate is deformed, so it is necessary to set it to a temperature lower than the heat resistance temperature (deformation start temperature) of the aluminum plate. There is. Although the heat resistance temperature of the aluminum plate varies somewhat depending on the alloy component, etc., when it exceeds approximately 370 ° C., the proof stress of the aluminum plate decreases to about ¼ of the room temperature and easily changes. On the other hand, the silica conversion of the inorganic polysilazane is promoted when the temperature is 200 ° C. or higher, and the hardness becomes higher as the temperature becomes higher. Therefore, the lower limit of the final firing temperature is preferably 200 ° C. or higher, more preferably 250 ° C. or higher.

最終焼成温度での保持時間はシリカ転化が完了する程度の時間であればよく、特に限定されないが、例えば30分以上とすることが好ましく、より好ましくは1時間以上である。   The holding time at the final calcination temperature is not particularly limited as long as the silica conversion is completed, and is preferably 30 minutes or more, and more preferably 1 hour or more, for example.

また焼成炉内の温度の昇温速度は特に限定されず、通常の製造条件で行えばよく、例えば3℃/分〜10℃/分程度(平均昇温速度)でおこなえばよい。   Moreover, the temperature increase rate of the temperature in the firing furnace is not particularly limited, and may be performed under normal production conditions, for example, about 3 ° C./min to 10 ° C./min (average temperature increase rate).

上記焼成後は室温まで冷却するが、その際の冷却速度は特に限定されず、例えば放冷すればよい。   Although it cools to room temperature after the said baking, the cooling rate in that case is not specifically limited, For example, what is necessary is just to cool.

このようにして得られる本発明のSiO膜被覆アルミニウム板は、アルミニウム板の表面硬度が高められており、また耐熱性に優れたものとなっている。 The thus obtained SiO 2 film-coated aluminum plate of the present invention has an aluminum plate with increased surface hardness and excellent heat resistance.

また本発明のSiO膜被覆アルミニウム板は、上記したように無機ポリシラザン含有溶液の塗工によるレベリング効果によって、従来の製法と比べてSiO膜の成膜後の膜表面が平滑である。勿論、更に平滑性を向上させる目的で、公知の条件でSiO膜表面を研磨、或いは研削や切削加工を施してもよい。本発明では、アルミニウム基板の表面に硬質なSiO膜を形成しているため、従来から用いられているガラス基板を研磨する方法やその装置などをそのまま利用できる。 Further, the SiO 2 film-coated aluminum plate of the present invention has a smoothed film surface after the formation of the SiO 2 film, as compared with the conventional production method, due to the leveling effect due to the application of the inorganic polysilazane-containing solution. Of course, for the purpose of further improving the smoothness, the SiO 2 film surface may be polished, ground or cut under known conditions. In the present invention, since a hard SiO 2 film is formed on the surface of the aluminum substrate, a conventionally used method or apparatus for polishing a glass substrate can be used as it is.

例えば磁気記録媒体用基板として用いる場合には、上記SiO膜の表面粗度は極力小さいことが好ましく、上記研磨は、例えば、JIS B0601で規定される算術平均粗さRaを三次元に拡張し、表面形状局面と平均面で囲まれた部分の体積を測定面積で割ったものとして定義される平均粗さSaが、観察視野を2μm角としたときに、1nm以下となるように行うことが好ましく、より好ましくは0.6nm以下、更に好ましくは0.4nm以下となるように行うのがよい。 For example, when used as a substrate for a magnetic recording medium, the surface roughness of the SiO 2 film is preferably as small as possible, and the polishing is performed by, for example, expanding the arithmetic average roughness Ra defined in JIS B0601 to three dimensions. The average roughness Sa defined as the volume of the portion surrounded by the surface shape phase and the average plane divided by the measurement area may be 1 nm or less when the observation field is 2 μm square. It is preferable to perform the treatment so that the thickness is 0.6 nm or less, more preferably 0.4 nm or less.

