JP5981841B2 - Method for manufacturing aluminum substrate for magnetic recording medium - Google Patents

Method for manufacturing aluminum substrate for magnetic recording medium Download PDF

Info

Publication number
JP5981841B2
JP5981841B2 JP2012285760A JP2012285760A JP5981841B2 JP 5981841 B2 JP5981841 B2 JP 5981841B2 JP 2012285760 A JP2012285760 A JP 2012285760A JP 2012285760 A JP2012285760 A JP 2012285760A JP 5981841 B2 JP5981841 B2 JP 5981841B2
Authority
JP
Japan
Prior art keywords
film
sio
temperature
substrate
aluminum substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012285760A
Other languages
Japanese (ja)
Other versions
JP2014127219A (en
Inventor
鈴木 哲雄
哲雄 鈴木
藤原 直也
直也 藤原
平野 貴之
貴之 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012285760A priority Critical patent/JP5981841B2/en
Priority to CN201380068291.1A priority patent/CN104885155B/en
Priority to MYPI2015701873A priority patent/MY170181A/en
Priority to PCT/JP2013/007281 priority patent/WO2014103214A1/en
Publication of JP2014127219A publication Critical patent/JP2014127219A/en
Application granted granted Critical
Publication of JP5981841B2 publication Critical patent/JP5981841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73913Composites or coated substrates
    • G11B5/73915Silicon compound based coating
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73917Metallic substrates, i.e. elemental metal or metal alloy substrates
    • G11B5/73919Aluminium or titanium elemental or alloy substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、磁気記録媒体(磁気ディスク)の基板として用いられ、高温下で磁性膜(記録層)形成に好適なSiO膜が成膜されたアルミニウム基板に関するものである。 The present invention relates to an aluminum substrate which is used as a substrate for a magnetic recording medium (magnetic disk) and on which an SiO 2 film suitable for forming a magnetic film (recording layer) is formed at a high temperature.

情報記録用媒体として磁気記録媒体は汎用性の高い媒体である。磁気記録媒体に要求される特性として、硬度、および耐疵付性に優れていることが求められている。例えば磁気記録媒体は製造時や使用時に衝撃を受けて磁気ヘッドと磁気記録媒体が接触することがあるが、該接触等によって磁気記録媒体表面に疵や窪みなどの物理的欠陥が生じると、該欠陥が記録媒体の不良原因となる。そのため磁気記録媒体は十分な硬度と耐疵付性を有していることが要求されている。   As an information recording medium, a magnetic recording medium is a versatile medium. As characteristics required for a magnetic recording medium, it is required to have excellent hardness and scratch resistance. For example, when a magnetic recording medium is subjected to an impact during manufacture or use, the magnetic head and the magnetic recording medium may come into contact with each other. If a physical defect such as a wrinkle or a depression occurs on the surface of the magnetic recording medium due to the contact, the magnetic recording medium Defects cause defective recording media. For this reason, the magnetic recording medium is required to have sufficient hardness and scratch resistance.

また磁気記録媒体の表面が平滑であることも求められている。磁気記録媒体への情報の記録・読み出しは、記録媒体上を移動する磁気ヘッドを介して行われているが、磁気ヘッドと磁気記録媒体の間隔(磁気ヘッドの浮上高さ)はせいぜい数nm程度である。そのため磁気ヘッドとの接触や記録・読み出し不良を防ぐために磁気記録媒体にはサブナノメーターレベルの優れた表面平滑性が求められている。   It is also required that the surface of the magnetic recording medium be smooth. Recording / reading of information to / from the magnetic recording medium is performed via a magnetic head moving on the recording medium, but the distance between the magnetic head and the magnetic recording medium (the flying height of the magnetic head) is at most several nm. It is. Therefore, in order to prevent contact with the magnetic head and recording / reading failure, the magnetic recording medium is required to have excellent surface smoothness at the sub-nanometer level.

磁気記録媒体用の基板としてはアルミニウム基板が知られているが、アルミニウム基板単独では、硬度や耐疵付性が不十分であり、また研磨による平滑性実現も困難である。そのため、アルミニウム基板表面に無電解NiPめっきが施されたNiPめっきアルミニウム基板が用いられている。NiPめっき皮膜は、硬度や耐疵付性も高く、研磨により優れた平滑性を実現できる。   As a substrate for a magnetic recording medium, an aluminum substrate is known. However, an aluminum substrate alone has insufficient hardness and scratch resistance, and it is difficult to realize smoothness by polishing. Therefore, a NiP plated aluminum substrate having an electroless NiP plating on the surface of the aluminum substrate is used. The NiP plating film has high hardness and scratch resistance, and can achieve excellent smoothness by polishing.

NiPめっきアルミニウム基板は、圧延して製造されたコイル状のアルミニウム板を円板状に打ち抜き、内外周の旋盤加工および主表面の研削加工(グラインド加工)を施した後、無電解めっきによりNiPめっきを行い、更に研磨加工(ポリッシュ加工)、洗浄を行って製造される(非特許文献1)。   NiP-plated aluminum substrate is made by rolling a coiled aluminum plate into a disk shape, turning the inner and outer circumferences and grinding the main surface (grinding), and then electrolessly plating NiP Are further manufactured by polishing (polishing) and washing (Non-patent Document 1).

例えば磁気記録媒体の構成は、NiPめっきアルミニウム基板に、軟磁性裏打ち層、中間層(結晶粒制御層、結晶配向制御層など)などが形成され、その上に記録層として磁性膜が成膜され、更に表面保護層(硬質カーボンなど)が形成されている。   For example, the magnetic recording medium has a NiP plated aluminum substrate on which a soft magnetic backing layer, an intermediate layer (crystal grain control layer, crystal orientation control layer, etc.), etc. are formed, and a magnetic film is formed thereon as a recording layer. Furthermore, a surface protective layer (such as hard carbon) is formed.

近年、磁気記録媒体は大容量化が進んでおり、記録密度を飛躍的に高める次世代磁気記録媒体の開発が行われている。例えば磁気記録媒体の高密度化を進めようとすると、磁性粒子を微細化する必要があり、磁気記録データの一部が周囲の熱の影響で消失してしまう熱揺らぎの問題が生じるため、磁性膜の保磁力を高めた磁気記録媒体が提案されている。しかしながら保磁力を高めると従来のヘッドではデータの記録が困難となることから、レーザで記録媒体を加熱しながらデータを記録する熱アシスト記録方式が注目されている。この記録方式では、磁気記録媒体に形成した磁性膜の加熱部分の保磁力を低下させているためデータの記録が可能であり、また非加熱部分は保磁力が高いため、熱揺らぎを解消できる。   In recent years, the capacity of magnetic recording media has been increased, and next-generation magnetic recording media that dramatically increase recording density have been developed. For example, when trying to increase the density of magnetic recording media, it is necessary to make the magnetic particles finer, which causes the problem of thermal fluctuations in which part of the magnetic recording data disappears due to the influence of ambient heat. A magnetic recording medium having an increased film coercivity has been proposed. However, increasing the coercive force makes it difficult to record data with a conventional head. Therefore, a heat-assisted recording method that records data while heating a recording medium with a laser is attracting attention. In this recording method, data can be recorded because the coercivity of the heated portion of the magnetic film formed on the magnetic recording medium is reduced, and thermal fluctuation can be eliminated because the non-heated portion has high coercivity.

このような熱アシスト記録方式に適した磁気記録媒体の製造過程においては、磁性膜の成膜温度など製造時の熱履歴が300℃以上、更には350℃以上になることがある。現在汎用されているNiPめっき皮膜を形成したアルミニウム基板の場合、下地のアルミニウム基板の耐熱性は370℃以上であるが、NiPめっき皮膜は300℃以上に加熱されると結晶化して磁性を持つようになるため、事実上300℃程度までしか対応できず、基板の耐熱温度が磁気記録媒体製造上の大きな制約となっている。   In the process of manufacturing a magnetic recording medium suitable for such a heat-assisted recording method, the thermal history during manufacturing, such as the film formation temperature of the magnetic film, may be 300 ° C. or higher, and further 350 ° C. or higher. In the case of an aluminum substrate formed with a NiP plating film that is currently widely used, the heat resistance of the underlying aluminum substrate is 370 ° C. or higher. Therefore, it is practically possible to cope with only up to about 300 ° C., and the heat-resistant temperature of the substrate is a great restriction on the production of the magnetic recording medium.

このような問題に対して、第三成分の添加によるNiPめっき皮膜の耐熱性改善が試みられているが(特許文献1)、せいぜい320℃程度までの耐熱性であり、十分な耐熱性改善効果が得られていない。   In order to solve this problem, an attempt has been made to improve the heat resistance of the NiP plating film by adding a third component (Patent Document 1), but it has a heat resistance of up to about 320 ° C. and has a sufficient heat resistance improvement effect. Is not obtained.

このため、現行のNiPめっきに代わる、非磁性で高硬度かつ耐疵付性に優れ、更に耐熱性にも優れた基板皮膜の開発が必要となっている。このような条件に合致する皮膜として非晶質のSiO2膜が着目されている。 For this reason, it is necessary to develop a substrate film that is non-magnetic, has high hardness, is excellent in scratch resistance, and is excellent in heat resistance in place of the current NiP plating. An amorphous SiO 2 film has attracted attention as a film that meets such conditions.

例えば特許文献2には、ゾル−ゲル法によるSiO2膜が提案されている。しかしながらゾル−ゲル法で成膜した場合、その成膜過程での質量減少および体積収縮が大きく、必要とする膜厚を確保することが困難である。 For example, Patent Document 2 proposes a SiO 2 film by a sol-gel method. However, when a film is formed by the sol-gel method, mass reduction and volume shrinkage during the film formation process are large, and it is difficult to secure a required film thickness.

更に特許文献3には、スパッタリング法によって、0.6μm程度のSiO2膜を成膜する技術が提案されている。表面精度、硬さ、耐摩耗性は実現できるものの、膜厚さ0.6μmでは耐疵付性を実現するには不十分である。耐疵付性を改善するためにSiO2膜を厚くすると、SiO2膜とアルミニウム基板との熱膨張率の差が大きいため高温環境下に曝されるとSiO2膜に亀裂が生じ易くなるという問題が生じる。 Further, Patent Document 3 proposes a technique for forming a SiO 2 film of about 0.6 μm by sputtering. Although surface accuracy, hardness, and wear resistance can be achieved, a film thickness of 0.6 μm is insufficient to achieve scratch resistance. If the SiO 2 film is thickened to improve the soldering resistance, the difference in thermal expansion coefficient between the SiO 2 film and the aluminum substrate is large, so that the SiO 2 film is likely to crack when exposed to a high temperature environment. Problems arise.

SiO2自体は非磁性で高温耐熱性を有するものの、実際にアルミニウム基板に成膜した場合には、上記のような亀裂等の問題が生じる。そのため、高温環境下に曝されても亀裂等が生じない実用性を有するSiO2膜は未だ提供されていない。 Although SiO 2 itself is non-magnetic and has high temperature heat resistance, when it is actually formed on an aluminum substrate, problems such as cracks as described above occur. Therefore, no practical SiO 2 film has yet been provided that does not cause cracks or the like even when exposed to a high temperature environment.

