JP2014190561A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014190561A
JP2014190561A JP2013064094A JP2013064094A JP2014190561A JP 2014190561 A JP2014190561 A JP 2014190561A JP 2013064094 A JP2013064094 A JP 2013064094A JP 2013064094 A JP2013064094 A JP 2013064094A JP 2014190561 A JP2014190561 A JP 2014190561A
Authority
JP
Japan
Prior art keywords
compressor
temperature
current
heat exchanger
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013064094A
Other languages
Japanese (ja)
Other versions
JP6146606B2 (en
Inventor
Kenichi Takano
賢一 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2013064094A priority Critical patent/JP6146606B2/en
Publication of JP2014190561A publication Critical patent/JP2014190561A/en
Application granted granted Critical
Publication of JP6146606B2 publication Critical patent/JP6146606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To protect a compressor by detecting a current change of the compressor and to prevent a delay in compressor protection control due to detection of a condensation temperature.SOLUTION: An air conditioner, in which a refrigeration cycle includes: a compressor 1; a four-way valve 2; an indoor heat exchanger 3; an expansion valve 4; an outdoor heat exchanger 5; and a refrigerant pipe 6, comprises: a temperature sensor 7 that detects a condensation temperature of the indoor heat exchanger 3; a temperature sensor 8 that detects a condensation temperature of the outdoor heat exchanger 5; a current sensor 9 that detects a current carried to the compressor 1; and control means 10 that decrease a rotational speed of the compressor 1 if the condensation temperature detected by the temperature sensor 7 or 8 is equal to or higher than a predetermined temperature, and that further decreases the rotational speed of the compressor if the current of the compressor 1 detected by the current sensor 9 increases while the compressor 1 operates at a constant rotational speed after decreasing the rotational speed of the compressor 1.

Description

本発明は、圧縮機の吐出圧力が異常に高くなった際に当該圧縮機の保護を行うようにした空気調和機に関する。   The present invention relates to an air conditioner that protects a compressor when the discharge pressure of the compressor becomes abnormally high.

図3に一般的なヒートポンプ型の空気調和機の構成を示す。この空気調和機は、圧縮機1、暖房と冷房で冷媒循環方向を切り替える四方弁2、室内熱交換器3、膨張弁4、室外熱交換器5、および冷媒配管6により、冷凍サイクルが構成されている。図3は四方弁2が暖房運転用に切り替えられている。   FIG. 3 shows a configuration of a general heat pump type air conditioner. In this air conditioner, a refrigeration cycle is constituted by the compressor 1, the four-way valve 2 that switches the refrigerant circulation direction between heating and cooling, the indoor heat exchanger 3, the expansion valve 4, the outdoor heat exchanger 5, and the refrigerant pipe 6. ing. In FIG. 3, the four-way valve 2 is switched for heating operation.

この空気調和機では、圧縮機1から吐き出された冷媒が冷媒配管6を循環する際に、例えば、ユーザが室内機のファン回転数を低下させると室内熱交換器3における熱交換量が低下して室内温度と設定温度との差が大きくなり、これにより圧縮機1の回転数が一時的に増大し、その吐出圧力が高くなることがある。また、図示しないが、1台の圧縮機に対して複数の室内機が設置されていて、その内の何台かの運転を停止させたときにも熱交換量が低下して同様に、圧縮機1の回転数が一時的に増大し、その吐出圧力が高くなることがある。そこで、従来では、その圧縮機1の吐出圧力を圧力センサ21で検出し、その検出圧力が所定値を超えたとき、制御回路10Aによって、圧縮機1の回転数を低下させる保護運転に移行させ、その圧縮機1を保護することが行われている(特許文献1)。なお、9は圧縮機1に流れる電流を監視する電流センサである。   In this air conditioner, when the refrigerant discharged from the compressor 1 circulates through the refrigerant pipe 6, for example, when the user decreases the fan rotation speed of the indoor unit, the heat exchange amount in the indoor heat exchanger 3 decreases. As a result, the difference between the room temperature and the set temperature increases, which may temporarily increase the rotational speed of the compressor 1 and increase the discharge pressure. In addition, although not shown in the figure, when a plurality of indoor units are installed for one compressor, and the operation of some of them is stopped, the amount of heat exchange decreases and the compression is similarly performed. The rotation speed of the machine 1 temporarily increases, and the discharge pressure may increase. Therefore, conventionally, the discharge pressure of the compressor 1 is detected by the pressure sensor 21, and when the detected pressure exceeds a predetermined value, the control circuit 10A shifts to a protective operation for reducing the rotational speed of the compressor 1. The compressor 1 is protected (Patent Document 1). Reference numeral 9 denotes a current sensor for monitoring the current flowing through the compressor 1.