本発明のアルミニウム板は、磁気記録媒体用基板など、各種電気電子機器用材料として好適に用いることができる。   The aluminum plate of the present invention can be suitably used as a material for various electric and electronic devices such as a magnetic recording medium substrate.

本発明のアルミニウム板を用いて磁気記録媒体を製造するにあたっては、該アルミニウム板の表面に、公知の条件で磁気記録膜を形成し、必要に応じて、更に保護膜や潤滑膜を形成すればよい。   In manufacturing a magnetic recording medium using the aluminum plate of the present invention, a magnetic recording film is formed on the surface of the aluminum plate under known conditions, and if necessary, a protective film or a lubricating film is further formed. Good.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

試験材No.1〜3
アルミニウム板(アルミニウム合金(4.2質量%Mg−残部:Alおよび不可避的不純物)、サイズ:外径65mm、内径20mm、厚さ約0.84mmの円盤状ディスク、硬度:0.7GPa)をPVA砥石で研削し、圧延による変質層を除去した。研削加工には、Speed Fam製16B両面加工機を使用し、研削圧力:80gf/cm2、摺動速度:80cm/秒で行い、面当りの除去量:約20μm程度とし、研磨後のアルミニウム板の厚さが0.80mmになるように設定した。研削後のアルミニウム板の表面粗さを触針法(Taylor/Hobson製intra)およびAFM(Nanoscience Instruments社 Nanosurf EasyScan 2)で測定した。
Test material No. 1-3
An aluminum plate (aluminum alloy (4.2% by mass Mg—balance: Al and inevitable impurities), size: outer disk 65 mm, inner diameter 20 mm, disk disk with a thickness of about 0.84 mm, hardness: 0.7 GPa) is PVA. Grinding with a grindstone removed the altered layer by rolling. For grinding, a Speed Fam 16B double-sided machine was used, grinding pressure: 80 gf / cm 2 , sliding speed: 80 cm / sec, removal amount per surface: about 20 μm, polished aluminum plate The thickness was set to 0.80 mm. The surface roughness of the aluminum plate after grinding was measured by a stylus method (Taylor / Hobson's intra) and AFM (Nanoscience Instruments, Nanosurf EasyScan 2).

このアルミニウム板上に焼成後のSiO膜の膜厚が2.1μmとなるように無機ポリシラザン含有溶液(AZエレクトロニックマテリアルズ製NL120A−20)をスピンコート法で塗工し、空気雰囲気中80℃で5分加熱して溶剤を除去した。その後、アルミニウム板を電気炉(焼成炉)に挿入し、5℃/分の平均昇温速度で表1記載の最終焼成温度まで昇温し、該温度で60分間保持して焼成した。焼成後、室温まで放冷してから、電気炉からアルミニウム板を取り出し、アルミニウム板表面にSiO2膜が成膜された試験材No.1〜3を得た。また得られた各試験材の表面粗さを上記方法で調べた。 On this aluminum plate, an inorganic polysilazane-containing solution (NL120A-20 manufactured by AZ Electronic Materials) was applied by a spin coating method so that the thickness of the fired SiO 2 film was 2.1 μm, and it was heated at 80 ° C. in an air atmosphere. For 5 minutes to remove the solvent. Thereafter, the aluminum plate was inserted into an electric furnace (firing furnace), heated to the final firing temperature shown in Table 1 at an average temperature rise rate of 5 ° C./minute, and kept at that temperature for 60 minutes for firing. After firing, the product was allowed to cool to room temperature, and then the aluminum plate was taken out from the electric furnace, and a test material No. 1 in which a SiO 2 film was formed on the surface of the aluminum plate. 1-3 were obtained. Moreover, the surface roughness of each obtained test material was investigated by the said method.

