JP2019219072A - Control device, air conditioner, and control method - Google Patents

Control device, air conditioner, and control method Download PDF

Info

Publication number
JP2019219072A
JP2019219072A JP2018114600A JP2018114600A JP2019219072A JP 2019219072 A JP2019219072 A JP 2019219072A JP 2018114600 A JP2018114600 A JP 2018114600A JP 2018114600 A JP2018114600 A JP 2018114600A JP 2019219072 A JP2019219072 A JP 2019219072A
Authority
JP
Japan
Prior art keywords
temperature
compressor
rotation speed
condenser
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018114600A
Other languages
Japanese (ja)
Inventor
丈幸 是澤
Takeyuki Koresawa
丈幸 是澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2018114600A priority Critical patent/JP2019219072A/en
Publication of JP2019219072A publication Critical patent/JP2019219072A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a control device which can surely carry out high-pressure protection control of a refrigerant circuit based on a measured value from a temperature sensor.SOLUTION: A control device is a control device of carrying out high-pressure protection control for the pressure of a condenser on the basis of the temperature of the condenser. When the temperature of the condenser reaches a first predetermined temperature, the control device carries out the high-pressure protection control. When the temperature of the condenser is equal to or more than a second temperature lower than the first temperature, the control device carries out control of suppressing a rising speed of the pressure of the condenser.SELECTED DRAWING: Figure 3

Description

本発明は、制御装置、空気調和機及び制御方法に関する。   The present invention relates to a control device, an air conditioner, and a control method.

空気調和機の冷房運転では、室外熱交換器が高圧側になる。室外機熱交換器に温度センサを設け、この温度センサが計測する温度に基づいて、高圧側の圧力を推定し、推定した圧力に基づいて圧縮機の制御を行うよう構成された空気調和機が提供されている。このような空気調和機では、室外機熱交換器に設けた温度センサが計測した温度が所定の閾値以上となると高圧異常を防ぐために高圧保護制御を行う。   In the cooling operation of the air conditioner, the outdoor heat exchanger is on the high pressure side. An air conditioner provided with a temperature sensor in the outdoor unit heat exchanger, configured to estimate the pressure on the high pressure side based on the temperature measured by the temperature sensor and to control the compressor based on the estimated pressure. Are provided. In such an air conditioner, when the temperature measured by the temperature sensor provided in the outdoor unit heat exchanger becomes equal to or higher than a predetermined threshold, high pressure protection control is performed to prevent a high pressure abnormality.

高圧保護制御の例として、特許文献1には、暖房運転時に高圧側となる室内熱交換器の圧力上昇によって、圧縮機や冷媒回路の部品の故障等を防ぐために、室内熱交換器に送風するファンの回転数を低下させるときには、風量の低下と同調して圧縮機の回転数も低下させ、室内熱交換器に生じる圧力上昇を抑制する高圧保護制御が記載されている。   As an example of the high-pressure protection control, in Patent Document 1, air is blown to the indoor heat exchanger in order to prevent a failure of a compressor or a component of a refrigerant circuit due to an increase in pressure of an indoor heat exchanger that is on a high pressure side during a heating operation. When the rotational speed of the fan is reduced, a high-pressure protection control is described in which the rotational speed of the compressor is also reduced in synchronism with the decrease in the air volume, and the pressure increase in the indoor heat exchanger is suppressed.

特開平11−211247号公報JP-A-11-212247

ところで、室外熱交換器の温度によって圧力を推定して高圧保護制御を行う場合、特に圧力が急激に上昇する場面では、実際の圧力と温度センサが計測する温度との間に応答遅れによる乖離が生じる可能性がある。実際の圧力と計測された温度に乖離が生じると、例えば、温度センサによって室外熱交換器の高圧異常を検出したときには、実際の圧力は既に閾値を超えて上昇している可能性があり、空気調和機の故障や運転停止を招く原因となる。   By the way, when performing high-pressure protection control by estimating the pressure based on the temperature of the outdoor heat exchanger, especially in a situation where the pressure rises sharply, there is a deviation due to a response delay between the actual pressure and the temperature measured by the temperature sensor. Can occur. When a difference between the actual pressure and the measured temperature occurs, for example, when a high-pressure abnormality of the outdoor heat exchanger is detected by the temperature sensor, the actual pressure may have already exceeded the threshold value, and the air pressure may have increased. It may cause a failure or operation stop of the harmony machine.

そこでこの発明は、上述の課題を解決することのできる制御装置、空気調和機及び制御方法を提供することを目的としている。   Therefore, an object of the present invention is to provide a control device, an air conditioner, and a control method that can solve the above-described problems.

本発明の一態様によれば、制御装置は、凝縮器の圧力について、前記凝縮器の温度に基づいて高圧保護制御を行う制御装置であって、前記凝縮器の温度が所定の第1温度に達すると、前記高圧保護制御を実行し、前記凝縮器の温度が、前記第1温度より低い所定の第2温度以上の場合、前記凝縮器の圧力の上昇速度を抑制する制御を行う制御部、を備える。   According to one aspect of the present invention, the control device is a control device that performs high-pressure protection control on the pressure of the condenser based on the temperature of the condenser, wherein the temperature of the condenser is set to a predetermined first temperature. A control unit that executes the high-pressure protection control when the temperature reaches the second temperature, which is equal to or higher than a predetermined second temperature that is lower than the first temperature, and that controls a rate of increase in the pressure of the condenser; Is provided.

本発明の一態様によれば、前記制御部は、圧縮機の回転数を上昇させる制御において、前記凝縮器の温度が前記第1温度に達すると前記圧縮機の回転数を低下または停止させる前記高圧保護制御を実行し、前記温度が前記第2温度以上になると、前記圧縮機の回転数の上昇速度を、前記凝縮器の温度が前記第2温度より低いときよりも低速に制限する。   According to one aspect of the present invention, in the control for increasing the rotation speed of the compressor, the control unit reduces or stops the rotation speed of the compressor when the temperature of the condenser reaches the first temperature. When the high-temperature protection control is performed and the temperature becomes equal to or higher than the second temperature, the increasing speed of the rotation speed of the compressor is limited to a lower speed than when the temperature of the condenser is lower than the second temperature.

本発明の一態様によれば、前記温度が前記第2温度以上の場合の前記圧縮機の回転数の上昇速度は、1rps/15秒から1rps/20秒の間で設定されている。   According to one aspect of the present invention, when the temperature is equal to or higher than the second temperature, the increasing speed of the rotation speed of the compressor is set between 1 rps / 15 seconds and 1 rps / 20 seconds.