一方で、磁気記録媒体に用いられるアルミニウム基板自体(母材)の耐熱性は、例えば5086合金(JIS H4000)などは300℃以上における優れた高温耐熱性を有しており、また近年、500℃程度でも表面平滑性などを維持できるアルミニウム合金基板も提案されている(特許文献4)。   On the other hand, as for the heat resistance of the aluminum substrate itself (base material) used for the magnetic recording medium, for example, 5086 alloy (JIS H4000) has excellent high temperature heat resistance at 300 ° C. or higher, and recently, 500 ° C. There has also been proposed an aluminum alloy substrate that can maintain surface smoothness and the like even to the extent (Patent Document 4).

したがってこれら高温耐熱性に優れたアルミニウム基板に見合うSiO2膜を実現できれば、上記熱アシスト記録方式などのような磁気記録分野へのアルミニウム合金基板の利用に対する制約を大きく緩和することができる。 Therefore, if an SiO 2 film suitable for an aluminum substrate excellent in high temperature heat resistance can be realized, restrictions on the use of the aluminum alloy substrate in the magnetic recording field such as the above-described thermally assisted recording method can be greatly relaxed.

特開2012−195021号公報JP 2012-195021 A 特許第2552682号公報Japanese Patent No. 2552682 特公昭53−37202号公報Japanese Patent Publication No.53-37202 特開2012−99179号公報JP2012-99179A

砥粒加工学会誌、Vol.43、No.11、1999年11月、p.475〜479Journal of Abrasive Technology, Vol. 43, no. 11, November 1999, p. 475-479

本発明は上記のような事情に着目してなされたものであって、その目的は、耐熱性、硬度、耐疵付性に優れた磁気記録媒体用アルミニウム基板を提供することである。更に本発明の目的は、これら特性に加えて、必要に応じて表面粗度を小さくするための研磨が可能であり、研磨後の表面平滑性にも優れた磁気記録媒体用アルミニウム基板を提供することである。   The present invention has been made paying attention to the above-described circumstances, and an object thereof is to provide an aluminum substrate for a magnetic recording medium excellent in heat resistance, hardness, and scratch resistance. Furthermore, an object of the present invention is to provide an aluminum substrate for a magnetic recording medium that can be polished to reduce the surface roughness as required in addition to these characteristics and is excellent in surface smoothness after polishing. That is.

上記課題を解決し得た本発明の磁気記録媒体用アルミニウム基板は、厚さ6.0μm以上のSiO2膜が成膜されたアルミニウム基板であって、前記SiO2膜は前記アルミニウム基板を150℃〜370℃に加熱して、気相成膜法により成膜されたものであることに要旨を有する。 An aluminum substrate for a magnetic recording medium according to the present invention that can solve the above-mentioned problems is an aluminum substrate on which a SiO 2 film having a thickness of 6.0 μm or more is formed, and the SiO 2 film is formed at 150 ° C. The main point is that the film is formed by heating at ˜370 ° C. and vapor phase film formation.

本発明の好ましい実施態様として上記気相成膜法は、プラズマCVD法であることが推奨される。   As a preferred embodiment of the present invention, it is recommended that the vapor deposition method is a plasma CVD method.

本発明の磁気記録媒体用アルミニウム基板は、所定の温度域に加熱されたアルミニウム基板に所定の膜厚のSiO2膜が成膜されているため、非磁性で耐熱性(好ましくは300℃以上、より好ましくは350℃以上、更に好ましくは400℃以上)と硬度(好ましくは4.0GPa以上、より好ましくは7.0GPa以上)、および耐疵付性(好ましくはNiPめっきと同等以上)に優れた特性を有する。更に本発明に係るSiO2膜は、成膜後の研磨手段として、従来のガラス基板の研磨技術を適用することが可能であり、研磨することによって、より表面平滑性に優れた磁気記録媒体用アルミニウム基板を提供できる。 The aluminum substrate for a magnetic recording medium of the present invention is nonmagnetic and heat resistant (preferably 300 ° C. or more, preferably) because a SiO 2 film having a predetermined thickness is formed on an aluminum substrate heated to a predetermined temperature range. More preferably 350 ° C. or higher, more preferably 400 ° C. or higher) and hardness (preferably 4.0 GPa or higher, more preferably 7.0 GPa or higher), and scratch resistance (preferably equal to or higher than NiP plating). Has characteristics. Further, the SiO 2 film according to the present invention can be applied with a conventional glass substrate polishing technique as a polishing means after film formation. By polishing, the SiO 2 film can be used for a magnetic recording medium having superior surface smoothness. An aluminum substrate can be provided.

したがって本発明のSiO2膜が成膜されたアルミニウム基板は、磁気記録媒体として好適であり、熱アシスト記録方式などのような磁気記録分野へのアルミニウム合金基板の利用に対する制約を大きく緩和することができる。 Therefore, the aluminum substrate on which the SiO 2 film of the present invention is formed is suitable as a magnetic recording medium, and can greatly relax restrictions on the use of the aluminum alloy substrate in the magnetic recording field such as a heat-assisted recording method. it can.

図1は、成膜時基板温度と[耐熱評価温度−成膜時基板温度]との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the substrate temperature during film formation and [heat resistance evaluation temperature-substrate temperature during film formation]. 図2は、各種皮膜(試験材1〜4(SiO2膜)、および参考例1、2(SiO2膜なしとNiPめっき皮膜)と疵深さとの関係を示すグラフである。FIG. 2 is a graph showing the relationship between various coatings (test materials 1 to 4 (SiO 2 film) and Reference Examples 1 and 2 (without SiO 2 film and NiP plating film) and wrinkle depth. 図3は、SiO2膜の研磨前後のSiO2膜の表面粗さを示すグラフである。Figure 3 is a graph showing the surface roughness of the SiO 2 film before and after polishing of the SiO 2 film. 図4は、SiO2膜を成膜する前のアルミニウム基板表面の表面粗さとSiO2膜を成膜した後のSiO2膜の表面粗さの変化を示すグラフである。FIG. 4 is a graph showing changes in the surface roughness of the aluminum substrate surface before forming the SiO 2 film and the surface roughness of the SiO 2 film after forming the SiO 2 film.

以下、本発明について説明するが、本発明において「成膜時の基板温度」とは、SiO2膜を成膜するときのアルミニウム基板自体の温度であり、基板に熱電対を設置して測定される基板の温度である。本明細書においては「成膜時の基板温度」を単に「成膜温度」、あるいは「基板温度」ということがある。 Hereinafter, the present invention will be described. In the present invention, the “substrate temperature at the time of film formation” refers to the temperature of the aluminum substrate itself when the SiO 2 film is formed, and is measured by installing a thermocouple on the substrate. The temperature of the substrate. In this specification, “substrate temperature at the time of film formation” may be simply referred to as “film formation temperature” or “substrate temperature”.

また「加熱時の基板温度」とは、磁性膜、表面保護層の形成など磁気記録媒体の製造過程で高温環境下に曝されたときの基板自体の温度であり、上記と同様熱電対により測定される基板の温度である。本明細書においては「加熱時の基板温度」を単に「加熱温度」、あるいは「耐熱評価温度」ということがある。   The “substrate temperature during heating” refers to the temperature of the substrate itself when exposed to a high temperature environment in the process of manufacturing a magnetic recording medium such as the formation of a magnetic film or surface protective layer, and is measured with a thermocouple as described above. The temperature of the substrate to be processed. In this specification, the “substrate temperature at the time of heating” may be simply referred to as “heating temperature” or “heat resistance evaluation temperature”.

更に「加熱温度差」とは上記「加熱時の基板温度」と、「成膜時の基板温度」との温度差をいう。   Further, the “heating temperature difference” means a temperature difference between the “substrate temperature during heating” and the “substrate temperature during film formation”.

なお、本発明では、基板の温度を測定しているため、SiO2膜や磁性膜などを成膜する際の装置や雰囲気等の設定温度と基板の温度(加熱時の基板温度)は一致しないことがある。例えば本発明の実施例ではSiO2膜が成膜された基板の耐熱性を評価するため、予め基板に熱電対を取り付けて、加熱炉内の温度と基板の温度との関係を調べ、基板の温度が製造過程の熱履歴を模擬した温度になるように加熱炉の温度を設定しているため、加熱炉の温度が基板の温度と一致していない場合がある。 In the present invention, since the temperature of the substrate is measured, the set temperature of the apparatus or atmosphere when the SiO 2 film or magnetic film is formed does not match the substrate temperature (substrate temperature during heating). Sometimes. For example, in the embodiment of the present invention, in order to evaluate the heat resistance of the substrate on which the SiO 2 film is formed, a thermocouple is attached to the substrate in advance, and the relationship between the temperature in the heating furnace and the temperature of the substrate is examined. Since the temperature of the heating furnace is set so that the temperature becomes a temperature simulating the thermal history of the manufacturing process, the temperature of the heating furnace may not match the temperature of the substrate.

本発明者らは、従来のNiPめっき皮膜に代替可能な程度の硬度や耐疵付性を有し、且つNiPめっき皮膜を凌駕する耐熱性に優れた皮膜について鋭意研究を重ねた。   The inventors of the present invention have made extensive studies on a film having hardness and scratch resistance that can be substituted for a conventional NiP plating film and having excellent heat resistance that surpasses that of a NiP plating film.

一般にアルミニウム(純アルミニウム、アルミニウム合金含む)の熱膨張係数は、おおむね、24×10-6/K前後であり、400℃の温度上昇で約1%線膨張することが知られている。一方、SiO2の熱膨張係数は、おおむね、1×10-7〜1×10-6/K程度の熱膨張係数であることが知られており、SiO2膜の線膨張はアルミニウムの線膨張に対して数十分の一程度である。 In general, the thermal expansion coefficient of aluminum (including pure aluminum and aluminum alloy) is about 24 × 10 −6 / K, and it is known that linear expansion occurs by about 1% with a temperature increase of 400 ° C. On the other hand, the thermal expansion coefficient of the SiO 2 is approximately, 1 × 10 -7 ~1 × 10 -6 / are known to be the thermal expansion coefficient of about K, the linear expansion of the SiO 2 film of linear expansion of aluminum Is a few tenths.

本発明者らは様々な条件でSiO2膜を成膜したアルミニウム基板について検討した。 The present inventors examined an aluminum substrate on which a SiO 2 film was formed under various conditions.