試験材No.4〜8
試験材No.1〜3と同様にPVA砥石で研削して変質層を除去したアルミニウム板上に焼成後のSiO膜の膜厚が2.1μmとなるように無機ポリシラザンを塗工し、溶剤を除去してから電気炉に挿入した。5℃/分の平均昇温速度で昇温し、150℃〜200℃の範囲内の所定のアルミニウム板の温度(表1記載の「水蒸気導入温度」)に達した時点から電気炉内に水蒸気(水蒸気分圧50%)を供給しつつ、更に所定の最終焼成温度(表1記載の「最終焼成温度」)まで昇温し、該温度で60分間保持して焼成した。焼成後、電気炉内で室温まで放冷してから、アルミニウム板を取り出し、アルミニウム板表面にSiO2膜が成膜された試験材No.4〜8を得た。
Test material No. 4-8
Test material No. In the same manner as in 1 to 3, inorganic polysilazane is applied on an aluminum plate ground with a PVA grindstone to remove the deteriorated layer so that the thickness of the SiO 2 film after firing is 2.1 μm, and the solvent is removed. Inserted into the electric furnace. The temperature is increased at an average temperature increase rate of 5 ° C./min, and water vapor is introduced into the electric furnace from the time when a predetermined aluminum plate temperature within the range of 150 ° C. to 200 ° C. (“water vapor introduction temperature” described in Table 1) is reached. While supplying (water vapor partial pressure of 50%), the temperature was further raised to a predetermined final firing temperature ("final firing temperature" described in Table 1), and kept at this temperature for 60 minutes for firing. After firing, the sample was allowed to cool to room temperature in an electric furnace, and then the aluminum plate was taken out, and the test material No. 1 in which the SiO 2 film was formed on the surface of the aluminum plate was obtained. 4-8 were obtained.

試験材No.9〜11
2インチシリコンウェハ上に上記試験材と同様にして焼成後のSiO皮膜の膜厚が2.1μmとなるように無機ポリシラザンを塗工し、乾燥させて溶剤を除去してから電気炉に挿入した。5℃/分の平均昇温速度で表1記載の最終焼成温度まで昇温し、該温度で60分間保持して焼成した。焼成後、電気炉内で室温まで放冷してから、シリコンウェハを取り出し、シリコンウェハ表面にSiO2膜が成膜された試験材No.9〜11(参考例)を得た。
Test material No. 9-11
Apply inorganic polysilazane onto a 2-inch silicon wafer in the same manner as the above test material so that the film thickness of the SiO 2 film after firing is 2.1 μm, and after drying to remove the solvent, insert it into the electric furnace. did. The temperature was raised to the final firing temperature shown in Table 1 at an average rate of temperature increase of 5 ° C./minute, and the temperature was held for 60 minutes for firing. After firing, the sample was allowed to cool to room temperature in an electric furnace, and then the silicon wafer was taken out and a test material No. 1 in which a SiO 2 film was formed on the surface of the silicon wafer. 9 to 11 (reference examples) were obtained.

(SiO2膜の表面性状)
得られた各試験材(SiO膜被覆面)の表面性状を調べた。各試験材のSiO2膜に亀裂や基板との剥離が生じていないか目視および光学顕微鏡で確認し、以下の基準で評価して結果を表1に示した(「SiO2膜状態」)。本発明では「A」を合格(良好)と評価した。
A:目視および光学顕微鏡観察で亀裂および剥離が認められない。
B:目視および光学顕微鏡観察で亀裂または剥離が認められる。
注:亀裂または剥離は認められなかったが、基板変形が見られた。
(Surface properties of SiO 2 film)
The surface properties of the obtained test materials (SiO 2 film-coated surfaces) were examined. Whether the SiO 2 film of each test material was cracked or peeled off from the substrate was confirmed visually and with an optical microscope, and evaluated according to the following criteria and the results are shown in Table 1 (“SiO 2 film state”). In the present invention, “A” was evaluated as acceptable (good).
A: Cracks and peeling are not observed visually and with an optical microscope.
B: Cracks or peeling is observed visually and by optical microscope observation.
Note: No cracks or delamination was observed, but substrate deformation was observed.