本発明の一態様によれば、前記第1温度と前記第2温度の温度差は2℃以上4℃以下の範囲である。   According to one embodiment of the present invention, a temperature difference between the first temperature and the second temperature is in a range from 2 ° C. to 4 ° C.

本発明の一態様によれば、前記制御装置は、冷房運転中に前記凝縮器の温度に基づいて前記高圧保護制御および前記凝縮器の圧力の上昇速度を抑制する制御を行う。   According to one embodiment of the present invention, the control device performs the high-pressure protection control and the control to suppress the rate of increase in the pressure of the condenser based on the temperature of the condenser during the cooling operation.

本発明の一態様によれば、空気調和機は、圧縮機と、凝縮器と、膨張弁と、蒸発器とを備える冷媒回路と、前記凝縮器の温度を計測する温度センサと、上記の何れかに記載の制御装置と、を備える。   According to one embodiment of the present invention, an air conditioner includes a compressor, a condenser, an expansion valve, a refrigerant circuit including an evaporator, a temperature sensor that measures the temperature of the condenser, and any one of the above. And a control device according to any of the above.

本発明の一態様によれば、制御方法は、圧縮機の回転数を上昇させる制御において、凝縮器の温度を取得する温度取得ステップと、前記凝縮器の温度に基づいて前記圧縮機の回転数の上昇速度を設定する上昇速度設定ステップと、を有し、前記上昇速度設定ステップでは、前記温度が所定の第1温度に達すると前記圧縮機の回転数を低下または停止させ、前記温度が前記第1温度より低い第2温度に達すると、前記圧縮機の回転数の上昇速度に制限を加える。   According to one aspect of the present invention, the control method includes, in the control for increasing the rotation speed of the compressor, a temperature obtaining step of obtaining a temperature of the condenser, and a rotation speed of the compressor based on the temperature of the condenser. A rising speed setting step of setting a rising speed of the compressor, wherein in the rising speed setting step, when the temperature reaches a predetermined first temperature, the number of rotations of the compressor is reduced or stopped, and the temperature is increased. When the second temperature lower than the first temperature is reached, a limit is imposed on the rate of increase in the rotational speed of the compressor.

本発明によれば、凝縮器の圧力を制限値内に制御して冷凍サイクルを運転することができる。   According to the present invention, the refrigeration cycle can be operated by controlling the pressure of the condenser within the limit value.

本発明の一実施形態における空気調和機の一例を示す図である。It is a figure showing an example of an air conditioner in one embodiment of the present invention. 本発明の一実施形態における制御装置の一例を示すブロック図である。It is a block diagram showing an example of a control device in one embodiment of the present invention. 本発明の一実施形態における圧縮機の回転数制御テーブルの一例を示す図である。It is a figure showing an example of a rotation speed control table of a compressor in one embodiment of the present invention. 本発明の一実施形態における圧縮機の回転数の推移の一例を示す図である。It is a figure showing an example of transition of the number of rotations of a compressor in one embodiment of the present invention. 本発明の一実施形態における圧縮機の制御方法の一例を示すフローチャートである。It is a flow chart which shows an example of a control method of a compressor in one embodiment of the present invention.

<実施形態>
以下、本発明の一実施形態による空気調和機での温度センサに基づく高圧保護制御について図1〜図5を参照して説明する。
図1は、本発明の一実施形態における空気調和機の一例を示す図である。
図1に、空気調和機100の構成を示す。図1に示すように空気調和機100は、圧縮機1、室内熱交換器2、膨張弁3、室外熱交換器4、四方弁5、及びそれらを接続する冷媒配管6などを含む冷媒回路と、この冷媒回路を制御する制御装置20とを備える。例えば、室内機9には室内熱交換器2が、室外機10には、膨張弁3、室外熱交換器4、四方弁5が設けられる。また、室外熱交換器4の圧縮機1側に冷媒の温度を計測する温度センサ11が、室内熱交換器2には温度センサ12が設けられている。図1に示す構成は、空気調和機100の基本的な構成を模式図であって、さらに他の構成要素が含まれていてもよい。
<Embodiment>
Hereinafter, high-pressure protection control based on a temperature sensor in an air conditioner according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
FIG. 1 is a diagram illustrating an example of an air conditioner according to an embodiment of the present invention.
FIG. 1 shows a configuration of the air conditioner 100. As shown in FIG. 1, the air conditioner 100 includes a refrigerant circuit including a compressor 1, an indoor heat exchanger 2, an expansion valve 3, an outdoor heat exchanger 4, a four-way valve 5, and a refrigerant pipe 6 connecting them. And a control device 20 for controlling the refrigerant circuit. For example, the indoor unit 9 is provided with the indoor heat exchanger 2, and the outdoor unit 10 is provided with the expansion valve 3, the outdoor heat exchanger 4, and the four-way valve 5. A temperature sensor 11 for measuring the temperature of the refrigerant is provided on the compressor 1 side of the outdoor heat exchanger 4, and a temperature sensor 12 is provided on the indoor heat exchanger 2. The configuration illustrated in FIG. 1 is a schematic diagram illustrating a basic configuration of the air conditioner 100, and may further include other components.

圧縮機1は、冷媒を圧縮し、圧縮後の高温、高圧の冷媒を吐出する。暖房運転では、制御装置20は、四方弁5のポート5aとポート5bを接続し、ポート5cとポート5dを接続する。冷媒は矢印8の方向に流れる。つまり、高温、高圧の冷媒は、四方弁5を介して室内熱交換器2(凝縮器)に供給される。冷媒は、室内熱交換器2で放熱し、凝縮して液化する。室内熱交換器2で凝縮した冷媒は、膨張弁3によって減圧され、低圧の冷媒となる。低圧の冷媒は、室外熱交換器4(蒸発器)へ供給され、例えば外気からの吸熱により気化する。気化した冷媒は、四方弁5を通過して圧縮機1へ吸入される。圧縮機1は低圧の冷媒を圧縮して高圧の冷媒を吐出する。   The compressor 1 compresses the refrigerant, and discharges the compressed high-temperature, high-pressure refrigerant. In the heating operation, the control device 20 connects the port 5a and the port 5b of the four-way valve 5, and connects the port 5c and the port 5d. The refrigerant flows in the direction of arrow 8. That is, the high-temperature, high-pressure refrigerant is supplied to the indoor heat exchanger 2 (condenser) via the four-way valve 5. The refrigerant radiates heat in the indoor heat exchanger 2, condenses and liquefies. The refrigerant condensed in the indoor heat exchanger 2 is decompressed by the expansion valve 3 and becomes a low-pressure refrigerant. The low-pressure refrigerant is supplied to the outdoor heat exchanger 4 (evaporator), and is vaporized by, for example, absorbing heat from the outside air. The vaporized refrigerant passes through the four-way valve 5 and is sucked into the compressor 1. The compressor 1 compresses a low-pressure refrigerant and discharges a high-pressure refrigerant.