しかし、吐出圧力を検出する圧力センサ21は高価なため、低コストタイプの空気調和機では、図4に示すように、暖房運転では室内熱交換器2の凝縮温度を温度センサ7で検出し、冷房運転では室外熱交換器5の凝縮温度を温度センサ8で検出して、その検出温度を制御回路10Bにおいて圧縮機1の吐出圧力に換算し、吐出圧力が上がりすぎないように圧縮機1の回転数を低下させることが行われている。   However, since the pressure sensor 21 for detecting the discharge pressure is expensive, in the low-cost type air conditioner, as shown in FIG. 4, the temperature sensor 7 detects the condensation temperature of the indoor heat exchanger 2 in the heating operation, In the cooling operation, the condensation temperature of the outdoor heat exchanger 5 is detected by the temperature sensor 8, and the detected temperature is converted into the discharge pressure of the compressor 1 in the control circuit 10B, so that the discharge pressure does not increase too much. Reducing the number of revolutions has been done.

図5に暖房運転の例について制御内容を示す。ここでは、温度センサ7で検出された室内熱交換器3の凝縮温度がTE2(>TE1)を超えたとき(ゾーンCに入ったとき)、圧縮機1の回転数を現在よりもN1だけ低下させ、この状態でタイマ11によって予め設定した時間T1だけ様子を見る。時間T1が経過したときに、凝縮温度がTE2未満に低下していれば、保護動作を解除する。   FIG. 5 shows the contents of control for an example of heating operation. Here, when the condensation temperature of the indoor heat exchanger 3 detected by the temperature sensor 7 exceeds TE2 (> TE1) (when entering the zone C), the rotational speed of the compressor 1 is reduced by N1 from the present. In this state, the state of the timer 11 is seen for a preset time T1. If the condensation temperature has dropped below TE2 when time T1 has elapsed, the protection operation is canceled.

しかし、時間T1の経過時に凝縮温度がTE3(>TE2)を超えていたとき(ゾーンDに入ったとき)は、圧縮機1の回転数をさらにN2(≒5×N1)だけ低下させて、この状態で再度時間T1だけ様子をみる。時間T1が経過したときに、凝縮温度がTE3未満に低下していれば、前記したゾーンCに復帰する。   However, when the condensing temperature exceeds TE3 (> TE2) at the elapse of time T1 (when entering zone D), the rotation speed of the compressor 1 is further reduced by N2 (≈5 × N1), In this state, the state is seen again only for time T1. If the condensation temperature has dropped below TE3 when the time T1 has elapsed, the process returns to the above-described zone C.

しかし、時間T1の経過時に凝縮温度がTE4(>TE3)を超えていたとき(ゾーンEに入ったとき)は、圧縮機の回転を停止させる。これにより、凝縮温度がTE4未満に低下すれば、前記したゾーンDに復帰する。このときのゾーンDでの圧縮機1の回転数は、前回の回転数(ゾーンCからゾーンDに移行したときにゾーンCでの回転数からN2だけ低下した回転数)となる。   However, when the condensation temperature exceeds TE4 (> TE3) when time T1 has elapsed (when entering zone E), the rotation of the compressor is stopped. As a result, if the condensation temperature falls below TE4, the zone D is restored. At this time, the rotational speed of the compressor 1 in the zone D is the previous rotational speed (the rotational speed that is reduced by N2 from the rotational speed in the zone C when the zone C is shifted to the zone D).

さらに、時間T1の経過時に凝縮温度がTE3未満に低下してゾーンCに復帰していれば、さらに時間T1だけ様子をみる。このときのゾーンCでの圧縮機1の回転数は、前回の回転数(ゾーンBからゾーンCに移行したときにゾーンBでの回転数からN1だけ低下した回転数)となる。その後、温度がTE2未満にまで低下した時点で、保護動作を解除する。   Furthermore, if the condensing temperature drops below TE3 and returns to zone C when time T1 elapses, the state is further observed only for time T1. At this time, the rotational speed of the compressor 1 in the zone C is the previous rotational speed (the rotational speed that is decreased by N1 from the rotational speed in the zone B when the zone B is shifted to the zone C). Thereafter, when the temperature drops below TE2, the protection operation is released.