上記作製した各試験材のSiO2膜の表面性状を調べた結果、300℃で焼成した試験材No.3はSiO2膜に亀裂が認められたため、膜硬度、耐熱性について確認しなかった(表中、「−」と記載)。 As a result of examining the surface properties of the SiO 2 film of each of the prepared test materials, the test material No. baked at 300 ° C. In No. 3, since cracks were observed in the SiO 2 film, the film hardness and heat resistance were not confirmed (denoted as “-” in the table).

また400℃で焼成した試験No.8は、SiO2膜の亀裂や剥離は認められなかったが、アルミニウム板が変形していたため、後記する膜硬度、耐熱性について確認しなかった(表中、「−」と記載)。 Test No. baked at 400 ° C. In No. 8, cracks and peeling of the SiO 2 film were not observed, but since the aluminum plate was deformed, film hardness and heat resistance described later were not confirmed (denoted as “-” in the table).

(SiO2膜の膜厚)
各試験材のSiO2膜の膜厚はnanometrics社製nanospec/AFTmodel5100を用いて測定し、結果を表1に示した。
(Thickness of SiO 2 film)
The thickness of the SiO 2 film of each test material was measured using a nanospec / AFT model 5100 manufactured by nanometrics, and the results are shown in Table 1.

(SiO2膜の硬度)
各試験材のSiO2膜の硬度をナノインデンテーション法によって測定した。具体的にはナノインデンター(Agilent Technology社製Nano Indenter XP/DCM)を用いて測定した。測定は、励起振動数:45Hz、励起振動振幅:2nm、歪速度:0.05/秒、押込み深さ:2000nmで行った。
(Hardness of SiO 2 film)
The hardness of the SiO 2 film of each test material was measured by the nanoindentation method. Specifically, it measured using the nano indenter (Nano Indenter XP / DCM made from Agilent Technology). The measurement was performed at an excitation frequency: 45 Hz, an excitation vibration amplitude: 2 nm, a strain rate: 0.05 / second, and an indentation depth: 2000 nm.

(耐熱性)
各試験材の耐熱性(耐熱評価温度)を調べるために、所定の設定温度に加熱した炉内(空気雰囲気)に各試験材を挿入して、15分間保持した。予め、熱電対を取り付けたアルミニウム板(ダミー)を用いて、焼成炉の設定温度と基板温度との相関を調べ、15分間保持すれば設定温度までアルミニウム板の温度が上昇することを確認した。
(Heat-resistant)
In order to examine the heat resistance (heat resistance evaluation temperature) of each test material, each test material was inserted into a furnace (air atmosphere) heated to a predetermined set temperature and held for 15 minutes. A correlation between the set temperature of the firing furnace and the substrate temperature was examined in advance using an aluminum plate (dummy) attached with a thermocouple, and it was confirmed that the temperature of the aluminum plate increased to the set temperature if held for 15 minutes.

所定温度に加熱した焼成炉内(空気雰囲気)に試験材を挿入し、15分間、保持した後、試験材を炉外に取り出して室温(25℃)になるまで放冷した。放冷した後、室温下で試験材の表面性状について観察した。具体的には蛍光灯照明下での目視、および光学顕微鏡(倍率:50倍および200倍、片面当り基板内周部、中央部、外周部について各任意の5箇所)にてSiO2膜の亀裂の有無、およびアルミニウム基板とSiO2膜との剥離の有無について調べた。 The test material was inserted into a firing furnace (air atmosphere) heated to a predetermined temperature and held for 15 minutes, and then the test material was taken out of the furnace and allowed to cool to room temperature (25 ° C.). After allowing to cool, the surface properties of the test material were observed at room temperature. Specifically, SiO 2 film cracks by visual observation under fluorescent lamp illumination and an optical microscope (magnification: 50 × and 200 ×, arbitrary 5 locations on the inner periphery, center, and outer periphery of the substrate per side) And the presence or absence of peeling between the aluminum substrate and the SiO 2 film were examined.