また、冷房運転では、制御装置20は、四方弁5のポート5aとポート5dを接続し、ポート5bとポート5cを接続する。つまり、高温、高圧の冷媒は、四方弁5を介して室外熱交換器4(凝縮器)に供給され、外気へ放熱し凝縮する。凝縮した冷媒は膨張弁3によって減圧され、室内熱交換器2(蒸発器)へ供給される。室内熱交換器2では、冷媒は、室内の空気からの吸熱により気化する。気化した冷媒は、四方弁5を通過して圧縮機1へ吸入される。圧縮機1は低圧の冷媒を圧縮して高温、高圧の冷媒を吐出する。図1に示す冷媒回路では、上記の過程が繰り返されて冷媒が循環する。これにより空気調和機100は、暖房または冷房を行う。制御装置20は、四方弁5の制御により暖房運転と冷房運転の切り替えを行う。また、制御装置20は、室内熱交換器2の温度センサ12が計測する温度とユーザが設定した設定温度の差に基づいて、室温が設定温度となるように圧縮機1の回転数を調整し、暖房運転または冷房運転を実行する。   In the cooling operation, the control device 20 connects the port 5a and the port 5d of the four-way valve 5, and connects the port 5b and the port 5c. That is, the high-temperature, high-pressure refrigerant is supplied to the outdoor heat exchanger 4 (condenser) via the four-way valve 5, and radiates heat to outside air and condenses. The condensed refrigerant is decompressed by the expansion valve 3 and supplied to the indoor heat exchanger 2 (evaporator). In the indoor heat exchanger 2, the refrigerant is vaporized by absorbing heat from indoor air. The vaporized refrigerant passes through the four-way valve 5 and is sucked into the compressor 1. The compressor 1 compresses a low-pressure refrigerant and discharges a high-temperature, high-pressure refrigerant. In the refrigerant circuit shown in FIG. 1, the above process is repeated and the refrigerant circulates. Thereby, the air conditioner 100 performs heating or cooling. The control device 20 switches between the heating operation and the cooling operation by controlling the four-way valve 5. Further, control device 20 adjusts the rotation speed of compressor 1 based on the difference between the temperature measured by temperature sensor 12 of indoor heat exchanger 2 and the set temperature set by the user such that the room temperature becomes the set temperature. Executing the heating operation or the cooling operation.

このような空気調和機100では、冷媒回路の高圧異常を防止するために、制御装置20は、高圧保護制御を実行する機能を有している。高圧保護制御とは、例えば冷房運転時に高圧となる室外熱交換器4の圧力が閾値に達すると、圧縮機1の回転数を維持したり低下させたり、あるいは圧縮機1を停止させたりして高圧の圧力上昇を抑える(高圧を低下させる)制御のことをいう。高圧保護制御によって、圧縮機1の回転数の上昇が止まり、室外熱交換器4の圧力が低下すると、制御装置20は、高圧保護制御を解除し、圧縮機1の通常運転を再開する。ところで、冷房運転時の室外熱交換器4での冷媒の温度と圧力は概ね比例する。その為、配管内に圧力センサを設ける代わりに室外熱交換器4の配管に温度センサ11を設け、温度センサ11が計測する温度によって、室外熱交換器4での冷媒の圧力(高圧)を推定することができる。制御装置20は、温度センサ11が計測する温度ThO−Rに基づいて高圧保護制御を行う。具体的には、制御装置20は、温度ThO−Rが、高圧が過度に上昇していることを示す温度となると、高圧保護制御を開始する。次に図2を用いて制御装置20について説明する。   In such an air conditioner 100, the control device 20 has a function of executing high-pressure protection control in order to prevent a high-pressure abnormality in the refrigerant circuit. The high-pressure protection control means that, for example, when the pressure of the outdoor heat exchanger 4 that becomes high during the cooling operation reaches a threshold value, the rotation speed of the compressor 1 is maintained or reduced, or the compressor 1 is stopped. This refers to control that suppresses high-pressure rise (decreases high pressure). When the rotation speed of the compressor 1 stops increasing due to the high-pressure protection control and the pressure of the outdoor heat exchanger 4 decreases, the control device 20 releases the high-pressure protection control and resumes the normal operation of the compressor 1. Incidentally, the temperature and pressure of the refrigerant in the outdoor heat exchanger 4 during the cooling operation are approximately proportional. Therefore, instead of providing a pressure sensor in the pipe, a temperature sensor 11 is provided in the pipe of the outdoor heat exchanger 4, and the pressure (high pressure) of the refrigerant in the outdoor heat exchanger 4 is estimated based on the temperature measured by the temperature sensor 11. can do. The control device 20 performs high-pressure protection control based on the temperature ThO-R measured by the temperature sensor 11. Specifically, when the temperature ThO-R reaches a temperature indicating that the high pressure is excessively rising, the control device 20 starts the high-pressure protection control. Next, the control device 20 will be described with reference to FIG.

図2は、本発明の一実施形態における制御装置の一例を示すブロック図である。
制御装置20は、例えばマイコン等のCPU(Central Processing Unit)やMPU(Micro Processing Unit)を備えたコンピュータである。制御装置20は、室内機9、室外機10を構成する機器に関する種々の制御を行う。以下、本実施形態の高圧保護制御に関係する機能に絞って説明を行う。図示するように制御装置20は、センサ情報取得部21と、圧縮機制御部22とを備えている。圧縮機制御部22は、回転数設定部23を備えている。
FIG. 2 is a block diagram illustrating an example of a control device according to an embodiment of the present invention.
The control device 20 is a computer including a CPU (Central Processing Unit) such as a microcomputer and an MPU (Micro Processing Unit). The control device 20 performs various controls on the devices that constitute the indoor unit 9 and the outdoor unit 10. Hereinafter, the description will be focused on the functions related to the high-voltage protection control of the present embodiment. As illustrated, the control device 20 includes a sensor information acquisition unit 21 and a compressor control unit 22. The compressor control unit 22 includes a rotation speed setting unit 23.