以上のような制御によって、凝縮温度の検出値の高低に応じて圧縮機1の回転数を制御することにより、圧縮機1の吐出圧力が異常に高くなることが防止され、その保護が行われる。   By controlling the rotation speed of the compressor 1 according to the level of the detected value of the condensation temperature by the control as described above, the discharge pressure of the compressor 1 is prevented from becoming abnormally high and the protection is performed. .

特開2003−139418号公報JP 2003-139418 A

ところが、上記のように凝縮温度を検出して圧縮機の回転数を保護制御する手法では、その温度が周囲の影響を受けたり、冷媒配管内の温度と温度センサで検出された検出温度とにズレが生じたりして、正確な凝縮温度を検出することができない場合が生じる。また、圧縮機の吐出圧力が急激に上昇したときに温度変化はそれに追従することができず、その吐出圧力が限界値を超えて圧縮機に悪影響を与えてしまうおそれがある。   However, in the method for detecting and controlling the condensation temperature by detecting the condensation temperature as described above, the temperature is influenced by the surroundings, or the temperature in the refrigerant pipe and the detected temperature detected by the temperature sensor are used. There may be a case where an accurate condensation temperature cannot be detected due to a deviation. Further, when the discharge pressure of the compressor suddenly rises, the temperature change cannot follow it, and the discharge pressure may exceed the limit value and adversely affect the compressor.

そこで、信頼性に影響を与えないよう、必要以上に圧縮機の回転数を低下させたり、あるいは停止させたりすることで、過剰にあるいは余裕を持った保護動作を行わせて、信頼性を確保していたが、その反面で快適性が損なわれていた。   Therefore, the reliability of the compressor is ensured by reducing or stopping the compressor more than necessary so that the reliability is not affected, and the protection operation is performed with excess or margin. On the other hand, comfort was impaired.

本発明の目的は、圧縮機の電流変化を検出して保護を行うようにして、凝縮温度検出によるような圧縮機保護制御の遅れを防止した空気調和機を提供することである。   An object of the present invention is to provide an air conditioner that detects a change in the current of a compressor and protects it, and prevents a delay in compressor protection control due to detection of a condensation temperature.

上記目的を達成するために、請求項1にかかる発明の空気調和機は、圧縮機、暖房と冷房で冷媒循環方向を切り替える四方弁、室内熱交換器、膨張弁、室外熱交換器、および冷媒配管を少なくとも含むよう冷凍サイクルが構成される空気調和機において、前記室内熱交換器の凝縮温度を検出する第1の温度センサと、前記室外熱交換器の凝縮温度を検出する第2の温度センサと、前記圧縮機に流れる電流を検出する電流センサと、前記第1又は第2の温度センサで検出された凝縮温度が所定の温度以上になると前記圧縮機の回転数を低下させ、該低下した後の一定回転数での運転時に前記電流センサで検出された前記圧縮機の電流が増大するとき前記圧縮機の回転数をさらに低下させる制御手段と、を備えることを特徴とする。
請求項2にかかる発明は、請求項1に記載の空気調和機において、前記凝縮温度が前記所定の温度以上になると計時を開始するタイマを備え、前記制御手段は、該タイマがタイムアップした時点の前記凝縮温度に応じて、前記圧縮機の回転を所定の回転数だけ低下させ、且つ、前記タイマがタイムアップする以前に、前記圧縮機が一定回転数で運転されているときに前記電流センサで検出された前記圧縮機の電流が増大する現象が発生すると、前記圧縮機の回転数を低下させることを特徴とする。
To achieve the above object, an air conditioner according to a first aspect of the present invention includes a compressor, a four-way valve that switches a refrigerant circulation direction between heating and cooling, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, and a refrigerant. In an air conditioner in which a refrigeration cycle is configured to include at least piping, a first temperature sensor that detects a condensation temperature of the indoor heat exchanger and a second temperature sensor that detects a condensation temperature of the outdoor heat exchanger And a current sensor that detects a current flowing through the compressor, and the condensation temperature detected by the first or second temperature sensor is equal to or higher than a predetermined temperature, the rotation speed of the compressor is reduced and the reduced And a control means for further reducing the rotational speed of the compressor when the current of the compressor detected by the current sensor increases during the subsequent operation at a constant rotational speed.
According to a second aspect of the present invention, in the air conditioner according to the first aspect of the present invention, the air conditioner includes a timer that starts measuring time when the condensation temperature is equal to or higher than the predetermined temperature, and the control means The current sensor reduces the rotation of the compressor by a predetermined number of revolutions according to the condensation temperature of the compressor and the compressor is operated at a constant number of revolutions before the timer expires. When the phenomenon that the current of the compressor detected in (4) increases occurs, the rotation speed of the compressor is decreased.

本発明によれば、圧縮機が一定回転数で運転され且つ圧縮機の電流が増大するときに圧縮機の回転数を低下させるようにしたので、圧縮機の吐出圧力の増大を迅速に検出し、それに基づいて適正な圧縮機保護制御を実現することができる。   According to the present invention, when the compressor is operated at a constant rotation speed and the compressor current increases, the rotation speed of the compressor is decreased, so that an increase in the discharge pressure of the compressor can be detected quickly. Based on this, proper compressor protection control can be realized.

本発明の実施例の圧縮機保護用の制御回路を備えた空気調和機の構成図である。It is a block diagram of the air conditioner provided with the control circuit for the compressor protection of the Example of this invention. 同実施例の圧縮機保護の制御のタイミングチャートである。It is a timing chart of control of compressor protection of the example. 従来の圧縮機保護用の制御回路を備えた空気調和機の構成図である。It is a block diagram of the air conditioner provided with the control circuit for the conventional compressor protection. 別の従来の圧縮機保護用の制御回路を備えた空気調和機の構成図である。It is a block diagram of the air conditioner provided with the control circuit for another conventional compressor protection. 図4の制御回路による制御の説明図である。It is explanatory drawing of control by the control circuit of FIG.

図1に本発明の1つの実施例の空気調和機を示す。圧縮機1、暖房と冷房で冷媒循環方向を切り替える四方弁2、室内熱交換器3、膨張弁4、室外熱交換器5、および冷媒配管6により、冷凍サイクルが構成されている。図1では四方弁2が暖房運転用に切り替えられている。そして、室内熱交換器3に暖房運転時の冷媒の凝縮温度を検出するための温度センサ7が配置され、室外熱交換器4に冷房運転時の冷媒の凝縮温度を検出するための温度センサ8が配置されている。さらに、圧縮機1の電流を検出する電流センサ9が圧縮機1に取り付けられている。10は制御回路、11はタイマである。   FIG. 1 shows an air conditioner according to one embodiment of the present invention. A refrigeration cycle is configured by the compressor 1, the four-way valve 2, which switches the refrigerant circulation direction between heating and cooling, the indoor heat exchanger 3, the expansion valve 4, the outdoor heat exchanger 5, and the refrigerant pipe 6. In FIG. 1, the four-way valve 2 is switched for heating operation. And the temperature sensor 7 for detecting the condensation temperature of the refrigerant | coolant at the time of heating operation is arrange | positioned at the indoor heat exchanger 3, and the temperature sensor 8 for detecting the condensation temperature of the refrigerant | coolant at the time of air_conditionaing | cooling operation at the outdoor heat exchanger 4. Is arranged. Furthermore, a current sensor 9 that detects the current of the compressor 1 is attached to the compressor 1. 10 is a control circuit, and 11 is a timer.

本実施例では、暖房運転時には、室内熱交換器4の凝縮温度を温度センサ7により検出する。また、本来は電流監視用として装備されている電流センサ9を利用して圧縮機1に流れる電流を監視する。そして、これらの検出信号を制御回路10に取り込んで、その制御回路10によって圧縮機1の回転数制御を行い、圧縮機保護を行う。通常、圧縮機1の回転数が変わらず、吐出圧力も変わらなければ、圧縮機1の電流値は変化しない。しかし、圧縮機1の回転数が一定で吐出圧力が上昇したときは、電流値が上昇している。   In this embodiment, the temperature sensor 7 detects the condensation temperature of the indoor heat exchanger 4 during heating operation. In addition, the current flowing through the compressor 1 is monitored by using the current sensor 9 originally provided for current monitoring. Then, these detection signals are taken into the control circuit 10, and the rotational speed of the compressor 1 is controlled by the control circuit 10 to protect the compressor. Usually, if the rotation speed of the compressor 1 does not change and the discharge pressure does not change, the current value of the compressor 1 does not change. However, when the rotation speed of the compressor 1 is constant and the discharge pressure increases, the current value increases.

そこで、本発明では、この特性を利用して、圧縮機1の回転数が一定であるにも拘わらず圧縮機1の電流値が上昇したときは、圧縮機1の吐出圧力が上昇していると推定する。このときの電流値の変化は、周囲温度の影響を受けず、吐出圧力に対する追従性が高い。つまり、電流値の変化は、温度センサ7または8が追従できないような早い圧力変化にも対応している。   Therefore, in the present invention, the discharge pressure of the compressor 1 increases when the current value of the compressor 1 increases even though the rotation speed of the compressor 1 is constant by using this characteristic. Estimated. The change in the current value at this time is not affected by the ambient temperature and has high followability to the discharge pressure. That is, the change in the current value also corresponds to a rapid pressure change that the temperature sensor 7 or 8 cannot follow.

図2に暖房運転時の圧縮機の回転制御のタイムチャートを示す。この制御は制御回路10において全て行われる。時刻t1において、例えば、前記したように、ユーザが室内機のファン回転数を低下させると室内熱交換器3における熱交換量が低下して室内温度と設定温度との差が大きくなり、これにより圧縮機1の回転数が増大し、その電流も増大する。このときは、電流変化量が大きくなる。   FIG. 2 shows a time chart of compressor rotation control during heating operation. This control is all performed in the control circuit 10. At time t1, for example, as described above, when the user decreases the fan rotation speed of the indoor unit, the amount of heat exchange in the indoor heat exchanger 3 decreases, and the difference between the room temperature and the set temperature increases. The rotation speed of the compressor 1 increases and the current also increases. At this time, the amount of current change increases.

そして、時刻t1から若干経過した時刻t2になると、反応が遅い温度センサ7で検出される凝縮温度の上昇の傾きが急激となる。   Then, at time t2 after a lapse of time from time t1, the inclination of the rise in the condensation temperature detected by the temperature sensor 7 that reacts slowly becomes abrupt.

その後、時刻t3において、凝縮温度が図5で説明した温度TE2以上になると、図5のゾーンCに突入する。これにより、制御回路10から、圧縮機1の回転数をN1だけ低下させる保護指示が出力され、同時にタイマ11が計時動作を開始する。この後、圧縮機1はN1だけ低下した一定回転数を保持する。   Thereafter, when the condensation temperature becomes equal to or higher than the temperature TE2 described in FIG. 5 at time t3, the vehicle enters the zone C in FIG. As a result, a protection instruction for reducing the rotational speed of the compressor 1 by N1 is output from the control circuit 10, and at the same time, the timer 11 starts a time counting operation. Thereafter, the compressor 1 maintains a constant rotational speed that is reduced by N1.

この後、回転数は変化しないにも拘わらず、電流が増加傾向を示すとき(期間Ta)は、圧縮機1の吐出圧力が増大していると制御回路10が推定する。そして、この推定に基づいて、時刻t4において再度保護指示が出力され、圧縮機1の回転数がさらにN1だけ低下する。   Thereafter, the control circuit 10 estimates that the discharge pressure of the compressor 1 is increasing when the current shows an increasing tendency (period Ta) although the rotational speed does not change. Then, based on this estimation, the protection instruction is output again at time t4, and the rotation speed of the compressor 1 further decreases by N1.

時刻t5になると、タイマ11が所定(圧縮機の回転数が下がることに伴って、凝縮器の温度が変化するまでの時間、例えば120秒)時間T1の計時を完了する、つまりタイムアップするので、そのときの凝縮温度がゾーンC内でTE2以上であれば、吐出圧力が上昇していると判断して、圧縮機1の回転数を再度N1だけ低下させる。   At time t5, the timer 11 completes a predetermined time (time until the condenser temperature changes as the compressor speed decreases, for example 120 seconds), that is, the time is up. If the condensing temperature at that time is equal to or higher than TE2 in the zone C, it is determined that the discharge pressure has increased, and the rotational speed of the compressor 1 is decreased again by N1.

このように、本実施例では、圧縮機1の一定回転数の運転中における電流増大を監視することにより、圧縮機1の吐出圧力増大を早期に推定し、タイマ11がタイムアップする以前に、圧縮機1の回転数を現在より低下させるので、保護が完全となる。本実施例による圧縮機1の一定回転数の運転中における電流増大に基づき行う回転数低下制御は、タイマがタイムアップする以前において、2回以上行われることもある。このとき低下させる回転数は、N1に限られるものではない。   Thus, in this embodiment, by monitoring the current increase during the operation of the compressor 1 at a constant rotational speed, the increase in the discharge pressure of the compressor 1 is estimated at an early stage, and before the timer 11 times up, Since the rotation speed of the compressor 1 is reduced from the current level, the protection is complete. The rotation speed reduction control based on the current increase during the operation of the compressor 1 according to the present embodiment may be performed twice or more before the timer expires. The number of rotations to be reduced at this time is not limited to N1.

図2では、図5で説明した動作に対応する部分を、波線で示した。従来例ではタイマ1がタイムアップするまでに圧縮機1の回転数をN1ほど低下させるのは、1回だけであるので、十分な吐出圧力の低下を実現できない場合があった。これに対し、本実施例によれば、圧縮機1の回転数が変化せず且つ圧縮機1の電流が増大していれば、タイマ11がタイムアップしなくても、圧縮機1の回転数を再度低下させるので、圧縮機1の吐出圧力が異常に上昇することを効果的に回避できる。   In FIG. 2, a portion corresponding to the operation described in FIG. 5 is indicated by a wavy line. In the conventional example, the rotation speed of the compressor 1 is decreased by N1 only once before the timer 1 times out, so that there is a case where a sufficient decrease in the discharge pressure cannot be realized. On the other hand, according to the present embodiment, if the rotation speed of the compressor 1 does not change and the current of the compressor 1 increases, the rotation speed of the compressor 1 can be obtained even if the timer 11 does not expire. Is reduced again, it is possible to effectively avoid an abnormal increase in the discharge pressure of the compressor 1.

なお、以上は図5におけるゾーンCの温度範囲における制御について説明したが、他のゾーンにおいても、圧縮機1の回転数が変化せず且つ圧縮機1の電流が増大しているときに、迅速に圧縮機1の吐出圧力の増大を推定して、圧縮機1の回転数を低下させることにより、その圧縮機1の保護を実現することができる。   In the above, the control in the temperature range of the zone C in FIG. 5 has been described, but also in other zones, when the rotation speed of the compressor 1 does not change and the current of the compressor 1 increases, Further, by presuming an increase in the discharge pressure of the compressor 1 and reducing the rotational speed of the compressor 1, protection of the compressor 1 can be realized.

また、以上は暖房運転の場合についてであるが、冷房運転のときは、室外機熱交換器5の凝縮温度を温度センサ8で検出することで、同様に実施することができる。   Further, the above is the case of the heating operation, but in the case of the cooling operation, the same can be implemented by detecting the condensation temperature of the outdoor unit heat exchanger 5 with the temperature sensor 8.

1:圧縮機、2:四方弁、3:室内機熱交換器、4:減圧器、5:室外機熱交換器、6:冷媒配管、7,8:温度センサ、9:電流センサ、10,10A,10B:制御回路、11:タイマ、21:圧力センサ   1: compressor, 2: four-way valve, 3: indoor unit heat exchanger, 4: decompressor, 5: outdoor unit heat exchanger, 6: refrigerant piping, 7, 8: temperature sensor, 9: current sensor, 10, 10A, 10B: control circuit, 11: timer, 21: pressure sensor

Claims (2)

圧縮機、暖房と冷房で冷媒循環方向を切り替える四方弁、室内熱交換器、膨張弁、室外熱交換器、および冷媒配管を少なくとも含むよう冷凍サイクルが構成される空気調和機において、
前記室内熱交換器の凝縮温度を検出する第1の温度センサと、
前記室外熱交換器の凝縮温度を検出する第2の温度センサと、
前記圧縮機に流れる電流を検出する電流センサと、
前記第1又は第2の温度センサで検出された凝縮温度が所定の温度以上になると前記圧縮機の回転数を低下させ、該低下した後の一定回転数での運転時に前記電流センサで検出された前記圧縮機の電流が増大するとき前記圧縮機の回転数をさらに低下させる制御手段と、
を備えることを特徴とする空気調和機。
In an air conditioner in which a refrigeration cycle is configured to include at least a compressor, a four-way valve that switches a refrigerant circulation direction between heating and cooling, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, and a refrigerant pipe.
A first temperature sensor for detecting a condensation temperature of the indoor heat exchanger;
A second temperature sensor for detecting a condensation temperature of the outdoor heat exchanger;
A current sensor for detecting a current flowing through the compressor;
When the condensation temperature detected by the first or second temperature sensor becomes equal to or higher than a predetermined temperature, the rotational speed of the compressor is decreased, and is detected by the current sensor during operation at a constant rotational speed after the decrease. Control means for further reducing the rotational speed of the compressor when the current of the compressor increases;
An air conditioner comprising:
請求項1に記載の空気調和機において、
前記凝縮温度が前記所定の温度以上になると計時を開始するタイマを備え、
前記制御手段は、該タイマがタイムアップした時点の前記凝縮温度に応じて、前記圧縮機の回転を所定の回転数だけ低下させ、
且つ、前記タイマがタイムアップする以前に、前記圧縮機が一定回転数で運転されているときに前記電流センサで検出された前記圧縮機の電流が増大する現象が発生すると、前記圧縮機の回転数を低下させることを特徴とする空気調和機。
In the air conditioner according to claim 1,
A timer that starts counting when the condensation temperature is equal to or higher than the predetermined temperature;
The control means reduces the rotation of the compressor by a predetermined number of revolutions according to the condensation temperature at the time when the timer times out,
In addition, if the phenomenon that the current of the compressor detected by the current sensor increases when the compressor is operating at a constant rotational speed before the timer expires, the rotation of the compressor An air conditioner characterized by reducing the number.
JP2013064094A 2013-03-26 2013-03-26 Air conditioner Active JP6146606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064094A JP6146606B2 (en) 2013-03-26 2013-03-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064094A JP6146606B2 (en) 2013-03-26 2013-03-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014190561A true JP2014190561A (en) 2014-10-06
JP6146606B2 JP6146606B2 (en) 2017-06-14

Family

ID=51836999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064094A Active JP6146606B2 (en) 2013-03-26 2013-03-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP6146606B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198432A (en) * 2016-04-28 2017-11-02 ダイキン工業株式会社 Heat pump system and power limit system including the same
CN111622936A (en) * 2020-04-25 2020-09-04 壹格建筑科技(上海)有限公司 Method, apparatus and computer readable storage medium for compressor overload protection
CN114135986A (en) * 2020-09-04 2022-03-04 广东美的制冷设备有限公司 Air conditioner, method of controlling the same, and computer-readable storage medium

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767736A (en) * 1980-10-13 1982-04-24 Toshiba Corp Air conditioner
JPS5818046A (en) * 1981-07-24 1983-02-02 Toshiba Corp Current controlling method for air conditioner
JPS62108946A (en) * 1985-11-06 1987-05-20 Toshiba Corp Air conditioner
JPH03102145A (en) * 1989-09-14 1991-04-26 Toshiba Corp Air conditioner
JPH05288412A (en) * 1992-04-03 1993-11-02 Daikin Ind Ltd Driving device for compressor for air conditioner
JPH06213542A (en) * 1993-01-20 1994-08-02 Fujitsu General Ltd Method for controlling air conditioner
JPH06249488A (en) * 1993-02-23 1994-09-06 Fujitsu General Ltd Control method for air conditioner
JPH09236336A (en) * 1996-02-29 1997-09-09 Daikin Ind Ltd Operation controller for air conditioner
JPH1089782A (en) * 1996-09-19 1998-04-10 Daikin Ind Ltd Air conditioner
JPH10153353A (en) * 1996-09-27 1998-06-09 Toshiba Corp Air conditioner
JP2005061736A (en) * 2003-08-18 2005-03-10 Matsushita Electric Ind Co Ltd Control method of air conditioner
JP2007163061A (en) * 2005-12-15 2007-06-28 Matsushita Electric Ind Co Ltd Air conditioner
JP2008202905A (en) * 2007-02-22 2008-09-04 Sharp Corp Air conditioner
JP2011052872A (en) * 2009-08-31 2011-03-17 Fujitsu General Ltd Heat pump cycle device
JP2012021766A (en) * 2011-09-28 2012-02-02 Mitsubishi Electric Corp Air conditioning device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767736A (en) * 1980-10-13 1982-04-24 Toshiba Corp Air conditioner
JPS5818046A (en) * 1981-07-24 1983-02-02 Toshiba Corp Current controlling method for air conditioner
JPS62108946A (en) * 1985-11-06 1987-05-20 Toshiba Corp Air conditioner
JPH03102145A (en) * 1989-09-14 1991-04-26 Toshiba Corp Air conditioner
JPH05288412A (en) * 1992-04-03 1993-11-02 Daikin Ind Ltd Driving device for compressor for air conditioner
JPH06213542A (en) * 1993-01-20 1994-08-02 Fujitsu General Ltd Method for controlling air conditioner
JPH06249488A (en) * 1993-02-23 1994-09-06 Fujitsu General Ltd Control method for air conditioner
JPH09236336A (en) * 1996-02-29 1997-09-09 Daikin Ind Ltd Operation controller for air conditioner
JPH1089782A (en) * 1996-09-19 1998-04-10 Daikin Ind Ltd Air conditioner
JPH10153353A (en) * 1996-09-27 1998-06-09 Toshiba Corp Air conditioner
JP2005061736A (en) * 2003-08-18 2005-03-10 Matsushita Electric Ind Co Ltd Control method of air conditioner
JP2007163061A (en) * 2005-12-15 2007-06-28 Matsushita Electric Ind Co Ltd Air conditioner
JP2008202905A (en) * 2007-02-22 2008-09-04 Sharp Corp Air conditioner
JP2011052872A (en) * 2009-08-31 2011-03-17 Fujitsu General Ltd Heat pump cycle device
JP2012021766A (en) * 2011-09-28 2012-02-02 Mitsubishi Electric Corp Air conditioning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198432A (en) * 2016-04-28 2017-11-02 ダイキン工業株式会社 Heat pump system and power limit system including the same
CN111622936A (en) * 2020-04-25 2020-09-04 壹格建筑科技(上海)有限公司 Method, apparatus and computer readable storage medium for compressor overload protection
CN114135986A (en) * 2020-09-04 2022-03-04 广东美的制冷设备有限公司 Air conditioner, method of controlling the same, and computer-readable storage medium
CN114135986B (en) * 2020-09-04 2023-06-30 广东美的制冷设备有限公司 Air conditioner, control method thereof and computer readable storage medium

Also Published As

Publication number Publication date
JP6146606B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
EP3279591B1 (en) Indoor air conditioning unit
EP3296656A1 (en) Air conditioning system, control method, and program
JP2007333370A (en) Air conditioner and control method thereof
MX2014014094A (en) Air-conditioning apparatus.
JP6381824B2 (en) Refrigeration cycle equipment
US20130291576A1 (en) Air conditioning system and initiation control method of the same
WO2020115935A1 (en) Air conditioning system
JPH10153353A (en) Air conditioner
JP6146606B2 (en) Air conditioner
JP2008057837A (en) Coolant leakage detecting method, coolant leakage detector and air conditioner
JP7030037B2 (en) Air conditioner
JP2008138926A (en) Compressor protecting controlling method for air conditioner
JPH08261542A (en) Air conditioner
JP2007278656A (en) Heat pump water heater
JPH08247561A (en) Air conditioner
JP2019219072A (en) Control device, air conditioner, and control method
JP6615371B2 (en) Refrigeration cycle equipment
JP3438551B2 (en) Air conditioner
JP2011158121A (en) Air conditioner
JP2004225929A (en) Air conditioner and control method of air conditioner
CN107355951B (en) Air conditioner refrigeration mode control method and device and air conditioner
JP2011106743A (en) Outdoor unit of air conditioner
JP5012102B2 (en) Vending machine control equipment
JP2006194552A (en) Air conditioner
JP6519098B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170503

R151 Written notification of patent or utility model registration

Ref document number: 6146606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151