SiO2膜の亀裂や剥離が認められなかった試験材については、更に設定温度を上げて上記耐熱性試験を繰り返した。表1中、「耐熱評価温度」はSiO2膜の亀裂や剥離が認められた最高温度を記載した。なお、No.4〜7については、500℃に加熱した場合でも、SiO2膜の亀裂や剥離が認められなかったが、アルミニウム板の変形が認められたため、これら問題が生じなかった直前の試験温度(450℃)を記載した。 For the test material in which no crack or peeling of the SiO 2 film was observed, the set temperature was further raised and the heat resistance test was repeated. In Table 1, “heat resistance evaluation temperature” is the maximum temperature at which cracking or peeling of the SiO 2 film was observed. In addition, No. As for 4 to 7, even when heated to 500 ° C., cracks and peeling of the SiO 2 film were not observed, but since deformation of the aluminum plate was observed, the test temperature just before these problems did not occur (450 ° C. ).

またNo.9〜11はシリコンウェハ上に成膜したSiO2膜であり、耐熱性が十分に高いことは公知であるので、耐熱評価温度について調べなかった(表中、「−」と記載)。 No. Nos. 9 to 11 are SiO 2 films formed on a silicon wafer, and since it is known that the heat resistance is sufficiently high, the heat resistance evaluation temperature was not examined (denoted as “−” in the table).

Figure 2014191841
Figure 2014191841

表1の結果より、以下のことがわかる。   From the results in Table 1, the following can be understood.

本発明の成膜条件を満足するNo.4〜7は、膜硬度が高く(4.0GPa以上)、またSiO膜の皮膜状態(SiO2膜状態:A評価)、及び耐熱性(耐熱評価温度:300℃以上)にも優れていた。 No. 1 satisfying the film forming conditions of the present invention. 4-7 has a high film hardness (more than 4.0 GPa), also coating state of the SiO 2 film (SiO 2 film state: A rating), and heat resistance: was also excellent (heat rating temperature 300 ° C. or higher) .

一方、No.8は適切な温度範囲で水蒸気を導入しているため(「水蒸気導入温度」)、SiO膜の割れやアルミニウム基板との剥離が生じておらず、SiO膜自体の状態は良好であったものの、最終焼成温度が使用したアルミニウム板の耐熱温度(370℃)よりも高かったため、アルミニウム板が変形していた。 On the other hand, no. Since No. 8 introduced water vapor in an appropriate temperature range (“water vapor introduction temperature”), the SiO 2 film was not cracked or peeled off from the aluminum substrate, and the state of the SiO 2 film itself was good. However, since the final firing temperature was higher than the heat resistance temperature (370 ° C.) of the aluminum plate used, the aluminum plate was deformed.

なお、焼成温度と耐熱温度の違いについては以下の通りである。すなわち、焼成過程では、昇温が終了し最終温度に到達した後、60分保持している。そのため、高い最終温度保持すると(例えばNo.8:400℃)、保持時間が長いため基板が変形する。一方、耐熱性を評価する際は、予め温度設定した炉に基板を投入し基板が所定温度に到達したところで炉から取り出す(炉内投入から取出しまで概ね15分程度)。そのため、この際に加えられる熱履歴が焼成過程の熱履歴時間に比べて短くなっており、450℃でも顕著な基板変形が生じないと考えられる。もっとも上記のような耐熱性の評価においても、耐熱性評価温度が200℃になると変形が生じる。   The difference between the firing temperature and the heat-resistant temperature is as follows. That is, in the firing process, after the temperature rise is finished and the final temperature is reached, it is held for 60 minutes. Therefore, when the high final temperature is maintained (for example, No. 8: 400 ° C.), the substrate is deformed because the holding time is long. On the other hand, when evaluating the heat resistance, the substrate is put into a furnace whose temperature is set in advance, and is taken out from the furnace when the substrate reaches a predetermined temperature (approximately 15 minutes from the introduction into the furnace to the removal). Therefore, the heat history applied at this time is shorter than the heat history time of the firing process, and it is considered that no significant substrate deformation occurs even at 450 ° C. However, even in the above heat resistance evaluation, deformation occurs when the heat resistance evaluation temperature reaches 200 ° C.

No.1、2は、焼成過程で水蒸気を導入しなかった例であり、いずれも膜硬度が低く(4.0GPa未満)、耐熱性も不十分であった(耐熱評価温度:300℃未満)。   No. Nos. 1 and 2 are examples in which water vapor was not introduced during the firing process, and both had low film hardness (less than 4.0 GPa) and insufficient heat resistance (heat resistance evaluation temperature: less than 300 ° C.).

またNo.3は、水蒸気を導入せずに最終焼成温度300℃まで加熱して焼成した例であるが、SiO膜に亀裂が生じた。 No. No. 3 is an example of heating and baking up to a final baking temperature of 300 ° C. without introducing water vapor, but cracks occurred in the SiO 2 film.

なお、参考例としてシリコンウェハ上にSiO膜を形成したNo.9〜11では、200℃〜400℃の範囲で焼成しても亀裂や剥離は生じなかったが(「SiO膜状態」がA評価)、膜硬度は4.0GPa未満であった(3.1〜3.4GPa)。 As a reference example, No. 1 in which a SiO 2 film was formed on a silicon wafer. In Nos. 9 to 11, cracks and peeling did not occur even when fired in the range of 200 ° C. to 400 ° C. (“SiO 2 film state” was evaluated as A), but the film hardness was less than 4.0 GPa (3. 1 to 3.4 GPa).

実験2
実験2では、上記試験材No.4〜7について、無機ポリシラザンを塗工した場合のアルミニウム合金板の表面に成膜したSiO2膜の表面粗度(中心線平均粗さRa)に及ぼす影響を調べた。
Experiment 2
In Experiment 2, the above test material No. For 4-7 it was investigated the effect on the surface roughness of the SiO 2 film formed on the surface of the aluminum alloy plate in the case of applying the inorganic polysilazane (center line average roughness Ra).

上記試験材No.4〜7の作製に際して、SiO2膜を成膜する前に、使用するアルミニウム板の表面粗度を測定した。まず、アルミニウム基板の表面粗度として中心線平均粗さRaを、原子間力顕微鏡(Atomic Force Microscope;AFM)で測定した。AFMとしては、Nano Science Instrument社製の「Nanosurf easyScan2 FlexAFM」を用いた(AFM1:視野角10μm角、AFM2:視野2μm角)。また触針法(Taylor/Hobson製intra)でも同様に表面粗度を測定した。 The above test material No. In the production of 4 to 7, the surface roughness of the aluminum plate to be used was measured before forming the SiO 2 film. First, the centerline average roughness Ra as the surface roughness of the aluminum substrate was measured with an atomic force microscope (AFM). As the AFM, “Nanosurf easyScan2 FlexAFM” manufactured by Nano Science Instrument was used (AFM1: viewing angle 10 μm square, AFM2: viewing field 2 μm square). The surface roughness was also measured in the same manner by the stylus method (Taylor / Hobson's intra).

次に、アルミニウム基板に成膜したSiO2膜の中心線平均粗さRaを同様に測定した。結果を表2に示す。 Next, the center line average roughness Ra of the SiO 2 film formed on the aluminum substrate was measured in the same manner. The results are shown in Table 2.

Figure 2014191841
Figure 2014191841

表2に示すように、いずれの試験材も成膜前のアルミニウム板の表面粗さが高くても、無機ポリシラザンを塗工することでレベリング効果が得られるため、十分に平滑な面を得られることが確認された。したがって本発明によれば仕上げ研磨加工等を行わなくても平滑な表面を得ることができ、SiO2膜成膜の表面平滑性を大きく改善できた。 As shown in Table 2, even if the surface roughness of the aluminum plate before film formation is high for any of the test materials, a leveling effect can be obtained by applying inorganic polysilazane, so that a sufficiently smooth surface can be obtained. It was confirmed. Therefore, according to the present invention, a smooth surface can be obtained without performing finish polishing or the like, and the surface smoothness of the SiO 2 film can be greatly improved.

Claims (5)

SiO膜が成膜されたアルミニウム板であって、無機ポリシラザン含有液が塗工されたアルミニウム板の温度が100〜250℃のときに水蒸気の添加を開始し、焼成されたものであることを特徴とするSiO膜被覆アルミニウム板。 It is an aluminum plate on which a SiO 2 film is formed, and when the temperature of the aluminum plate coated with the inorganic polysilazane-containing liquid is 100 to 250 ° C., the addition of water vapor is started and fired. A featured SiO 2 film-coated aluminum plate. 前記焼成時の最終温度は、370℃以下である請求項1に記載のSiO膜被覆アルミニウム基板。 2. The SiO 2 film-coated aluminum substrate according to claim 1, wherein a final temperature during the baking is 370 ° C. or lower. アルミニウム板表面に無機ポリシラザン含有液を塗工した後、アルミニウム基板を連続的に昇温焼成してSiO膜が成膜されたアルミニウム板の製造方法において、
前記焼成は、前記アルミニウム板の温度が100〜250℃のときに水蒸気の添加を開始することを特徴とするSiO膜被覆アルミニウム板の製造方法。
In the method for producing an aluminum plate in which an inorganic polysilazane-containing liquid is applied to the surface of the aluminum plate, and then the aluminum substrate is continuously heated and fired to form a SiO 2 film.
The method for producing a SiO 2 film-coated aluminum plate is characterized in that the baking starts addition of water vapor when the temperature of the aluminum plate is 100 to 250 ° C.
前記焼成時の最終温度は、370℃以下である請求項3に記載のSiO膜被覆アルミニウム板の製造方法。 The method for producing a SiO 2 film-coated aluminum plate according to claim 3, wherein a final temperature during the baking is 370 ° C or lower. 前記アルミニウム板表面の圧延面を除去してから、前記無機ポリシラザン含有液を塗工するものである請求項3または4に記載のSiO膜被覆アルミニウム板の製造方法。 The method for producing a SiO 2 film-coated aluminum plate according to claim 3 or 4, wherein the rolled surface of the aluminum plate surface is removed and then the inorganic polysilazane-containing liquid is applied.
JP2013066668A 2013-03-27 2013-03-27 Method for producing SiO2 film-coated aluminum plate Expired - Fee Related JP6085209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013066668A JP6085209B2 (en) 2013-03-27 2013-03-27 Method for producing SiO2 film-coated aluminum plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013066668A JP6085209B2 (en) 2013-03-27 2013-03-27 Method for producing SiO2 film-coated aluminum plate

Publications (2)

Publication Number Publication Date
JP2014191841A true JP2014191841A (en) 2014-10-06
JP6085209B2 JP6085209B2 (en) 2017-02-22

Family

ID=51837958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013066668A Expired - Fee Related JP6085209B2 (en) 2013-03-27 2013-03-27 Method for producing SiO2 film-coated aluminum plate

Country Status (1)

Country Link
JP (1) JP6085209B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482331A (en) * 1987-09-25 1989-03-28 Denki Kagaku Kogyo Kk Substrate for magnetic disk and production thereof
JPH11284190A (en) * 1998-03-30 1999-10-15 Seiko Epson Corp Thin-film semiconductor device and manufacture of active matrix board
JP2000030245A (en) * 1998-05-06 2000-01-28 Hitachi Koki Co Ltd Magnetic recording medium and magnetic recorder
JP2006302358A (en) * 2005-04-18 2006-11-02 Kobe Steel Ltd Aluminum alloy substrate for magnetic recording medium and magnetic recording medium
JP2012174717A (en) * 2011-02-17 2012-09-10 Az Electronic Materials Ip Ltd Method for producing silicon dioxide film
JP2013020670A (en) * 2011-07-08 2013-01-31 Kobe Steel Ltd Method of manufacturing aluminum substrate for magnetic recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482331A (en) * 1987-09-25 1989-03-28 Denki Kagaku Kogyo Kk Substrate for magnetic disk and production thereof
JPH11284190A (en) * 1998-03-30 1999-10-15 Seiko Epson Corp Thin-film semiconductor device and manufacture of active matrix board
JP2000030245A (en) * 1998-05-06 2000-01-28 Hitachi Koki Co Ltd Magnetic recording medium and magnetic recorder
JP2006302358A (en) * 2005-04-18 2006-11-02 Kobe Steel Ltd Aluminum alloy substrate for magnetic recording medium and magnetic recording medium
JP2012174717A (en) * 2011-02-17 2012-09-10 Az Electronic Materials Ip Ltd Method for producing silicon dioxide film
JP2013020670A (en) * 2011-07-08 2013-01-31 Kobe Steel Ltd Method of manufacturing aluminum substrate for magnetic recording medium

Also Published As

Publication number Publication date
JP6085209B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
CN109922952A (en) The siloxanes plasma polymer combined for sheet material
Yan et al. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate
ES2878165T3 (en) Coated metal mold and method of producing it
TWI459480B (en) Low-temperature bonding process
JP6594639B2 (en) High thermal conductive heat dissipation substrate and manufacturing method thereof
US8586190B2 (en) Inorganic—organic hybrid-film-coated stainless-steel foil
JP5681580B2 (en) Method for manufacturing aluminum substrate for magnetic recording medium
CN110724929A (en) Preparation method of multilayer graphene on surface of aluminum alloy titanium alloy
US10068762B2 (en) Manufacture method of gate insulating film for silicon carbide semiconductor device
JP6085209B2 (en) Method for producing SiO2 film-coated aluminum plate
KR102650926B1 (en) Direct graphene transfer and graphene-based devices
US20150209826A1 (en) Silicon oxynitride materials having particular surface energies and articles including the same, and methods for making and using them
JP5981841B2 (en) Method for manufacturing aluminum substrate for magnetic recording medium
KR101353697B1 (en) Method for preparing grain-oriented electrical steel sheet having improved adhesion and grain-oriented electrical steel sheet prepared by the same
JP6261399B2 (en) Aluminum substrate for magnetic recording media
JP6348808B2 (en) Aluminum substrate for magnetic recording medium and manufacturing method thereof
Nakao et al. Micro-scratch test of DLC films on Si substrates prepared by bipolar-type plasma based ion implantation
KR102183146B1 (en) Method for manufacturing organic/inorganic hybrid ceramic coating agent for forming coating layer having excellent abrasion resistance and electrical insulation
JP2018052041A (en) Laminate
JP5055535B2 (en) Method for producing carbon-based bilayer film with excellent underwater peel resistance
Xu et al. Use of silicon-based coating for high temperature protection of metallic alloys
TWI821867B (en) Articles of controllably bonded sheets and methods for making same
TW201936271A (en) Methods for making articles of controllably bonded sheets
TWI248123B (en) The method for removing diamond-like carbon films and its products
Stoica et al. PROPERTIES OF MODIFIED AMORPHOUS CARBON THIN FILMS DEPOSITED BY PECVD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6085209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees