JP2014189863A - Thermostable austenite stainless steel for metallic gasket - Google Patents

Thermostable austenite stainless steel for metallic gasket Download PDF

Info

Publication number
JP2014189863A
JP2014189863A JP2013067982A JP2013067982A JP2014189863A JP 2014189863 A JP2014189863 A JP 2014189863A JP 2013067982 A JP2013067982 A JP 2013067982A JP 2013067982 A JP2013067982 A JP 2013067982A JP 2014189863 A JP2014189863 A JP 2014189863A
Authority
JP
Japan
Prior art keywords
mass
less
stainless steel
precipitates
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013067982A
Other languages
Japanese (ja)
Other versions
JP6296435B2 (en
Inventor
Naohito Kumano
尚仁 熊野
Kazunari Imagawa
一成 今川
Sadayuki Nakamura
定幸 中村
Manabu Oku
学 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2013067982A priority Critical patent/JP6296435B2/en
Publication of JP2014189863A publication Critical patent/JP2014189863A/en
Application granted granted Critical
Publication of JP6296435B2 publication Critical patent/JP6296435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an austenite stainless steel suitable for a thermostable metallic gasket having improved processability at ordinary temperature and setting resistance at high temperature at a relatively low price.SOLUTION: There is provided an austenite stainless steel containing C:0.03 mass% or less, Si:1.5 to 5.0 mass%, Mn:2.5 mass% or less, Ni:7.0 to 17.0 mass%, Cr:13.0 to 23.0 mass%, N:0.20 mass% or less and the balance Fe with inevitable impurities, and there is 200 or more/100 μmof MX and MXC-based deposit of 100 nm or less after heating at 700°C for 100 hours.

Description

本発明は、内燃機関のエンジン、排気ガス経路部材(エキゾーストマニホールド、触媒コンバータ)、EGRクーラーならびにターボチャージャー等の高温雰囲気に曝されても、優れた耐へたり性を維持するメタルガスケットとして使用されるオーステナイト系ステンレス鋼に関する。   INDUSTRIAL APPLICABILITY The present invention is used as a metal gasket that maintains excellent sag resistance even when exposed to a high temperature atmosphere such as an engine of an internal combustion engine, an exhaust gas passage member (exhaust manifold, catalytic converter), an EGR cooler, and a turbocharger. Relates to austenitic stainless steel.

加熱・冷却が頻繁に繰り返される雰囲気に曝されるエンジン等には、従来からメタルガスケットが使用されてきたが、エンジンの高性能化や環境規制に伴い排気ガス温度が上昇し、600〜800℃の温度に曝されるガスケットが増加している。材料温度の上昇にともない、従来のガスケット材では以下の課題を生じている。   Conventionally, metal gaskets have been used for engines that are exposed to an atmosphere in which heating and cooling are frequently repeated, but the exhaust gas temperature rises due to engine performance and environmental regulations, and 600 to 800 ° C. More gaskets are exposed to temperatures. With the increase in material temperature, the conventional gasket material has the following problems.

特許文献1、2に代表されるSUS301系の加工誘起マルテンサイト相に強化された材料や、特許文献3に代表されるSUS431系の焼入−焼戻しマルテンサイト相に強化された材料は、加熱される温度がマルテンサイト相の分解温度に相当するため軟化が著しく耐へたり性に劣る。   The material reinforced by the SUS301-based work-induced martensite phase represented by Patent Literatures 1 and 2 and the material reinforced by the SUS431-based quenching-tempering martensite phase represented by Patent Literature 3 are heated. The temperature corresponding to the decomposition temperature of the martensite phase is remarkably soft and inferior to sag resistance.

JISG4902(耐食耐熱超合金板)に規定されるNCF625、NCF718やJISG4312(耐熱鋼板)に規定されるSUH660等の析出強化系の材料は使用中に微細析出物を生成するため、600〜800℃の析出強化には有効であるが、高価なNiが多量に含まれるためコスト高となる。   Precipitation strengthening materials such as NCF625, NCF718 and SUH660 specified in JISG4312 (heat-resistant steel plate) defined in JIS G4902 (corrosion-resistant heat-resistant superalloy plate) generate fine precipitates during use. Although effective for precipitation strengthening, it is expensive because it contains a large amount of expensive Ni.

これらの課題を解決させるために、特許文献4ではNとNbにより強化されたFe−Cr−Nオーステナイト系ステンレス鋼が、また、特許文献5、6、7では、Nにより強化されたFe−Cr−Mn−Niオーステナイト系ステンレス鋼が開示されており、一部の耐熱用ガスケットに適用されつつある。   In order to solve these problems, in Patent Document 4, Fe—Cr—N austenitic stainless steel reinforced with N and Nb is used. In Patent Documents 5, 6, and 7, Fe—Cr reinforced with N is used. -Mn-Ni austenitic stainless steel is disclosed and is being applied to some heat resistant gaskets.

特開平7−3406号公報Japanese Unexamined Patent Publication No. 7-3406 特開2008−111192号公報JP 2008-111192 A 特開平7−278758号公報JP-A-7-278758 特開2003−82441号公報JP 2003-82441 A 特開平7−3407号公報Japanese Patent Laid-Open No. 7-3407 特開平9−279315号公報Japanese Patent Laid-Open No. 9-279315 特開平11−241145号公報JP-A-11-241145

しかし、これらの鋼はNを多く含むために降伏応力(0.2%耐力)が非常に高くなるという課題を有する。すなわち、ガスケットに必要な平坦度を矯正加工にて確保するには焼なまし材で比較的軟質であることが望ましく、使用中の耐熱性を確保するには高温でのへたり性に優れることが望ましいが、多量にNを添加する鋼では前者の特性を満足するとは必ずしも言い難い。また、一部のエンジンでは、排気ガスの凝縮水がメタルガスケット部に結露し腐食するという事例も認められており、耐粒界腐食感受性に対しても、従来以上に留意した成分設計とすることが好ましい。しかし、上述した開示例では、耐食性まで加味した成分設計が必ずしもされていないのが定常である。   However, since these steels contain a large amount of N, they have a problem that the yield stress (0.2% proof stress) becomes very high. In other words, it is desirable that the annealed material should be relatively soft to ensure the flatness required for the gasket by straightening, and that it has excellent sagability at high temperatures to ensure heat resistance during use. However, it is not always possible to say that the steel added with a large amount of N satisfies the former characteristics. In some engines, it has been recognized that the condensed water of the exhaust gas can condense and corrode on the metal gasket, and the component design should be designed with greater attention to intergranular corrosion resistance. Is preferred. However, in the above-described disclosure example, it is a steady state that the component design considering the corrosion resistance is not necessarily performed.

以上述ベたように、Niを多量に含まないオーステナイト系ステンレス鋼において初期の耐力が比較的低く、高温での耐熱性(へたり性)に優れ、耐食性にも優れた鋼、すなわち過剰なCやNを含有しない耐熱用ステンレス鋼が必要となってきているが、その成分系は必ずしも明確化されていないのが現状であった。   As described above, an austenitic stainless steel that does not contain a large amount of Ni has a relatively low initial yield strength, excellent heat resistance (sagging) at high temperatures, and excellent corrosion resistance, that is, excess C However, the heat resistant stainless steel containing no N is required, but the component system is not necessarily clarified.

本発明は、比較的安価で常温での加工性と高温での耐へたり性を同時に向上させた耐熱用メタルガスケットに適したオーステナイト系ステンレス鋼を提供することを目的とする。   An object of the present invention is to provide an austenitic stainless steel suitable for a heat-resistant metal gasket that is relatively inexpensive and has improved workability at room temperature and sag resistance at high temperature at the same time.

本発明のメタルガスケット用耐熱オーステナイト系ステンレス鋼は、その目的を達成するため、C:0.03質量%以下、Si:1.5〜5.0質量%、Mn:2.5質量%以下、Ni:7.0〜17.0質量%、Cr:13.0〜23.0質量%、N:0.20質量%以下を含み、残部がFeおよび不可避的不純物からなり、700℃、100h加熱後に100nm以下のMX系およびMX析出物が100μmに200個以上存在することを特徴とする。 In order to achieve the object, the heat-resistant austenitic stainless steel for metal gaskets of the present invention is C: 0.03% by mass or less, Si: 1.5-5.0% by mass, Mn: 2.5% by mass or less, Ni: 7.0 to 17.0% by mass, Cr: 13.0 to 23.0% by mass, N: 0.20% by mass or less, with the balance being Fe and inevitable impurities, heating at 700 ° C. for 100 hours Later, 200 or more MX systems and M 2 X precipitates of 100 nm or less exist in 100 μm 2 .

本発明においては、さらにMo:3.0質量%以下.Cu:1.5質量%未満、Nb:0.80質量%以下Ti:0.5質量%以下、V:1.0質量%以下、B:0.020質量%以下の1種以上を含み、さらにAl:0.2質量%以下、REM(希土類元素):0.2質量%以下、Y:0.2質量%以下、Ca:0.1質量%以下、Mg:0.1質量%以下の1種又は2種以上を含むことができる。   In the present invention, Mo: 3.0% by mass or less. Cu: Less than 1.5% by mass, Nb: 0.80% by mass or less, Ti: 0.5% by mass or less, V: 1.0% by mass or less, B: 0.020% by mass or less, Furthermore, Al: 0.2% by mass or less, REM (rare earth element): 0.2% by mass or less, Y: 0.2% by mass or less, Ca: 0.1% by mass or less, Mg: 0.1% by mass or less 1 type (s) or 2 or more types can be included.

本発明のオーステナイト系ステンレス鋼は、メタルガスケットに要求される500〜800℃の高温環境での耐へたり性に優れている。また、このオーステナイト系ステンレス鋼をエギゾーストマニホールド、インテークマニホールド等の低温用メタルガスケットとして自動車用エンジンに組み込むと、周辺機器の寿命やエンジン自体の性能が向上する。また、エンジン用ガスケットの他に、自動車排ガス部品、自動車捷気管の振動遮断用継手に使用されるボールジョイント部に組み込まれる弾性ガスケットにも使用できる。   The austenitic stainless steel of the present invention is excellent in sag resistance in a high temperature environment of 500 to 800 ° C. required for a metal gasket. In addition, when this austenitic stainless steel is incorporated in an automobile engine as a low-temperature metal gasket such as an exhaust manifold or an intake manifold, the life of peripheral devices and the performance of the engine itself are improved. In addition to engine gaskets, the present invention can also be used for elastic gaskets incorporated in ball joint parts used in automobile exhaust parts and vibration isolation joints for automobile air pipes.

ガスケット試験片の形状を示す図である。It is a figure which shows the shape of a gasket test piece. 結晶粒内の透過型電子顕微鏡写真を示す図である。It is a figure which shows the transmission electron micrograph in a crystal grain.

本発明者らは、上記課題を解決するために種々検討を行い、以下の知見を得て本発明に至った。   The inventors of the present invention have made various studies in order to solve the above-described problems, and have obtained the following knowledge to arrive at the present invention.

(1)初期の軟質化はCを0.03%以下かつNを0.20%以下とすることにより達成される。
(2)高温でのへたり性はビード部(加工部)を長時間の加熱によっても軟化させにくい因子で強化しておくこと、すなわち本発明ではCの添加を極力抑制し、長時間加熱に対して安定なMXおよびMX系微細析出物の粒子分散強化を利用することにより達成される。
(3)C添加量の減少は、Cr23を経由したσ相生成を抑制することからガスケットの脆化に対しても非常に有効である。
〈4)また、C添加量を減らすことによって株ガスの凝縮水に対する耐食性(耐鋭敏化感受性)に対しても有効に作用する。
(5)さらに、固溶強化元素や析出強化元素を添加して所望の強度−延性バランスを調整することが可能である。
(1) The initial softening is achieved by setting C to 0.03% or less and N to 0.20% or less.
(2) The sagability at high temperature is strengthened by a factor that makes it difficult to soften the bead part (processed part) even by heating for a long time. In other words, in the present invention, the addition of C is suppressed as much as possible and the heating is performed for a long time. On the other hand, it is achieved by utilizing the particle dispersion strengthening of stable MX and M 2 X-based fine precipitates.
(3) The decrease in the amount of C added is very effective for embrittlement of the gasket because it suppresses the formation of the σ phase via Cr 23 C 6 .
<4) Moreover, it acts effectively also on the corrosion resistance (sensitivity-sensitization sensitivity) with respect to the condensed water of stock gas by reducing C addition amount.
(5) Furthermore, it is possible to adjust a desired strength-ductility balance by adding a solid solution strengthening element or a precipitation strengthening element.

以上のように本発明は、これまでクリープ強度や耐へたり性の向上に有効とされてきたC(例えば、特開平7−3405、特開平9−279315、特開平11−241145など数多く、Cの効果が示されている)を極力低減することによって達成される。C低減によって、Cr23型炭化物の総量は減る反面、700℃、100hおよび1000h程度の加熱でも、非常に安定した100μm程度の微細なMXおよびMX系析出物が生成することを明らかにした。さらに、低C材に固溶強化元素および析出強化元素を添加してもこの効果が失われないことを新たに知見し、本発明に至ったのである。 As described above, the present invention has been effective for improving the creep strength and sag resistance so far (for example, C7, JP9-279315, JP11-241145, C This is achieved by reducing as much as possible). Although the total amount of Cr 23 C 6 type carbide is reduced by reducing C, it is clear that very stable fine MX and M 2 X-based precipitates of about 100 μm are formed even when heated at about 700 ° C., 100 hours and 1000 hours. I made it. Furthermore, the inventors have newly found that this effect is not lost even when a solid solution strengthening element and a precipitation strengthening element are added to the low C material, and the present invention has been achieved.

以下、本発明が対象とするオーステナイト系ステンレス鋼に含まれる合金成分、含有量等を説明する。
C:0.03質量%以下
長時間の加熱保持によっても微細で安定なMX系およびMX系析出物を生成させるため、Cは極力低減することが好ましい。C含有量がこれを上回る場合、M23系析出物、とくに粗大化しやすいCr23が生成しやすくなり、軟化を促進する。また、Cr23C6を経由したσ相への生成にともなう脆化も懸念される。よって、本発明では0.03質量%以下に制限する。より安定してMX系およびMX系析出物を微細に生成させるためには、Cの範囲は0.02質量%未満とすることが好ましい。
Hereinafter, alloy components, contents, and the like included in the austenitic stainless steel targeted by the present invention will be described.
C: 0.03 mass% or less C is preferably reduced as much as possible in order to produce fine and stable MX-based and M 2 X-based precipitates even by heating and holding for a long time. If the C content exceeds this, M 23 X 6 based precipitates becomes particularly easy easy Cr 23 C 6 is produced coarse, it promotes softening. There is also concern about embrittlement that accompanies the formation of σ phase via Cr 23 C6. Therefore, in this invention, it restrict | limits to 0.03 mass% or less. In order to more stably produce MX-based and M 2 X-based precipitates more stably, the range of C is preferably less than 0.02% by mass.

Si:1.5〜5.0質量%
フェライト形成元素であり、オーステナイト相中で大きな固溶強化能を呈し、高温保持中に歪み時効によって時効硬化を促進させる。このような効果は、1.5質量%以上のSi含有量で顕著になる。しかし、5.0質量%を超える過剰量のSiを添加すると、高温割れが誘発され、製造上で種々のトラブルを引き起こす。Si含有量は3.0超〜5.0質量%以下の範囲とすることが一層好ましい。
Si: 1.5-5.0 mass%
It is a ferrite forming element, exhibits a large solid solution strengthening ability in the austenite phase, and promotes age hardening by strain aging while maintaining a high temperature. Such an effect becomes remarkable when the Si content is 1.5% by mass or more. However, when an excessive amount of Si exceeding 5.0% by mass is added, hot cracking is induced, causing various troubles in production. The Si content is more preferably in the range of more than 3.0 to 5.0% by mass or less.

Mn:2.5質量%以下
オーステナイト形成元素であり、高価なNiの代替成分として使用され、Niの必要量を低減できる。また、Sを固定することによって熟間加工性を改善することにも有効である。しかし、2.5質量%を超える過剰量のMn添加は、高温強度や機械的性質を低下させる。
Mn: 2.5% by mass or less An austenite-forming element that is used as an alternative component of expensive Ni and can reduce the required amount of Ni. It is also effective to improve the maturing workability by fixing S. However, addition of an excessive amount of Mn exceeding 2.5% by mass lowers the high-temperature strength and mechanical properties.

Ni:7.0〜17.0質量%
安定なオーステナイト組織を確保するために必須の合金成分であり、Niの最適含有量は鋼材に含まれるCr、Si、Mo等のフェライト形成元素量に依存する。しかし、7.0質量%未満のNi含有量ではオーステナイト相の安定化が困難になる。他方、17.0質量%を越えるNi含有量では、鋼材コストが上昇して経済的に不利となる。Ni含有量は11.0〜15.0質量%の範囲とすることが一層好ましい。
Ni: 7.0 to 17.0% by mass
It is an essential alloy component for ensuring a stable austenite structure, and the optimum content of Ni depends on the amount of ferrite-forming elements such as Cr, Si, and Mo contained in the steel material. However, when the Ni content is less than 7.0% by mass, it becomes difficult to stabilize the austenite phase. On the other hand, if the Ni content exceeds 17.0% by mass, the steel material cost increases, which is economically disadvantageous. The Ni content is more preferably in the range of 11.0 to 15.0 mass%.

Cr:13.0〜23.0質量%
耐食性・耐酸化性に必要な合金成分であり、過酷な高温腐食雰囲気に曝されるメタルガスケット用途を考慮すると少なくとも13.0質量%のCr量が必要である。しかし、23.0質量%を超える過剰量のCrが含まれると、δフェライトが形成され、安定したオーステナイト相が維持できなくなる。
Cr: 13.0-23.0 mass%
It is an alloy component necessary for corrosion resistance and oxidation resistance, and when considering a metal gasket application exposed to a severe high temperature corrosion atmosphere, an amount of Cr of at least 13.0% by mass is necessary. However, if an excessive amount of Cr exceeding 23.0% by mass is contained, δ ferrite is formed and a stable austenite phase cannot be maintained.

N:0.20質量%以下
オーステナイト系ステンレス鋼の高温強度の上昇に有効な合金成分であるが、過剰量のNが含まれると、M23中のXにおけるNの割合が増加する。析出強化に寄与しない粗大なM23系析出物が生成する結果、固溶強化に有効な固溶N量が減少し、高温強度を低下させる。よって、本発明では0.20質量%以下に制限する。
N: 0.20% by mass or less Although it is an alloy component effective for increasing the high temperature strength of austenitic stainless steel, when an excessive amount of N is included, the ratio of N in X in M 23 X 6 increases. As a result of the formation of coarse M 23 X 6- based precipitates that do not contribute to precipitation strengthening, the amount of solid solution N effective for solid solution strengthening is reduced, and the high-temperature strength is lowered. Therefore, in this invention, it limits to 0.20 mass% or less.

Mo:3.0質量%以下
必要に応じて添加される合金成分であり、耐食性の向上に有効であると共に、高温保持中に炭窒化物となって微細に分散し高温強度を上昇させる。そのため、メタルガスケットが過酷な高温雰囲気に曝されても、Mo添加により強度の低下が防止される。しかし、3.0質量%を超えるMoの過剰添加は、高温域でのδフェライト生成を促進させる。
Mo: 3.0% by mass or less Mo is an alloy component that is added as necessary, and is effective in improving corrosion resistance, and becomes carbonitride during high temperature holding to finely disperse and increase high temperature strength. Therefore, even if the metal gasket is exposed to a severe high temperature atmosphere, the strength is prevented from being reduced by the addition of Mo. However, excessive addition of Mo exceeding 3.0% by mass promotes the formation of δ ferrite at high temperatures.

Cu:1.5質量%未満
必要に応じて添加される合金成分であり、メタルガスケットが使用される雰囲気の温度上昇に伴ってMX系析出物やMX系析出物とは異なるCu系析出物を生成させ、高温強度、耐軟化性を改善する。しかし、過剰添加は、熱間加工性を低下させ、割れ発生の原因となる。
Cu: Less than 1.5% by mass An alloy component added as necessary, and Cu-based precipitation different from MX-based precipitates and M 2 X-based precipitates as the temperature of the atmosphere in which the metal gasket is used is increased. To produce high-temperature strength and softening resistance. However, excessive addition reduces hot workability and causes cracking.

Nb:0.80質量%以下
メタルガスケットが曝される高温雰囲気下で析出物を形成し、或いはオーステナイトマトリックスに固溶することにより、硬度を上昇させ、耐軟化性を改善する。しかし、0.80質量%を超える過剰量のNb含有は、高温延性低下に起因して熱間加工性を低下させる。
Nb: 0.80% by mass or less By forming a precipitate in a high temperature atmosphere to which the metal gasket is exposed or by dissolving in austenite matrix, the hardness is increased and the softening resistance is improved. However, containing an excessive amount of Nb exceeding 0.80% by mass reduces hot workability due to a decrease in high-temperature ductility.

Ti:0.5質量%以下
必要に応じて添加される合金成分であり、硬度上昇・耐ヘタリ性の改善に有効な析出物を高温雰囲気で形成する。しかし、0.5質量%を超えるTiの過剰添加は、表面疵を発生させる原因となる。
Ti: 0.5% by mass or less Ti is an alloy component added as necessary, and forms a precipitate effective in increasing the hardness and improving the anti-sag property in a high-temperature atmosphere. However, excessive addition of Ti exceeding 0.5% by mass causes surface defects.

V:1.00質量%以下
必要に応じて添加される合金成分であり、硬度上昇、耐ヘタリ性の改善に有効な析出物を高温雰囲気で形成する。しかし、1.0質量%を超えるVの過剰添加は、表加工性、靭性を低下させる原因となる。
V: 1.00% by mass or less An alloy component that is added as necessary, and forms precipitates that are effective in increasing hardness and improving resistance to settling in a high-temperature atmosphere. However, excessive addition of V exceeding 1.0% by mass causes a reduction in surface workability and toughness.

B:0.020質量%以下
必要に応じて添加される合金成分であり、高温強度上昇に有効な炭窒化物の微細析出を促進させ、熱間圧延温度域においてはS等の粒界偏析を抑制しエッジクラックの発生を防止する作用を呈する。しかし、0.020質量%を超える過剰量のBを添加すると、低融点ホウ化物が生成しやすく、かえって熱間加工性が劣化する。
B: 0.020% by mass or less An alloy component added as necessary, promotes fine precipitation of carbonitrides effective for increasing high-temperature strength, and causes grain boundary segregation such as S in the hot rolling temperature range. Suppresses and prevents the occurrence of edge cracks. However, when an excessive amount of B exceeding 0.020% by mass is added, a low-melting boride tends to be generated, and hot workability is deteriorated.

Al:0.2質量%以下
必要に応じて添加される合金成分であり、製鋼時に脱酸剤として添加されると共に、鋼板をガスケット形状に打抜く際に打抜き性に悪影響を及ぼすA2系介在物を激減させる効果を奏する。
このような効果は0.2質量%のAl含有量で飽和し、それ以上Alを増量しても却って表面欠陥の増加を招くため、上限を0.2%とする。
Al: 0.2% by mass or less An alloy component that is added as necessary. It is added as a deoxidizer during steelmaking, and has an adverse effect on punchability when a steel plate is punched into a gasket shape. Has the effect of drastically reducing.
Such an effect is saturated at an Al content of 0.2% by mass, and even if the Al content is increased further, surface defects are increased. Therefore, the upper limit is set to 0.2%.

REM(希土類元素):0.2質量%以下
Y:0.2質量%以下
Ca:0.1質量%以下
Mg:0.1質量%以下
必要に応じて添加される合金成分であり、何れも熱間加工性を改善し、耐酸化性の向上にも有効である。熱間加工性、耐酸化性に及ぼす効果は何れも添加量の増加に応じて顕著になるが、REM、Yでは0.20質量%、Ca、Mgでは0.10質量%で飽和するため、これらの値を上限とする。
REM (rare earth element): 0.2% by mass or less Y: 0.2% by mass or less Ca: 0.1% by mass or less Mg: 0.1% by mass or less It is effective in improving hot workability and improving oxidation resistance. The effects on hot workability and oxidation resistance are all marked with an increase in the amount added, but because REM and Y are saturated at 0.20% by mass, Ca and Mg at 0.10% by mass, These values are the upper limit.

従来からMX系析出物やMX系析出物の生成を利用して、クリープ強度の改善を図った例はある。しかし、これらを排気ガスに曝される耐熱用メタルガスケットに使用した場合、耐へたり性は必ずしも改善されるとは限らず、信頼性の面では満足できなかった。この面を改善すべ<検討を行った結果、ガスケットのへたり量は100h以内の加熱で大幅に進行することを明らかにした。この結果、700℃,100h加熱において微細な析出物を生成するような調整を行えば、優れた耐へたり性を有することを明らかにした。700℃,100hの加熱において100μmに200個以上の析出物が存在しないと十分な耐へたり性を維持できない。また、100nmを超える粗大な析出物を生成する場合は、析出物の間隔が一般に広<なってしまい、100μmに200個以上生成させようとすると、合金元素の添加量が過剰となり、ガスケットへの成形性が不十分となる。なお、上述した析出物の大きさと個数は、鋼鈑素材における合金元素の含有量と製造条件を種々変動させて決定されるものである。本発明で規定した成分量において、鋼板素材における析出物の存在状態は特に規定しないが、100nm超えの粗大析出物、100nm以下の微細析出物ともに、100μmに20個以下と少ないことが好ましい。発明者らの実験では、後述の成分組織を有するオーステナイト系ステンレス鋼鈑の製造工程において連続ラインに1050℃〜1200℃×均熱0秒〜均熱60秒の仕上焼鈍を施す場合の例では、1000℃から500℃までの平均冷却速度を10℃/秒以上にコントロールすることで望ましい金属組織が得られた。 Conventionally, there is an example in which the creep strength is improved by using generation of MX-based precipitates and M 2 X-based precipitates. However, when these are used for heat-resistant metal gaskets exposed to exhaust gas, the sag resistance is not always improved, and the reliability cannot be satisfied. As a result of investigations to improve this aspect, it was clarified that the amount of gasket sag progressed greatly with heating within 100 hours. As a result, it has been clarified that if adjustment is made so as to produce fine precipitates when heated at 700 ° C. for 100 hours, it has excellent sag resistance. Sufficient sag resistance cannot be maintained unless there are 200 or more precipitates in 100 μm 2 when heated at 700 ° C. for 100 hours. When coarse precipitates exceeding 100 nm are produced, the interval between the precipitates is generally widened, and if 200 or more particles are to be produced in 100 μm 2 , the amount of alloy elements added becomes excessive, resulting in the gasket. The moldability of is insufficient. The size and number of precipitates described above are determined by variously changing the alloy element content and the manufacturing conditions in the steel sheet material. In the component amounts defined in the present invention, the state of precipitates in the steel sheet material is not particularly defined, but both coarse precipitates exceeding 100 nm and fine precipitates of 100 nm or less are preferably as small as 20 or less in 100 μm 2 . In the experiment of the inventors, in the case of performing a finish annealing of 1050 ° C. to 1200 ° C. × soaking 0 seconds to soaking 60 seconds in a continuous line in the manufacturing process of an austenitic stainless steel plate having a component structure described later, A desirable metal structure was obtained by controlling the average cooling rate from 1000 ° C. to 500 ° C. to 10 ° C./second or more.

表1に示す組成のステンレス鋼を300kg真空溶解炉で溶製し、その後スラブを熱間鍛造、切り出し、熱間圧延、煉鈍、酸洗、冷間圧延、焼鈍、酸洗工程または最終の酸洗後に30〜60%冷間圧延工程を経て板厚0.5〜0.2mmのステンレス鋼帯を製造した。   Stainless steel having the composition shown in Table 1 is melted in a 300 kg vacuum melting furnace, and then the slab is hot forged, cut, hot rolled, blunted, pickled, cold rolled, annealed, pickled, or final acid picked. After washing, a stainless steel strip having a thickness of 0.5 to 0.2 mm was produced through a 30 to 60% cold rolling process.

各ステンレス鋼帯からφ50mmの円形試験片を切り出し、試験片の中央に内径32mmの円形開口を形成し、開口周辺に幅3mm、高さ0.5mmのビードをプレス成形することによりメタルガスケット(図1)を作製した。常温での加工性はビード成形時の割れの有無で評価した。加工割れ無のものを良好(○)とし、加工割れ有のものを×とした。なお、ビード成形時に加工割れが生じた鋼については成形高さを0.45mmとした。ついで、ビード高さが0.4mmになるように治具で押え、700℃に100時間保持した後、室温まで徐冷した。徐冷後の試験片について、室温での残存ビード高さを測定した。なお、残存ビード高さの測定には焦点顕微鏡を使用し、8点の平均値として算出した。 仕上焼鈍材の鋼板について、圧延方向における金属組織観察を行った。透過型電子顕微鏡を用いて、MX系析出物およびMX系析出物のサイズを調べ、観察される10nm以上、100nm以下の析出物の数を求めた。1つの試料につき少なくとも20視野の観察を行い、100μmあたりの析出物の数に換算した。 A circular test piece having a diameter of 50 mm is cut out from each stainless steel strip, a circular opening having an inner diameter of 32 mm is formed in the center of the test piece, and a bead having a width of 3 mm and a height of 0.5 mm is formed around the opening by pressing a metal gasket (see FIG. 1) was produced. The processability at room temperature was evaluated by the presence or absence of cracks during bead molding. Those with no processing cracks were evaluated as good (O), and those with processing cracks were evaluated as x. In addition, about the steel in which the work crack generate | occur | produced at the time of bead forming, the forming height was 0.45 mm. Subsequently, the bead height was pressed with a jig so as to be 0.4 mm, held at 700 ° C. for 100 hours, and then gradually cooled to room temperature. About the test piece after slow cooling, the residual bead height at room temperature was measured. In addition, the focus bead microscope was used for the measurement of residual bead height, and it computed as an average value of 8 points | pieces. The steel structure of the finish annealed material was observed for the metal structure in the rolling direction. Using a transmission electron microscope, the sizes of the MX-based precipitates and the M 2 X-based precipitates were examined, and the number of observed precipitates of 10 nm or more and 100 nm or less was determined. At least 20 fields of view were observed for one sample, and converted into the number of precipitates per 100 μm 2 .

表2の測定結果にみられるように、鋼種No.1〜11(本発明例)では0.5mmのビード加工が可能であるとともに700℃×100時間加熱後に室温での残存ビード高さが0.150mm以上であり、メタルガスケットに要求される残存ビード高さを備えていた。他方、比較鋼No.12〜16(比較例)では、何れも残存ビード高さが0.150mm未満であり、メタルガスケットとしての性能上に問題があった。残存ビード高さが低い理由には、次のような原因が考えられる。
比較鋼No.12は、図2の透過型電子顕微鏡による観察結果に見られるように、加熱保持中に巨大な粒界炭化物が析出したため時効硬化能が低下し、残存ビード高さが十分でない。比較鋼No.13.14は、加熱される温度がマルテンサイト相の分解温度に相当するため著しく軟化し、残存ビード高さが低くなった。比較鋼No.15、16は過剰量のNを含有していることから、ビード成形時に加工割れが生じるとともに、700℃の加熱評価においても加工誘起マルテンサイトが高温保持中に焼戻しされたため、残存ビード高さが低くなった。
As seen in the measurement results in Table 2, the steel type No. 1 to 11 (examples of the present invention), 0.5 mm bead processing is possible, and the residual bead height at room temperature after heating at 700 ° C. for 100 hours is 0.150 mm or more. Had a height. On the other hand, Comparative Steel No. In Nos. 12 to 16 (comparative examples), the remaining bead height was less than 0.150 mm, and there was a problem in performance as a metal gasket. The reason why the remaining bead height is low can be considered as follows.
Comparative steel No. As can be seen from the observation result of the transmission electron microscope of FIG. 2, the age-hardening ability is lowered due to the precipitation of huge grain boundary carbides during heating and holding, and the residual bead height is not sufficient. Comparative steel No. In 13.14, the heating temperature was equivalent to the decomposition temperature of the martensite phase, so that it was remarkably softened and the residual bead height was lowered. Comparative steel No. 15 and 16 contain an excessive amount of N, so that processing cracks occur during bead molding, and the processing-induced martensite was tempered while being held at a high temperature even in a 700 ° C. heating evaluation. It became low.

また、排ガスの凝縮水に対する耐食性すなわち鋭敏化特性を評価した。なお、評価はJISG0575「ステンレス鋼の硫酸・硫酸銅腐食試験方法」にて行い、加工割れ無のものを良好(○)とし、加工割れ有のものを×とした。 Moreover, the corrosion resistance with respect to the condensed water of exhaust gas, ie, the sensitization characteristic, was evaluated. The evaluation was performed according to JISG0575 “Sulfuric acid / copper sulfate corrosion test method for stainless steel”.

表2の試験結果にみられるように、鋭敏化特性改善を目的にC量を低減させた鋼種No.1〜11(本発明例)および鋼種No.14,15(比較例)では鋭敏化特性は壊れるが、鋼種No.12,13および鋼種No.16は本発明範囲を超えるC量を有し、C固定元素がC量に見合う量だけ十分に添加されていないために鋭敏化特性が著しく劣った。   As can be seen from the test results in Table 2, the steel type No. with the C content reduced for the purpose of improving the sensitization characteristics. 1 to 11 (examples of the present invention) and steel types No. 14 and 15 (comparative example), the sensitization characteristics are broken, but the steel grade no. 12, 13 and steel type no. No. 16 has a C amount exceeding the range of the present invention, and the C-fixing element was not sufficiently added in an amount commensurate with the C amount.

この対比から明らかなように、C量を低減したオーステナイト系ステンレス鋼であっても、非常に安定した微細な析出物の生成により、形状凍結性に優れ、長期間にわたって気密性を維持するメタルガスケットが得られることが確認された。   As is clear from this comparison, even with austenitic stainless steel with a reduced amount of C, a metal gasket that has excellent shape freezing properties and maintains hermeticity over a long period of time by generating very stable fine precipitates. It was confirmed that

以上説明したように、本発明のオーステナイト系ステンレス鋼は、メタルガスケットに要求される500〜800℃の高温環境での耐へたり性に優れている。また、このオーステナイト系ステンレス鋼をエギゾーストマニホールド、インテークマニホールド等の低温用メタルガスケットとして自動車用エンジンに組み込むと、周辺機器の寿命やエンジン自体の性能が向上する。また、エンジン用ガスケットの他に、自動車排ガス部品、自動車排気管の振動遮断用継手に使用されるボールジョイント部に組み込まれる弾性ガスケットにも使用できる。

As described above, the austenitic stainless steel of the present invention is excellent in sag resistance in a high temperature environment of 500 to 800 ° C. required for a metal gasket. In addition, when this austenitic stainless steel is incorporated in an automobile engine as a low-temperature metal gasket such as an exhaust manifold or an intake manifold, the life of peripheral devices and the performance of the engine itself are improved. In addition to engine gaskets, the present invention can also be used for elastic gaskets incorporated in ball joint parts used in automobile exhaust parts and vibration isolation joints for automobile exhaust pipes.

Claims (3)

C:0.03質量%以下、Si:1.5〜5.0質量%、Mn:2.5質量%以下、Ni:7.0〜17.0質量%、Cr:13.0〜23.0質量%、N:0.20質量%以下を含み、残部がFeおよび不可避的不純物からなり、700℃、100h加熱後に100nm以下のMC系析出物が100μmに200個以上存在することを特徴とするメタルガスケット用耐熱オーステナイト系ステンレス鋼。 C: 0.03 mass% or less, Si: 1.5-5.0 mass%, Mn: 2.5 mass% or less, Ni: 7.0-17.0 mass%, Cr: 13.0-23. 0% by mass, N: 0.20% by mass or less, with the balance being Fe and inevitable impurities, and after heating at 700 ° C. for 100 hours, there are 200 or more MC-based precipitates of 100 nm or less in 100 μm 2 Heat resistant austenitic stainless steel for metal gaskets. 請求項1に加えて、さらにMo:3.0質量%以下、Cu:1.5質量%未満、Nb:0.8質量%以下、Ti:0.5質量%以下、V:1.0質量%以下、B:0.020質量%以下の1種以上を含む請求項1記載のメタルガスケット用耐熱オーステナイト系ステンレス鋼。   In addition to claim 1, Mo: 3.0 mass% or less, Cu: less than 1.5 mass%, Nb: 0.8 mass% or less, Ti: 0.5 mass% or less, V: 1.0 mass % Heat-resistant austenitic stainless steel for metal gaskets according to claim 1, comprising at least one of B% and below, and B: 0.020 mass%. さらにAl:0.2質量%以下、REM(希土類元素):0.2質量%以下Y:0.2質量%以下、Ca:0.1質量%以下、Mg:0.1質量%以下の1種又は2種以上を含む請求項1または2に記載のメタルガスケット用耐熱オーステナイト系ステンレス鋼。

Further, Al: 0.2% by mass or less, REM (rare earth element): 0.2% by mass or less Y: 0.2% by mass or less, Ca: 0.1% by mass or less, Mg: 0.1% by mass or less 1 The heat-resistant austenitic stainless steel for metal gaskets according to claim 1 or 2, comprising seeds or two or more kinds.

JP2013067982A 2013-03-28 2013-03-28 Manufacturing method of heat-resistant austenitic stainless steel for metal gasket Active JP6296435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067982A JP6296435B2 (en) 2013-03-28 2013-03-28 Manufacturing method of heat-resistant austenitic stainless steel for metal gasket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067982A JP6296435B2 (en) 2013-03-28 2013-03-28 Manufacturing method of heat-resistant austenitic stainless steel for metal gasket

Publications (2)

Publication Number Publication Date
JP2014189863A true JP2014189863A (en) 2014-10-06
JP6296435B2 JP6296435B2 (en) 2018-03-20

Family

ID=51836434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067982A Active JP6296435B2 (en) 2013-03-28 2013-03-28 Manufacturing method of heat-resistant austenitic stainless steel for metal gasket

Country Status (1)

Country Link
JP (1) JP6296435B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014242A (en) * 2013-07-04 2015-01-22 本田技研工業株式会社 Gasket
WO2015151771A1 (en) * 2014-04-02 2015-10-08 日新製鋼株式会社 Austenitic stainless-steel sheet for gasket, and gasket
JP2016204714A (en) * 2015-04-24 2016-12-08 新日鐵住金ステンレス株式会社 Stainless steel for automobile exhaust system component fastening component

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272132A (en) * 1991-02-28 1992-09-28 Nippon Stainless Steel Co Ltd Production of austenitic stainless steel having satisfactory workability
JPH073405A (en) * 1993-06-21 1995-01-06 Daido Steel Co Ltd Stainless steel for gasket and production thereof
JPH08218157A (en) * 1995-02-10 1996-08-27 Nippon Steel Corp Metal gasket excellent in durability and its production
JPH08218194A (en) * 1995-02-10 1996-08-27 Nippon Steel Corp Metallic gasket excellent in durability and its manufacture
JPH08311602A (en) * 1995-05-11 1996-11-26 Sumitomo Metal Ind Ltd Austenitic steel excellent in high temperature salt damage corrosion resistance, workability and weldability
JP2001059141A (en) * 1999-08-18 2001-03-06 Sumitomo Metal Ind Ltd Austenitic stainless steel and automotive exhaust system paprts
JP2003105502A (en) * 2001-09-25 2003-04-09 Nisshin Steel Co Ltd Stainless steel for metal gasket having excellent high temperature setting resistance, and metal gasket
JP2010509073A (en) * 2006-11-14 2010-03-25 ダニエリ アンド シー.オフィチネ メッカニチェ ソシエタ ペル アチオニ Annealing and pickling methods
JP2010202936A (en) * 2009-03-04 2010-09-16 Nisshin Steel Co Ltd Austenitic stainless steel for heat-resistant member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272132A (en) * 1991-02-28 1992-09-28 Nippon Stainless Steel Co Ltd Production of austenitic stainless steel having satisfactory workability
JPH073405A (en) * 1993-06-21 1995-01-06 Daido Steel Co Ltd Stainless steel for gasket and production thereof
JPH08218157A (en) * 1995-02-10 1996-08-27 Nippon Steel Corp Metal gasket excellent in durability and its production
JPH08218194A (en) * 1995-02-10 1996-08-27 Nippon Steel Corp Metallic gasket excellent in durability and its manufacture
JPH08311602A (en) * 1995-05-11 1996-11-26 Sumitomo Metal Ind Ltd Austenitic steel excellent in high temperature salt damage corrosion resistance, workability and weldability
JP2001059141A (en) * 1999-08-18 2001-03-06 Sumitomo Metal Ind Ltd Austenitic stainless steel and automotive exhaust system paprts
JP2003105502A (en) * 2001-09-25 2003-04-09 Nisshin Steel Co Ltd Stainless steel for metal gasket having excellent high temperature setting resistance, and metal gasket
JP2010509073A (en) * 2006-11-14 2010-03-25 ダニエリ アンド シー.オフィチネ メッカニチェ ソシエタ ペル アチオニ Annealing and pickling methods
JP2010202936A (en) * 2009-03-04 2010-09-16 Nisshin Steel Co Ltd Austenitic stainless steel for heat-resistant member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014242A (en) * 2013-07-04 2015-01-22 本田技研工業株式会社 Gasket
WO2015151771A1 (en) * 2014-04-02 2015-10-08 日新製鋼株式会社 Austenitic stainless-steel sheet for gasket, and gasket
JP2015196889A (en) * 2014-04-02 2015-11-09 日新製鋼株式会社 Austenitic stainless steel sheet for gasket and the gasket
US10161524B2 (en) 2014-04-02 2018-12-25 Nisshin Steel Co., Ltd. Austenitic stainless steel sheet for gasket, and gasket
JP2016204714A (en) * 2015-04-24 2016-12-08 新日鐵住金ステンレス株式会社 Stainless steel for automobile exhaust system component fastening component

Also Published As

Publication number Publication date
JP6296435B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
CN107075629B (en) Austenitic stainless steel sheet
JP6029611B2 (en) Austenitic stainless steel sheet and gasket for gasket
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
JP5717359B2 (en) Heat-resistant austenitic stainless steel for metal gaskets
JP6226111B1 (en) Martensitic stainless steel sheet
JP6744740B2 (en) Ferritic stainless steel plate for exhaust manifold
JP6296435B2 (en) Manufacturing method of heat-resistant austenitic stainless steel for metal gasket
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP2003082441A (en) High strength austenitic stainless steel for metal gasket
JP5239089B2 (en) Steel with excellent corrosion resistance against sulfuric acid and method for producing the same
JP5239642B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP2011236465A (en) Austenitic stainless steel, stainless steel product and method of manufacturing the same
JP6083567B2 (en) Ferritic stainless steel with excellent oxidation resistance and high temperature creep strength
JP2014218687A (en) HIGH Mn AUSTENITIC STAINLESS STEEL AND METHOD FOR PRODUCING THE SAME
JP5239645B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP5417764B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
JP6690499B2 (en) Austenitic stainless steel sheet and method for producing the same
JP2016176120A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL EXCELLENT IN HIGH TEMPERATURE CREEP PROPERTY
JP2002241903A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP5239644B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness
JP2012107314A (en) Ferritic stainless steel excellent in thermal fatigue characteristics and high temperature fatigue characteristics
JP2018188686A (en) Alloy original sheet for heat-resistant member, alloy sheet for heat-resistant member, and gasket for exhaust system member of engine
JP5239643B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and workability
JP6720828B2 (en) Austenitic stainless steel sheet and method for producing the same
JP2007113068A (en) Spring material made of high strength and high corrosion resistant stainless steel having excellent bendability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180213

R150 Certificate of patent or registration of utility model

Ref document number: 6296435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250