センサ情報取得部21は、温度センサ11が計測した室外熱交換器4での冷媒の温度ThO−Rと、温度センサ12が計測した室内熱交換器2での冷媒の温度を取得する。
圧縮機制御部22は、圧縮機1の起動停止、回転数の制御を行う。例えば、圧縮機制御部22は、温度ThO−Rが所定の第1温度(例えば49℃)に達すると圧縮機1の高圧保護制御を実行する。具体的には、圧縮機1の回転数を低下または停止させる。圧縮機制御部22は、温度ThO−Rが所定の第3温度(例えば45℃)に低下するまでの間、圧縮機1の回転数の低下や停止を継続する。また、圧縮機制御部22は、冷房運転中に圧縮機1の回転数が上昇する場面で、温度ThO−Rが所定の第2温度(例えば45〜47℃の間の所定値)以上、第1温度以下となると、圧縮機1の回転数の上昇速度に制限を加える。圧縮機1の回転数の上昇速度に制限を加えるとは、温度ThO−Rが第2温度より低い場合の回転数上昇速度よりも低速な上昇速度で圧縮機1の回転速度を上昇させることをいう。
The sensor information acquisition unit 21 acquires the temperature ThO-R of the refrigerant in the outdoor heat exchanger 4 measured by the temperature sensor 11 and the temperature of the refrigerant in the indoor heat exchanger 2 measured by the temperature sensor 12.
The compressor control unit 22 starts and stops the compressor 1 and controls the number of rotations. For example, when the temperature ThO-R reaches a predetermined first temperature (for example, 49 ° C.), the compressor control unit 22 executes the high-pressure protection control of the compressor 1. Specifically, the rotation speed of the compressor 1 is reduced or stopped. The compressor control unit 22 continues to reduce or stop the rotation speed of the compressor 1 until the temperature ThO-R decreases to a predetermined third temperature (for example, 45 ° C.). Further, the compressor control unit 22 determines that the temperature ThO-R is equal to or higher than a predetermined second temperature (for example, a predetermined value between 45 and 47 ° C.) when the rotation speed of the compressor 1 increases during the cooling operation. When the temperature becomes equal to or lower than one temperature, a limit is imposed on a rising speed of the rotation speed of the compressor 1. To limit the speed of increase of the rotation speed of the compressor 1 means that the rotation speed of the compressor 1 is increased at a speed lower than the speed of rotation when the temperature ThO-R is lower than the second temperature. Say.

回転数設定部23は、圧縮機1の回転数の上昇速度や低下速度を設定する。例えば、回転数設定部23は、温度ThO−Rが第1温度に達すると、圧縮機1の回転数の低下速度(例えば、8rps/1秒)を設定する。また、回転数設定部23は、圧縮機1の回転数を上昇させる場面で、温度ThO−Rが第2温度(例えば、45℃)に達すると、圧縮機1の回転数の上昇速度(例えば、1rps/20秒)を設定する。圧縮機制御部22は、回転数設定部23が設定した上昇速度や低下速度で、圧縮機1の回転数を上昇させたり低下させたりする。   The rotation speed setting unit 23 sets a rising speed and a falling speed of the rotation speed of the compressor 1. For example, when the temperature ThO-R reaches the first temperature, the rotation speed setting unit 23 sets a reduction speed (for example, 8 rps / 1 second) of the rotation speed of the compressor 1. In addition, when the temperature ThO-R reaches a second temperature (for example, 45 ° C.) in a scene where the rotation speed of the compressor 1 is increased, the rotation speed setting unit 23 increases the rotation speed (for example, the rotation speed of the compressor 1). (1 rps / 20 seconds). The compressor control unit 22 raises or lowers the rotation speed of the compressor 1 at the rising speed or the decreasing speed set by the rotation speed setting unit 23.

図3に温度ThO−Rの温度帯ごとの圧縮機1の回転数の上昇速度および低下速度の設定例を示す。図3は、本発明の一実施形態における圧縮機の回転数制御テーブルの一例を示す図である。回転数設定部23は、回転数制御テーブルに基づいて圧縮機1の回転数の変化速度を設定する。   FIG. 3 shows a setting example of the increasing speed and the decreasing speed of the rotation speed of the compressor 1 for each temperature band of the temperature ThO-R. FIG. 3 is a diagram illustrating an example of a compressor rotation speed control table according to the embodiment of the present invention. The rotation speed setting unit 23 sets a change speed of the rotation speed of the compressor 1 based on the rotation speed control table.

図3に示す「一般領域」とは、例えば、温度ThO−Rが45℃未満の温度領域である。温度ThO−Rが「一般領域」の範囲にある場合、回転数設定部23は、圧縮機1の回転数の上昇速度を、回転数制御テーブルの設定に基づいて、「N1」rps/秒(例えば、1rps/秒)に、低下速度を「N2」rps/秒(例えば、1rps/秒)に設定する。「N1」=1の場合、1秒をかけて1秒間あたりの回転数を1回転だけ上昇させることを意味する。   The “general region” illustrated in FIG. 3 is, for example, a temperature region where the temperature ThO-R is lower than 45 ° C. When the temperature ThO-R is in the range of the “general region”, the rotation speed setting unit 23 sets the rising speed of the rotation speed of the compressor 1 to “N1” rps / sec (based on the setting of the rotation speed control table). For example, the rate of decrease is set to “N2” rps / sec (eg, 1 rps / sec). When “N1” = 1, it means that the number of rotations per second is increased by one rotation over one second.

「制限領域」とは、例えば、温度ThO−Rが45℃以上49℃未満の温度領域である。温度ThO−Rが「制限領域」の範囲にある場合、回転数設定部23は、圧縮機1の回転数の上昇速度を「L1」rps/秒(例えば、1rps/20秒)に、低下速度を「L2」rps/秒(例えば、1rps/秒)に設定する。   The “restricted region” is, for example, a temperature region where the temperature ThO-R is 45 ° C. or more and less than 49 ° C. When the temperature ThO-R is in the range of the “restricted region”, the rotation speed setting unit 23 sets the increasing speed of the rotating speed of the compressor 1 to “L1” rps / sec (for example, 1 rps / 20 sec) and the decreasing speed. Is set to “L2” rps / sec (for example, 1 rps / sec).

「保護領域」とは、例えば、温度ThO−Rが49℃以上の温度領域である。温度ThO−Rが「保護領域」の範囲にある場合、回転数設定部23は、圧縮機1の回転数の低下速度を「P2」rps/秒(例えば、8rps/秒)に設定する。温度ThO−Rが「保護領域」に達すると、回転数を低下させるので(高圧保護制御)、上昇速度は設定されていない。   The “protected region” is, for example, a temperature region where the temperature ThO-R is 49 ° C. or higher. When the temperature ThO-R is in the range of the “protection region”, the rotation speed setting unit 23 sets the speed of reduction of the rotation speed of the compressor 1 to “P2” rps / sec (for example, 8 rps / sec). When the temperature ThO-R reaches the “protection region”, the number of rotations is reduced (high-pressure protection control), and thus the rising speed is not set.