まず、SiO2膜を成膜するときのアルミニウム基板温度を室温(25℃)程度に設定して膜厚3.5μmのSiO2膜を成膜し、次いでアルミニウム基板を電気炉に挿入して加熱したところ、250℃程度の加熱温度(加熱時の基板温度)になるとSiO2膜に亀裂が生じたり、アルミニウム基板からSiO2膜が剥離するなどの問題が生じることがわかった。 First, the temperature of the aluminum substrate when forming the SiO 2 film is set to about room temperature (25 ° C.) to form a SiO 2 film having a thickness of 3.5 μm, and then the aluminum substrate is inserted into an electric furnace and heated. As a result, it has been found that when the heating temperature reaches about 250 ° C. (substrate temperature during heating), the SiO 2 film cracks or the SiO 2 film peels off from the aluminum substrate.

一方、SiO2膜の成膜時の基板温度を150℃以上に高めた場合、基板の加熱温度(耐熱評価温度)が300℃以上になってもSiO膜に亀裂や剥離は認められなかった(表1のNo.3〜24)。このことから、300℃以上の耐熱性(加熱時の基板温度)を確保するためには、成膜時の基板温度を少なくとも150℃以上とすればよいことがわかった。 On the other hand, when the substrate temperature during film formation of the SiO 2 film was increased to 150 ° C. or higher, no cracks or peeling were observed in the SiO 2 film even when the substrate heating temperature (heat resistance evaluation temperature) was 300 ° C. or higher. (Nos. 3 to 24 in Table 1). From this, it was found that the substrate temperature at the time of film formation should be at least 150 ° C. or higher in order to ensure heat resistance of 300 ° C. or higher (substrate temperature during heating).

このように高温下でSiO2膜を成膜した場合に300℃以上(耐熱評価温度)での優れた高温耐熱性を示す理由は次のように考えられる。 The reason for exhibiting excellent high temperature heat resistance at 300 ° C. or higher (heat resistance evaluation temperature) when the SiO 2 film is formed at such a high temperature is considered as follows.

形状や大きさも影響するがSiO2は、一般に引張力に対しては破断しやすいが、圧縮力に対しては破壊されにくい性質をもつ。したがって上記のようにアルミニウム基板を加熱した状態でSiO2膜を成膜した場合、成膜温度から室温まで冷却するとSiO2膜は圧縮された状態であり、SiO2膜とアルミニウム基板との収縮差による負荷(圧縮力)が生じるが、SiO2膜は圧縮力に対する耐久性に優れており、SiO2膜の亀裂や剥離が生じないと考えられる。 Although the shape and size are affected, SiO 2 generally has a property of being easily broken by a tensile force but hardly broken by a compressive force. Therefore, when the SiO 2 film is formed with the aluminum substrate heated as described above, the SiO 2 film is compressed when cooled from the film forming temperature to room temperature, and the shrinkage difference between the SiO 2 film and the aluminum substrate However, the SiO 2 film is excellent in durability against the compressive force, and it is considered that the SiO 2 film is not cracked or peeled off.

一方、このように室温で圧縮力が作用したSiO2膜が成膜されたアルミニウム基板を加熱した場合、アルミニウム基板が熱膨張することでSiO2膜が引き伸ばされるが、室温において圧縮力が作用していた分、SiO2膜の成膜温度までは圧縮状態が緩和される方向に作用するため、実際にSiO2膜に作用する引張力が緩和され、その結果、SiO2膜の亀裂や剥離が生じ難く、優れた耐熱性を示すものと考えられる。 On the other hand, if such a SiO 2 film compressive force is applied at room temperature was heated aluminum substrate that has been deposited, but the aluminum substrate is a SiO 2 film is stretched by thermal expansion, a compressive force acts at room temperature they were divided, for up to the deposition temperature of SiO 2 film which acts in the direction of compression is relaxed, is eased actually tensile force acting on the SiO 2 film, as a result, cracks and peeling of the SiO 2 film It is unlikely to occur and is considered to exhibit excellent heat resistance.

すなわち、SiO2膜の熱膨張は主に加熱温度と成膜温度との差に支配されるため、高温で成膜した場合は、再加熱しても室温から成膜温度まではSiO2膜には引張力は実質的に作用せず、成膜温度を超えて基板が加熱された場合に該成膜温度と加熱温度までの範囲でSiO2膜に引張力が作用する。したがってSiO2膜の成膜温度が高い場合、SiO2膜の成膜温度とSiO2膜成膜後の加熱温度との差分が引張力を生み出すため、室温でSiO2膜を成膜した場合と比べて上記熱膨張率差に起因するSiO2膜の亀裂や剥離が発生しにくくなるものと考えられる。 That is, since the thermal expansion of the SiO 2 film is mainly governed by the difference between the heating temperature and the film forming temperature, when the film is formed at a high temperature, the SiO 2 film does not reach the film forming temperature from room temperature to the film forming temperature even after reheating. The tensile force does not substantially act, and when the substrate is heated beyond the film formation temperature, the tensile force acts on the SiO 2 film within the range up to the film formation temperature and the heating temperature. Therefore, if the deposition temperature of the SiO 2 film is high, to produce a difference tension between the heating temperature after the film formation temperature and the SiO 2 film formation of SiO 2 film, and the case of forming the SiO 2 film at room temperature In comparison, it is considered that cracking and peeling of the SiO 2 film due to the difference in thermal expansion coefficient are less likely to occur.

また成膜時の基板温度が高くなるにしたがって常温下でのSiO2膜の硬度も高くなる傾向を示した。例えば成膜時の基板温度を150℃とした場合のSiO2膜の硬度は8.0GPaであったが、基板温度が高くなるにつれて、硬度も8.4GPa(200℃)、8.8Gpa(250℃)となっている(No.13〜18)。同様のことは膜厚が異なる場合にも当てはまり、例えば膜厚が10.5μmとした場合も同様に(No.19〜24)、温度が高くなるにつれて(200℃→250℃→300℃)、硬度も高くなる傾向を示した(8.5GPa→8.8GPa→9.2GPa)。 In addition, the hardness of the SiO 2 film at room temperature tended to increase as the substrate temperature during film formation increased. For example, when the substrate temperature during film formation is 150 ° C., the hardness of the SiO 2 film is 8.0 GPa. However, as the substrate temperature increases, the hardness also increases to 8.4 GPa (200 ° C.) and 8.8 Gpa (250 ° C) (Nos. 13 to 18). The same applies when the film thickness is different. For example, when the film thickness is 10.5 μm (No. 19 to 24), as the temperature increases (200 ° C. → 250 ° C. → 300 ° C.), The hardness also tended to increase (8.5 GPa → 8.8 GPa → 9.2 GPa).

したがって十分な硬度を付与するにはSiO2膜の成膜温度を高くすればよいことがわかった。 Therefore, it was found that the film formation temperature of the SiO 2 film should be increased to give sufficient hardness.

更にSiO2膜の膜厚が薄いとアルミニウム基板表面に対する保護膜としての機能(耐疵付性)が不十分であり、ある程度の膜厚が必要であることがわかった。すなわち、膜厚が6μm未満の例(No.1〜12)では、いずれも耐疵付性が悪かったが、膜厚が6μm以上の例では、満足できるレベルの耐疵付性を備えており(No.13以降)、特に膜厚が10μm以上の例(No.19〜24)では、より優れた耐疵付性を備えていた。 Further, it was found that when the SiO 2 film was thin, the function as a protective film for the aluminum substrate surface (brazing resistance) was insufficient, and a certain film thickness was required. That is, in the examples where the film thickness is less than 6 μm (Nos. 1 to 12), the scuff resistance was poor, but in the examples where the film thickness was 6 μm or more, it has a satisfactory level of scuff resistance. (No. 13 or later), in particular, in the case where the film thickness is 10 μm or more (No. 19 to 24), more excellent scratch resistance was provided.

本発明は上記知見に基づいてなされたものであって、厚さ6.0μm以上のSiO2膜が成膜されたアルミニウム基板であって、前記SiO2膜は前記アルミニウム基板を150℃〜370℃に加熱して、気相成膜法により成膜されたものであることに要旨を有する。 The present invention was made based on the above finding, a aluminum substrate or thickness 6.0μm of SiO 2 film is formed, the SiO 2 film 0.99 ° C. the aluminum substrate to 370 ° C. The present invention is summarized in that the film is formed by vapor phase film formation method.

以下、本発明の磁気記録媒体用アルミニウム基板の構成について具体的に説明する。   Hereinafter, the structure of the aluminum substrate for magnetic recording media of the present invention will be specifically described.

[SiO2膜の膜厚:6.0μm以上]
アルミニウム基板に形成したSiO2膜の膜厚が薄いと、硬度が高くても耐疵付性が不十分であり、磁気記録媒体に欠陥が生じ易くなる。一方、所定の成膜時の基板温度域で膜厚6.0μm以上のSiO2膜を形成すると磁気記録媒体表面が製造時や使用時に衝撃を受けても、疵や窪みなどの物理的欠陥を抑制できる程度の十分な耐疵付性を付与できる。したがってSiO2膜の膜厚は6.0μm以上とする必要があり、好ましくは9.0μm以上、より好ましくは10.0μm以上である。一方、耐疵付性の観点から膜厚の上限は特に限定されないが、SiO2膜の膜厚が厚くなりすぎると後記するように熱膨張に起因する引張応力に対する耐力が低下するため、好ましくは15.0μm以下である。
[Thickness of SiO 2 film: 6.0 μm or more]
When the thickness of the SiO 2 film formed on the aluminum substrate is thin, the scratch resistance is insufficient even if the hardness is high, and defects are likely to occur in the magnetic recording medium. On the other hand, when a SiO 2 film having a film thickness of 6.0 μm or more is formed in the substrate temperature range during the predetermined film formation, even if the surface of the magnetic recording medium is subjected to an impact during manufacture or use, physical defects such as wrinkles and dents are removed. Sufficient scratch resistance that can be suppressed can be imparted. Therefore, the thickness of the SiO 2 film needs to be 6.0 μm or more, preferably 9.0 μm or more, and more preferably 10.0 μm or more. On the other hand, the upper limit of the film thickness is not particularly limited from the viewpoint of scratch resistance, but since the proof stress against the tensile stress caused by thermal expansion decreases as described later when the film thickness of the SiO 2 film becomes too thick, 15.0 μm or less.

なお、所望の表面平滑性を確保するためにSiO2膜を研磨する場合、研磨量も考慮して成膜するSiO2膜の膜厚を決定し、研磨後の膜厚が上記範囲となるようにすることが望ましい。 When polishing the SiO 2 film to ensure the desired surface smoothness, the film thickness of the SiO 2 film to be formed is determined in consideration of the polishing amount so that the film thickness after polishing is within the above range. It is desirable to make it.

[SiO2膜成膜時のアルミニウム基板温度:150℃〜370℃]
アルミニウム基板の温度が150℃よりも低い温度でSiO2膜を成膜した場合、基板の加熱温度が300℃に達する前にSiO2膜に亀裂等が生じる場合があるため、NiPめっきの耐熱温度である300℃を超える耐熱性を付与することができない。一方、成膜時のアルミニウム基板の温度が370℃を超えるとアルミニウム基板自体の強度(引張強度)や0.2%耐力が低下してしまうため、磁気記録媒体に要求される基板特性が不良となる。特に基板温度が370℃を超えるとアルミニウム基板の強度は室温下の強度の1/4以下まで低下してしまい、成膜中や成膜後の冷却過程でアルミニウム基板が変形したり、基板表面に凹凸が発生したりする。その結果、室温まで冷却してもSiO2膜に十分な圧縮力を作用させられなくなる場合がある。そのため、再度加熱すると成膜温度よりも低い温度からSiO2膜に引張力が発生してしまい、所望の高温耐熱性が得られないことがある。
[Aluminum substrate temperature during SiO 2 film formation: 150 ° C. to 370 ° C.]
When the SiO 2 film is formed at a temperature lower than 150 ° C. of the aluminum substrate, the SiO 2 film may crack before the substrate heating temperature reaches 300 ° C. The heat resistance exceeding 300 ° C. cannot be imparted. On the other hand, if the temperature of the aluminum substrate at the time of film formation exceeds 370 ° C., the strength (tensile strength) and 0.2% proof stress of the aluminum substrate itself are lowered, and thus the substrate characteristics required for the magnetic recording medium are poor. Become. In particular, when the substrate temperature exceeds 370 ° C., the strength of the aluminum substrate is reduced to ¼ or less of the strength at room temperature, and the aluminum substrate is deformed during the cooling process during the film formation or after the film formation. Unevenness may occur. As a result, there is a case where a sufficient compressive force cannot be applied to the SiO 2 film even if it is cooled to room temperature. Therefore, when heated again, a tensile force is generated in the SiO 2 film from a temperature lower than the film forming temperature, and the desired high temperature heat resistance may not be obtained.

耐熱性を高める観点からはSiO2膜成膜時のアルミニウム基板の温度は高い方がよいため、アルミニウム基板温度は150℃以上、好ましくは200℃以上である。またアルミニウム基板の温度を高くし過ぎると上記したようにアルミニウム基板の強度などの特性が低下するため、370℃以下、好ましくは350℃以下である。 From the viewpoint of improving heat resistance, the temperature of the aluminum substrate at the time of forming the SiO 2 film is preferably high. Therefore, the aluminum substrate temperature is 150 ° C. or higher, preferably 200 ° C. or higher. If the temperature of the aluminum substrate is too high, the properties such as the strength of the aluminum substrate deteriorate as described above, and therefore the temperature is 370 ° C. or lower, preferably 350 ° C. or lower.

アルミニウム基板の温度を150℃〜370℃に高めた状態で当該温度域にて気相成膜法によりSiO2膜を成膜することによって、上記したように、SiO2膜が加熱による熱膨張に起因する引張力が作用し始める温度を高めることができるため、SiO2膜の亀裂や剥離を防止できる。 By forming the SiO 2 film by the vapor deposition method in the temperature range with the temperature of the aluminum substrate raised to 150 ° C. to 370 ° C., as described above, the SiO 2 film is thermally expanded by heating. Since the temperature at which the resulting tensile force begins to act can be increased, cracking and peeling of the SiO 2 film can be prevented.

更に本発明においてSiO2膜の成膜温度は、SiO2膜の膜厚と要求される耐熱温度(加熱時の温度)を考慮して決定することも好ましい実施態様である。本発明者らがSiO2膜の膜厚、加熱温度差([加熱時の基板温度]−[成膜時の基板温度])、耐熱性の関係について検討した結果、SiO2膜の膜厚が厚くなり、また加熱温度差が大きくなるほど、SiO2膜の加熱温度差によって生じるSiO2膜とアルミニウム基板との熱膨張の差に起因する引張力に対する耐力が低くなってSiO2膜の亀裂や剥離が生じる傾向があることがわかった(表1、および図1)。したがって上記成膜温度や引張応力との関係で亀裂等の欠陥発生を抑制するためには製造条件を適切に制御することが望ましい。 Further deposition temperature of SiO 2 film in the present invention, it is also a preferred embodiment be determined in consideration of the heat resistance temperature required the film thickness of the SiO 2 film (temperature at the time of heating). The present inventors have SiO 2 film having a thickness, the heating temperature difference ([substrate temperature during the heating] - [substrate temperature during film formation]), the result of examining the relationship between the heat resistance, the film thickness of the SiO 2 film thick will also increases the heating temperature difference, crack SiO 2 film strength becomes lower with respect to the tensile force caused by the difference in thermal expansion between the SiO 2 film and an aluminum substrate caused by heating the temperature difference between the SiO 2 film and peeling (Table 1 and FIG. 1). Therefore, in order to suppress the occurrence of defects such as cracks in relation to the film forming temperature and tensile stress, it is desirable to appropriately control the manufacturing conditions.

例えば膜厚6.1μmの例では(表1のNo.13〜18)、成膜時の基板温度(表1中「成膜時基板温度」)が、150℃、200℃、250℃のいずれの場合も、加熱温度差(表1中、「耐熱評価温度−成膜時基板温度」)が150〜175℃の範囲であれば優れた耐熱性(表1中、「耐熱性評価」)が得られたが(No.13、15、17)、加熱温度差が200℃の場合は耐熱性に劣っていた(No.14、16、18)。一方、膜厚10.5μmの例では(表1のNo.19〜24)、成膜時の基板温度が、200℃、250℃、300℃のいずれの場合も、加熱温度差が100〜125℃の範囲であれば優れた耐熱性が得られたが(No.19、21、23)、加熱温度差が150℃の場合は耐熱性に劣っていた(No.20、22、24)。これら例のうち、成膜時の基板温度が200℃であるNo.15(膜厚:6.1μm)と、No.19(膜厚10.5μm)を比べると、No.15では加熱温度差が175℃であっても耐熱性を発揮したのに対し、No.19では耐熱性を発揮した温度は125℃までであった。したがって、No.15の場合は、加熱時の基板温度(表1中、「耐熱評価温度」)は375℃まで耐熱性を有するが、No.19の場合は325℃までであり、No.15と同等の加熱時の基板温度(375℃)で耐熱性を発揮させるには成膜時基板温度を250℃まで上げる必要がある(No.21)。   For example, in the case of a film thickness of 6.1 μm (Nos. 13 to 18 in Table 1), the substrate temperature during film formation (“substrate temperature during film formation” in Table 1) is any of 150 ° C., 200 ° C., and 250 ° C. In the case of, excellent heat resistance ("Heat resistance evaluation" in Table 1) is obtained if the difference in heating temperature (in Table 1, "heat resistance evaluation temperature-substrate temperature during film formation") is in the range of 150 to 175 ° C. Although obtained (No. 13, 15, 17), when the heating temperature difference was 200 ° C., the heat resistance was poor (No. 14, 16, 18). On the other hand, in the case where the film thickness is 10.5 μm (No. 19 to 24 in Table 1), the heating temperature difference is 100 to 125 when the substrate temperature during film formation is any of 200 ° C., 250 ° C., and 300 ° C. Excellent heat resistance was obtained in the range of ° C. (No. 19, 21, 23), but when the heating temperature difference was 150 ° C., the heat resistance was inferior (No. 20, 22, 24). Among these examples, the substrate temperature during film formation is 200 ° C. 15 (film thickness: 6.1 μm), 19 (film thickness 10.5 μm) No. 15 exhibited heat resistance even when the heating temperature difference was 175 ° C. In 19, the temperature at which the heat resistance was exhibited was up to 125 ° C. Therefore, no. In the case of No. 15, the substrate temperature during heating (in Table 1, “heat resistance evaluation temperature”) has heat resistance up to 375 ° C., but no. In the case of No. 19, the temperature is up to 325 ° C. In order to exhibit heat resistance at the substrate temperature (375 ° C.) at the time of heating equivalent to 15, it is necessary to raise the substrate temperature during film formation to 250 ° C. (No. 21).

このような傾向は図1にまとめた通りであるが、例えば耐熱性を有する加熱時の基板温度を350℃以上とするには(図1中、「350℃線」よりも右側)、SiO2膜の膜厚が膜厚6.1μmの場合は、成膜時の基板温度を200℃以上とすればよいが、膜厚10.5μmの場合は250℃以上であり、膜厚が厚くなるほど、成膜時の基板温度を高くし、加熱温度差が小さくなる傾向にある。 Such a tendency is summarized in FIG. 1. For example, in order to set the substrate temperature during heating having heat resistance to 350 ° C. or higher (in FIG. 1, the right side of the “350 ° C. line”), SiO 2 When the film thickness is 6.1 μm, the substrate temperature at the time of film formation may be 200 ° C. or higher, but when the film thickness is 10.5 μm, it is 250 ° C. or higher. There is a tendency that the substrate temperature during film formation is increased and the heating temperature difference is reduced.

したがって高温で耐熱性を発揮させるには、SiO2膜の膜厚を厚くするほど、成膜時の基板温度を高くして加熱時の基板温度との差を小さくすることが望ましい。 Therefore, in order to exhibit heat resistance at high temperatures, it is desirable to increase the substrate temperature during film formation and reduce the difference from the substrate temperature during heating as the thickness of the SiO 2 film increases.

なお、このような膜厚と加熱温度差との関係は上記したように加熱時の基板温度にかかわらず、同じ膜厚であればほぼ同様の傾向を示すため、所望の加熱時の基板温度で耐熱性が得られるように成膜時の基板温度を高くすればよい。   In addition, since the relationship between such a film thickness and a heating temperature difference shows the same tendency if it is the same film thickness irrespective of the substrate temperature at the time of heating as mentioned above, it is the substrate temperature at the time of desired heating. What is necessary is just to raise the substrate temperature at the time of film-forming so that heat resistance may be acquired.

[SiO2膜の硬度:好ましくは4.0GPa以上]
SiO2膜の硬度は特に限定されないが、物理的衝撃などに対するアルミニウム基板の耐久性を向上させる観点からは硬度は高い方が望ましい。また耐疵付性を向上させるには十分な硬度を確保した上で膜厚を厚くすることが望ましい。SiO2膜の硬度は、好ましくは4.0GPa以上、より好ましくは7.0GPa以上である。
[Hardness of SiO 2 film: preferably 4.0 GPa or more]
The hardness of the SiO 2 film is not particularly limited, but a higher hardness is desirable from the viewpoint of improving the durability of the aluminum substrate against physical impacts. Further, it is desirable to increase the film thickness after securing sufficient hardness to improve the scratch resistance. The hardness of the SiO 2 film is preferably 4.0 GPa or more, more preferably 7.0 GPa or more.

なお、SiO2膜の硬度は、SiO2膜の成膜時の基板温度が高いほど、硬度が高くなる傾向にあるため、上記成膜時の基板温度の範囲(150℃〜370℃)で所望の硬度が得られるように基板温度を設定すればよい。 Incidentally, the hardness of the SiO 2 film, as the substrate temperature during the deposition of the SiO 2 film is high, since there is a tendency that the hardness becomes higher, the desired range of the substrate temperature during the deposition (150 ℃ ~370 ℃) The substrate temperature may be set so as to obtain a hardness of.

[SiO2膜の成膜:気相成膜法]
更に本発明のSiO2膜は気相成膜法で成膜されたものである。気相成膜法は膜厚を制御し易く、また均一で緻密な成膜が容易であるため望ましい。気相成膜法とは、スパッタ法、蒸着法などの物理的気相法(PVD)やプラズマCVDなどの化学的気相法(CVD)である。これらの中でも6μm以上の所望の膜厚の成膜が容易であることから化学的気相法が好ましい。更に化学的気相法としては、特にプラズマCVD法がより好ましい。プラズマCVD法は成膜速度の制御がし易いため、所望とする膜厚のSiO2膜の成膜方法として好適であり、しかも均一で緻密な成膜が容易であるため、SiO2膜の表面平滑性を所定の範囲に調整しやすいため望ましい。
[Deposition of SiO 2 film: Vapor deposition method]
Furthermore, the SiO 2 film of the present invention is formed by a vapor deposition method. The vapor deposition method is desirable because the film thickness can be easily controlled and uniform and precise film formation is easy. The vapor deposition method is a physical vapor deposition method (PVD) such as sputtering or vapor deposition, or a chemical vapor deposition method (CVD) such as plasma CVD. Among these, the chemical vapor phase method is preferable because it is easy to form a film having a desired film thickness of 6 μm or more. Furthermore, as the chemical vapor phase method, the plasma CVD method is particularly preferable. Since the plasma CVD method is easy to control the film formation speed, it is suitable as a method for forming a SiO 2 film having a desired film thickness, and because it is easy to form a uniform and dense film, the surface of the SiO 2 film This is desirable because it is easy to adjust the smoothness to a predetermined range.

特に表面平滑性に関してプラズマCVD法が好ましい理由は次の通りである。すなわち、図4はSiO2膜成膜前のアルミニウム基板表面の粗さとプラズマCVD法でSiO2膜を成膜した後のSiO2膜表面の粗さの一般的な傾向を示す図であり、図4中「触針法」は複数の試料についてTaylor/Hobson社製Intraを用いて測定した結果であり、「AMF1」はNano Science Instrument社製Nanosurf EasyScan(視野角10μm)、「AMF2」はNano Science Instrument社製Nanosurf EasyScan(視野角2μm)を用いた測定した結果である。いずれの測定方法によってもSiO2膜の成膜前後の表面粗さ(中心線表面粗さRa(nm))はほぼ同等であることからプラズマCVD法でSiO2膜を成膜した場合、成膜前のアルミニウム基板表面の表面粗さがほぼそのまま成膜したSiO2膜表面の表面粗さに反映されていると考えられる。 The reason why the plasma CVD method is particularly preferable with respect to the surface smoothness is as follows. That is, FIG. 4 is a diagram showing a general trend of the roughness of the SiO 2 film surface after forming a SiO 2 film with roughness and a plasma CVD method of the SiO 2 film formation prior to the aluminum substrate surface, FIG. In FIG. 4, the “stylus method” is a result of measuring a plurality of samples using Intra manufactured by Taylor / Hobson, “AMF1” is Nano Science EasyScan (viewing angle 10 μm) manufactured by Nano Science Instrument, and “AMF2” is Nano Science. It is the result of having measured using Nanosurf EasyScan (viewing angle 2 micrometers) by Instrument. Regardless of the measurement method, the surface roughness before and after the formation of the SiO 2 film (center line surface roughness Ra (nm)) is substantially the same, so that when the SiO 2 film is formed by the plasma CVD method, the film is formed. The surface roughness of the previous aluminum substrate surface is considered to be reflected in the surface roughness of the SiO 2 film surface formed almost as it is.

しかしながら後記実施例でも示しているように、プラズマCVD法で成膜したSiO2膜は、公知のガラス基板の表面研磨方法によって研磨が容易であり、表面粗さを所望の値まで減少させることができ、優れた平滑性が容易に得られるからである(図3)。 However, as shown in the examples below, the SiO 2 film formed by the plasma CVD method can be easily polished by a known glass substrate surface polishing method, and the surface roughness can be reduced to a desired value. This is because excellent smoothness can be easily obtained (FIG. 3).

なお、スパッタ法でSiO2膜を成膜する場合は、Siをターゲットに使用しArにO2を添加したキャリアガスをRFプラズマやパルスDC放電プラズマを用いてスパッタする反応性スパッタ法で行うことが、成膜速度が速くて実用的である。 When a SiO 2 film is formed by sputtering, reactive sputtering is used in which sputtering is performed using RF plasma or pulsed DC discharge plasma, using Si as a target and adding O 2 to Ar. However, the film forming speed is fast and practical.

また蒸着法でSiO2膜を成膜する場合は、SiとSiO2の混合粉末を炉で加熱し、昇華温度が低いSiOとして気化させ、微量のO2を基板表面近傍に付加すれば、SiO2膜を形成できる。 When a SiO 2 film is formed by vapor deposition, the mixed powder of Si and SiO 2 is heated in a furnace, vaporized as SiO having a low sublimation temperature, and a small amount of O 2 is added to the vicinity of the substrate surface. Two films can be formed.

以下、本発明に係る磁気記録媒体用アルミニウム基板の製造方法について説明する。   Hereinafter, the manufacturing method of the aluminum substrate for magnetic recording media which concerns on this invention is demonstrated.

まず、アルミニウム基板を準備する。本発明で使用するアルミニウム基板(母材)は特に限定されないが、室温での引張強度および0.2%耐力が5086合金と同等以上のものが好ましい。アルミニウム基板の板厚は、特に限定されず、種々の厚さのものを用いることができるが、通常、磁気記録媒体として要求される所定の厚さに仕上がるように適宜設定すればよい。例えば、φ95mmの磁気記録媒体用アルミニウム基板には、厚さ1.270mmまたは厚さ1.753mmのアルミニウム基板を用いればよく、またφ65mmの磁気記録媒体用アルミニウム基板には、厚さ0.635mmまたは厚さ0.800mmのアルミニウム基板を用いればよい。   First, an aluminum substrate is prepared. The aluminum substrate (base material) used in the present invention is not particularly limited, but preferably has a tensile strength at room temperature and a 0.2% proof stress equivalent to or higher than those of 5086 alloy. The thickness of the aluminum substrate is not particularly limited, and various thicknesses can be used. However, the thickness may be appropriately set so as to be finished to a predetermined thickness required for a magnetic recording medium. For example, an aluminum substrate having a thickness of 1.270 mm or a thickness of 1.753 mm may be used for an aluminum substrate for a magnetic recording medium of φ95 mm, and an aluminum substrate for a magnetic recording medium of φ65 mm may have a thickness of 0.635 mm or An aluminum substrate with a thickness of 0.800 mm may be used.

アルミニウム基板は、所望の形状に打ち抜き、焼鈍処理を施しておくことが推奨される。焼鈍処理を施すことによって加工による歪みを取り除くことができ、また平坦度も改善できる。   It is recommended that the aluminum substrate is punched into a desired shape and annealed. By performing the annealing treatment, distortion due to processing can be removed and the flatness can be improved.

上記アルミニウム基板表面には、圧延等に起因した表面変質層が形成されているため、この表面変質層を旋盤による面削またはグラインド加工などの加工方法、あるいは両者の組合せによって除去し、アルミニウム基板表面を平滑にしておくことが好ましい。またアルミニウム基板の表面粗度が大きすぎると、SiO2膜を研磨しても所望の表面粗度(表面平滑性)が得られない可能性があるため、表面を平滑にしておくことが好ましい。 Since the surface altered layer resulting from rolling or the like is formed on the surface of the aluminum substrate, the surface altered layer is removed by a processing method such as chamfering or grinding using a lathe, or a combination of both, and the surface of the aluminum substrate is removed. Is preferably smoothed. Further, if the surface roughness of the aluminum substrate is too large, there is a possibility that the desired surface roughness (surface smoothness) may not be obtained even if the SiO 2 film is polished. Therefore, it is preferable to keep the surface smooth.

上記加工方法は特に限定されず、一般にはPVA砥石を用いた湿式研削や、ダイヤモンドバイトを用いた面削を採用できる。また、面削後に、PVA砥石を用いた湿式研削をおこなってもよい。   The said processing method is not specifically limited, Generally, the wet grinding using a PVA grindstone and the face cutting using a diamond bite are employable. Moreover, you may perform wet grinding using a PVA grindstone after chamfering.

上記アルミニウム基板の表面粗度は、例えば、JIS B0601(2001年)で規定される中心線平均粗さRaで20nm以下であることが好ましく、より好ましくは12nm以下である。   The surface roughness of the aluminum substrate is, for example, preferably 20 nm or less, more preferably 12 nm or less in terms of the centerline average roughness Ra defined by JIS B0601 (2001).

[SiO2膜の成膜]
本発明では、150℃〜370℃に加熱したアルミニウム基板に対して、気相成膜法により6.0μm以上のSiO2膜を成膜すればよい。
[Deposition of SiO 2 film]
In the present invention, an SiO 2 film having a thickness of 6.0 μm or more may be formed on an aluminum substrate heated to 150 ° C. to 370 ° C. by a vapor deposition method.

例えば気相成膜法として望ましい化学的気相法でSiO2膜を成膜する場合、所定の温度に加熱されたアルミニウム基板表面に、有機シロキサンガス(分子骨格にSi−O−Si結合を有する化合物)、またはシランガスと、酸素含有ガスとを用いてSiO2膜を成膜することができる。 For example, when a SiO 2 film is formed by a chemical vapor deposition method, which is desirable as a vapor deposition method, an organic siloxane gas (having a Si—O—Si bond in the molecular skeleton) is formed on the surface of an aluminum substrate heated to a predetermined temperature. Compound 2) or a silane gas and an oxygen-containing gas can be used to form a SiO 2 film.

また膜質の良い、即ち、緻密で硬質、且つ平滑なSiO2膜を成膜するためには、有機シロキサンガスに含まれるSiを完全にSiO2に転化することが好ましく、そのためには、SiO2膜の成膜にあたっては、上記有機シロキサンガスに含まれるSiをSiO2に転化するために必要な酸素ガスの化学量論量に対して1.2倍以上の量の酸素含有ガスを用いることが推奨される。理論上は、有機シロキサンガスに含まれるSiをSiO2に転化させるために必要な化学量論量の酸素含有ガスを用いれば、SiはSiO2に完全に転化するはずであるが、実際には、反応ロスや副生物などの影響を受ける。そのため、SiをSiO2に完全に転化するには化学量論量に対して過剰量(具体的には、1.2倍以上)の酸素ガスを用いることが望ましい。本発明では、成膜時の酸素ガスの流量比が上記範囲となるように酸素含有ガスの流量を上記範囲に制御することが推奨される。 The good quality, i.e., dense and hard, in order to form the a and smooth SiO 2 film, it is preferable to convert completely SiO 2 to Si contained in the organic siloxane gas. For this purpose, SiO 2 When forming the film, it is necessary to use an oxygen-containing gas in an amount of 1.2 times or more the stoichiometric amount of oxygen gas necessary for converting Si contained in the organosiloxane gas into SiO 2. Recommended. Theoretically, if a stoichiometric amount of oxygen-containing gas necessary to convert Si contained in the organosiloxane gas to SiO 2 is used, Si should be completely converted to SiO 2. , Affected by reaction loss and by-products. Therefore, in order to completely convert Si into SiO 2 , it is desirable to use an excess amount (specifically, 1.2 times or more) of oxygen gas with respect to the stoichiometric amount. In the present invention, it is recommended to control the flow rate of the oxygen-containing gas within the above range so that the flow rate ratio of the oxygen gas during film formation is within the above range.

