JP2014189894A - Induction heating method for reduced iron and induction heating device for reduced iron - Google Patents

Induction heating method for reduced iron and induction heating device for reduced iron Download PDF

Info

Publication number
JP2014189894A
JP2014189894A JP2013069486A JP2013069486A JP2014189894A JP 2014189894 A JP2014189894 A JP 2014189894A JP 2013069486 A JP2013069486 A JP 2013069486A JP 2013069486 A JP2013069486 A JP 2013069486A JP 2014189894 A JP2014189894 A JP 2014189894A
Authority
JP
Japan
Prior art keywords
reduced iron
reduced
induction heating
irons
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013069486A
Other languages
Japanese (ja)
Other versions
JP6065712B2 (en
Inventor
Sachihiro Uesugi
幸弘 上杉
Yasuhiro Mayumi
康弘 真弓
Kohei Tominaga
晃平 富永
Riichi Aoki
利一 青木
Satoshi Suzuki
聰 鈴木
Ryoji Makabe
亮司 眞壁
Haruhisa Sugimoto
治久 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013069486A priority Critical patent/JP6065712B2/en
Publication of JP2014189894A publication Critical patent/JP2014189894A/en
Application granted granted Critical
Publication of JP6065712B2 publication Critical patent/JP6065712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the metallization of reduced iron while suppressing reduction in a production amount (ton/hour).SOLUTION: While rotating a storing body 501 whose inside is stored with reduced irons, AC power is fed to a coil 502 fitted to the outer circumference of the storing body 501. When the storing body 501 is rotated in this way, by the mutual contact among the three or more reduced irons, a closed circuit by the three or more reduced irons is formed, and also, the contact positions of the respective three or more reduced irons with the other reduced irons are made to move.

Description

本発明は、還元鉄の誘導加熱方法及び還元鉄の誘導加熱装置に関し、特に、還元鉄を加熱して還元鉄の金属化率を高めるために用いて好適なものである。   The present invention relates to an induction heating method for reduced iron and an induction heating apparatus for reduced iron, and is particularly suitable for heating reduced iron to increase the metallization rate of reduced iron.

従来から、粉状の鉄酸化物と粉状の炭素質物質とを混合した塊成化物を、例えば、回転炉床炉(RHF:Rotary Hearth Furnace)を用いて加熱処理することにより還元鉄(DRI:(Direct Reduced Iron))を製造することが行われている(特許文献1を参照)。
このようにして製造される還元鉄の金属化率を高めると、後工程の溶解炉で溶銑を製造する際の溶解時間を短縮することができる。これにより、溶銑の製造量[ton/hour]を増やすことができ、溶銑を安価に製造することができる。
ここで、金属化率とは、以下の(1)式にて表現される。
金属化率[%]={(還元鉄中の金属鉄分)/(還元鉄中の全鉄分)}×100 ・・・(1)
(1)式において、還元鉄中の金属鉄分及び還元鉄中の全鉄分の単位は、同じであれば、[質量]、[重量]、[体積]の何れであってもよい。
そこで、還元鉄の金属化率を高めるために、回転炉床炉における加熱時間を長くすることが考えられる。
Conventionally, reduced iron (DRI) is obtained by heat-treating an agglomerate obtained by mixing powdered iron oxide and powdered carbonaceous material using, for example, a rotary hearth furnace (RHF). : (Direct Reduced Iron)) is manufactured (see Patent Document 1).
When the metallization rate of the reduced iron produced in this way is increased, the melting time for producing the hot metal in the melting furnace in the subsequent process can be shortened. Thereby, the manufacturing amount [ton / hour] of hot metal can be increased, and hot metal can be manufactured cheaply.
Here, the metallization rate is expressed by the following equation (1).
Metallization rate [%] = {(metallic iron content in reduced iron) / (total iron content in reduced iron)} × 100 (1)
In the formula (1), the unit of metallic iron in the reduced iron and the total iron in the reduced iron may be any of [mass], [weight], and [volume] as long as they are the same.
Therefore, in order to increase the metallization rate of reduced iron, it is conceivable to increase the heating time in the rotary hearth furnace.

特開2007−298202号公報JP 2007-298202 A

しかしながら、このようにすると、回転炉床炉における処理時間が長くなる。このため、金属化率を高めた還元鉄の製造量(ton/hour)が低下してしまうという虞がある。
本発明は、このような問題点に鑑みてなされたものであり、製造量(ton/hour)の低下を抑制しつつ、還元鉄の金属化率を向上できるようにすることを目的とする。
However, if it does in this way, the processing time in a rotary hearth furnace will become long. For this reason, there exists a possibility that the manufacturing amount (ton / hour) of the reduced iron which raised the metallization rate may fall.
This invention is made | formed in view of such a problem, and it aims at enabling it to improve the metalization rate of reduced iron, suppressing the fall of a manufacturing amount (ton / hour).

本発明の還元鉄の誘導加熱方法は、還元鉄を誘導加熱する還元鉄の誘導加熱方法であって、複数の前記還元鉄を内部に収容する収容部の外周面及び内部の少なくとも何れか一方に対して配置されたコイルに交流電力を与えることにより、前記収容部の内部に収容された複数の還元鉄を誘導加熱するに際し、3つ以上の前記還元鉄が相互に接触することにより当該3つ以上の還元鉄による閉路が形成され、且つ、当該3つ以上の還元鉄のそれぞれの他の還元鉄との接触位置が動く状態になるように、前記収容部に収容された前記複数の還元鉄の前記収容体の内部における位置を変えることを特徴とする。   The induction heating method of reduced iron according to the present invention is an induction heating method of reduced iron that induction-heats reduced iron, and is provided on at least one of an outer peripheral surface and an inside of a housing portion that houses a plurality of the reduced irons inside When three or more reduced irons are brought into contact with each other when induction heating of a plurality of reduced irons housed in the housing part by applying alternating current power to the coils arranged on the coil, the three irons are brought into contact with each other. The plurality of reduced irons housed in the housing portion so that a closed circuit is formed by the reduced irons and the contact positions of the three or more reduced irons with the other reduced irons move. The position of the inside of the container is changed.

本発明の還元鉄の誘導加熱装置は、還元鉄を誘導加熱する還元鉄の誘導加熱装置であって、複数の前記還元鉄を内部に収容する収容部と、前記収容部の外周面及び内部の少なくとも何れか一方に対して配置されたコイルと、前記複数の還元鉄の前記収容体の内部における位置を変えるために前記収容部を駆動する駆動部と、を有し、前記コイルに交流電力を与えることにより、当該還元鉄を誘導加熱するに際し、3つ以上の前記還元鉄が相互に接触することにより当該3つ以上の還元鉄による閉路が形成され、且つ、当該3つ以上の還元鉄のそれぞれの他の還元鉄との接触位置が動く状態になるように、前記収容部に収容された前記複数の還元鉄の収容体の内部における位置を前記駆動部の動作により変えることを特徴とする。   An induction heating apparatus for reduced iron according to the present invention is an induction heating apparatus for reduced iron that induction-heats reduced iron, and includes a storage section that stores a plurality of the reduced irons, an outer peripheral surface of the storage section, and an A coil disposed for at least one of the coils, and a drive unit that drives the housing unit to change the position of the plurality of reduced irons in the housing body, and AC power is supplied to the coil. When the reduced iron is inductively heated, the three or more reduced irons contact each other to form a closed circuit with the three or more reduced irons, and the three or more reduced irons The position of the plurality of reduced iron accommodated in the accommodating portion is changed by the operation of the driving portion so that the contact position with each other reduced iron is in a moving state. .

本発明によれば、複数の還元鉄を誘導加熱するに際し、3つ以上の還元鉄が相互に接触することにより当該3つ以上の還元鉄による閉路が形成され、且つ、当該3つ以上の還元鉄のそれぞれの他の還元鉄との接触位置が動く状態になるようにした。したがって、還元鉄が溶着することなく、還元反応を起こす温度以上の温度に還元鉄を誘導加熱することができる。したがって、製造量(ton/hour)の低下を抑制しつつ、還元鉄の金属化率を向上することができる。   According to the present invention, when induction heating of a plurality of reduced irons, a closed circuit is formed by the three or more reduced irons when the three or more reduced irons come into contact with each other, and the three or more reduced irons are formed. The contact position of each iron with the other reduced iron was moved. Accordingly, the reduced iron can be induction-heated to a temperature equal to or higher than the temperature at which the reduction reaction occurs without welding the reduced iron. Therefore, the metallization rate of reduced iron can be improved while suppressing a decrease in production amount (ton / hour).

還元鉄の断面の様子の一例を示す図(写真)である。It is a figure (photograph) which shows an example of the mode of the cross section of reduced iron. 1つの還元鉄に流れる渦電流の浸透深さの一例を概念的に示す図である。It is a figure which shows notionally an example of the penetration depth of the eddy current which flows into one reduced iron. 還元鉄同士が溶着する様子の一例を概念的に示す図である。It is a figure which shows notionally an example of a mode that reduced iron welds. 還元鉄の金属化率を上昇させることができることを概念的に説明する図である。It is a figure which illustrates notionally that the metallization rate of reduced iron can be raised. 還元鉄の誘導加熱装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the induction heating apparatus of reduced iron. 還元鉄の誘導加熱装置の構成の第1の変形例を示す図である。It is a figure which shows the 1st modification of a structure of the induction heating apparatus of reduced iron. コイルの第1の変形例の構成を示す図(平面図)である。It is a figure (plan view) showing the composition of the 1st modification of a coil. 還元鉄の誘導加熱装置の構成の第2の変形例を示す図である。It is a figure which shows the 2nd modification of a structure of the induction heating apparatus of reduced iron. 図5に示すコイルを用いた場合に還元鉄の誘導加熱装置に発生する磁界の分布の解析結果を示す図である。It is a figure which shows the analysis result of distribution of the magnetic field which generate | occur | produces in the induction heating apparatus of reduced iron when the coil shown in FIG. 5 is used. 図7(a)に示すコイルを用いた場合に還元鉄の誘導加熱装置に発生する磁界の分布の解析結果を示す図である。It is a figure which shows the analysis result of distribution of the magnetic field which generate | occur | produces in the induction heating apparatus of reduced iron when the coil shown to Fig.7 (a) is used. 図7(b)に示すコイルを用いた場合に還元鉄の誘導加熱装置に発生する磁界の分布の解析結果を示す図である。It is a figure which shows the analysis result of distribution of the magnetic field which generate | occur | produces in the induction heating apparatus of reduced iron when the coil shown in FIG.7 (b) is used. 図8に示すコイルを用いた場合に還元鉄の誘導加熱装置に発生する磁界の分布の解析結果を示す図である。It is a figure which shows the analysis result of distribution of the magnetic field which generate | occur | produces in the induction heating apparatus of reduced iron when the coil shown in FIG. 8 is used.

(本発明者らが得た知見)
本発明の実施形態を説明する前に、本発明者らが得た知見について説明する。
図1は、還元鉄の断面の様子の一例を示す図(写真)である。
回転炉床炉で塊成化物が加熱処理される過程で収縮が起こる。これにより、還元鉄の内部には、図1に示すように気孔が生じる。また、前述した回転炉床炉では一般に、バーナーによる輻射加熱を利用して塊成化物を加熱する。すなわち、回転炉床炉では、塊成化物・還元鉄は、外部からの伝熱によって加熱される。したがって、回転炉床炉のような伝熱を利用した加熱方法では、還元鉄の内部の気孔により伝熱が阻害される。このため、回転炉床炉における加熱時間を長くする方法では、還元鉄を効率よく加熱することができず、金属化率を高めた還元鉄の製造量[ton/hour]を増加させることは容易ではない。
(Knowledge obtained by the present inventors)
Prior to describing the embodiments of the present invention, the knowledge obtained by the present inventors will be described.
FIG. 1 is a diagram (photograph) showing an example of a cross section of reduced iron.
Shrinkage occurs during the process in which the agglomerates are heat treated in a rotary hearth furnace. As a result, pores are generated in the reduced iron as shown in FIG. In the rotary hearth furnace described above, the agglomerated material is generally heated using radiant heating by a burner. That is, in the rotary hearth furnace, the agglomerates and reduced iron are heated by heat transfer from the outside. Therefore, in a heating method using heat transfer such as a rotary hearth furnace, heat transfer is inhibited by the pores inside the reduced iron. For this reason, in the method of increasing the heating time in the rotary hearth furnace, the reduced iron cannot be heated efficiently, and it is easy to increase the production amount of reduced iron [ton / hour] with an increased metallization rate. is not.

そこで、本発明者らは、外部からの伝熱を利用して還元鉄を加熱するのではなく、還元鉄そのものを直接的に加熱する方法について検討した。このような方法として誘導加熱による方法が考えられる。誘導加熱とは、コイルに交流電力を供給することにより発生する磁界を対象物(磁性体)に与えることにより当該対象物に流れる渦電流によって当該対象物を加熱するものである。   Therefore, the present inventors have examined a method for directly heating the reduced iron itself, rather than heating the reduced iron using external heat transfer. As such a method, a method by induction heating can be considered. Induction heating is to heat an object by an eddy current flowing through the object by applying a magnetic field generated by supplying AC power to the coil to the object (magnetic material).

図2は、1つの還元鉄に流れる渦電流の浸透深さの一例を概念的に示す図である。
図2において、温度がキュリー温度(770[℃]程度)以下である場合、還元鉄は強磁性体であるため、渦電流の浸透深さδは小さい。したがって、温度がキュリー温度以下であれば、還元鉄の内部に渦電流201を流すことができる。
FIG. 2 is a diagram conceptually illustrating an example of the penetration depth of eddy current flowing in one reduced iron.
In FIG. 2, when the temperature is equal to or lower than the Curie temperature (about 770 [° C.]), the reduced iron is a ferromagnetic substance, so that the eddy current penetration depth δ is small. Therefore, if the temperature is equal to or lower than the Curie temperature, the eddy current 201 can flow through the reduced iron.

これに対し、温度がキュリー温度以上である場合、還元鉄は常磁性体であるため、渦電流の浸透深さδが大きくなる。このため、大きさが小さい還元鉄では、その内部に渦電流を流すことができず、キュリー温度よりも高い温度に加熱することができない。
ここで、還元反応が起こる温度は950[℃]程度であり、還元鉄のキュリー温度よりも高い。したがって、大きさが小さい還元鉄については、単に誘導加熱を行うだけでは、還元反応が起こる温度にまで還元鉄の温度を上昇させることができず、還元鉄の金属化率を向上させることができない。
On the other hand, when the temperature is equal to or higher than the Curie temperature, the reduced iron is a paramagnetic substance, so that the penetration depth δ of the eddy current increases. For this reason, in the reduced iron with a small magnitude | size, an eddy current cannot be sent through the inside and it cannot heat to temperature higher than Curie temperature.
Here, the temperature at which the reduction reaction occurs is about 950 [° C.], which is higher than the Curie temperature of the reduced iron. Therefore, for reduced iron with a small size, simply performing induction heating cannot increase the temperature of reduced iron to the temperature at which the reduction reaction occurs, and the metallization rate of reduced iron cannot be improved. .

本発明者らは、以上のような知見を踏まえつつ、回転炉床炉で製造された還元鉄を誘導加熱することを試みた。
ここでは、外周にソレノイドが巻き回された中空円筒状の収容部の内部に、回転炉床炉で製造された複数の還元鉄を充満させて誘導加熱を試みた。その結果、試験後の複数の還元鉄の中に、還元鉄同士が溶着したものが存在した。
図3は、還元鉄同士が溶着する様子の一例を概念的に示す図である。図3を参照しながら、このような還元鉄の溶着が起こる現象について説明する。
前述したように、大きさ小さい還元鉄が単独で存在する場合には、当該還元鉄を誘導加熱により、還元反応が起こる温度よりも高い温度に加熱することはできない。これに対し、図3に示すように、相互に接触する還元鉄で閉路が形成されるように、3つ以上の還元鉄301a〜301fが相互に接触すると、それらの隙間に生じる磁界302によって、当該還元鉄301a〜301fに渦電流303が流れ、還元反応が起こる温度よりも高い温度に加熱することができる。しかしながら、還元鉄301a〜301fの接触部分304a〜304fの電気抵抗が大きいため、3つ以上の還元鉄301a〜301fの接触位置が変わらないと、渦電流303によって、還元鉄301a〜301fの接触部分304a〜304fにおける発熱量が大きくなり、還元鉄の溶着が起こる。
The present inventors tried induction heating of reduced iron produced in a rotary hearth furnace based on the above knowledge.
Here, induction heating was attempted by filling a plurality of reduced irons manufactured in a rotary hearth furnace into a hollow cylindrical housing portion having a solenoid wound around the outer periphery. As a result, among the plurality of reduced irons after the test, there was one in which the reduced irons were welded together.
FIG. 3 is a diagram conceptually showing an example of a state in which reduced irons are welded together. A phenomenon in which such reduced iron is welded will be described with reference to FIG.
As described above, when reduced iron having a small size exists alone, the reduced iron cannot be heated to a temperature higher than the temperature at which the reduction reaction occurs by induction heating. On the other hand, as shown in FIG. 3, when three or more reduced irons 301a to 301f are in contact with each other so that a closed circuit is formed with the reduced irons in contact with each other, the magnetic field 302 generated in the gap between them An eddy current 303 flows through the reduced irons 301a to 301f and can be heated to a temperature higher than the temperature at which the reduction reaction occurs. However, since the electrical resistance of the contact portions 304a to 304f of the reduced irons 301a to 301f is large, if the contact position of the three or more reduced irons 301a to 301f does not change, the contact portion of the reduced irons 301a to 301f is caused by the eddy current 303. The calorific value in 304a-304f becomes large, and welding of reduced iron occurs.

以上のように、本発明者らは、大きさが小さい還元鉄では、相互に接触する還元鉄で閉路が形成されるように、3つ以上の還元鉄が相互に接触する状態が、当該還元鉄の接触位置が変わらない状態で維持されると、誘導加熱によって、還元反応が起こる温度よりも高い温度に還元鉄を加熱することはできるが、還元鉄の溶着が生じるという知見を得た。
このような知見から、本発明者らは、還元鉄の他の還元鉄との接触位置が動く状態で、3つ以上の還元鉄が相互に接触して閉路を形成する状態にすれば、還元鉄の溶着を起こさずに、誘導加熱によって、還元反応が起こる温度よりも高い温度に還元鉄を加熱することができるという技術的思想に想到した。
As described above, in the reduced iron having a small size, the present inventors are in a state where three or more reduced irons are in contact with each other so that a closed circuit is formed by the reduced irons in contact with each other. It was found that when the iron contact position is maintained unchanged, the reduced iron can be heated to a temperature higher than the temperature at which the reduction reaction occurs by induction heating, but the reduced iron is welded.
From such knowledge, the present inventors reduced the reduced iron when the contact position of the reduced iron with other reduced iron moves and three or more reduced irons contact each other to form a closed circuit. The inventors have conceived the technical idea that reduced iron can be heated to a temperature higher than the temperature at which the reduction reaction occurs by induction heating without causing iron welding.

図4は、3つ以上の還元鉄が相互に接触することにより当該3つ以上の還元鉄による閉路が形成され、且つ、当該3つ以上の還元鉄のそれぞれの他の還元鉄との接触位置が動く状態にした場合に、当該還元鉄の金属化率を上昇させることができることを概念的に説明する図である。以下の説明では、「閉路が形成されるように相互に接触した3つ以上の還元鉄」を、必要に応じて「還元鉄群」と称する。
図4(a)は、還元鉄群の一例を概念的に示す図である。図4(a)に示す両矢印線は、還元鉄が動くことを表している。
FIG. 4 shows that three or more reduced irons come into contact with each other to form a closed circuit with the three or more reduced irons, and each of the three or more reduced irons is in contact with another reduced iron. It is a figure which illustrates notionally that the metallization rate of the said reduced iron can be raised when it is set as the state which moves. In the following description, “three or more reduced irons in contact with each other so as to form a closed circuit” will be referred to as a “reduced iron group” as necessary.
FIG. 4A is a diagram conceptually illustrating an example of a reduced iron group. A double arrow line shown in FIG. 4A indicates that the reduced iron moves.

図4(a)において、図3を参照しながら説明したように、誘導加熱を行うと、還元鉄群401の内部には、渦電流402が流れる。
図4(b)、図4(c)は、還元鉄群401を構成する1つの還元鉄401aの金属化前・金属化後の様子の一例を概念的に示す図である。
回転炉床炉で製造された還元鉄401aでは、表面側は金属化率が高い還元部403になっているのに対し、中心側は金属化率が低い未還元部404になっている(図4(b)を参照)。本発明者らの知見によると、還元部403の金属化率は90[%]程度であるのに対し、未還元部404の金属化率は30〜40[%]程度である。
In FIG. 4A, as described with reference to FIG. 3, when induction heating is performed, an eddy current 402 flows inside the reduced iron group 401.
FIG. 4B and FIG. 4C are diagrams conceptually illustrating an example of a state before and after metallization of one reduced iron 401 a constituting the reduced iron group 401.
In the reduced iron 401a manufactured in the rotary hearth furnace, the surface side is a reduced portion 403 having a high metallization rate, whereas the central side is an unreduced portion 404 having a low metallization rate (see FIG. 4 (b)). According to the knowledge of the present inventors, the metallization rate of the reducing part 403 is about 90 [%], whereas the metallization rate of the unreduced part 404 is about 30 to 40 [%].

未還元部404は還元部403よりも電気抵抗が大きいため、図4(b)に示すように、高電流密度の渦電流402は、還元部403(すなわち未還元部404の周囲)を流れる。これにより、未還元部404の温度が上昇し、未還元部404が還元反応により金属化する。これにより、図4(c)に示すように、未還元部404の領域が減少し、還元化部404の領域が増大する。   Since the unreduced portion 404 has a larger electric resistance than the reducing portion 403, as shown in FIG. 4B, the eddy current 402 having a high current density flows through the reducing portion 403 (that is, around the unreduced portion 404). Thereby, the temperature of the unreduced part 404 rises, and the unreduced part 404 is metallized by a reduction reaction. Thereby, as shown in FIG.4 (c), the area | region of the unreduced part 404 reduces and the area | region of the reduction | restoration part 404 increases.

ここで、大きさが小さすぎる還元鉄では、還元鉄群が形成されづらい。また、還元鉄群が形成されたとしても高い電流密度の渦電流が形成されづらい。したがって、大きさが小さすぎる還元鉄については、誘導加熱によって、還元反応が起こる温度にまで加熱することが容易ではない。
一方、大きさが大きすぎる還元鉄では、前述したように渦電流の浸透深さδが大きくなってもその内部に渦電流が流れるため、単独で存在していても(前述した閉路が形成されていなくても)、誘導加熱によって、還元反応が起こる温度にまで加熱することができる。
以上の観点から、以下に示す実施形態では、金属化率を向上させる対象(誘導加熱の対象)となる還元鉄の直径の範囲を5[mm]〜100[mm]とする。ここで、還元鉄の直径とは、還元鉄の重心を介して相互に対向する還元鉄の表面の2点間の距離の最大値をいう。
Here, the reduced iron group is difficult to be formed when the reduced iron is too small. Moreover, even if the reduced iron group is formed, it is difficult to form an eddy current having a high current density. Therefore, it is not easy to heat reduced iron whose size is too small to a temperature at which a reduction reaction occurs by induction heating.
On the other hand, in the case of reduced iron that is too large, as described above, eddy current flows inside the eddy current penetration depth δ even if it increases, so even if it exists alone (the aforementioned closed circuit is formed). If not, it can be heated to a temperature at which the reduction reaction takes place by induction heating.
From the above viewpoint, in the embodiment described below, the range of the diameter of reduced iron that is a target for improving the metallization rate (target of induction heating) is 5 [mm] to 100 [mm]. Here, the diameter of reduced iron means the maximum value of the distance between two points on the surface of reduced iron that face each other with the center of gravity of reduced iron.

また、誘導加熱を行う前の還元鉄の金属化率が小さすぎる場合には、高い電流密度の渦電流が形成されづらいため、誘導加熱によって、還元反応が起こる温度にまで還元鉄を加熱することが容易ではない。このような観点から、以下に示す実施形態では、誘導加熱を行う前の還元鉄の金属化率を40[%]以上とする。   In addition, if the metallization rate of reduced iron before induction heating is too small, it is difficult to form eddy currents with a high current density, so that reduced iron is heated to a temperature at which a reduction reaction occurs by induction heating. Is not easy. From such a viewpoint, in the embodiment shown below, the metallization rate of reduced iron before performing induction heating is set to 40 [%] or more.

(実施形態)
本発明者らは、以上の知見に基づいて、本発明の一実施形態に想到した。以下に、本発明の一実施形態を説明する。尚、各図において、x、y、z座標は、各図の方向の対応関係を表すものであり、x、y、z座標の原点は各図に示す位置に限定されない。
図5は、還元鉄の誘導加熱装置の構成の一例を示す図である。図5(a)は、還元鉄の誘導加熱装置500を、還元鉄が搬送される方向(y軸方向)に直交する水平方向(x軸方向)に沿って見た図である。図5(b)は、還元鉄の誘導加熱装置500を、還元鉄が搬送される方向(y軸方向)に沿って見た図である。
(Embodiment)
Based on the above findings, the present inventors have come up with an embodiment of the present invention. Hereinafter, an embodiment of the present invention will be described. In each figure, the x, y, and z coordinates represent the correspondence between the directions in each figure, and the origin of the x, y, and z coordinates is not limited to the position shown in each figure.
FIG. 5 is a diagram illustrating an example of a configuration of an induction heating apparatus for reduced iron. FIG. 5A is a diagram of the reduced iron induction heating device 500 viewed along a horizontal direction (x-axis direction) orthogonal to a direction (y-axis direction) in which reduced iron is conveyed. FIG. 5B is a view of the reduced iron induction heating apparatus 500 as viewed along the direction (y-axis direction) in which the reduced iron is conveyed.

図5において、還元鉄の誘導加熱装置500は、収容部501と、コイル502と、回転部503と、支持部504と、モータ505と、ギア506と、を備えて構成される。
収容部501の内部には、還元鉄が収容される。
本実施形態の収容部501について以下に説明する。
収容部501の形状は、中空円筒状である。また、収容部501の内壁面には断熱材が取り付けられている。収容部501の開口部分の一端部501aから、回転炉床炉で製造された還元鉄が、収容部501の内部に搬送され、収容部501の開口部分の他端部501bから、誘導加熱されて金属化率が高められた還元鉄が、圧縮成形機に搬送される。圧縮成形機により、HBI(Hot Briquetted Iron)が製造される。尚、圧縮成形機に搬送される前に、還元鉄に付着した粉末を除去してもよい。
In FIG. 5, the reduced iron induction heating device 500 includes an accommodating portion 501, a coil 502, a rotating portion 503, a supporting portion 504, a motor 505, and a gear 506.
Reduced iron is accommodated inside the accommodating portion 501.
The accommodating part 501 of this embodiment is demonstrated below.
The shape of the accommodating portion 501 is a hollow cylindrical shape. In addition, a heat insulating material is attached to the inner wall surface of the accommodating portion 501. Reduced iron produced in a rotary hearth furnace is conveyed from one end 501a of the opening portion of the accommodating portion 501 to the inside of the accommodating portion 501, and is induction-heated from the other end portion 501b of the opening portion of the accommodating portion 501. Reduced iron with an increased metallization rate is conveyed to a compression molding machine. HBI (Hot Briquetted Iron) is manufactured by a compression molding machine. In addition, you may remove the powder adhering to reduced iron, before conveying to a compression molding machine.

図5(a)に示すように、収容部501は、その軸が、水平方向(y軸方向)と略一致するように配置される。還元鉄の搬送を容易にするために、収容部501の開口部分の一端部501aの方が、他端部501bよりも高い位置になるように、収容部501の軸が、水平方向に対して傾くようにしてもよい。収容部501の軸と水平方向とのなす角度を大きくしすぎると(90[°]に近づけすぎると)、収容部501の内部において相互に接触する還元鉄の接触位置を動かすことできず、前述した還元鉄の溶着を起こしやすくなる。このような観点から、収容部501の軸と水平方向とのなす角度を適宜決定することができる。   As shown in FIG. 5A, the accommodating portion 501 is disposed such that its axis substantially coincides with the horizontal direction (y-axis direction). In order to facilitate the transport of the reduced iron, the axis of the accommodating part 501 is in the horizontal direction so that the one end 501a of the opening part of the accommodating part 501 is higher than the other end 501b. It may be inclined. If the angle formed between the axis of the housing part 501 and the horizontal direction is too large (too close to 90 °), the contact positions of the reduced irons that are in contact with each other inside the housing part 501 cannot be moved. It becomes easy to cause welding of reduced iron. From such a viewpoint, the angle formed by the axis of the accommodating portion 501 and the horizontal direction can be determined as appropriate.

本実施形態のコイル502は、収容部501の外周面に対して巻き回されたソレノイドである。コイル502の両端には、交流電源が接続され、交流電源からコイルに交流電力が供給される。これにより、収容部501の内部に交流磁界が発生し、前述したようにして還元鉄の内部に渦電流を流すことが可能になる。尚、コイル502は、収容部501と絶縁された状態で、収容部501の外周面に取り付けられる。コイル502の巻き数は、コイル502の設置スペースや、還元鉄の目標到達温度等に応じて適宜決定することができる。   The coil 502 of the present embodiment is a solenoid wound around the outer peripheral surface of the housing portion 501. An AC power source is connected to both ends of the coil 502, and AC power is supplied from the AC power source to the coil. As a result, an AC magnetic field is generated inside the accommodating portion 501, and an eddy current can be caused to flow inside the reduced iron as described above. The coil 502 is attached to the outer peripheral surface of the housing portion 501 while being insulated from the housing portion 501. The number of turns of the coil 502 can be determined as appropriate according to the installation space of the coil 502, the target temperature of reduced iron, and the like.

本実施形態では4つの回転部503がある。収容部501の底部の四隅の位置に1つずつ回転部503が配置される。回転部503a〜503cの回転軸511a〜511cは、収容部501a〜503cの軸方向と略平行な方向(y軸方向)となる。尚、図5では、3つの回転部503a〜503cのみを示しているが、図5に示していない収容部501の残りの隅にも回転部503a〜503cと同一の構成の回転部が配置される。   In the present embodiment, there are four rotating parts 503. One rotating portion 503 is disposed at each of the four corner positions of the bottom of the accommodating portion 501. The rotation shafts 511a to 511c of the rotation units 503a to 503c are in a direction (y-axis direction) substantially parallel to the axial direction of the storage units 501a to 503c. In FIG. 5, only three rotating parts 503a to 503c are shown, but rotating parts having the same configuration as the rotating parts 503a to 503c are also arranged in the remaining corners of the accommodating part 501 not shown in FIG. The

回転部503と収容体501は相互に接触しており、回転部503の回転に伴い、収容体501もその軸方向を回転軸として回転する。
支持部504の内部には、モータ505が設置される。モータ505からの動力が、ギア506を介して回転部503に伝達され、全ての回転部503a〜503cが一方向(同じ方向)に回転する。このようにして回転部503が回転することにより、収容部501もその軸を回転軸として一方向に回転する。以上のように本実施形態では、回転部503、モータ505、及びギア506を用いることにより、収容部501の駆動部が構成される。また、モータ505の回転方向により収容部501の回転方向が定まり、モータ505の回転数により収容部501の回転数(回転速度)が定まる。
The rotating part 503 and the container 501 are in contact with each other, and the container 501 also rotates with its axial direction as the rotation axis as the rotating part 503 rotates.
A motor 505 is installed inside the support portion 504. The power from the motor 505 is transmitted to the rotating unit 503 via the gear 506, and all the rotating units 503a to 503c rotate in one direction (same direction). By rotating the rotating part 503 in this way, the accommodating part 501 also rotates in one direction with the axis as a rotation axis. As described above, in the present embodiment, the driving unit of the housing unit 501 is configured by using the rotating unit 503, the motor 505, and the gear 506. Further, the rotation direction of the housing portion 501 is determined by the rotation direction of the motor 505, and the rotation speed (rotational speed) of the storage portion 501 is determined by the rotation speed of the motor 505.

本実施形態では、収容部501における還元鉄の占積率と、収容部501の回転速度と、に応じて、収容部501の内部の還元鉄の動きが定まる。
まず、収容部501における還元鉄の占積率が小さくなるほど、3つ以上の還元鉄が閉路を形成するように相互に接触しづらくなる。一方、収容部501における還元鉄の占積率が大きくなるほど、還元鉄の他の還元鉄との接触位置が変わらない状態が維持されやすくなる。また、収容部501における還元鉄の占積率が大きくなると、モータ505等の駆動部の能力によっては、収容部501を回転させることができなくなることがある。
In the present embodiment, the movement of the reduced iron inside the storage unit 501 is determined according to the space factor of the reduced iron in the storage unit 501 and the rotation speed of the storage unit 501.
First, as the space factor of reduced iron in the accommodating portion 501 decreases, it becomes more difficult for three or more reduced irons to contact each other so as to form a closed circuit. On the other hand, as the space factor of the reduced iron in the housing portion 501 increases, it becomes easier to maintain a state where the contact position of the reduced iron with other reduced iron does not change. Moreover, when the space factor of the reduced iron in the accommodating part 501 becomes large, the accommodating part 501 may not be able to be rotated depending on the ability of the drive part such as the motor 505.

また、収容部501の回転速度が速くなるほど、3つ以上の還元鉄が閉路を形成するように相互に接触しづらくなる。一方、収容部501の回転速度が遅くなるほど、還元鉄の他の還元鉄との接触位置が変わらない状態が維持されやすくなる。
本実施形態では、以上のような観点から、3つ以上の還元鉄が相互に接触することにより当該3つ以上の還元鉄による閉路が形成され、且つ、当該3つ以上の還元鉄のそれぞれの他の還元鉄との接触位置が動く状態になるように、収容部501における還元鉄の占積率の範囲(上下限)と、収容部501の回転速度の範囲(上下限)とが適宜決定される。
Further, as the rotational speed of the accommodating portion 501 increases, it becomes more difficult for three or more reduced irons to contact each other so as to form a closed circuit. On the other hand, the slower the rotational speed of the accommodating portion 501, the easier it is to maintain a state where the contact position of the reduced iron with other reduced iron does not change.
In the present embodiment, from the above viewpoint, three or more reduced irons contact each other to form a closed circuit by the three or more reduced irons, and each of the three or more reduced irons. The range (upper and lower limits) of the reduced iron space factor in the housing part 501 and the rotational speed range (upper and lower limits) of the housing part 501 are appropriately determined so that the position of contact with the other reduced iron is moved. Is done.

次に、以上の本実施形態の還元鉄の誘導加熱装置500を用いて還元鉄を誘導加熱した結果について説明する。
ここでは、以下のようにして還元鉄の誘導加熱装置500を構成し動作させた。
還元鉄が収容される領域の軸方向の長さL1=300[mm]
コイル502が巻き回される領域の軸方向の長さL2=250[mm]
コイル502の巻き数=8[Turn]
コイル502に与える電力=6kW[W]、26.5[kHz]
収容部501の内径D=100[mm]
収容部501における還元鉄の占積率=100[%]
還元鉄の直径=10[mm]〜30[mm]
モータ505の回転数=6[rpm]
加熱時間=30[min]
Next, the result of induction heating of reduced iron using the reduced iron induction heating apparatus 500 of the present embodiment will be described.
Here, reduced iron induction heating apparatus 500 was configured and operated as follows.
Length in the axial direction L1 = 300 [mm] of the area where the reduced iron is accommodated
The axial length L2 of the area around which the coil 502 is wound L2 = 250 [mm]
Number of turns of coil 502 = 8 [Turn]
Electric power applied to the coil 502 = 6 kW [W], 26.5 [kHz]
Inner diameter D of housing portion 501 = 100 [mm]
Space factor of reduced iron in the housing unit 501 = 100 [%]
Reduced iron diameter = 10 [mm] to 30 [mm]
Number of rotations of motor 505 = 6 [rpm]
Heating time = 30 [min]

尚、軸方向が水平方向と略一致するように収容部501を配置した。また、コイル502の軸方向の中心と収容部501の軸方向の中心とが略一致するようにコイル502を収容部501の外周面に対して取り付けた。また、収容体501の内部の領域であって、図5(a)に示す長さL1の両端よりも外側の領域に還元鉄が移動しないように、当該領域に断熱材を配置した。
収容部501に収容した加熱前の還元鉄の成分と金属化率を表1に示す。
In addition, the accommodating part 501 was arrange | positioned so that an axial direction might correspond substantially with a horizontal direction. In addition, the coil 502 is attached to the outer peripheral surface of the housing portion 501 so that the axial center of the coil 502 and the axial center of the housing portion 501 substantially coincide with each other. Further, a heat insulating material was arranged in the region so that the reduced iron would not move to a region inside the container 501 and outside the both ends of the length L1 shown in FIG.
Table 1 shows the components and metallization ratio of the reduced iron stored in the storage unit 501 before heating.

Figure 2014189894
Figure 2014189894

表1の番号1〜4は、回転炉床炉で製造された還元鉄から、20[mm]〜30[mm]程度の直径を有する還元鉄をサンプリングして測定した結果を示し、番号5〜10は、同じく回転炉床炉で製造された還元鉄から、10[mm]〜20[mm]程度の直径を有する還元鉄をサンプリングして測定した結果を示す。
表1の「T−Fe」、「M−Fe」、「FeO」、「Fe23」、「C」は、還元鉄に含まれている成分を表し、これらの欄に示されている数字は、質量%[wt%]を表す。また、「M/T」は、金属化率[%]を表す。また、「ave」は、「M/T」の欄に示されている金属化率の算術平均値[%]である。この「ave」の欄に示されている値と各還元鉄の重量比とによって、加熱前の還元鉄の金属化率が定まる。具体的に、番号1〜4の還元鉄の重量比が41[%]であり、番号5〜10の還元鉄の重量比が59[%]であったので、加熱前の還元鉄の金属化率は約75.5[%](≒0.41×72+0.59×78)となった。
Numbers 1 to 4 in Table 1 show results obtained by sampling and measuring reduced iron having a diameter of about 20 [mm] to 30 [mm] from reduced iron manufactured in a rotary hearth furnace. 10 shows the result of having sampled and measured the reduced iron which has a diameter of about 10 [mm]-20 [mm] from the reduced iron similarly manufactured with the rotary hearth furnace.
“T-Fe”, “M-Fe”, “FeO”, “Fe 2 O 3 ”, and “C” in Table 1 represent components contained in reduced iron, and are shown in these columns. The numbers represent mass% [wt%]. “M / T” represents a metallization rate [%]. “Ave” is the arithmetic average value [%] of the metallization rate shown in the column of “M / T”. The metalization rate of the reduced iron before heating is determined by the value shown in the “ave” column and the weight ratio of each reduced iron. Specifically, the weight ratio of the reduced irons of Nos. 1 to 4 was 41 [%], and the weight ratio of the reduced irons of Nos. 5 to 10 was 59 [%]. The rate was about 75.5 [%] (≈0.41 × 72 + 0.59 × 78).

表2は、以上のような還元鉄を前述した条件で加熱した結果を示す図である。表2では、図5(a)に示す長さL2の両端よりも内側の3つの領域から加熱後の還元鉄をサンプリングして測定した結果を示す。尚、表2の各項目は、表1に示す項目と同じである。   Table 2 is a figure which shows the result of having heated the above reduced iron on the conditions mentioned above. Table 2 shows the results of sampling and measuring reduced iron after heating from the three regions inside the ends of the length L2 shown in FIG. Each item in Table 2 is the same as the item shown in Table 1.

Figure 2014189894
Figure 2014189894

表1と表2から、本実施形態の還元鉄の誘導加熱装置500を用いることにより、30[min]程度の加熱処理で、金属化率を10[%]以上、向上させることができ、伝熱の方式では短時間で加熱することが困難である、還元鉄の中心側の金属化率を増加させることができることが分かる。尚、前述したように、加熱前の還元鉄では、中心側の金属化率が低く、表面側の金属化率が高い。したがって、表1及び表2に示す金属化率は、還元鉄の内部全体での平均的な金属化率を示す。   From Tables 1 and 2, by using the reduced iron induction heating apparatus 500 of this embodiment, the metallization rate can be improved by 10 [%] or more by heat treatment of about 30 [min]. It can be seen that the metalization rate on the center side of the reduced iron, which is difficult to heat in a short time by the heat method, can be increased. As described above, the reduced iron before heating has a low metalization rate on the center side and a high metalization rate on the surface side. Therefore, the metallization rate shown in Table 1 and Table 2 shows the average metallization rate in the whole inside of reduced iron.

以上のように本実施形態では、内部に還元鉄が収容された収容体501を回転させながら、収容体501の外周面に対して取り付けられたコイル502に交流電力を供給する。このようにして収容体501を回転させるに際し、3つ以上の還元鉄が相互に接触することにより当該3つ以上の還元鉄による閉路が形成され、且つ、当該3つ以上の還元鉄のそれぞれの他の還元鉄との接触位置が動く状態にする。これにより、還元鉄に渦電流を発生させて、還元反応を起こす温度以上の温度に還元鉄を誘導加熱することができる。誘導加熱では、このような還元鉄を直接的に加熱するので、外部からの伝熱によって還元鉄を加熱する場合よりも効率的に還元鉄を加熱することができる。よって、製造量(ton/hour)の低下を抑制しつつ、還元鉄の金属化率を向上させることができる。   As described above, in the present embodiment, AC power is supplied to the coil 502 attached to the outer peripheral surface of the container 501 while rotating the container 501 in which reduced iron is accommodated. Thus, when rotating the container 501, three or more reduced irons come into contact with each other to form a closed circuit by the three or more reduced irons, and each of the three or more reduced irons Make the contact position with other reduced iron move. Thereby, an eddy current can be generated in reduced iron and induction iron can be induction-heated to the temperature more than the temperature which raise | generates a reductive reaction. In induction heating, such reduced iron is directly heated, so that reduced iron can be heated more efficiently than when reduced iron is heated by heat transfer from the outside. Therefore, the metallization rate of reduced iron can be improved, suppressing the fall of manufacturing amount (ton / hour).

尚、還元鉄群を構成する3つ以上の還元鉄の他の還元鉄との接触位置が変わるように動いていれば、還元鉄は、動く前と後とでどの還元鉄に接触してもよい。すなわち、図4(a)では、説明を簡単にするために、還元鉄群を構成する3つ以上の還元鉄の位置関係が変わらない場合を例に挙げて示したが、時間の経過とともに還元鉄群を構成する3つ以上の還元鉄の位置関係が変わることもある。このように、還元鉄群を構成する3つ以上の還元鉄の他の還元鉄との接触位置が変わるように動いていれば、時間の経過とともに還元鉄群を構成する3つ以上の還元鉄の位置関係は変わっても、変わらなくてもよい。   In addition, if it moves so that the contact position with the other reduced irons of three or more reduced irons which comprise a reduced iron group may change, reduced iron will contact any reduced iron before and after a movement. Good. That is, in FIG. 4 (a), in order to simplify the explanation, the case where the positional relationship of three or more reduced irons constituting the reduced iron group does not change is shown as an example. The positional relationship between three or more reduced irons constituting the iron group may change. Thus, if it moves so that the contact position with the other reduced iron of three or more reduced irons which comprise a reduced iron group may change, three or more reduced irons which comprise a reduced iron group with progress of time. The positional relationship of may or may not change.

また、3つ以上の還元鉄が相互に接触することにより当該3つ以上の還元鉄による閉路が形成され、且つ、当該3つ以上の還元鉄のそれぞれの他の還元鉄との接触位置が動く状態が、収容体501の内部の全ての還元鉄で形成されるようにするのが最も好ましい。しかしながら、必ずしもこのような状態が収容体501の内部の全ての還元鉄で形成されている必要はない。例えば、複数の還元鉄の加熱後の金属化率の算術平均値が、複数の還元鉄の加熱前の金属化率の算術平均値よりも5[%]以上大きくなり、且つ、収容部501に収容された全ての還元鉄のうち、溶着が行っている還元鉄の体積割合が5[体積%]以下である場合には、収容体501の内部でこのような状態が概ね形成されていると見なすことができる。したがって、このような条件を満たすように、収容体における還元鉄の占積率と収容体501の回転数等を決定すればよい。   Further, when three or more reduced irons come into contact with each other, a closed circuit is formed by the three or more reduced irons, and the contact position of each of the three or more reduced irons with each other reduced iron moves. Most preferably, the state is formed of all reduced iron inside the container 501. However, such a state does not necessarily need to be formed of all reduced iron inside the container 501. For example, the arithmetic average value of the metallization rate after heating of the plurality of reduced irons is 5% or more larger than the arithmetic average value of the metallization rate before heating of the plurality of reduced irons, and the storage unit 501 When the volume ratio of the reduced iron being welded among all the reduced iron accommodated is 5 [volume%] or less, such a state is generally formed inside the container 501. Can be considered. Therefore, what is necessary is just to determine the space factor of the reduced iron in a container, the rotation speed of the container 501 etc. so that such conditions may be satisfy | filled.

(変形例)
<変形例1>
本実施形態では、コイル502がソレノイドである場合を例に挙げて説明した。しかしながら、コイル502は、ソレノイドに限定されない。
[変形例1−1]
図6は、還元鉄の誘導加熱装置の構成の第1の変形例を示す図である。図6(a)は、還元鉄の誘導加熱装置600を、還元鉄が搬送される方向(y軸方向)に直交する水平方向(x軸方向)に沿って見た図であり、図5(a)に対応する図である。図6(b)は、還元鉄の誘導加熱装置600を、還元鉄が搬送される方向(y軸方向)に沿って見た図であり、図5(b)に対応する図である。
(Modification)
<Modification 1>
In the present embodiment, the case where the coil 502 is a solenoid has been described as an example. However, the coil 502 is not limited to a solenoid.
[Modification 1-1]
FIG. 6 is a diagram illustrating a first modification of the configuration of the induction heating apparatus for reduced iron. FIG. 6A is a view of the reduced iron induction heating device 600 viewed along a horizontal direction (x-axis direction) orthogonal to a direction (y-axis direction) in which reduced iron is conveyed. It is a figure corresponding to a). FIG. 6B is a view of the reduced iron induction heating device 600 viewed along the direction (y-axis direction) in which the reduced iron is conveyed, and corresponds to FIG.

本変形例の還元鉄の誘導加熱装置600は、図5に示した還元鉄の誘導加熱装置500のコイル502を、コイル602a、602bに替えたものである。本変形例の還元鉄の誘導加熱装置600のその他の構成は、図5に示した還元鉄の誘導加熱装置500と同じである。
図7は、コイル602a、602bの第1の変形例の構成を示す図(平面図)である。図7(a)は、コイル602a、602bの形状の第1の例を示す図であり、図7(b)は、コイル602a、602bの形状の第2の例を示す図である。
The reduced iron induction heating apparatus 600 of this modification is obtained by replacing the coil 502 of the reduced iron induction heating apparatus 500 shown in FIG. 5 with coils 602a and 602b. The rest of the configuration of the reduced iron induction heating apparatus 600 of this modification is the same as that of the reduced iron induction heating apparatus 500 shown in FIG.
FIG. 7 is a diagram (plan view) showing a configuration of a first modification of the coils 602a and 602b. Fig.7 (a) is a figure which shows the 1st example of the shape of coil 602a, 602b, and FIG.7 (b) is a figure which shows the 2nd example of the shape of coil 602a, 602b.

図6において、2つのコイル602a、602bは、同じものであり、収容体501の軸方向(y軸方向)に沿って同じ向きで並べられる。図6(a)に示すように、コイル602a、602bのコイル面は、収容体501の外周面の下半分の領域と略平行になるように湾曲している。図7に示す例では、図7に示す破線の部分が底部になるように、各コイル602a、602bは、収容体501の外周面に沿って湾曲している。このようなコイル602a、602bが、収容体501の外周面の下半分の領域に対して配置される。   In FIG. 6, the two coils 602 a and 602 b are the same and are arranged in the same direction along the axial direction (y-axis direction) of the container 501. As shown in FIG. 6A, the coil surfaces of the coils 602 a and 602 b are curved so as to be substantially parallel to the lower half area of the outer peripheral surface of the container 501. In the example shown in FIG. 7, the coils 602 a and 602 b are curved along the outer peripheral surface of the container 501 so that the broken line portion shown in FIG. Such coils 602 a and 602 b are arranged with respect to the lower half region of the outer peripheral surface of the container 501.

図7(a)に示す例では、コイル602a、602bの巻方向は、同じ方向である。具体的に図7(a)に示す例では、コイル602a、602bの巻方向は、紙面に向かって右回りである。一方、図7(b)に示す例では、コイル602a、602bの巻方向は、最外周の部分とその他の部分とで異なる。具体的に図7(b)に示す例では、コイル602a、602bは、最外周のところで折り返されており、コイル602a、602bの最外周の部分の巻方向は、紙面に向かって右回りであるのに対し、その他の部分の巻方向は、紙面に向かって左回りである。図7(a)及び図7(b)に示す矢印線は、あるタイミングにおける電流の流れる向きを示す。このように、コイル602a、602bから発生する磁界が相互に強め合うように、コイル602a、602bに流す電流の向きを逆にしている。   In the example shown in FIG. 7A, the winding directions of the coils 602a and 602b are the same direction. Specifically, in the example shown in FIG. 7A, the winding direction of the coils 602a and 602b is clockwise toward the paper surface. On the other hand, in the example shown in FIG. 7B, the winding direction of the coils 602a and 602b is different between the outermost part and the other part. Specifically, in the example shown in FIG. 7B, the coils 602a and 602b are folded back at the outermost periphery, and the winding direction of the outermost periphery of the coils 602a and 602b is clockwise toward the paper surface. On the other hand, the winding direction of the other portions is counterclockwise toward the paper surface. The arrow lines shown in FIGS. 7A and 7B indicate the direction of current flow at a certain timing. Thus, the directions of the currents flowing through the coils 602a and 602b are reversed so that the magnetic fields generated from the coils 602a and 602b mutually intensify.

[変形例1−2]
図8は、還元鉄の誘導加熱装置の構成の第2の変形例を示す図である。図8(a)は、還元鉄の誘導加熱装置800を、還元鉄が搬送される方向(y軸方向)に直交する水平方向(x軸方向)に沿って見た図であり、図5(a)に対応する図である。図8(b)は、還元鉄の誘導加熱装置800を、還元鉄が搬送される方向(y軸方向)に沿って見た図であり、図5(b)に対応する図である。
図5に示した還元鉄の誘導加熱装置500では、収容体501の外周面に対してコイル502を配置した場合を例に挙げて説明した。これに対し、本変形例では、図8に示すように、収容体501の内部に対してコイル802を配置したものである。具体的に、収容体501の軸と略同軸になるように、収容体501の内部に配置された円筒状の巻軸部801に対してコイル802が、巻軸部801と絶縁された状態で巻き回され、ソレノイドとなる。尚、巻軸部801は強磁性体で構成するのが好ましい。また、コイル802は、還元鉄との接触による損傷が生じないように、その表面に、絶縁被覆が施されている。本変形例の還元鉄の誘導加熱装置800のその他の構成は、図5に示した還元鉄の誘導加熱装置500と同じである。
[Modification 1-2]
FIG. 8 is a diagram showing a second modification of the configuration of the induction heating apparatus for reduced iron. FIG. 8A is a view of the reduced iron induction heating device 800 viewed along a horizontal direction (x-axis direction) orthogonal to the direction (y-axis direction) in which reduced iron is conveyed. It is a figure corresponding to a). FIG. 8B is a view of the reduced iron induction heating apparatus 800 as viewed along the direction (y-axis direction) in which the reduced iron is conveyed, and corresponds to FIG.
In the induction heating apparatus 500 for reduced iron shown in FIG. 5, the case where the coil 502 is arranged on the outer peripheral surface of the container 501 has been described as an example. On the other hand, in this modification, as shown in FIG. 8, a coil 802 is disposed inside the container 501. Specifically, in a state in which the coil 802 is insulated from the winding shaft portion 801 with respect to the cylindrical winding shaft portion 801 disposed inside the housing 501 so as to be substantially coaxial with the axis of the housing 501. It is wound and becomes a solenoid. The winding shaft portion 801 is preferably made of a ferromagnetic material. In addition, the coil 802 is provided with an insulating coating on the surface thereof so as not to be damaged by contact with the reduced iron. Other configurations of the reduced iron induction heating device 800 of this modification are the same as those of the reduced iron induction heating device 500 shown in FIG.

[各コイルを用いた場合の磁界の解析結果]
図9〜図12は、それぞれ、図5、図7(a)、図7(b)、図8に示すコイルを用いた場合に還元鉄の誘導加熱装置に発生する磁界の分布の解析結果を示す図である。具体的に説明すると、図9は、図5(b)のA−A方向から見たときの磁界の分布を表す。図10(a)、図11(a)は、図6(a)のA−A方向から見たときの磁界の分布を表し、図10(b)、図11(b)は、図6(b)のB−B方向から見たときの磁界の分布を表す。図12は、鵜8(b)のB−B方向から見たときの磁界の分布を表す。
ここでは、コイル以外の条件を同じ条件にして電磁場解析を行った。
[Results of magnetic field analysis when each coil is used]
9 to 12 show the analysis results of the distribution of the magnetic field generated in the induction heating apparatus for reduced iron when the coils shown in FIGS. 5, 7 (a), 7 (b), and 8 are used, respectively. FIG. More specifically, FIG. 9 shows the distribution of the magnetic field when viewed from the AA direction in FIG. 10A and 11A show the distribution of the magnetic field when viewed from the AA direction in FIG. 6A, and FIGS. 10B and 11B show the distribution of FIG. The distribution of the magnetic field when seen from the BB direction of b) is represented. FIG. 12 shows the distribution of the magnetic field when viewed from the BB direction of 鵜 8 (b).
Here, electromagnetic field analysis was performed under the same conditions except for the coil.

まず、図8及び図12の結果から、コイルを、収容部501の外部に配置しても収容部501の内部に配置しても、還元鉄が存在する収容体501の内部の下半分の領域における磁束密度は大きく変わらない。したがって、コイルの巻き数等を調整すれば、コイルを、収容部501の外周面に対して配置しても収容部501の内部に対して配置しても、同等の効果が得られることが分かる。尚、例えばコイル502、802の双方を用いて、収容部501の外周面と内部の双方に対してコイルを配置してもよい。   First, from the results of FIGS. 8 and 12, the lower half of the interior of the container 501 in which reduced iron exists, regardless of whether the coil is disposed outside the container 501 or inside the container 501. The magnetic flux density does not change significantly. Therefore, by adjusting the number of turns of the coil, it can be understood that the same effect can be obtained regardless of whether the coil is disposed on the outer peripheral surface of the housing portion 501 or the inside of the housing portion 501. . Note that, for example, both the coils 502 and 802 may be used to arrange the coils on both the outer peripheral surface and the inside of the housing portion 501.

また、図9、図10(b)及び図11(b)の結果から、コイルを、ソレノイドにするよりも(図5、図9を参照)、コイル面が収容部501の下半分の外周面と対向するようにコイルを構成して配置した方が(図7、図10(b)、図11(b)を参照)、還元鉄が存在する収容体501の内部の下半分の領域における磁束密度をより大きくできることが分かる。   Further, from the results of FIGS. 9, 10B and 11B, the coil surface is the outer peripheral surface of the lower half of the housing portion 501 rather than the coil being a solenoid (see FIGS. 5 and 9). The magnetic flux in the lower half region inside the container 501 where reduced iron is present is configured such that the coil is configured so as to face the coil (see FIGS. 7, 10B, and 11B). It can be seen that the density can be increased.

また、図7(b)に示すように、相対的に外周側の部分の巻方向を相対的に内周側の部分の巻方向と逆向きにすることにより、図11に示すように、相対的に外周側の部分から発生する磁界により、相対的に内周側の部分から発生する磁界をコイル面の方向に押し戻すことができる。このように、図10及び図11の結果から、コイル面が収容部501の下半分の外周面と対向するようにコイルを構成して配置する場合には、相対的に外周側の部分の巻方向を相対的に内周側の部分の巻方向と逆向きにした方が(図7(b)、図11を参照)、巻方向を同じにするよりも(図7(a)、図10を参照)、還元鉄が存在する収容体501の内部の下半分の領域における磁束密度をより一層大きくできることが分かる。   Further, as shown in FIG. 7 (b), by making the winding direction of the relatively outer peripheral portion relatively opposite to the winding direction of the inner peripheral portion, as shown in FIG. In particular, the magnetic field generated from the outer peripheral portion can push back the magnetic field generated relatively from the inner peripheral portion in the direction of the coil surface. Thus, from the results of FIGS. 10 and 11, when the coil is configured and arranged so that the coil surface faces the outer peripheral surface of the lower half of the housing portion 501, the winding of the portion on the outer peripheral side is relatively performed. When the direction is relatively opposite to the winding direction of the inner peripheral portion (see FIGS. 7B and 11), the winding direction is the same (FIGS. 7A and 10). It can be seen that the magnetic flux density in the lower half region inside the container 501 where the reduced iron is present can be further increased.

<変形例2>
本実施形態では、収容体501を360°同じ方向に回転させる場合を例に挙げて説明した。しかしながら、3つ以上の還元鉄が相互に接触することにより当該3つ以上の還元鉄による閉路が形成され、且つ、当該3つ以上の還元鉄のそれぞれの他の還元鉄との接触位置が動く状態にしていれば、必ずしもこのようにする必要はない。
例えば、収容体501を回動させる角度を360°未満にしてもよいし、回転・回動する方向を時間の経過とともに変えてもよい。また、収容体501を揺動させてもよい。さらに、収容体501が、その内部に、収容体501の軸と同軸で回転するスクリュー状の撹拌棒を有し、収容体501の本体を動かさずに、当該撹拌棒をモータにより回転(駆動)させるようにしてもよい。
<Modification 2>
In the present embodiment, the case where the container 501 is rotated in the same direction by 360 ° has been described as an example. However, when three or more reduced irons come into contact with each other, a closed circuit is formed by the three or more reduced irons, and the contact position of each of the three or more reduced irons with each other reduced iron moves. This is not always necessary as long as it is in a state.
For example, the angle at which the container 501 is rotated may be less than 360 °, and the direction of rotation / rotation may be changed over time. Further, the container 501 may be swung. Furthermore, the container 501 has a screw-like stirring bar that rotates coaxially with the axis of the container 501 inside the container 501, and the stirring bar is rotated (driven) by a motor without moving the main body of the container 501. You may make it make it.

<変形例3>
本実施形態では、回転炉床炉で製造された還元鉄を誘導加熱し、誘導加熱した還元鉄を圧縮成形機により圧縮成型してHBIを製造する場合を例に挙げて説明した。しかしながら、前述した条件の還元鉄を加熱対象にしていれば、必ずしもこのようにする必要はない。
<Modification 3>
In the present embodiment, the case where reduced iron manufactured in a rotary hearth furnace is induction-heated and the reduced iron subjected to induction heating is compression-molded by a compression molding machine is described as an example. However, this is not necessarily required if reduced iron having the above-described conditions is to be heated.

尚、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   It should be noted that the embodiments of the present invention described above are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

401 還元鉄群
402 渦電流
403 還元部
404 未還元部
500、600、800 還元鉄の誘導加熱装置
501 収容部
502、602、802 コイル
503 回転部
504 支持部
505 モータ
506 ギア
401 Reduced iron group 402 Eddy current 403 Reduced part 404 Unreduced part 500, 600, 800 Reduced iron induction heating device 501 Housing part 502, 602, 802 Coil 503 Rotating part 504 Supporting part 505 Motor 506 Gear

Claims (4)

還元鉄を誘導加熱する還元鉄の誘導加熱方法であって、
複数の前記還元鉄を内部に収容する収容部の外周面及び内部の少なくとも何れか一方に対して配置されたコイルに交流電力を与えることにより、前記収容部の内部に収容された複数の還元鉄を誘導加熱するに際し、3つ以上の前記還元鉄が相互に接触することにより当該3つ以上の還元鉄による閉路が形成され、且つ、当該3つ以上の還元鉄のそれぞれの他の還元鉄との接触位置が動く状態になるように、前記収容部に収容された前記複数の還元鉄の前記収容体の内部における位置を変えるようにしたことを特徴とする還元鉄の誘導加熱方法。
A method for induction heating of reduced iron by induction heating of reduced iron,
A plurality of reduced irons housed in the housing part by applying AC power to the coil disposed on at least one of the outer peripheral surface and the inside of the housing part that houses the plurality of reduced irons When the three or more reduced irons come into contact with each other, a closed circuit is formed by the three or more reduced irons, and each of the three or more reduced irons A method for induction heating of reduced iron, wherein the positions of the plurality of reduced irons housed in the housing part are changed so that the contact position of the iron is moved.
前記還元鉄の直径は、5[mm]〜100[mm]の範囲内であり、
前記誘導加熱される前の前記還元鉄の金属化率は、40[%]以上であることを特徴とする請求項1に記載の還元鉄の誘導加熱方法。
The reduced iron has a diameter in the range of 5 [mm] to 100 [mm],
The method for induction heating of reduced iron according to claim 1, wherein a metallization rate of the reduced iron before the induction heating is 40% or more.
還元鉄を誘導加熱する還元鉄の誘導加熱装置であって、
複数の前記還元鉄を内部に収容する収容部と、
前記収容部の外周面及び内部の少なくとも何れか一方に対して配置されたコイルと、
前記複数の還元鉄の前記収容体の内部における位置を変えるために前記収容部を駆動する駆動部と、を有し、
前記コイルに交流電力を与えることにより、当該還元鉄を誘導加熱するに際し、3つ以上の前記還元鉄が相互に接触することにより当該3つ以上の還元鉄による閉路が形成され、且つ、当該3つ以上の還元鉄のそれぞれの他の還元鉄との接触位置が動く状態になるように、前記収容部に収容された前記複数の還元鉄の収容体の内部における位置を、前記駆動部が前記収容部を駆動することにより変えることを特徴とする還元鉄の誘導加熱装置。
An induction heating apparatus for reduced iron for induction heating of reduced iron,
An accommodating portion for accommodating a plurality of the reduced irons therein;
A coil disposed with respect to at least one of the outer peripheral surface and the inside of the housing portion;
A drive unit that drives the housing unit to change the position of the plurality of reduced irons inside the housing body,
When the reduced iron is inductively heated by applying AC power to the coil, the three or more reduced irons contact each other to form a closed circuit with the three or more reduced irons, and the 3 The position of the plurality of reduced iron accommodated in the accommodating portion in the container so that the contact position of each of the two or more reduced irons with the other reduced iron is in a state of moving, An induction heating apparatus for reduced iron, which is changed by driving the housing.
前記還元鉄の直径は、5[mm]〜100[mm]の範囲内であり、
前記誘導加熱される前の前記還元鉄の金属化率は、40[%]以上であることを特徴とする請求項3に記載の還元鉄の誘導加熱装置。
The reduced iron has a diameter in the range of 5 [mm] to 100 [mm],
4. The reduced iron induction heating apparatus according to claim 3, wherein a metallization ratio of the reduced iron before the induction heating is 40% or more. 5.
JP2013069486A 2013-03-28 2013-03-28 Induction heating method of reduced iron and induction heating apparatus of reduced iron Active JP6065712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013069486A JP6065712B2 (en) 2013-03-28 2013-03-28 Induction heating method of reduced iron and induction heating apparatus of reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069486A JP6065712B2 (en) 2013-03-28 2013-03-28 Induction heating method of reduced iron and induction heating apparatus of reduced iron

Publications (2)

Publication Number Publication Date
JP2014189894A true JP2014189894A (en) 2014-10-06
JP6065712B2 JP6065712B2 (en) 2017-01-25

Family

ID=51836455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069486A Active JP6065712B2 (en) 2013-03-28 2013-03-28 Induction heating method of reduced iron and induction heating apparatus of reduced iron

Country Status (1)

Country Link
JP (1) JP6065712B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026763A (en) * 1973-04-30 1975-03-19 Boliden Ab
JP2009528449A (en) * 2006-03-03 2009-08-06 アングロ オペレーションズ リミティッド Reduction treatment of metal-containing ores in the presence of microwaves and RF energy
WO2011108072A1 (en) * 2010-03-02 2011-09-09 トヨタ自動車株式会社 Method for producing powder for dust core, dust core using powder for dust core produced using said method for producing powder for dust core, and device for producing powder for dust core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026763A (en) * 1973-04-30 1975-03-19 Boliden Ab
JP2009528449A (en) * 2006-03-03 2009-08-06 アングロ オペレーションズ リミティッド Reduction treatment of metal-containing ores in the presence of microwaves and RF energy
WO2011108072A1 (en) * 2010-03-02 2011-09-09 トヨタ自動車株式会社 Method for producing powder for dust core, dust core using powder for dust core produced using said method for producing powder for dust core, and device for producing powder for dust core

Also Published As

Publication number Publication date
JP6065712B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP5352236B2 (en) Electromagnetic stirring device
Wang et al. Intergranular insulated Fe/SiO2 soft magnetic composite for decreased core loss
JP4648851B2 (en) Electromagnetic stirring device
JP2011529786A (en) Mixing device with induction heating function
JP2009218017A (en) Movable iron core induction heating furnace
CN102297592A (en) Device for melting pieces of metal
CN105102669B (en) Arc-plasma film formation device
JP6065712B2 (en) Induction heating method of reduced iron and induction heating apparatus of reduced iron
US2686823A (en) Rotary electric field fluid stirring apparatus
CN108122669A (en) A kind of processing and treating method being electromagnetically shielded with magnetic material
CN105396686B (en) Mine concentration equipment
CN201259811Y (en) Demagnetizer for adhering Nd-Fe-B magnet
KR20130121543A (en) Apparatus using induction-heating type for sintering material and method thereof
CN105195073B (en) A kind of reaction kettle
JP6094312B2 (en) Method and apparatus for producing reduced iron
JP2001512182A (en) Apparatus and method for stirring molten metal using an electromagnetic field
JP6316972B2 (en) Apparatus for heating and transferring metallic materials for a melting plant and melting plant comprising the apparatus
CN112944896A (en) Intelligent metallurgical heat preservation heating device
JPH0410379A (en) Rotary metal heating method using magnetism and device therefor
CN114069994A (en) Magnetic field heat treatment device of multi-pole motor rotor
CN207135306U (en) A kind of electromagnetic coil heating apparatus
JP6533911B1 (en) Electromagnetic induction heating device
JP2010277866A (en) Electromagnetic induction heating device
JP2009097734A (en) Induction heating device
CN105304264B (en) Method and device for demagnetizing ferromagnetic elongated member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R151 Written notification of patent or utility model registration

Ref document number: 6065712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350