従来の高圧保護制御の場合、「制御領域」を設けず、「一般領域」における上昇速度のまま、温度ThO−Rが第1温度(「保護領域」)に達するまで回転数を上昇させる。このような制御の場合、急激に圧縮機1の回転数が上昇するような場面では、温度センサ11による高圧の推定が困難になることがある。例えば、負荷が高く、高圧保護制御の解除後に再び圧縮機1の回転数が上昇するような場合、急激な圧縮機1の回転数の上昇に伴う圧力の上昇が、温度として現れるまでの間には時間的な遅れが生じる。温度ThO−Rに基づいて圧力を推定し、高圧保護制御を実行する場合、この応答遅れにより、高圧保護制御の開始が遅れ、その間にも圧縮機1の回転数が比較的高速な上昇速度(例えば、1rps/秒)のまま、上昇し続けてしまう。圧縮機1の回転数が上昇すると、室外熱交換器4の圧力はさらに上昇し、許容範囲を超えてしまう。そこで、本実施形態では、温度ThO−Rが「保護領域」に達する前段階(「制限領域」)になると、圧縮機1の回転数の上昇速度を抑制し、圧力の急激な上昇を防止する(圧力の上昇速度を抑制する)制御を行う。これにより、実際の圧力と温度ThO−Rが示す圧力との乖離が低減し、実際の圧力変化に追随して圧縮機1の回転数を制御することができるようになる。   In the case of the conventional high-pressure protection control, the rotation speed is increased until the temperature ThO-R reaches the first temperature (the “protection region”) without providing the “control region” and keeping the rising speed in the “general region”. In the case of such control, it may be difficult to estimate the high pressure by the temperature sensor 11 in a situation where the rotational speed of the compressor 1 rapidly rises. For example, when the load is high and the rotation speed of the compressor 1 rises again after the high-pressure protection control is released, the pressure rise accompanying the rapid increase in the rotation speed of the compressor 1 is caused until the temperature rises as a temperature. Causes a time delay. When the pressure is estimated based on the temperature ThO-R and the high-pressure protection control is executed, the response delay delays the start of the high-pressure protection control, during which the rotational speed of the compressor 1 increases at a relatively high speed ( (For example, 1 rps / sec). When the rotation speed of the compressor 1 increases, the pressure of the outdoor heat exchanger 4 further increases and exceeds the allowable range. Therefore, in the present embodiment, when the temperature ThO-R reaches a stage before reaching the “protection region” (“restriction region”), the rising speed of the rotation speed of the compressor 1 is suppressed, and a sudden increase in pressure is prevented. (Suppress the rate of pressure rise). Thereby, the difference between the actual pressure and the pressure indicated by the temperature ThO-R is reduced, and the rotation speed of the compressor 1 can be controlled according to the actual pressure change.

次に図4を用いて、圧縮機制御部22による圧縮機1の回転数制御の例を説明する。
図4は、本発明の一実施形態における圧縮機の回転数の推移の一例を示す図である。
図4の縦軸は温度ThO−Rを、横軸は時間を示している。図中のグラフL1は、圧縮機1の回転数の変化を表している。温度T1は第1温度(例えば、49℃)の例、温度T2は第2温度(例えば、45℃)および第3温度の例である(本例では第2温度=第3温度とする)。また、空気調和機100は冷房運転中で、圧縮機1の回転数が上昇する場面であるとする。
時刻t0において、温度ThO−Rは温度T2より低い。つまり、冷媒回路の高圧は、それほど高くない状態である。回転数設定部23は、温度ThO−Rが温度T2より低いことに基づいて、図3で例示した回転数制御テーブルに基づいて、圧縮機1の回転数の上昇速度を「N1」rps/秒に設定する。圧縮機制御部22は、回転数設定部23が設定した上昇速度で圧縮機1の回転数を上昇させながら、圧縮機1を駆動する。
Next, an example of controlling the number of revolutions of the compressor 1 by the compressor control unit 22 will be described with reference to FIG.
FIG. 4 is a diagram illustrating an example of a change in the number of revolutions of the compressor according to the embodiment of the present invention.
The vertical axis in FIG. 4 indicates the temperature ThO-R, and the horizontal axis indicates time. A graph L1 in the figure represents a change in the rotation speed of the compressor 1. The temperature T1 is an example of a first temperature (for example, 49 ° C.), and the temperature T2 is an example of a second temperature (for example, 45 ° C.) and a third temperature (in this example, the second temperature is equal to the third temperature). Further, it is assumed that the air conditioner 100 is in a cooling operation and the rotation speed of the compressor 1 increases.
At time t0, temperature ThO-R is lower than temperature T2. That is, the high pressure of the refrigerant circuit is not so high. The rotation speed setting unit 23 sets the rising speed of the rotation speed of the compressor 1 to “N1” rps / sec based on the rotation speed control table illustrated in FIG. 3 based on the fact that the temperature ThO-R is lower than the temperature T2. Set to. The compressor control unit 22 drives the compressor 1 while increasing the rotation speed of the compressor 1 at the rising speed set by the rotation speed setting unit 23.

次に時刻t1において、温度ThO−Rが温度T2に達する。つまり、冷媒回路の高圧は「制限領域」に達し、やや高い状態である。回転数設定部23は、温度ThO−Rが温度T2(第2温度)に達したことに基づいて、圧縮機1の回転数の上昇速度を「L1」rps/秒に設定する。圧縮機制御部22は、回転数設定部23が設定した上昇速度で緩やかに圧縮機1の回転数を上昇させる。   Next, at time t1, temperature ThOR reaches temperature T2. That is, the high pressure of the refrigerant circuit reaches the “restricted region” and is in a slightly higher state. The rotation speed setting unit 23 sets the increase speed of the rotation speed of the compressor 1 to “L1” rps / sec based on the fact that the temperature ThO-R has reached the temperature T2 (second temperature). The compressor control unit 22 gradually increases the rotation speed of the compressor 1 at the rising speed set by the rotation speed setting unit 23.

次に時刻t2において、温度ThO−Rが温度T1に達する。つまり、冷媒回路の高圧は許容範囲の上限に達しており、高圧保護制御を開始しなければならない状態である。回転数設定部23は、温度ThO−Rが温度T1に達したことに基づいて、圧縮機1の回転数の低下速度を「P2」rps/秒に設定する。圧縮機制御部22は、回転数設定部23が設定した低下速度で圧縮機1の回転数を低下させる(高圧保護制御)。   Next, at time t2, the temperature ThOR reaches the temperature T1. That is, the high pressure of the refrigerant circuit has reached the upper limit of the allowable range, and the high pressure protection control must be started. The rotation speed setting unit 23 sets the reduction speed of the rotation speed of the compressor 1 to “P2” rps / sec based on the fact that the temperature ThO-R has reached the temperature T1. The compressor control unit 22 reduces the rotation speed of the compressor 1 at the reduction speed set by the rotation speed setting unit 23 (high-pressure protection control).

次に時刻t3において、温度ThO−Rが温度T2(第3温度)まで低下する。つまり、高圧は、高圧保護制御を解除できる程度に低下している。回転数設定部23は、温度ThO−Rが温度T2(第2温度)以上でT1(第1温度)未満の範囲にあることに基づいて、圧縮機1の回転数の上昇速度を「L1」rps/秒に設定する。圧縮機制御部22は、回転数設定部23が設定した上昇速度で圧縮機1の回転数を上昇させる。   Next, at time t3, the temperature ThO-R decreases to the temperature T2 (third temperature). That is, the high pressure has decreased to such an extent that the high pressure protection control can be released. Based on the fact that the temperature ThO-R is in the range of the temperature T2 (second temperature) or higher and lower than T1 (first temperature), the rotation speed setting unit 23 sets the speed at which the rotation speed of the compressor 1 increases to “L1”. Set to rps / sec. The compressor control unit 22 increases the rotation speed of the compressor 1 at the rising speed set by the rotation speed setting unit 23.

なお、例えば、時刻t4において室内の温度が設定温度に達しているような場合、圧縮機制御部22は、圧縮機1の回転数を低下もしくは維持する。回転数を低下させる場合には、回転数設定部23は、回転数制御テーブルに基づいて、圧縮機1の回転数の低下速度を「L2」rps/秒に設定する。圧縮機制御部22は、回転数設定部23が設定した低下速度で圧縮機1の回転数を低下させる。   For example, when the indoor temperature has reached the set temperature at time t4, the compressor control unit 22 decreases or maintains the rotation speed of the compressor 1. When reducing the rotation speed, the rotation speed setting unit 23 sets the speed of reduction of the rotation speed of the compressor 1 to “L2” rps / sec based on the rotation speed control table. The compressor control unit 22 reduces the rotation speed of the compressor 1 at the reduction speed set by the rotation speed setting unit 23.

ここで、第1温度と第2温度の温度差をあまり広く設定すると、室温と設定温度の温度差が大きい場合などに空調の応答性が悪くユーザの快適性が損なわれるおそれがある。反対に温度差が小さすぎると、高圧の急激な上昇を十分に抑えられない可能性がある。第1温度と第2温度の適切な温度差は、例えば、2℃以上4℃以下の範囲である。例えば、第1温度が49℃の場合、第2温度は45℃〜47℃の範囲で設定されることが好ましい。   Here, if the temperature difference between the first temperature and the second temperature is set too wide, the responsiveness of air conditioning may be poor and the user's comfort may be impaired when the temperature difference between the room temperature and the set temperature is large. Conversely, if the temperature difference is too small, there is a possibility that the rapid rise in high pressure cannot be sufficiently suppressed. An appropriate temperature difference between the first temperature and the second temperature is, for example, in a range from 2 ° C. to 4 ° C. For example, when the first temperature is 49 ° C., the second temperature is preferably set in a range of 45 ° C. to 47 ° C.

また、「制限領域」における上昇速度(「L1」rps/秒)は、室外熱交換器4の圧力が上昇する速度に遅れることなく、温度ThO−Rによって正確に高圧を推定できる範囲内となるよう設定する必要がある。「L1」の値が大きいと、温度ThO−Rが示す圧力と実際の圧力に差が生じ、圧力が閾値を超えて上昇する状況を検出できない能性がある。また、「L1」の値が小さいと、圧縮機1の回転数を上昇させる場面(例えば、冷房時に室温と設定温度の差が大きく、なるべく早い室温の低下が求められている場面)で圧縮機1を十分に稼働させることができずユーザの快適性を損なってしまう。「制限領域」における圧縮機1の回転数の上昇速度の適切な値は、例えば、1rps/20秒(20秒かけて1秒あたりの回転数を1回転増加させる)〜1rps/15秒(15秒かけて1秒あたりの回転数を1回転増加させる)程度である。   Further, the rising speed (“L1” rps / sec) in the “restricted region” falls within a range where the high pressure can be accurately estimated based on the temperature ThO-R without delaying to the speed at which the pressure of the outdoor heat exchanger 4 increases. It is necessary to set as follows. If the value of “L1” is large, a difference occurs between the pressure indicated by the temperature ThO-R and the actual pressure, and there is a possibility that a situation where the pressure rises beyond the threshold value cannot be detected. If the value of “L1” is small, the compressor may be used in a case where the rotation speed of the compressor 1 is increased (for example, in a case where the difference between the room temperature and the set temperature during cooling is large, and the room temperature is required to decrease as quickly as possible). 1 cannot be operated sufficiently, and user comfort is impaired. An appropriate value of the rising speed of the rotation speed of the compressor 1 in the “restricted region” is, for example, 1 rps / 20 seconds (increases the rotation speed per second by one rotation over 20 seconds) to 1 rps / 15 seconds (15 (The number of rotations per second is increased by one rotation over a second).

次に圧縮機1の回線数制御の流れについて図5を用いて説明する。
図5は、本発明の一実施形態における圧縮機の制御方法の一例を示すフローチャートである。
空気調和機100は、冷房運転中であるとする。また、温度センサ11、12の各々は、冷房運転中に計測した温度を制御装置20へ送信する。制御装置20では、センサ情報取得部21が、それらの温度の計測値を取得し、圧縮機制御部22へ出力する。
まず、圧縮機制御部22が、圧縮機1の回転数を上昇させるか否かを判定する(ステップS11)。例えば、温度センサ12が計測した温度と設定温度との温度差が所定値以上であれば、圧縮機制御部22は、圧縮機1の回転数を上昇させると判定する。
Next, a flow of controlling the number of lines of the compressor 1 will be described with reference to FIG.
FIG. 5 is a flowchart illustrating an example of a control method of the compressor according to the embodiment of the present invention.
The air conditioner 100 is in a cooling operation. Further, each of the temperature sensors 11 and 12 transmits the temperature measured during the cooling operation to the control device 20. In the control device 20, the sensor information acquisition unit 21 acquires the measured values of the temperatures and outputs the measured values to the compressor control unit 22.
First, the compressor control unit 22 determines whether to increase the rotation speed of the compressor 1 (Step S11). For example, if the temperature difference between the temperature measured by the temperature sensor 12 and the set temperature is equal to or greater than a predetermined value, the compressor control unit 22 determines to increase the rotation speed of the compressor 1.

また、例えば、温度センサ12が計測した温度と設定温度との温度差が所定値以下であれば、圧縮機制御部22は、圧縮機1の回転数を上昇するとの判定を行わない。その場合(ステップS11;No)、圧縮機制御部22は、圧縮機1の回転数を維持または低下させる。例えば、回転数設定部23が、温度センサ11が計測した温度ThO−Rと図3で例示した回転数制御テーブルに基づいて低下速度を設定する。圧縮機制御部22は、回転数設定部23が設定した低下速度で回転数を低下させつつ、圧縮機1を駆動する。   Further, for example, if the temperature difference between the temperature measured by the temperature sensor 12 and the set temperature is equal to or smaller than a predetermined value, the compressor control unit 22 does not determine that the rotation speed of the compressor 1 is to be increased. In that case (Step S11; No), the compressor control unit 22 maintains or reduces the rotation speed of the compressor 1. For example, the rotation speed setting unit 23 sets the reduction speed based on the temperature ThO-R measured by the temperature sensor 11 and the rotation speed control table illustrated in FIG. The compressor control unit 22 drives the compressor 1 while reducing the rotation speed at the reduction speed set by the rotation speed setting unit 23.

圧縮機1の回転数を上昇させると判定した場合(ステップS11;Yes)、圧縮機制御部22は、温度ThO−Rが「一般領域」、「制御領域」、「保護領域」の何れの領域に属するかを判定する(ステップS14)。   When it is determined that the rotation speed of the compressor 1 is to be increased (Step S11; Yes), the compressor control unit 22 determines whether the temperature ThO-R is any one of the “general region”, the “control region”, and the “protection region”. (Step S14).

温度ThO−Rが「一般領域」にある場合、回転数設定部23が、温度ThO−Rと図3で例示した回転数制御テーブルに基づいて上昇速度「N1」rps/秒を設定する。圧縮機制御部22は、「N1」rps/秒で回転数を上昇させつつ、圧縮機1を駆動する。   When the temperature ThO-R is in the “general region”, the rotation speed setting unit 23 sets the rising speed “N1” rps / sec based on the temperature ThO-R and the rotation speed control table illustrated in FIG. The compressor control unit 22 drives the compressor 1 while increasing the rotation speed at “N1” rps / sec.

温度ThO−Rが「制御領域」にある場合、回転数設定部23が、温度ThO−Rと図3で例示した回転数制御テーブルに基づいて上昇速度「L1」rps/秒を設定する。圧縮機制御部22は、「L1」rps/秒で回転数を上昇させつつ、圧縮機1を駆動する。   When the temperature ThO-R is in the “control region”, the rotation speed setting unit 23 sets the rising speed “L1” rps / sec based on the temperature ThO-R and the rotation speed control table illustrated in FIG. The compressor control unit 22 drives the compressor 1 while increasing the rotation speed at “L1” rps / sec.

温度ThO−Rが「保護領域」にある場合、回転数設定部23が、温度ThO−Rと図3で例示した回転数制御テーブルに基づいて低下速度「P2」rps/秒を設定する。圧縮機制御部22は、「P2」rps/秒で回転数を低下させつつ、圧縮機1を駆動する。
圧縮機制御部22は、ステップS11以下の制御を繰り返し行う。
When the temperature ThO-R is in the “protected area”, the rotation speed setting unit 23 sets the reduction speed “P2” rps / sec based on the temperature ThO-R and the rotation speed control table illustrated in FIG. The compressor control unit 22 drives the compressor 1 while reducing the rotation speed at “P2” rps / sec.
The compressor control unit 22 repeatedly performs the control of step S11 and subsequent steps.

本実施形態によれば、空気調和機100の冷房運転中に高圧が上昇する運転状態でも、高圧の急激な上昇を防ぎ、温度センサで高圧を推定できるようにする。これにより、高圧を制限値内に制御し、空気調和機100の連続運転が可能になる。また、高圧異常による圧縮機1やその他の機器の故障を防ぐことができる。   According to the present embodiment, even in an operation state in which the high pressure increases during the cooling operation of the air conditioner 100, a rapid increase in the high pressure is prevented, and the high pressure can be estimated by the temperature sensor. Thereby, the high pressure is controlled within the limit value, and the air conditioner 100 can be continuously operated. Further, it is possible to prevent the compressor 1 and other devices from malfunctioning due to a high-pressure abnormality.

なお、上記の説明では、冷房運転時の室外熱交換器4の温度に基づいて高圧保護制御を行う例を挙げたが、同様に、暖房運転時に室内熱交換器2に設けた温度センサ12が計測する温度に基づいて暖房運転時の高圧保護制御を実行するシステムがあれば、本実施形態の制御をそのシステムに適用することができる。   In the above description, an example in which high-pressure protection control is performed based on the temperature of the outdoor heat exchanger 4 during the cooling operation has been described. Similarly, the temperature sensor 12 provided in the indoor heat exchanger 2 during the heating operation is used. If there is a system that executes the high-pressure protection control during the heating operation based on the measured temperature, the control of the present embodiment can be applied to the system.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
圧縮機制御部22は、制御部の一例である。
In addition, it is possible to appropriately replace the components in the above-described embodiment with known components without departing from the spirit of the present invention. The technical scope of the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention.
The compressor control unit 22 is an example of a control unit.

1・・・圧縮機
2・・・室内熱交換器
3・・・膨張弁
4・・・室外熱交換器
5・・・四方弁
5a、5b、5c、5d・・・ポート
6・・・冷媒配管
9・・・室内機
10・・・室外機
11・・・温度センサ
12・・・温度センサ
20・・・制御装置
21・・・センサ情報取得部
22・・・圧縮機制御部
23・・・回転数設定部
100・・・空気調和機
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Indoor heat exchanger 3 ... Expansion valve 4 ... Outdoor heat exchanger 5 ... Four way valve 5a, 5b, 5c, 5d ... Port 6 ... Refrigerant Piping 9 indoor unit 10 outdoor unit 11 temperature sensor 12 temperature sensor 20 control unit 21 sensor information acquisition unit 22 compressor control unit 23・ Rotation speed setting unit 100 ・ ・ ・ Air conditioner

Claims (7)

凝縮器の圧力について、前記凝縮器の温度に基づいて高圧保護制御を行う制御装置であって、
前記凝縮器の温度が所定の第1温度に達すると、前記高圧保護制御を実行し、
前記凝縮器の温度が、前記第1温度より低い所定の第2温度以上の場合、前記凝縮器の圧力の上昇速度を抑制する制御を行う制御部、
を備える制御装置。
A control device for performing high-pressure protection control based on the temperature of the condenser, for the pressure of the condenser,
When the temperature of the condenser reaches a predetermined first temperature, the high-pressure protection control is executed,
When the temperature of the condenser is equal to or higher than a predetermined second temperature lower than the first temperature, a control unit that performs control to suppress a rate of increase in pressure of the condenser;
A control device comprising:
前記制御部は、圧縮機の回転数を上昇させる制御において、前記凝縮器の温度が前記第1温度に達すると前記圧縮機の回転数を低下または停止させる前記高圧保護制御を実行し、前記温度が前記第2温度以上になると、前記圧縮機の回転数の上昇速度を、前記凝縮器の温度が前記第2温度より低いときよりも低速に制限する、
請求項1に記載の制御装置。
The control unit executes the high-pressure protection control to decrease or stop the rotation speed of the compressor when the temperature of the condenser reaches the first temperature, in the control for increasing the rotation speed of the compressor. When the temperature is equal to or higher than the second temperature, the rising speed of the rotation speed of the compressor is limited to a lower speed than when the temperature of the condenser is lower than the second temperature.
The control device according to claim 1.
前記温度が前記第2温度以上の場合の前記圧縮機の回転数の上昇速度が、1rps/15秒から1rps/20秒の間で設定されている、
請求項2に記載の制御装置。
A rising speed of the rotation speed of the compressor when the temperature is equal to or higher than the second temperature is set between 1 rps / 15 seconds and 1 rps / 20 seconds;
The control device according to claim 2.
前記第1温度と前記第2温度の温度差は2℃以上4℃以下の範囲である、
請求項1から請求項3の何れか1項に記載の制御装置。
A temperature difference between the first temperature and the second temperature is in a range of 2 ° C. or more and 4 ° C. or less;
The control device according to any one of claims 1 to 3.
冷房運転中に前記凝縮器の温度に基づいて前記高圧保護制御および前記凝縮器の圧力の上昇速度を抑制する制御を行う、
請求項1から請求項4の何れか1項に記載の制御装置。
Performing the high-pressure protection control based on the temperature of the condenser during cooling operation and control to suppress the rate of increase in the pressure of the condenser,
The control device according to claim 1.
圧縮機と、凝縮器と、膨張弁と、蒸発器とを備える冷媒回路と、
前記凝縮器の温度を計測する温度センサと、
請求項1から請求項5の何れか1項に記載の制御装置と、
を備える空気調和機。
A refrigerant circuit including a compressor, a condenser, an expansion valve, and an evaporator,
A temperature sensor for measuring the temperature of the condenser,
A control device according to any one of claims 1 to 5,
Air conditioner equipped with.
圧縮機の回転数を上昇させる制御において、
凝縮器の温度を取得する温度取得ステップと、
前記凝縮器の温度に基づいて前記圧縮機の回転数の上昇速度を設定する上昇速度設定ステップと、を有し、
前記上昇速度設定ステップでは、前記温度が所定の第1温度に達すると前記圧縮機の回転数を低下または停止させ、前記温度が前記第1温度より低い第2温度に達すると、前記圧縮機の回転数の上昇速度に制限を加える、
制御方法。
In the control to increase the rotation speed of the compressor,
A temperature obtaining step of obtaining a temperature of the condenser;
A rising speed setting step of setting a rising speed of the rotation speed of the compressor based on the temperature of the condenser,
In the rising speed setting step, when the temperature reaches a predetermined first temperature, the rotation speed of the compressor is reduced or stopped, and when the temperature reaches a second temperature lower than the first temperature, the compressor of the compressor is stopped. Limit the speed of rotation
Control method.
JP2018114600A 2018-06-15 2018-06-15 Control device, air conditioner, and control method Pending JP2019219072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018114600A JP2019219072A (en) 2018-06-15 2018-06-15 Control device, air conditioner, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018114600A JP2019219072A (en) 2018-06-15 2018-06-15 Control device, air conditioner, and control method

Publications (1)

Publication Number Publication Date
JP2019219072A true JP2019219072A (en) 2019-12-26

Family

ID=69096068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018114600A Pending JP2019219072A (en) 2018-06-15 2018-06-15 Control device, air conditioner, and control method

Country Status (1)

Country Link
JP (1) JP2019219072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944585A (en) * 2021-02-20 2021-06-11 格力电器(合肥)有限公司 Air conditioning equipment control method and device, air conditioning equipment and storage medium
CN115451622A (en) * 2022-08-23 2022-12-09 青岛海尔空调电子有限公司 Method and device for fault detection, drying system and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248716A (en) * 1992-03-09 1993-09-24 Daikin Ind Ltd Operation control device for air conditioner
JPH07294029A (en) * 1994-04-28 1995-11-10 Toshiba Corp Controlling method for air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248716A (en) * 1992-03-09 1993-09-24 Daikin Ind Ltd Operation control device for air conditioner
JPH07294029A (en) * 1994-04-28 1995-11-10 Toshiba Corp Controlling method for air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944585A (en) * 2021-02-20 2021-06-11 格力电器(合肥)有限公司 Air conditioning equipment control method and device, air conditioning equipment and storage medium
CN112944585B (en) * 2021-02-20 2023-02-28 格力电器(合肥)有限公司 Air conditioning equipment control method and device, air conditioning equipment and storage medium
CN115451622A (en) * 2022-08-23 2022-12-09 青岛海尔空调电子有限公司 Method and device for fault detection, drying system and storage medium
CN115451622B (en) * 2022-08-23 2024-02-23 青岛海尔空调电子有限公司 Method and device for fault detection, drying system and storage medium

Similar Documents

Publication Publication Date Title
JP6338761B2 (en) Air conditioning system
US10527330B2 (en) Refrigeration cycle device
JP6312830B2 (en) Air conditioner
US10371407B2 (en) Air conditioning apparatus
US20190024959A1 (en) Method and apparatus for reheat dehumidification with variable speed outdoor fan
JP2013178058A (en) Air conditioner
US10712067B2 (en) Air-conditioning apparatus
JP6595288B2 (en) Air conditioner
JP6950191B2 (en) Air conditioner
JP2008202908A (en) Air conditioner
JP2016053452A (en) Air conditioner
JP2014153028A (en) Air conditioner
JP2019219072A (en) Control device, air conditioner, and control method
EP3255353B1 (en) Method and apparatus for optimizing latent capacity of a variable speed compressor system
JP6138585B2 (en) Air conditioner
JP2006170528A (en) Air conditioner
JP5195543B2 (en) Control method of air conditioner
JP2016166710A (en) Air-conditioning system
JP6378997B2 (en) Outdoor unit
JP6146606B2 (en) Air conditioner
JP6403413B2 (en) Air conditioner
KR20090081869A (en) Method for controlling overload of indoor unit
JP6650567B2 (en) Air conditioner
WO2020003490A1 (en) Air conditioning device
JP2011149611A (en) Air-conditioning apparatus

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230501

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240311