上記有機シロキサンとしては、例えば、ヘキサメチルジシロキサン(HMDSO)やオクタメチルトリシロキサンなどを用いることができ、これらを併用してもよい。適切な蒸気圧、安全性、入手の容易さ、成膜速度および成膜されるSiO2膜の硬さを考慮すると、HMDSOを用いることが好ましい。 As said organic siloxane, hexamethyldisiloxane (HMDSO), octamethyltrisiloxane, etc. can be used, for example, These may be used together. In consideration of appropriate vapor pressure, safety, availability, film formation speed, and hardness of the SiO 2 film to be formed, it is preferable to use HMDSO.

上記シランガスとしては、例えば、SiH4、SiHCl3、SiH2Cl2、SiH3Cl、SiCl4、SiBr4、SiI4、SiF4、Si(OC252などを用いることができ、これらを併用してもよい。これらの中でも特に好ましいのはSiH4である。 As the silane gas, e.g., SiH 4, SiHCl 3, SiH 2 Cl 2, SiH 3 Cl, SiCl 4, SiBr 4, SiI 4, SiF 4, Si (OC 2 H 5) 2 , etc. may be used, these May be used in combination. Of these, SiH 4 is particularly preferred.

また上記酸素含有ガスとしては、O2、N2Oなどが例示される。なお、酸素含有ガスには、SiO2膜を成膜するために必要に応じて添加されるH2ガスなどとの混合ガスも含む趣旨である。これらの中でも特に好ましいのはO2、またはN2Oガスの混合ガスである。 Examples of the oxygen-containing gas include O 2 and N 2 O. The oxygen-containing gas also includes a mixed gas with H 2 gas or the like added as necessary to form the SiO 2 film. Among these, a mixed gas of O 2 or N 2 O gas is particularly preferable.

[研磨(ポリッシュ)工程について]
上記成膜後のSiO2膜は、その表面粗度が、例えば、JIS B0601(2001年)で規定される中心線平均粗さRaで好ましくは0.5nm以下、より好ましくは0.3nm以下であることが好ましい。
[About polishing process]
The surface roughness of the SiO 2 film after the film formation is preferably 0.5 nm or less, more preferably 0.3 nm or less, with a centerline average roughness Ra specified by, for example, JIS B0601 (2001). Preferably there is.

しかしながら上記したようにプラズマCVD法でSiO2膜を成膜した場合、アルミニウム基板表面の表面粗度がそのままSiO2膜の表面粗度として反映される。そのため、SiO2膜の表面平滑性も高く、SiO2膜の研磨に要する負荷を軽減するには、上記したようにSiO2膜の成膜前に予めアルミニウム基板表面の平滑性を高めておくことが望ましい。 However, when the SiO 2 film is formed by the plasma CVD method as described above, the surface roughness of the aluminum substrate surface is directly reflected as the surface roughness of the SiO 2 film. Therefore, the surface smoothness of the SiO 2 film is also high, and in order to reduce the load required for polishing the SiO 2 film, the surface smoothness of the aluminum substrate should be increased in advance before the SiO 2 film is formed as described above. Is desirable.

また成膜後にSiO2膜を研磨する場合は、SiO2膜の表面を公知の条件で研磨し、上記所望の平滑度(上記表面粗度)となるようにすればよい。本発明のSiO2膜の研磨には、従来から用いられているガラス板を研磨する方法やその装置などをそのまま利用できる。例えば、研磨パッドと研磨スラリーを用いて湿式研磨すればよい。研磨圧力は、例えば、40〜150gf/cm2、摺動速度は、例えば、40〜160cm/秒程度とすればよい。 When the SiO 2 film is polished after film formation, the surface of the SiO 2 film may be polished under known conditions so as to achieve the desired smoothness (the surface roughness). For polishing the SiO 2 film of the present invention, a conventionally used method or apparatus for polishing a glass plate can be used as it is. For example, wet polishing may be performed using a polishing pad and a polishing slurry. The polishing pressure may be, for example, 40 to 150 gf / cm 2 , and the sliding speed may be, for example, about 40 to 160 cm / second.

[用途]
本発明のSiO2膜が成膜されたアルミニウム基板は、磁気記録媒体として好適に用いることができる。特に耐熱性を向上させた本発明のSiO2膜が成膜されたアルミニウム基板は、磁性膜形成時の基板温度の制約緩和に寄与するものである。本発明のSiO2膜が成膜されたアルミニウム基板を用いて磁気記録媒体を製造するにあたっては、該アルミニウム基板のSiO2膜表面に、公知の条件で磁気記録膜などを形成し、必要に応じて、更に保護膜や潤滑膜を形成して、磁気記録媒体を製造することができる。
[Usage]
The aluminum substrate on which the SiO 2 film of the present invention is formed can be suitably used as a magnetic recording medium. In particular, the aluminum substrate on which the SiO 2 film of the present invention with improved heat resistance is formed contributes to the relaxation of the substrate temperature restriction during the formation of the magnetic film. When manufacturing a magnetic recording medium using an aluminum substrate on which the SiO 2 film of the present invention is formed, a magnetic recording film or the like is formed on the surface of the SiO 2 film of the aluminum substrate under known conditions. In addition, a magnetic recording medium can be manufactured by further forming a protective film and a lubricating film.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実験1
実験1では、SiO2膜の成膜温度とSiO2膜の特性との関係を調べた。
Experiment 1
In Experiment 1, it was examined the relationship between the characteristics of the deposition temperature and the SiO 2 film of the SiO 2 film.

アルミニウム基板(アルミニウム合金(4.2質量%Mg−残部:Alおよび不可避的不純物)、サイズ:外径65mm、内径20mm、厚さ約0.84mmの円盤状ディスク)をPVA砥石で研削し、圧延による変質層を除去した。研削加工には、Speed Fam製16B両面加工機を使用し、研削圧力:80gf/cm2、摺動速度:80cm/秒で行い、面当りの除去量:約20μm程度とし、研磨後のアルミニウム基板の厚さが0.800mmになるように設定した。研削後のアルミニウム基板の表面粗さを触針法で測定したところ、Ra=12nmであった。その後、成膜時の基板温度を80℃〜350℃の間で変化させると共に(表1中、「成膜時基板温度(℃)」)、下記条件のプラズマCVD法によって膜厚3.5μm〜10.5μmのSiO2膜を成膜した。この際、成膜時の基板温度は、予め熱電対を取り付けたアルミニウム基板を用いて成膜装置の設定温度と基板温度との相関を求めて、これに従い成膜時の基板温度が所定の温度になるように制御した。成膜後、室温まで放冷してアルミニウム基板表面にSiO2膜が成膜された試験材を得た。 An aluminum substrate (aluminum alloy (4.2% by mass Mg—the balance: Al and inevitable impurities), size: a disk-shaped disk having an outer diameter of 65 mm, an inner diameter of 20 mm, and a thickness of about 0.84 mm) is ground with a PVA grindstone and rolled. The altered layer due to was removed. For grinding, a Speed Fam 16B double-sided machine was used, grinding pressure: 80 gf / cm 2 , sliding speed: 80 cm / second, removal amount per surface: about 20 μm, polished aluminum substrate The thickness was set to 0.800 mm. When the surface roughness of the ground aluminum substrate was measured by a stylus method, Ra = 12 nm. Thereafter, the substrate temperature during film formation is changed between 80 ° C. and 350 ° C. (in Table 1, “substrate temperature during film formation (° C.)”), and a film thickness of 3.5 μm or more is formed by plasma CVD under the following conditions. A 10.5 μm SiO 2 film was formed. At this time, the substrate temperature at the time of film formation is obtained by calculating the correlation between the set temperature of the film formation apparatus and the substrate temperature using an aluminum substrate to which a thermocouple is previously attached, and the substrate temperature at the time of film formation is a predetermined temperature accordingly. It was controlled to become. After the film formation, it was allowed to cool to room temperature to obtain a test material in which a SiO 2 film was formed on the surface of the aluminum substrate.

(プラズマCVD法の成膜条件)
キャリアガス:モノシランと窒素の混合気体と亜酸化窒素
ガス比:SiH4/N2=1/9 流量:80sccm、N2O 流量:56sccm
圧力:133Pa
RFパワー:150W
(Deposition conditions for plasma CVD)
Carrier gas: mixed gas of monosilane and nitrogen and nitrous oxide Gas ratio: SiH 4 / N 2 = 1/9 Flow rate: 80 sccm, N 2 O flow rate: 56 sccm
Pressure: 133Pa
RF power: 150W

(SiO2膜の表面性状)
得られた各試験材の表面性状を室温下で調べた。各試験材のSiO2膜に亀裂や基板との剥離が生じていないか目視で確認した。その結果、亀裂や剥離が生じている試験材はなく、全ての試験材の表面性状は良好であった。
(Surface properties of SiO 2 film)
The surface properties of the obtained test materials were examined at room temperature. It was visually confirmed whether the SiO 2 film of each test material was cracked or peeled off from the substrate. As a result, there was no test material in which cracks or peeling occurred, and the surface properties of all the test materials were good.

(SiO2膜の膜厚)
各試験材のSiO2膜の膜厚はnanometrics社製nanospec/AFTmodel5100を用いて測定した。
(Thickness of SiO 2 film)
The film thickness of the SiO 2 film of each test material was measured using a nanospec / AFTmodel 5100 manufactured by nanometrics.

(SiO2膜の硬度)
各試験材のSiO2膜の硬度をナノインデンテーション法によって測定した。具体的にはナノインデンター(Agilent Technology社製Nano Indenter XP/DCM)を用いて測定した。測定は、励起振動数:45Hz、励起振動振幅:2nm、歪速度:0.05/秒、押込み深さ:2000nmで行った。
(Hardness of SiO 2 film)
The hardness of the SiO 2 film of each test material was measured by the nanoindentation method. Specifically, it measured using the nano indenter (Nano Indenter XP / DCM made from Agilent Technology). The measurement was performed at an excitation frequency: 45 Hz, an excitation vibration amplitude: 2 nm, a strain rate: 0.05 / second, and an indentation depth: 2000 nm.

(耐熱性評価)
耐熱性を評価するため、予め熱電対を取り付けた基板を用いて、加熱炉の設定温度と基板温度との相関を調べ、それに従って加熱炉の温度を設定した。表1に示す耐熱評価温度(加熱時の基板温度)に対応する温度に加熱した加熱炉内に試験材を挿入し、30分間、保持した後、試験材を炉外に取り出して室温(25℃)になるまで放冷した。
(Heat resistance evaluation)
In order to evaluate the heat resistance, using a substrate with a thermocouple attached in advance, the correlation between the set temperature of the heating furnace and the substrate temperature was examined, and the temperature of the heating furnace was set accordingly. The test material was inserted into a heating furnace heated to a temperature corresponding to the heat resistance evaluation temperature (the substrate temperature during heating) shown in Table 1 and held for 30 minutes, and then the test material was taken out of the furnace and room temperature (25 ° C. ) Until cooled.

放冷した後、室温下で試験材の表面性状について観察した。具体的には蛍光灯照明下での目視、および光学顕微鏡(倍率:50倍および200倍、片面に当り基板内周部、中央部、外周部について各任意の5箇所)にてSiO2膜の亀裂の有無、およびアルミニウム基板とSiO2膜との剥離の有無について調べ、下記基準で評価した(表1中、「耐熱性評価」)。
○:SiO2膜に亀裂や剥離が認められなかった
○注1:SiO2膜に亀裂や剥離が認められなかったが、耐熱温度が300℃未満の例
×注2:アルミニウム基板に変形が発生した
×:SiO2膜に亀裂や剥離が認められた
After allowing to cool, the surface properties of the test material were observed at room temperature. Specifically, the SiO 2 film was visually observed under fluorescent light illumination and an optical microscope (magnification: 50 times and 200 times, any one of the inner peripheral portion, the central portion, and the outer peripheral portion of the substrate hitting one side). The presence or absence of cracks and the presence or absence of peeling between the aluminum substrate and the SiO 2 film were examined and evaluated according to the following criteria (“Heat resistance evaluation” in Table 1).
○: crack or peeling was not observed on the SiO 2 film ○ Note 1: cracking or peeling in the SiO 2 film was observed, Example × Note 2 of the heat resistant temperature is lower than 300 ° C.: Aluminum substrate deformation occurs ×: Cracks and delamination were observed in the SiO 2 film

なお耐熱評価温度は250℃から数十℃ずつ昇温させて耐熱性を評価し、「○」評価の例は、亀裂や剥離が認められない最高温度を示し、「×」評価は亀裂や剥離が認められた温度を示した。例えばNo.13、14では、325℃までの耐熱性評価は「○」であったが(No.13)、更に25℃昇温した350℃では「×」(No.14)となったことを示す。   The heat resistance evaluation temperature is raised from 250 ° C. to several tens of degrees C., and the heat resistance is evaluated. The example of “○” evaluation indicates the highest temperature at which no crack or peeling is observed, and the “×” evaluation indicates crack or peeling. Indicates the temperature at which was observed. For example, no. 13 and 14, although the heat resistance evaluation up to 325 ° C. was “◯” (No. 13), it was further “x” (No. 14) at 350 ° C. where the temperature was raised by 25 ° C.

(耐疵付性評価)
10g、または50gの荷重を加えたスタイラスの先端部(半径0.1mmのダイヤモンド球)を試験材表面(皮膜成膜面側)に接触させて摺動させた。摺動速度は一定速度(5mm/秒)、摺動距離は15mmとした。摺動後、試験材表面の摺動痕の深さを非接触式光学粗さ計で測定し、下記基準で評価した。
(Scratch resistance evaluation)
The tip of a stylus (diamond sphere having a radius of 0.1 mm) to which a load of 10 g or 50 g was applied was brought into contact with the test material surface (film formation surface side) and slid. The sliding speed was a constant speed (5 mm / second), and the sliding distance was 15 mm. After sliding, the depth of the sliding trace on the surface of the test material was measured with a non-contact optical roughness meter and evaluated according to the following criteria.

○:荷重10g、および50gのいずれでもNiPめっきと同等以下の疵深さ
△:荷重10gではNiPめっきと同等以下であるが50gではNiPめっきよりも疵が深くなる
×:荷重10gでもNiPめっきより疵が深くなる
−:十分な耐熱性が得られなかったため(耐熱性評価「×」)、耐疵付性については評価しなかった。
○: Wrinkle depth equal to or less than NiP plating at both load 10g and 50g Δ: Wrinkle depth equal to or lower than NiP plating at 10g load, but wrinkle deeper than NiP plating at 50g ×: NiP plating even at 10g load The wrinkle becomes deeper--: Since sufficient heat resistance was not obtained (heat resistance evaluation “×”), the scratch resistance was not evaluated.

上記各試験結果を表1に示す。   The test results are shown in Table 1.

また表1の「○」評価の例に基づいてSiO2膜の膜厚毎に、成膜時基板温度と[耐熱評価温度−成膜時基板温度]との関係について図1に示した。図1中、斜めの線(「300℃線」、「350℃線」、「基板変形」)は耐熱温度に対応する。 Further, the relationship between the substrate temperature during film formation and [heat resistance evaluation temperature-substrate temperature during film formation] is shown in FIG. 1 for each film thickness of the SiO 2 film based on the example of “◯” evaluation in Table 1. In FIG. 1, diagonal lines (“300 ° C. line”, “350 ° C. line”, “substrate deformation”) correspond to the heat-resistant temperature.

本発明の膜厚、および成膜条件を満足するNo.13〜24は、耐熱性(耐熱評価温度:300℃以上)、耐疵付性(△以上)および、硬度(4.0GPa以上)に優れていた。特にSiO2膜の膜厚を10μm以上としたNo.19〜24では、膜厚6.1μmとしたNo.13〜18と比べてより優れた耐疵付性が得られた。 No. satisfying the film thickness and film forming conditions of the present invention. Nos. 13 to 24 were excellent in heat resistance (heat resistance evaluation temperature: 300 ° C. or higher), scratch resistance (Δ or higher), and hardness (4.0 GPa or higher). In particular, the film thickness of the SiO 2 film is 10 μm or more. In Nos. 19 to 24, the film thickness was 6.1 μm. Better scuff resistance was obtained compared with 13-18.

一方、本発明の要件を満足しない例では、所望の特性が得られなかった。   On the other hand, in an example not satisfying the requirements of the present invention, desired characteristics could not be obtained.

成膜時の基板温度(80℃)が低い場合(No.1、2)、275℃での耐熱性は得られたが(No.1)、300℃以上の高温耐熱性は得られなかった(No.2)。   When the substrate temperature (80 ° C.) during film formation was low (No. 1, 2), heat resistance at 275 ° C. was obtained (No. 1), but high temperature heat resistance of 300 ° C. or higher was not obtained. (No. 2).

またSiO2膜の膜厚(3.5μm)が薄い場合(No.3〜12)、300℃以上の耐熱性は得られるものの、耐疵付性が低かった。 Moreover, when the film thickness (3.5 μm) of the SiO 2 film was thin (Nos. 3 to 12), although heat resistance of 300 ° C. or higher was obtained, the scratch resistance was low.

実験2
実験2ではSiO2膜と耐疵付性の関係について調べた。
Experiment 2
In Experiment 2, the relationship between the SiO 2 film and the scratch resistance was examined.

上記実験1で使用したアルミニウム基板を250℃に加熱し、SiO2膜の膜厚を3.5μm(試験材1)、6.1μm(試験材2)、9μm(試験材3)、10.5μm(試験材4)にした以外は上記実施例1と同じようにしてプラズマCVD法でアルミニウム合金基板(円盤状ディスク)にSiO2膜を成膜して試験材を作製した。 The aluminum substrate used in Experiment 1 was heated to 250 ° C., and the thickness of the SiO 2 film was 3.5 μm (test material 1), 6.1 μm (test material 2), 9 μm (test material 3), 10.5 μm. A test material was prepared by forming a SiO 2 film on an aluminum alloy substrate (disc-shaped disk) by plasma CVD in the same manner as in Example 1 except that (Test material 4) was used.

参考のため、上記実験1で使用した皮膜を成膜していないアルミニウム基板を参考例1、およびNiPめっき基板を参考例2として用意した。   For reference, an aluminum substrate on which the film used in Experiment 1 was not formed was prepared as Reference Example 1 and a NiP plated substrate as Reference Example 2.

NiPめっきは、脱脂(上村工業製:AD−68F)、酸洗浄(上村工業製:AD−107F)、ジンケート処理(上村工業製:AD−301 F3−X)を行った後、NiPめっき処理(上村工業製:ニムデンHDX−7Gと上村工業製:HDX−Aの混合液)を用いて行った。めっき厚さは10μmであった。   NiP plating is performed by degreasing (Uemura Kogyo: AD-68F), acid cleaning (Uemura Kogyo: AD-107F), zincate treatment (Uemura Kogyo: AD-301 F3-X), and NiP plating ( Uemura Kogyo: Nimuden HDX-7G and Uemura Kogyo: HDX-A mixed solution). The plating thickness was 10 μm.

(耐疵付性試験)
10g、または50gの荷重を加えたスタイラスの先端部(半径0.1mmのダイヤモンド球)を試験材表面(皮膜成膜面側)に接触させて摺動させた。摺動速度は一定速度(5mm/秒)、摺動距離は15mmとした。摺動後、試験材表面の摺動痕の深さを非接触式光学粗さ計で測定した。結果を図2に示す。
(Scratch resistance test)
The tip of a stylus (diamond sphere having a radius of 0.1 mm) to which a load of 10 g or 50 g was applied was brought into contact with the test material surface (film formation surface side) and slid. The sliding speed was a constant speed (5 mm / second), and the sliding distance was 15 mm. After sliding, the depth of the sliding mark on the surface of the test material was measured with a non-contact optical roughness meter. The results are shown in FIG.

図2より次のことがわかった。まず、SiO2膜の膜厚を3.5μmとした試験材1の摺動痕深さは、参考例1(アルミニウム合金基板)よりは良好であったが、参考例2(NiPめっき基板)よりも劣っており、十分な耐疵付性を有していなかった。 The following was found from FIG. First, the sliding trace depth of the test material 1 having a SiO 2 film thickness of 3.5 μm was better than that of Reference Example 1 (aluminum alloy substrate), but from Reference Example 2 (NiP plating substrate). It was also inferior and did not have sufficient scratch resistance.

一方、SiO2膜の膜厚を6.1μm(試験材2)、9μm(試験材3)、10.5μm(試験材4)とした場合、参考例1(アルミニウム合金基板)と比べて優れた耐疵付性を有していた。また荷重10gの場合、試験材2〜4の摺動痕深さは参考例2と同等であり、優れた耐疵付性を有していた。更に荷重50gの場合、試験材2(膜厚6μm)の摺動痕深さは参考例2よりも悪化したが、試験材3(膜厚9μm)、試験材4(膜厚10.5μm)の摺動痕深さは参考例2よりも良好であり、より優れた耐疵付性を有することがわかった。 On the other hand, when the film thickness of the SiO 2 film was 6.1 μm (test material 2), 9 μm (test material 3), and 10.5 μm (test material 4), it was superior to Reference Example 1 (aluminum alloy substrate). It had scratch resistance. Further, in the case of a load of 10 g, the sliding trace depths of the test materials 2 to 4 were equivalent to those of Reference Example 2, and had excellent scratch resistance. Further, when the load was 50 g, the sliding trace depth of the test material 2 (film thickness 6 μm) was worse than that of the reference example 2, but the test material 3 (film thickness 9 μm) and the test material 4 (film thickness 10.5 μm). It was found that the sliding trace depth was better than that of Reference Example 2 and had better scratch resistance.

実験3
実験3では、SiO2膜研磨の有無が、アルミニウム合金基板の表面に成膜したSiO2膜の表面粗度(中心線平均粗さRa)に及ぼす影響を調べた。
Experiment 3
In Experiment 3, the effect of the presence or absence of SiO 2 film polishing on the surface roughness (centerline average roughness Ra) of the SiO 2 film formed on the surface of the aluminum alloy substrate was examined.

SiO2膜の膜厚を7μm、基板温度250℃とした以外は上記実験1で用いたアルミニウム基板に、プラズマCVD法によりSiO2膜を成膜して試験材を製造した。 Except that the thickness of the SiO 2 film was 7 μm and the substrate temperature was 250 ° C., a test material was manufactured by forming a SiO 2 film on the aluminum substrate used in Experiment 1 by the plasma CVD method.

その際、SiO2膜を成膜する前に、使用するアルミニウム基板の表面粗度を測定した。まず、アルミニウム基板の表面粗度として中心線平均粗さRaを、原子間力顕微鏡(Atomic Force Microscope;AFM)で測定した。AFMとしては、Nano Science Instrument社製の「Nanosurf easyScan2 FlexAFM」を用いた(視野2μm角)。 At that time, the surface roughness of the aluminum substrate to be used was measured before forming the SiO 2 film. First, the centerline average roughness Ra as the surface roughness of the aluminum substrate was measured with an atomic force microscope (AFM). As the AFM, “Nanosurf easyScan2 FlexAFM” manufactured by Nano Science Instrument was used (viewing field: 2 μm square).

なお、上記中心線平均粗さRaは、二次元で測定される中心線平均粗さRa[JIS B0601(2001年)]に基づいて測定条件を設定した。中心線平均粗さRaを測定した結果、SiO2膜を成膜する前のアルミニウム基板の中心線平均粗さRaは、8.9nmであった。 The centerline average roughness Ra was measured based on the centerline average roughness Ra [JIS B0601 (2001)] measured in two dimensions. As a result of measuring the center line average roughness Ra, the center line average roughness Ra of the aluminum substrate before forming the SiO 2 film was 8.9 nm.

次に、アルミニウム基板に成膜したSiO2膜の中心線平均粗さRaを測定した。その結果、SiO2膜の中心線平均粗さRaは8.9nmであり(図3中、「研磨量0μm」)、SiO2膜成膜前後で同じ表面粗度であった。 Next, the center line average roughness Ra of the SiO 2 film formed on the aluminum substrate was measured. As a result, the center line average roughness Ra of the SiO 2 film was 8.9 nm (“polishing amount 0 μm” in FIG. 3), and the surface roughness was the same before and after the SiO 2 film was formed.

続いてSiO2膜の表面を研磨機(SPEED Fam製9B両面研磨機)で研磨した。研磨は市販のガラス基板用研磨パッド(ロデールニッタ製RN−Hパッド)と研磨スラリー(フジミ製Compol 20研磨スラリー)を用いた。なお、研磨する際の条件は研磨圧力100gf/cm2、摺動速度60cm/秒とし、研磨量は、研磨前後での重量変化からシリカ膜の密度(2.2g/cm3)を仮定して見積もった。 Subsequently, the surface of the SiO 2 film was polished with a polishing machine (9B double-side polishing machine manufactured by SPEED Fam). Polishing was performed using a commercially available polishing pad for glass substrates (RN-H pad manufactured by Rodel Nitta) and polishing slurry (Compol 20 polishing slurry manufactured by Fujimi). The polishing conditions are a polishing pressure of 100 gf / cm 2 , a sliding speed of 60 cm / second, and the polishing amount assumes a silica film density (2.2 g / cm 3 ) based on weight change before and after polishing. Estimated.

SiO2膜を0.39μm研磨した後に測定した中心線平均粗さRaは0.45nmであり、研磨によりSiO2膜成膜の表面平滑性を大きく改善できた。 The center line average roughness Ra measured after polishing the SiO 2 film by 0.39 μm was 0.45 nm, and the surface smoothness of the SiO 2 film formation could be greatly improved by polishing.

更にSiO2膜を0.60μm研磨した後に測定した中心線平均粗さRaは0.27nmであり、ガラス基板用の研磨方法を適用することで、十分に平滑な面を得られることが確認された。 Further, the center line average roughness Ra measured after polishing the SiO 2 film by 0.60 μm is 0.27 nm, and it is confirmed that a sufficiently smooth surface can be obtained by applying a polishing method for a glass substrate. It was.

Claims (2)

ルミニウム基板を150℃〜370℃に加熱して、気相成膜法により厚さ6.0μm以上のSiO 2 膜を成膜ることを特徴とする磁気記録媒体用アルミニウム基板の製造方法Heating the A aluminum substrate to 0.99 ° C. to 370 ° C., vapor-phase method for producing an aluminum substrate for a magnetic recording medium of the above thickness 6.0μm of SiO 2 film by a film forming method characterized by deposition to Rukoto. 前記気相成膜法は、プラズマCVD法である請求項1に記載のアルミニウム基板の製造方法The method for manufacturing an aluminum substrate according to claim 1, wherein the vapor deposition method is a plasma CVD method .
JP2012285760A 2012-12-27 2012-12-27 Method for manufacturing aluminum substrate for magnetic recording medium Expired - Fee Related JP5981841B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012285760A JP5981841B2 (en) 2012-12-27 2012-12-27 Method for manufacturing aluminum substrate for magnetic recording medium
CN201380068291.1A CN104885155B (en) 2012-12-27 2013-12-11 Magnetic recording media aluminum substrate
MYPI2015701873A MY170181A (en) 2012-12-27 2013-12-11 Aluminum substrate for magnetic recording medium
PCT/JP2013/007281 WO2014103214A1 (en) 2012-12-27 2013-12-11 Aluminum substrate for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012285760A JP5981841B2 (en) 2012-12-27 2012-12-27 Method for manufacturing aluminum substrate for magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2014127219A JP2014127219A (en) 2014-07-07
JP5981841B2 true JP5981841B2 (en) 2016-08-31

Family

ID=51020338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012285760A Expired - Fee Related JP5981841B2 (en) 2012-12-27 2012-12-27 Method for manufacturing aluminum substrate for magnetic recording medium

Country Status (4)

Country Link
JP (1) JP5981841B2 (en)
CN (1) CN104885155B (en)
MY (1) MY170181A (en)
WO (1) WO2014103214A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755466B (en) * 2016-12-28 2022-02-21 日商東洋鋼鈑股份有限公司 Substrate for hard disk and hard disk device using the same
JP6895847B2 (en) * 2017-08-24 2021-06-30 東洋鋼鈑株式会社 Substrate for magnetic disk and its manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148302A (en) * 1974-10-24 1976-04-26 Nippon Telegraph & Telephone KOKIROKUMITSUDOYOJIKIDEISUKUKIBAN
JPH04362510A (en) * 1991-06-07 1992-12-15 Sony Corp Magnetic disk
JPH05307747A (en) * 1992-04-30 1993-11-19 Sony Corp Magnetic disk
JP2000030245A (en) * 1998-05-06 2000-01-28 Hitachi Koki Co Ltd Magnetic recording medium and magnetic recorder
AU2003280597A1 (en) * 2002-11-07 2004-06-07 Hoya Corporation Substrate for information recording medium, information recording medium and method for manufacturing same
JP2004253103A (en) * 2002-12-24 2004-09-09 Fujitsu Ltd Recording medium substrate and manufacturing method therefor
JP4930838B2 (en) * 2006-05-15 2012-05-16 富士電機株式会社 Glass substrate for information recording medium and information recording medium
CN102442776A (en) * 2007-03-23 2012-05-09 旭硝子株式会社 Substrate glass for data storage medium and glass substrate
JP5681580B2 (en) * 2011-07-08 2015-03-11 株式会社神戸製鋼所 Method for manufacturing aluminum substrate for magnetic recording medium

Also Published As

Publication number Publication date
CN104885155B (en) 2018-09-14
WO2014103214A1 (en) 2014-07-03
MY170181A (en) 2019-07-09
CN104885155A (en) 2015-09-02
JP2014127219A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP4982810B2 (en) Glass substrate manufacturing method and magnetic disk manufacturing method
JP4479528B2 (en) Method of plating on glass substrate, method of manufacturing disk substrate for magnetic recording medium using the plating method, and method of manufacturing perpendicular magnetic recording medium
JP5981841B2 (en) Method for manufacturing aluminum substrate for magnetic recording medium
US9135939B2 (en) Glass substrate for information recording medium, information recording medium and method of manufacturing glass substrate for information recording medium
US20090220821A1 (en) Silicon substrate for magnetic recording and method for manufacturing the same
JP4411331B2 (en) Silicon substrate for magnetic recording medium and manufacturing method thereof
US20090017335A1 (en) Polycrystalline silicon substrate for magnetic recording media, and magnetic recording medium
JP2006302358A (en) Aluminum alloy substrate for magnetic recording medium and magnetic recording medium
JP6261399B2 (en) Aluminum substrate for magnetic recording media
JP2012021178A (en) Method for manufacturing electroless nickel plating film, and substrate for magnetic recording medium using the same
JP5608133B2 (en) Method for manufacturing aluminum substrate for magnetic recording medium
US20090226667A1 (en) Silicon substrate for magnetic recording and method for manufacturing the same
JP2010080015A (en) Glass material for manufacturing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP2011076667A (en) Anodizing substrate for magnetic recording medium, magnetic recording medium using the same, and manufacturing method therefor
US7851076B2 (en) Method of fabricating silicon substrate for magnetic recording media, and magnetic recording medium
JP2014002806A (en) Magnetic recording medium and method of manufacturing the same
WO2024202050A1 (en) Disk for information recording medium, disk intermediate, and substrate for information recording medium
WO2016039115A1 (en) Aluminum substrate for magnetic recording medium, and method for producing same
JP6085209B2 (en) Method for producing SiO2 film-coated aluminum plate
JP2008090906A (en) Method of manufacturing perpendicular magnetic recording medium
KR20080095086A (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP2008090900A (en) Magnetic recording medium and manufacturing method therefor
JP2009301630A (en) Silicon substrate for magnetic recording medium and manufacturing method for the same
JP2010262691A (en) Method for manufacturing silicon substrate for magnetic recording
JP2003217111A (en) Glass substrate for magnetic disk, manufacturing method therefor and magnetic recording medium using the substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160729

R150 Certificate of patent or registration of utility model

Ref document number: 5981841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees