JP2011236465A - Austenitic stainless steel, stainless steel product and method of manufacturing the same - Google Patents

Austenitic stainless steel, stainless steel product and method of manufacturing the same Download PDF

Info

Publication number
JP2011236465A
JP2011236465A JP2010108475A JP2010108475A JP2011236465A JP 2011236465 A JP2011236465 A JP 2011236465A JP 2010108475 A JP2010108475 A JP 2010108475A JP 2010108475 A JP2010108475 A JP 2010108475A JP 2011236465 A JP2011236465 A JP 2011236465A
Authority
JP
Japan
Prior art keywords
stainless steel
less
austenitic stainless
heat treatment
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010108475A
Other languages
Japanese (ja)
Other versions
JP5464037B2 (en
Inventor
Kazuhiko Adachi
和彦 安達
Akira Seki
彰 関
Yoshitaka Nishiyama
佳孝 西山
Kazuyoshi Fujisawa
一芳 藤澤
Yuichi Fukumura
雄一 福村
Masayuki Shibuya
将行 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2010108475A priority Critical patent/JP5464037B2/en
Publication of JP2011236465A publication Critical patent/JP2011236465A/en
Application granted granted Critical
Publication of JP5464037B2 publication Critical patent/JP5464037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide austenitic stainless steel which has oxidation resistance property and high-temperature strength, facilitates manufacturing of raw materials and processing to products by forming and welding, can be used for a large range of fields and exhibits excellent economy.SOLUTION: The austenite stainless steel has a chemical composition including: 0.05-0.20% ofC, less than 1.0% of Si, 2.0% or less of Mn, 0.04% or less of P, 0.01% or less of S, 20.0-30.0% of Cr, 10.0-15.0% of Ni, 0.10-0.42% of N, 0.0010-0.01% of B, 0.01-0.10% of La+Ce, 0.01-0.20% of sol.Al, Fe for balance and impurities. The C concentration at a surface layer in the thickness direction is higher than that at the center in the thickness direction by 0.03% or more, and/or the N concentration at the surface layer in the thickness direction is higher than that at the center in the thickness direction by 0.03% or more.

Description

本発明は、オーステナイト系ステンレス鋼、ステンレス鋼製品およびそれらの製造方法に関し、具体的には、高温環境での使用に際して優れた耐熱性、具体的には耐酸化性および高温強度を有し、容易に製造、加工することができるオーステナイト系ステンレス鋼、ステンレス鋼製品およびそれらの製造方法に関する。   The present invention relates to austenitic stainless steel, stainless steel products, and methods for producing them, and more specifically, has excellent heat resistance when used in a high temperature environment, specifically oxidation resistance and high temperature strength, and is easy to use. The present invention relates to an austenitic stainless steel, a stainless steel product, and a manufacturing method thereof.

近年、地球環境の問題より各種排出ガス中のNOx、SOx、CO等の有害ガスの濃度低減が強く望まれている。また、効率的なエネルギーの利用が強調され、自動車では燃費の改善が推進されている。 In recent years, it has been strongly desired to reduce the concentration of harmful gases such as NOx, SOx, and CO 2 in various exhaust gases due to global environmental problems. Efficient use of energy is emphasized, and improvements in fuel efficiency are being promoted in automobiles.

これらの環境問題への取り組みは、発電、化学、鉄鋼、自動車および家電機器等を含めた多くの産業分野において、同様に行われている。このため、発電、鉄鋼、化学の分野では、より高温での操業が指向され、自動車のエンジンではより高温かつ高圧での燃焼が指向されている。   These environmental issues are similarly addressed in many industrial fields including power generation, chemistry, steel, automobiles and home appliances. For this reason, operations at higher temperatures are directed in the fields of power generation, steel, and chemistry, and combustion at higher temperatures and pressures are directed at automobile engines.

従来より、高温用途にはオーステナイト系ステンレス鋼が多用されてきた。例えば、SUS304に代表される18Cr−8Ni系ステンレス鋼、SUS310Sを代表とする25Cr−20Ni系ステンレス鋼、Alloy800として知られる20Cr−32N系の高Cr−高Ni鋼が広く知られている。   Conventionally, austenitic stainless steel has been frequently used for high temperature applications. For example, 18Cr-8Ni series stainless steel represented by SUS304, 25Cr-20Ni series stainless steel represented by SUS310S, and 20Cr-32N series high Cr-high Ni steel known as Alloy 800 are widely known.

また、高Si化によって高温での耐酸化性を向上させたステンレス鋼として、AISI302B、JISXM15J1、AISI314鋼等も知られている。これら以外にも、特許文献1〜19には、高温用途の材料が開示されている。   Further, AISI302B, JISXM15J1, AISI314 steel, and the like are also known as stainless steels that have improved oxidation resistance at high temperatures by increasing the Si content. In addition to these, Patent Documents 1 to 19 disclose materials for high-temperature applications.

しかし、18Cr−8Ni系ステンレス鋼は、素材や製品の加工性や経済性に優れた材料であるものの、高温強度および耐酸化性がともに不十分である。また、高Cr−高Ni鋼および高Si鋼は、耐酸化性に優れるものの、高温強度が不十分である。さらに、高Ni鋼は、希少な金属に分類されるNiを多量に含有することから、コストが嵩む。   However, although 18Cr-8Ni series stainless steel is a material excellent in workability and economy of raw materials and products, both high-temperature strength and oxidation resistance are insufficient. Moreover, although high Cr-high Ni steel and high Si steel are excellent in oxidation resistance, the high temperature strength is insufficient. Further, the high Ni steel contains a large amount of Ni that is classified as a rare metal, so that the cost increases.

このため、自動車を中心として、高価なNiを殆ど含有しないことから安価なフェライト系ステンレス鋼を耐熱用途へ適用することも多数検討されている。フェライト系ステンレス鋼は、熱膨張係数がオーステナイト系ステンレス鋼に比べて小さいために、加熱および冷却の繰り返しに対して酸化物の剥離が起こり難く、素材の酸化が遅れるために耐酸化性に優れる。このようなフェライト系ステンレス鋼は、例えば特許文献20〜27により開示されている。   For this reason, many automobiles have been studied to apply inexpensive ferritic stainless steel to heat-resistant applications because they contain almost no expensive Ni. Since the ferritic stainless steel has a smaller thermal expansion coefficient than the austenitic stainless steel, the exfoliation of the oxide hardly occurs due to repeated heating and cooling, and the oxidation of the material is delayed, so that the oxidation resistance is excellent. Such ferritic stainless steel is disclosed in Patent Documents 20 to 27, for example.

しかし、フェライト系ステンレス鋼は、軟化温度がオーステナイト系ステンレス鋼の軟化温度に比べて一般に低いため、高温強度が劣る。
そこで、特許文献28、29をはじめ特許文献30〜32には、有効な強化元素であるC、Nの含有量を高めることにより優れた高温強度および耐酸化性を有する材料が開示されている。
However, since ferritic stainless steel generally has a softening temperature lower than that of austenitic stainless steel, the high temperature strength is inferior.
Therefore, Patent Documents 28 and 29 and Patent Documents 30 to 32 disclose materials having excellent high-temperature strength and oxidation resistance by increasing the contents of C and N, which are effective strengthening elements.

特に、特許文献28には、C:0.05〜0.15%(本明細書では特に断りがない限り化学組成に関する「%」は「質量%」を意味する。)、Si:1.0%未満、Mn:2.0%以下、P:0.04%以下、S:0.01%以下、Cr:20〜30%、Ni:10〜15%、N:0.10〜0.30%、B:0.0010〜0.01%、La+Ce:0.01〜0.10%、Al:0.01〜0.20%、残部実質的にFeおよび不可避的不純物より成り、Niバランス値{=%Ni+0.5×%Mn+30×(%C+%N)−1.1×(%Cr+1.5×%Si)+8.2}が−1.0%〜+3.0%の範囲にある鋼組成を有する、溶接性に優れた高温用オーステナイト系ステンレス鋼が開示されている。   In particular, in Patent Document 28, C: 0.05 to 0.15% (in this specification, “%” relating to chemical composition means “mass%” unless otherwise specified), Si: 1.0 %: Mn: 2.0% or less, P: 0.04% or less, S: 0.01% or less, Cr: 20-30%, Ni: 10-15%, N: 0.10-0.30 %, B: 0.0010 to 0.01%, La + Ce: 0.01 to 0.10%, Al: 0.01 to 0.20%, the balance substantially consisting of Fe and inevitable impurities, Ni balance value Steel with {=% Ni + 0.5 ×% Mn + 30 × (% C +% N) −1.1 × (% Cr + 1.5 ×% Si) +8.2} in the range of −1.0% to + 3.0% An austenitic stainless steel for high temperature having a composition and excellent weldability is disclosed.

また、特許文献29には、C:0.100%以下、Si:1.50〜4.00%、Mn:2.00%以下、Cu:0.05〜2.00%、P:0.0040%以下、S:0.0100%以下、Cr:15.0〜30.0%、Ni:8.0〜15.0%、N:0.15〜0.30%、B:0.001〜0.010%、CaおよびY、La、Ce等希土類の元素の1種もしくは2種以上を合計で0.01〜0.10%、Al:0.01〜0.10%、残部実質的にFeより成り、Niバランス値{=%Ni+0.5×(%Mn+%Cu)+30×(%Cr+%N)−1.1×(%Cr+1.5×%Si)+8.2}が−1.00%〜+2.00%の範囲にある、溶接性に優れた高温用オーステナイト系ステンレス鋼に係る発明が開示されている
特許文献28、29により開示されたオーステナイト系ステンレス鋼は、REM(Rare Earth Metal)、具体的にはLaおよびCeの添加によってCrを含む酸化物の成長および剥離を抑制し、これにより、耐酸化性を大幅に向上させるものである。
In Patent Document 29, C: 0.100% or less, Si: 1.50 to 4.00%, Mn: 2.00% or less, Cu: 0.05 to 2.00%, P: 0.00. 0040% or less, S: 0.0100% or less, Cr: 15.0 to 30.0%, Ni: 8.0 to 15.0%, N: 0.15 to 0.30%, B: 0.001 ~ 0.010%, total of one or more rare earth elements such as Ca and Y, La, Ce, etc., 0.01-0.10%, Al: 0.01-0.10%, the balance being substantially And Ni balance value {=% Ni + 0.5 × (% Mn +% Cu) + 30 × (% Cr +% N) −1.1 × (% Cr + 1.5 ×% Si) +8.2} is −1 An invention relating to high temperature austenitic stainless steel with excellent weldability in the range of 0.000% to + 2.00% is disclosed Patent The austenitic stainless steel disclosed in pp. 28 and 29 suppresses the growth and exfoliation of oxides containing Cr by adding REM (Rare Earth Metal), specifically, La and Ce, thereby improving the oxidation resistance. Is greatly improved.

しかし、C、Nの多量の含有は、多量かつ粗大な化合物を析出させ、熱間加工性を著しく劣化させる。C、Nを過剰に含有すると、鋼板、鋼管、棒鋼等の製造も困難にある。また、REM添加鋼は、耐酸化性の改善のために添加される活性なREMが、多量に含有されるC、Nと反応し、溶製時に粗大な化合物を形成し、耐酸化性の改善に充分な効果を示さないばかりか、成形性も劣化する。   However, when a large amount of C and N is contained, a large amount and a coarse compound are precipitated, and the hot workability is remarkably deteriorated. When C and N are contained excessively, it is difficult to produce steel plates, steel pipes, steel bars and the like. In addition, REM-added steel has an active REM added to improve oxidation resistance, reacts with a large amount of C and N, and forms coarse compounds during melting, improving oxidation resistance. In addition to exhibiting a sufficient effect, the moldability also deteriorates.

他方、特許文献33〜38には、溶製時の成分調整によるのではなく、熱処理でのC、Nの吸収を活用することが開示されている。これらは、全てNの吸収を活用するものである。特許文献34〜36には、Nの固溶によって耐食性、時期割れおよび加工性を改善することが開示され、特許文献37には、Nの固溶と析出の活用により強度と延性の関係を改善することが開示され、さらに、特許文献38には、析出物の活用により表面での電気抵抗を改善することが開示されている。しかし、特許文献33〜38には、熱処理でのC、Nの吸収と高温特性との関係は、何も開示されていない。   On the other hand, Patent Documents 33 to 38 disclose that the absorption of C and N in heat treatment is utilized instead of adjusting the components during melting. These all make use of N absorption. Patent Documents 34 to 36 disclose that corrosion resistance, time cracking, and workability are improved by solid solution of N, and Patent Document 37 improves the relationship between strength and ductility by utilizing solid solution and precipitation of N. Furthermore, Patent Document 38 discloses that the electrical resistance at the surface is improved by utilizing precipitates. However, Patent Documents 33 to 38 disclose nothing about the relationship between the absorption of C and N in the heat treatment and the high temperature characteristics.

特許文献39には、フェライト系ステンレス鋼に関して、窒素化合物の分散により高温強度を従来のオーステナイト系ステンレス鋼と同等程度に改善させることが開示されている。しかし、フェライト系ステンレス鋼は、窒素固溶量が小さいために窒素の固溶強化を有効に活用するものではなく、今後要求される、さらなる高温高圧での燃焼に応えることはできない。   Patent Document 39 discloses that ferritic stainless steel improves high-temperature strength to the same level as conventional austenitic stainless steel by dispersing nitrogen compounds. However, since ferritic stainless steel has a small amount of nitrogen solid solution, it does not effectively utilize the solid solution strengthening of nitrogen, and cannot respond to combustion at higher temperatures and pressures required in the future.

特公昭56−17424号公報Japanese Patent Publication No. 56-17424 特公昭57−54543号公報Japanese Patent Publication No.57-54543 特公昭58−2268号公報Japanese Patent Publication No.58-2268 特公平7−65146号公報Japanese Examined Patent Publication No. 7-65146 特許第964343号明細書Japanese Patent No. 964343 特許第995704号明細書Japanese Patent No. 997044 特許第1015087号明細書Japanese Patent No. 1015087 特許第1112852号明細書Japanese Patent No. 1112852 特許第1163812号明細書Japanese Patent No. 1163812 特許第1167015号明細書Japanese Patent No. 1167015 特許第1173831号明細書Japanese Patent No. 1173831 特許第1209802号明細書Japanese Patent No. 1209802 特許第1534248号明細書Japanese Patent No. 1534248 特許第1612110号明細書Japanese Patent No. 1612110 特開昭52−4418号公報Japanese Patent Laid-Open No. 52-4418 特開昭60−92454号公報JP-A-60-92454 特開昭63−69950号公報JP 63-69950 A 特開昭63−69951号公報JP-A-63-69951 特開昭63−157840号公報JP-A 63-157840 特開平6−088168号公報JP-A-6-088168 特開平7−011394号公報JP-A-7-011394 特開平8−260110号公報JP-A-8-260110 特開平11−256287号公報JP-A-11-256287 特開2004−218013号公報JP 2004-218013 A 特開2006−037176号公報JP 2006-037176 A 特開2006−117985号公報JP 2006-117985 A 特開2008−144199号公報JP 2008-144199 A 特許第2970432号明細書Japanese Patent No. 2970432 特許第3381457号明細書Japanese Patent No. 3381457 特開平8−319541号公報JP-A-8-319541 特開2004−250783号公報JP 2004-250783 A 特開2009−084606号公報JP 2009-084606 A 特公昭58−54186号公報Japanese Patent Publication No.58-54186 特許第4239718号明細書Japanese Patent No. 4239718 特許第4360136号明細書Japanese Patent No. 4360136 特許第4378773号明細書Japanese Patent No. 4378773 Specification 特開2007−70696号公報JP 2007-70696 A 特開2010−49980号公報JP 2010-49980 A 特公昭58−54186号公報Japanese Patent Publication No.58-54186

本発明の目的は、従来の技術が有する前述の課題を解決し、さらに過酷になる高温での使用環境に耐えることができる優れた耐熱性、具体的には耐酸化性と高温強度を有した上で、製造および加工が容易であり、広範な産業分野で使用できる優れた経済性をも兼ね備えるオーステナイト系ステンレス鋼、およびこのオーステナイト系ステンレス鋼からなる鋼製品と、これらを工業的に安定的に製造する製造方法とを提供することである。   The object of the present invention was to solve the above-mentioned problems of the prior art and to have excellent heat resistance, specifically oxidation resistance and high temperature strength capable of withstanding the severe use environment at high temperature. Above, austenitic stainless steel that is easy to manufacture and process, and has excellent economy that can be used in a wide range of industrial fields, and steel products made of this austenitic stainless steel, and industrially stable these It is providing the manufacturing method to manufacture.

本発明は、C:0.05〜0.20%、Si:1.0%未満、Mn:2.0%以下、P:0.04%以下、S:0.01%以下、Cr:20.0〜30.0%、Ni:10.0〜15.0%、N:0.10〜0.42%、B:0.0010〜0.01%、La+Ce:0.01〜0.10%、sol.Al:0.01〜0.20%、残部Feおよび不純物からなる化学組成を有し、厚さ方向の表層におけるC濃度が厚さ方向の中心におけるC濃度よりも0.03%以上高いこと、および/または、厚さ方向の表層におけるN濃度が厚さ方向の中心におけるN濃度よりも0.03%以上高いことを特徴とするオーステナイト系ステンレス鋼である。   In the present invention, C: 0.05 to 0.20%, Si: less than 1.0%, Mn: 2.0% or less, P: 0.04% or less, S: 0.01% or less, Cr: 20 0.0 to 30.0%, Ni: 10.0 to 15.0%, N: 0.10 to 0.42%, B: 0.0010 to 0.01%, La + Ce: 0.01 to 0.10 %, Sol. Al: 0.01 to 0.20%, having a chemical composition consisting of the balance Fe and impurities, the C concentration in the surface layer in the thickness direction being 0.03% or more higher than the C concentration in the center in the thickness direction, And / or an austenitic stainless steel characterized in that the N concentration in the surface layer in the thickness direction is 0.03% or more higher than the N concentration in the center in the thickness direction.

この本発明に係るオーステナイト系ステンレス鋼は、さらに、LaまたはCeを含む化合物のうち最大径が20μm以上である化合物の内在量が質量5g当たり30個以下であることが好ましい。   In the austenitic stainless steel according to the present invention, it is preferable that the amount of compounds having a maximum diameter of 20 μm or more among compounds containing La or Ce is 30 or less per 5 g of mass.

別の観点からは、本発明は、上述した本発明に係るオーステナイト系ステンレス鋼からなることを特徴とするステンレス鋼製品である。このステンレス鋼製品として、ボイラーの加熱器管、再加熱器管、化学工業用の反応炉管、自動車のエキゾーストマニホールド、フロントセンターパイプ、フレキシブルチューブ、ガスケット、調理機器等のヒーター、さらには交換器等が例示される。   From another point of view, the present invention is a stainless steel product comprising the austenitic stainless steel according to the present invention described above. These stainless steel products include boiler heater tubes, reheater tubes, reaction furnace tubes for the chemical industry, automobile exhaust manifolds, front center pipes, flexible tubes, gaskets, heaters for cooking equipment, and exchangers. Illustrated.

別の観点からは、本発明は、上述した化学組成を有する素材に、熱間加工および冷間加工を行った後に熱処理を1回以上繰り返して行うことによりオーステナイト系ステンレス鋼を製造する方法であって、少なくとも最終工程の熱処理を、Cおよび/またはNを含み、露点が−30℃未満である雰囲気で、900℃超で行うことを特徴とするオーステナイト系ステンレス鋼の製造方法である。   From another point of view, the present invention is a method for producing austenitic stainless steel by repeatedly performing a heat treatment on a material having the above-described chemical composition after performing hot working and cold working one or more times. The austenitic stainless steel manufacturing method is characterized in that at least the final heat treatment is performed at over 900 ° C. in an atmosphere containing C and / or N and having a dew point of less than −30 ° C.

この本発明に係る製造方法では、最終工程の熱処理を行う前に、表面酸化被膜除去処理を行うことが好ましい。
さらに別の観点からは、本発明は、上述した本発明に係る製造方法により製造されたオーステナイト系ステンレス鋼に、加工および/または熱処理を行うことを特徴とするステンレス鋼製品の製造方法である。
In the manufacturing method according to the present invention, it is preferable to perform the surface oxide film removal treatment before the heat treatment in the final step.
From still another aspect, the present invention is a method for producing a stainless steel product, characterized in that processing and / or heat treatment is performed on the austenitic stainless steel produced by the production method according to the present invention described above.

本発明によれば、過酷になる高温での使用環境に耐える優れた耐熱性、具体的には耐酸化性と高温強度を有した上で、素材の製造および製品への成形、溶接による加工が容易であり、広範な分野での使用に耐える優れた経済性を兼ね備えるオーステナイト系ステンレス鋼を、工業的に安定して供給することができるようになる。   According to the present invention, it has excellent heat resistance that can withstand the use environment at severe temperatures, specifically oxidation resistance and high temperature strength, and can also be used for material production, product shaping, and processing by welding. Austenitic stainless steel that is easy and has excellent economy that can be used in a wide range of fields can be supplied industrially and stably.

以下、本発明を実施するための形態を説明する。
はじめに、本発明に係るオーステナイト系ステンレス鋼の化学組成の限定理由を説明する。なお、本発明に係るオーステナイト系ステンレス鋼の組成は、上述した特許文献28により開示された高温用オーステナイト系ステンレス鋼の化学組成に基本的に準じており、略述するとC、Nの上限値のみが上昇したものである。
Hereinafter, modes for carrying out the present invention will be described.
First, the reasons for limiting the chemical composition of the austenitic stainless steel according to the present invention will be described. In addition, the composition of the austenitic stainless steel according to the present invention basically conforms to the chemical composition of the high temperature austenitic stainless steel disclosed in Patent Document 28 described above. Is a rise.

[C:0.05〜0.20%]
Cは、オーステナイト組織を安定化させるとともに、有効な強化元素である。C含有量が0.05%未満ではこの効果を充分に得られない。他方、C含有量が0.20%を超えると、後述する最終工程の熱処理および使用環境への加熱後の冷却時に、材料の表面における粒界に粗大な塊状炭化物が析出し、耐熱性および加工性がともに劣化する可能性が高くなり、この場合、ステンレス鋼の最大特徴である耐食性の劣化も避けられない。このため、C含有量は0.05%以上0.20%以下とする。C含有量は、0.18%以下であることが好ましい。なお、本発明では、C含有量は、溶解時に調整されるだけではなく、上記最終工程での熱処理によっても調整されるが、この最終工程での熱処理の前におけるC含有量は、前述のように低い方が望ましく、素材の熱間加工性等を勘案して、溶解時には0.15%以下に調整しておくことが好ましい。
[C: 0.05-0.20%]
C stabilizes the austenite structure and is an effective strengthening element. If the C content is less than 0.05%, this effect cannot be sufficiently obtained. On the other hand, if the C content exceeds 0.20%, coarse massive carbides precipitate at the grain boundaries on the surface of the material during the heat treatment in the final step described later and cooling after heating to the environment of use, and heat resistance and processing In this case, the deterioration of corrosion resistance, which is the greatest feature of stainless steel, is unavoidable. For this reason, C content shall be 0.05% or more and 0.20% or less. The C content is preferably 0.18% or less. In the present invention, the C content is adjusted not only at the time of dissolution but also by the heat treatment in the final step, but the C content before the heat treatment in the final step is as described above. In view of the hot workability of the material, it is preferable to adjust to 0.15% or less during melting.

[Si:1.0%未満]
Siは、溶解時の脱酸元素であるが、Si含有量の増加によって後述する最終工程での熱処理におけるC、Nの吸収が抑制されると考えられ、オーステナイト組織の安定度を低下させる。そこで、Si含有量は1.0%未満とする。好ましくは、0.4%未満である。
[Si: less than 1.0%]
Although Si is a deoxidizing element at the time of dissolution, it is considered that the absorption of C and N in the heat treatment in the final process described later is suppressed by the increase of the Si content, and the stability of the austenite structure is lowered. Therefore, the Si content is less than 1.0%. Preferably, it is less than 0.4%.

[Mn:2.0%以下]
Mnは、Siと同様に脱酸元素であるが、オーステナイト組織を安定化させる。ただし、過度に含有すると、耐酸化性を劣化させる。このため、Mn含有量は2.0%以下とする。Mn含有量は、好ましくは1.0%以下であり、さらに好ましくは、0.5%以下である。
[Mn: 2.0% or less]
Mn is a deoxidizing element like Si, but stabilizes the austenite structure. However, when it contains excessively, oxidation resistance will be degraded. For this reason, Mn content shall be 2.0% or less. The Mn content is preferably 1.0% or less, and more preferably 0.5% or less.

[P:0.04%以下]
P含有量は、高温強度を確保するために少ない方が望ましく、製造性と経済性を勘案して、0.04%以下とする。
[P: 0.04% or less]
The P content is preferably as small as possible to ensure high temperature strength, and is set to 0.04% or less in consideration of manufacturability and economy.

[S:0.01%以下]
S含有量は、高温強度を確保するために少ない方が望ましく、製造性と経済性を勘案して、0.01%以下とする。
[S: 0.01% or less]
The S content is preferably as small as possible to ensure high temperature strength, and is 0.01% or less in consideration of manufacturability and economy.

[Cr:20.0〜30.0%]
Crは、耐酸化性および高温強度を向上させる有効な元素である。Cr含有量が20.0%未満ではこの効果を充分に得られない。他方、Cr含有量が30.0%を超えると、オーステナイト組織が不安定となり、粗大な炭窒化物の析出によって耐熱性および加工性がともに劣化する。そこで、Cr含有量は20.0%以上30.0%以下とする。Cr含有量は、好ましくは21%以上25%以下である。
[Cr: 20.0 to 30.0%]
Cr is an effective element that improves oxidation resistance and high-temperature strength. If the Cr content is less than 20.0%, this effect cannot be sufficiently obtained. On the other hand, if the Cr content exceeds 30.0%, the austenite structure becomes unstable, and both heat resistance and workability deteriorate due to precipitation of coarse carbonitride. Therefore, the Cr content is 20.0% or more and 30.0% or less. The Cr content is preferably 21% or more and 25% or less.

[Ni:10.0〜15.0%]
Niは、オーステナイト組織の安定化および耐熱性の向上に重要な元素である。Ni含有量が10.0%未満ではこの効果が小さい。他方、Niは、高価な元素であるとともに、含有量が15%を超えると溶接性が著しく阻害される。そこで、Ni含有量は10.0%以上15.0%以下とする。Ni含有量は、好ましくは10%以上13%以下である。
[Ni: 10.0 to 15.0%]
Ni is an important element for stabilizing the austenite structure and improving heat resistance. This effect is small when the Ni content is less than 10.0%. On the other hand, Ni is an expensive element, and if the content exceeds 15%, weldability is significantly impaired. Therefore, the Ni content is set to 10.0% or more and 15.0% or less. The Ni content is preferably 10% or more and 13% or less.

[N:0.10〜0.42%]
Nは、オーステナイト組織を安定化させるとともに、有効な強化元素である。N含有量が0.10%未満ではこの効果を充分に得られない。しかし、N含有量が0.42%を超えると、後述する最終工程での熱処理および使用環境への加熱後冷却時に、材料に粗大な化合物が析出し、耐熱性および加工性がともに劣化する可能性が高くなる。このため、N含有量は0.10%以上0.42%以下とする。N含有量は、好ましくは0.38%以下である。なお、N含有量は、溶解時に調整されるだけではなく、上記最終工程での熱処理による添加をも想定するが、この最終工程での熱処理の前におけるN含有量は、前述のように低い方が望ましく、素材の熱間加工性等を勘案して、溶解時には0.30%以下に調整しておくことが好ましい。
[N: 0.10 to 0.42%]
N is an effective strengthening element while stabilizing the austenite structure. If the N content is less than 0.10%, this effect cannot be sufficiently obtained. However, if the N content exceeds 0.42%, a coarse compound may be deposited on the material during heat treatment in the final step described later and cooling after heating to the use environment, and both heat resistance and workability may deteriorate. Increases nature. For this reason, N content shall be 0.10% or more and 0.42% or less. The N content is preferably 0.38% or less. The N content is not only adjusted at the time of dissolution, but is also assumed to be added by the heat treatment in the final step, but the N content before the heat treatment in the final step is lower as described above. In view of the hot workability of the material, it is preferable to adjust to 0.30% or less during melting.

[B:0.0010〜0.01%]
Bは、熱間加工性を向上し、高温強度にも有効な元素である。B含有量は、この効果を得るために0.0010%以上とする。しかし、B含有量が0.01%を超えると、逆に熱間加工性が劣化する。そこで、B含有量は、0.0010%以上0.01%以下とする。
[B: 0.0010 to 0.01%]
B is an element that improves hot workability and is effective for high-temperature strength. In order to obtain this effect, the B content is set to 0.0010% or more. However, when the B content exceeds 0.01%, the hot workability is deteriorated. Therefore, the B content is set to 0.0010% or more and 0.01% or less.

[La+Ce:0.01〜0.10%]
La、Ceは、いずれも、耐酸化性の向上に極めて有効な元素である。LaおよびCeの合計含有量が0.01%未満であると、この効果を充分に得られない。しかし、LaおよびCeの合計含有量が0.10%を超えると、LaおよびCeの化合物を増大させ、熱間加工性および溶接性が劣化する。そこで、LaおよびCeの合計含有量は、0.01%以上0.10%以下とする。なお、La+Ceは、ミッシュメタルとして添加されるのであって、両者の割合は特に制限されない。
[La + Ce: 0.01 to 0.10%]
La and Ce are both elements that are extremely effective for improving the oxidation resistance. If the total content of La and Ce is less than 0.01%, this effect cannot be sufficiently obtained. However, when the total content of La and Ce exceeds 0.10%, the compound of La and Ce increases, and hot workability and weldability deteriorate. Therefore, the total content of La and Ce is set to 0.01% or more and 0.10% or less. Note that La + Ce is added as a misch metal, and the ratio of both is not particularly limited.

[sol.Al:0.01〜0.20%]
Alは、LaおよびCeの添加効果を発揮させるための脱酸成分であるので、sol.Al含有量は0.01%以上とする。しかし、sol.Al含有量が0.20%を超えると、熱間加工性が悪化すする。そこで、sol.Al含有量は0.01%以上0.20%以下とする。sol.Al含有量は、好ましくは0.10%以下である。
[Sol. Al: 0.01-0.20%]
Since Al is a deoxidizing component for exerting the additive effect of La and Ce, sol. Al content shall be 0.01% or more. However, sol. If the Al content exceeds 0.20%, hot workability deteriorates. Therefore, sol. The Al content is 0.01% or more and 0.20% or less. sol. The Al content is preferably 0.10% or less.

上記成分以外に、スクラップを原料とする場合に不可避的に含有されるCuやMoを、それぞれ0.4%以下含有してもよい。本発明では、CuやMoはオーステナイト組織を調整する元素としても作用する。   In addition to the above components, Cu or Mo inevitably contained when scrap is used as a raw material may be contained in an amount of 0.4% or less. In the present invention, Cu and Mo also act as elements for adjusting the austenite structure.

上記以外の残部はFeおよび不純物である。
本発明に係るオーステナイト系ステンレス鋼の化学組成以外の特徴を説明する。
[厚さ方向の表層におけるC濃度が厚さ方向の中心におけるC濃度よりも0.03%以上高いこと、および/または、厚さ方向の表層におけるN濃度が厚さ方向の中心におけるN濃度よりも0.03%以上高いこと]
本発明者らは、上述した特許文献28、29により開示されたREM添加、具体的には、LaおよびCeを添加した耐熱オーステナイト系ステンレス鋼のさらなる高性能化を図るため、有効な強化元素であるC、Nの添加法として、従来の溶製時の添加ではなく、オーステナイト系ステンレス鋼への熱処理による吸収に着目した。
The balance other than the above is Fe and impurities.
Features other than the chemical composition of the austenitic stainless steel according to the present invention will be described.
[The C concentration in the surface layer in the thickness direction is 0.03% or more higher than the C concentration in the center in the thickness direction, and / or the N concentration in the surface layer in the thickness direction is higher than the N concentration in the center in the thickness direction. Is also 0.03% or higher]
In order to further improve the performance of heat-resistant austenitic stainless steel added with REM disclosed in Patent Documents 28 and 29, specifically, La and Ce, disclosed above, As a method for adding C and N, attention was focused on absorption by heat treatment to austenitic stainless steel, not conventional addition during melting.

前述のように、耐熱オーステナイト系ステンレス鋼は、C、Nを吸収させることによって室温での強度が向上し、それに対応する高温での強度も向上する。
その上で、LaおよびCeを添加した耐熱オーステナイト系ステンレス鋼にC、Nを吸収させると、予想を大きく超える以下に列記する効果、具体的には、
(a)高温強度とともに加工性が向上すること、および
(b)同時に優れた耐酸化性を得られ、加熱および冷却を繰り返した場合においてもこの優れた耐酸化性が維持されること
が得られる。
As described above, heat-resistant austenitic stainless steel absorbs C and N, so that the strength at room temperature is improved, and the corresponding strength at high temperature is also improved.
On top of that, when C and N are absorbed in heat-resistant austenitic stainless steel to which La and Ce are added, the effects listed below greatly exceed expectations, specifically,
(A) workability is improved with high temperature strength, and (b) excellent oxidation resistance is obtained at the same time, and this excellent oxidation resistance is maintained even when heating and cooling are repeated. .

この予想外の効果は、
(i)最も著しく影響を受ける熱間加工時のC含有量やN含有量を低く抑えられるため、最終的なC含有量、N含有量は、溶解時の添加よりも、後述する最終工程での熱処理による吸収に影響され、高温強度が上昇すること、
(ii)溶製時に形成されるREMとC、Nとによる粗大な化合物の形成が抑制され、微細分散することによって、さらなる強化と加工性の改善とが図られること、および
(iii)外気に直接触れる表面およびその近傍に固溶するC量およびN量が上昇し、溶製後のREMの歩留りが向上し、素材中に固溶するため、より優れた耐酸化性を示すこと
により奏されると考えられる。
This unexpected effect is
(I) Since the C content and N content during hot working, which are most significantly affected, can be kept low, the final C content and N content are determined in the final step described below rather than the addition during dissolution. Affected by absorption due to heat treatment, increasing high-temperature strength,
(Ii) The formation of a coarse compound by REM and C, N formed during melting is suppressed, and further dispersion and improvement of workability are achieved by fine dispersion, and (iii) open air The amount of C and N dissolved in the direct contact surface and the vicinity thereof increases, and the yield of REM after melting is improved, so that it dissolves in the material, so that it exhibits better oxidation resistance. It is thought.

すなわち、C、Nによる固溶強化とREMとの化合物による析出強化を有効に活用することができ、これにより、高温強度と加工性を両立することができるとともに、REMの固溶による耐酸化性の改善が最も効果的に達成されると考えられる。したがって、外気と直接触れる表面のみ、固溶するC、N量を上昇させることで優れた加工性と耐酸化性が両立する可能性が残るものの、この意味で熱処理での吸収は、粗大な化合物を形成してしまう溶解時添加を充分な固溶化処理により完全に均質化した後に析出強化させることと、最終的には同じであると考えられる。   That is, solid solution strengthening by C and N and precipitation strengthening by a compound of REM can be effectively utilized, thereby achieving both high temperature strength and workability and oxidation resistance by REM solid solution. Improvement is considered to be achieved most effectively. Therefore, there is a possibility that both excellent surface workability and oxidation resistance can be achieved by increasing the amount of dissolved C and N only on the surface that is in direct contact with the outside air, but in this sense, absorption by heat treatment is a coarse compound. It is considered that the addition at the time of dissolution, which forms a solution, is completely homogenized by a sufficient solution treatment and then strengthened by precipitation, and finally the same.

そして、上記の予想を超える望ましい効果は、
後述する最終工程の熱処理によりC、Nを吸収させた場合の特徴である、C、Nの量の材料の表面と内部中心での差と、REMを含む化合物の大きさおよび数密度とを限定することによって、安定して発現されると考えられる。
And the desired effect exceeding the above expectation is
Limiting the difference in the amount of C and N between the surface of the material and the inner center, and the size and number density of the compound containing REM, which are characteristics when C and N are absorbed by the heat treatment in the final process described later By doing so, it is thought that it is expressed stably.

このように、本発明において「厚さ方向の表層におけるC濃度が厚さ方向の中心におけるC濃度よりも0.03%以上高いこと、および/または、厚さ方向の表層におけるN濃度が厚さ方向の中心におけるN濃度よりも0.03%以上高いこと」と限定する理由は、表面からの吸収により材料を強化し、LaおよびCeを含む化合物のうち特に悪い影響を及ぼす表面での粗大な化合物の生成を抑制できるためである。好ましくは、表面と内部中心での差は0.05%以上である。   Thus, in the present invention, “the C concentration in the surface layer in the thickness direction is 0.03% or more higher than the C concentration in the center in the thickness direction, and / or the N concentration in the surface layer in the thickness direction is the thickness. The reason for limiting it to be 0.03% or more higher than the N concentration at the center in the direction is that the material is strengthened by absorption from the surface, and the coarseness at the surface that exerts particularly bad influence among the compounds containing La and Ce. It is because the production | generation of a compound can be suppressed. Preferably, the difference between the surface and the inner center is 0.05% or more.

ここで、「厚さ方向の表層におけるC濃度」、「厚さ方向の表層におけるN濃度」とは、厚さ方向の表層におけるグロー放電発光分光分析装置(GDS)によるC、N濃度の測定値であって、具体的には、板表面での測定により得られる。   Here, “the C concentration in the surface layer in the thickness direction” and “the N concentration in the surface layer in the thickness direction” are measured values of the C and N concentrations by a glow discharge emission spectrometer (GDS) in the surface layer in the thickness direction. Specifically, it is obtained by measurement on the plate surface.

また、「厚さ方向の中心におけるC濃度」、「厚さ方向の中心におけるN濃度」とは、厚さ方向の中心におけるグロー放電発光分光分析装置(GDS)によるC、N濃度の測定値であって、具体的には、スパッタリングより板厚中心まで材料を除去した後の測定により得られる。なお、測定は直径数mmの範囲にて各2回ずつ実施し、その平均値を算出する。スパッタリングによる板厚減少量は先行試験での調査結果を用いる。   The “C concentration at the center in the thickness direction” and the “N concentration at the center in the thickness direction” are measured values of C and N concentrations by a glow discharge emission spectrometer (GDS) at the center in the thickness direction. Specifically, it is obtained by measurement after removing the material to the center of the plate thickness by sputtering. The measurement is carried out twice each in the range of several mm in diameter, and the average value is calculated. The amount of reduction in thickness due to sputtering is based on the results of the previous test.

[LaまたはCeを含む化合物のうち最大径が20μm以上である化合物の内在量:質量5g当たり30個以下]
LaまたはCeを含む化合物のうち最大径が20μm以上である化合物の内在量を、質量5gあたりで30個以下と限定するのは、C、Nの熱処理での吸収により比較的低い含有量での溶製が可能であり、粗大なLa、Ceとの化合物の溶製時の生成を抑制できるようになり、その結果、特に悪い影響を及ぼす表面への粗大な化合物の分布が抑制され、加工性、耐酸化性が著しく向上するためである。好ましくは10個以下であり、さらに好ましくは6個以下である。
[Inherent amount of compound having maximum diameter of 20 μm or more among compounds containing La or Ce: 30 or less per 5 g of mass]
The reason why the intrinsic amount of a compound having a maximum diameter of 20 μm or more among the compounds containing La or Ce is limited to 30 or less per 5 g of mass is that the absorption at the heat treatment of C and N is relatively low. Melting is possible, and it becomes possible to suppress the formation of coarse La and Ce compounds at the time of melting, and as a result, the distribution of coarse compounds on the surface having particularly bad influences is suppressed, and workability is reduced. This is because the oxidation resistance is remarkably improved. The number is preferably 10 or less, and more preferably 6 or less.

本発明に係るオーステナイト系ステンレス鋼は、以上のように構成されるので、さらに過酷になる高温での使用環境にも耐え、素材の製造および加工が容易であり、広範な産業分野で使用できる経済性を兼ね備えるものである。   Since the austenitic stainless steel according to the present invention is constructed as described above, it can withstand the use environment at higher temperatures that are more severe, and can be easily manufactured and processed, and can be used in a wide range of industrial fields. It also has sex.

この本発明に係るオーステナイト系ステンレス鋼に適当な加工および/または熱処理を行うことによって、例えば、ボイラーの加熱器管、再加熱器管、化学工業用の反応炉管、自動車のエキゾーストマニホールド、フロントセンターパイプ、フレキシブルチューブ、ガスケット、調理機器等のヒーター、さらには交換器等のステンレス鋼製品が得られる。   By performing appropriate processing and / or heat treatment on the austenitic stainless steel according to the present invention, for example, a boiler heater tube, a reheater tube, a chemical reactor reactor tube, an automobile exhaust manifold, a front center pipe Stainless steel products such as flexible tubes, gaskets, heaters for cooking equipment, and exchangers can be obtained.

次に、本発明に係るオーステナイト系ステンレス鋼の製造方法を説明する。
本発明によれば、上述した化学組成を有する素材に、適当な熱間加工および冷間加工を行った後に熱処理を1回以上繰り返して行うことによりオーステナイト系ステンレス鋼が製造される。
Next, the manufacturing method of the austenitic stainless steel which concerns on this invention is demonstrated.
According to the present invention, an austenitic stainless steel is produced by subjecting a material having the above-described chemical composition to appropriate hot working and cold working and then performing heat treatment one or more times.

この際に、少なくとも最終工程の熱処理を、Cおよび/またはNを含み、露点が−30℃未満である雰囲気で、900℃超で行う。なお、熱間加工後であればこのような内容の熱処理を1回だけではなく、複数回実施するようにしてもよい。   At this time, at least the final heat treatment is performed at a temperature exceeding 900 ° C. in an atmosphere containing C and / or N and having a dew point of less than −30 ° C. In addition, if it is after hot processing, you may make it implement heat processing of such a content not only once but multiple times.

最終工程の熱処理の雰囲気をC、Nを含むとしたのは、両元素が有効な強化元素でかつ、オーステナイト組織を安定化する元素だからである。したがって、例えば、Cの供給源としてメタンやエタンを使用することができ、Nの供給源として窒素ガス自体はもちろん、アンモニア等を使用することができる。   The reason why the atmosphere of the heat treatment in the final step includes C and N is that both elements are effective strengthening elements and elements that stabilize the austenite structure. Therefore, for example, methane or ethane can be used as a supply source of C, and ammonia or the like can be used as a supply source of N as well as nitrogen gas itself.

前述したように、酸化被膜がC、N両元素の吸収を著しく抑制するため、最終工程の熱処理は、還元性の非酸化雰囲気とすることが好ましい。
また、最終工程の熱処理の雰囲気の露点を−30℃未満とするのは、酸化被膜の形成を防止し、さらには酸化被膜の還元を促進させるためである。好ましくは、より低温であるが、工業的な面や経済的な面を勘案して−40℃以下とすることが好ましい。
As described above, since the oxide film remarkably suppresses the absorption of both the C and N elements, it is preferable that the heat treatment in the final process is a reducing non-oxidizing atmosphere.
The reason why the dew point of the atmosphere of the heat treatment in the final step is less than −30 ° C. is to prevent the formation of the oxide film and further promote the reduction of the oxide film. The temperature is preferably lower, but it is preferably set to −40 ° C. or lower in consideration of industrial and economical aspects.

さらに、熱処理温度を900℃超とするのは、900℃以下の温度ではC、Nの吸収が殆ど発生しないためである。熱処理温度の上限は特に限定を要さないが、1200℃以下とすることが好ましく、1100℃以下とすることがさらに好ましい。   Furthermore, the reason why the heat treatment temperature exceeds 900 ° C. is that absorption of C and N hardly occurs at temperatures below 900 ° C. The upper limit of the heat treatment temperature is not particularly limited, but is preferably 1200 ° C. or less, and more preferably 1100 ° C. or less.

さらに、本発明によれば、必要に応じて、最終工程の熱処理を行う前に表面酸化被膜除去処理を行うことが好ましい。
すなわち、最終工程の熱処理の前に、例えば酸洗やショットブラスといった周知慣用の表面酸化被膜除去処理を行うことにより、最終工程の熱処理でのC、Nの吸収が速やかとなり、促進されると考えられるからである。したがって、少なくとも最終の熱処理の前、必要に応じて全ての熱処理の前に表面酸化被膜除去処理を行うことが好ましい。
Furthermore, according to the present invention, it is preferable to perform the surface oxide film removal treatment before the heat treatment in the final step, if necessary.
That is, it is thought that absorption of C and N in the heat treatment in the final process is accelerated and promoted by performing a well-known and commonly used surface oxide film removal treatment such as pickling or shot brass before the heat treatment in the final process. Because it is. Therefore, it is preferable to perform the surface oxide film removal treatment at least before the final heat treatment and, if necessary, before all the heat treatment.

表1に本発明素材(素材No.1〜6)、比較素材(素材No.7〜16)の成分を示す。   Table 1 shows the components of the material of the present invention (Material Nos. 1 to 6) and the comparative material (Material Nos. 7 to 16).

Figure 2011236465
Figure 2011236465

素材No.1〜16は、成分調整した小型鋳塊を用いて、一般的工程により製造し、最終工程での炭素、窒素の吸収を目的とする熱処理の条件のみを調整した。供試材は各工程より採取し、諸特性を調査した。   Material No. Nos. 1 to 16 were manufactured by a general process using small ingots with components adjusted, and only the heat treatment conditions for the purpose of absorbing carbon and nitrogen in the final process were adjusted. The specimens were collected from each process and the characteristics were investigated.

具体的には、最初に、小型鋳塊を厚さ40mmに切削加工し、1200℃にて厚さ約4mmに熱間圧延し、熱間圧延板の両幅端部を目視にて観察し、耳割れの有無を確認した。
次いで、1150℃×15分保持で大気焼鈍、次工程の冷間圧延のため切削加工による脱スケール、寸法調整を行った後に、冷間圧延、1150℃での大気焼鈍、酸洗による脱スケールからなる工程を繰り返した。
Specifically, first, a small ingot is cut to a thickness of 40 mm, hot-rolled to a thickness of about 4 mm at 1200 ° C., and both width ends of the hot-rolled plate are visually observed, The presence or absence of an ear crack was confirmed.
Next, after holding at 1150 ° C. × 15 minutes for atmospheric annealing, descaling by cutting for cold rolling in the next step, and after adjusting the dimensions, cold rolling, atmospheric annealing at 1150 ° C., descaling by pickling The process was repeated.

その後、最終工程として厚さ0.6mmへ冷間圧延し、C、Nの吸収を目的とする熱処理を施し、C、N量分布、化合物最大径、耐酸化性、高温強度、成形性を調査した。なお、一部の材料は、最終工程での吸収熱処理の直前に酸化皮膜の除去を目的とした酸洗、およびショットブラストを施した。諸特性の調査方法は以下の通りである。   After that, it is cold-rolled to a thickness of 0.6 mm as the final process, heat-treated for the purpose of absorbing C and N, and investigated for C and N content distribution, maximum compound diameter, oxidation resistance, high-temperature strength, and formability. did. Some materials were pickled and shot blasted for the purpose of removing the oxide film immediately before the absorption heat treatment in the final step. The investigation method of various characteristics is as follows.

[熱間加工性]
熱間圧延板の両幅端部を目視にて観察し、耳割れの有無により判定した。
[C,N量分布]
最終熱処理後の薄板について、一般的な化学分析を実施し、板厚全体での平均値により吸収後の窒素量および炭素量を測定した。また、グロー放電発光分光分析装置(GDS)により板厚方向での分布を測定した。具体的には、板表面および、板厚中心までスパッタリング後に各2回ずつ測定を行い、表面と材料中心での平均値の差を算出した。
[Hot workability]
Both width end portions of the hot-rolled sheet were visually observed and judged by the presence or absence of ear cracks.
[C, N distribution]
A general chemical analysis was performed on the thin plate after the final heat treatment, and the nitrogen amount and carbon amount after absorption were measured by the average value of the entire plate thickness. Further, the distribution in the plate thickness direction was measured by a glow discharge optical emission spectrometer (GDS). Specifically, the measurement was performed twice after sputtering to the plate surface and the plate thickness center, and the difference in average value between the surface and the material center was calculated.

[化合物数]
最終熱処理後の薄板より5gの試料を採取し、10%臭素メタノール溶液にて母材部を腐食除去した。その後、所定寸法の孔のフィルタを通して残留物のみを抽出し、該残留物を、走査型電子顕微鏡(SEM)を用いて観察し、エネルギー分散型蛍光X線分析装置(EDX)によって分析を行い、La、Ceを含む化合物の中で最大径が20μm以上の総数を測定した。
[Number of compounds]
A 5 g sample was taken from the thin plate after the final heat treatment, and the base metal part was removed by corrosion with a 10% bromine methanol solution. Thereafter, only the residue is extracted through a filter having a predetermined size of pore, the residue is observed using a scanning electron microscope (SEM), and analyzed by an energy dispersive X-ray fluorescence spectrometer (EDX). Among the compounds containing La and Ce, the total number having a maximum diameter of 20 μm or more was measured.

[耐酸化性]
最終熱処理後の薄板について、大気中にて(a)1000℃で200時間の連続加熱後に放冷、(b)1000℃で25分間の加熱後に5分間の放冷の繰り返しを400サイクル(200時間相当)まで実施し、重量の変化を測定した。
[Oxidation resistance]
The thin plate after the final heat treatment was subjected to 400 cycles (200 hours) of (a) cooling in air after continuous heating at 1000 ° C. for 200 hours, and (b) cooling for 5 minutes after heating at 1000 ° C. for 25 minutes. The change in weight was measured.

[高温強度]
最終熱処理後の薄板より削加工によりJIS−B13号の引張試験片を採取し、1000℃での引張強さを測定した。
[High temperature strength]
A tensile test piece of JIS-B13 was collected from the thin plate after the final heat treatment by cutting, and the tensile strength at 1000 ° C. was measured.

[成形性]
最終熱処理前の薄板について、直径50mmのダイス穴内に位置する部分を油圧により張り出し、割れ発生の直後に油圧を0とし、その段階での深さを測定した。同深さが22mm以上の場合を○、22mm未満を×とした。
[Formability]
About the thin plate before the final heat treatment, the portion located in the die hole having a diameter of 50 mm was stretched by hydraulic pressure, the hydraulic pressure was set to 0 immediately after the occurrence of cracking, and the depth at that stage was measured. The case where the same depth was 22 mm or more was rated as ◯, and the case where the depth was less than 22 mm was rated as x.

[総合評価]
(a)熱間圧延:割れ無、(b)耐酸化性での重量変化:−50〜50g、(c)高温強度:60MPa以上、(d)成形性:OK(○)の4つの特性を総合的に評価し、全てを達成した場合を◎とし、一つ未達の場合を○とし、二つ未達の場合を△とし、それ以外を×として総合評価した。
[Comprehensive evaluation]
(A) Hot rolling: No cracking, (b) Weight change due to oxidation resistance: −50 to 50 g, (c) High temperature strength: 60 MPa or more, (d) Formability: OK (◯) A comprehensive evaluation was made with ◎ when all were achieved, ◯ when one was not achieved, △ when two were not achieved, and × when the other was not achieved.

試験条件および試験結果を表2にまとめて示す。   The test conditions and test results are summarized in Table 2.

Figure 2011236465
Figure 2011236465

表2に示すように、本発明材は、熱処理でのC、Nの吸収が達成され、少なくともその一方の表面での値が内部中心に比べて0.03%以上高い。また、20μmを越える化合物の数は少ない。これらの結果より、本発明材は、優れた熱間加工性を維持した上で、1000℃での連続および繰り返しでの耐酸化性が重量の変化で50g/m以下(−50〜50g/m)であって、かつ60MPaを越える高温強度と優れた室温での成形性を兼ね備えることがわかる。 As shown in Table 2, the material of the present invention achieves C and N absorption by heat treatment, and the value on at least one surface thereof is higher by 0.03% or more than the inner center. In addition, the number of compounds exceeding 20 μm is small. From these results, the material of the present invention maintains excellent hot workability and has a continuous and repeated oxidation resistance at 1000 ° C. of 50 g / m 2 or less (−50 to 50 g / m 2 ), and it has high temperature strength exceeding 60 MPa and excellent formability at room temperature.

さらに、熱処理の直前に酸洗、ショットブラストを実施した試料No.1D、1Eは、実施していない試料1Cよりも、表面での吸収量が明らかに増加し、耐酸化性および高温強度ともに優れた値を示す。   Further, the sample No. 1 was pickled and shot blasted immediately before the heat treatment. As for 1D and 1E, the amount of absorption on the surface is clearly increased and both the oxidation resistance and the high temperature strength are superior to those of the sample 1C which is not implemented.

これに対し、比較材は同じ発明素材を用いた場合(試料No.4C〜6C、6D〜6G、7A、7B)も、C、Nが過度に吸収された4C、5Cでは、多数の粗大な化合物が確認された。この結果、特性は著しく劣るものとなった。   On the other hand, when the same invention material is used as the comparative material (sample Nos. 4C to 6C, 6D to 6G, 7A, and 7B), in 4C and 5C in which C and N are excessively absorbed, a large number of coarse materials are used. The compound was identified. As a result, the characteristics were extremely inferior.

逆に、試料6Cでは雰囲気中にC、Nが含まれず、試料6D、6Eでは雰囲気の露点が−30℃以下、試料6F、6Gでは加熱温度が900℃以下のためにC、N吸収が起こらず、表面でのC、Nの値が共に内部中心とほぼ同等(0.03%未満)であり、耐酸化性に劣り、高温の強度は40MPa前後と低い値のままであった。   Conversely, in sample 6C, C and N are not contained in the atmosphere, samples 6D and 6E have an atmospheric dew point of −30 ° C. or lower, and samples 6F and 6G have a heating temperature of 900 ° C. or lower, so C and N absorption occurs. In addition, the values of C and N on the surface were both almost the same as the inner center (less than 0.03%), inferior in oxidation resistance, and the high-temperature strength remained as low as around 40 MPa.

試料7Aは、雰囲気中にC、Nが含まれないために吸収がなされず、少なくともその一方の表面と内部中心の差を示さないとともに、溶解時に生成した粗大化合物が数多く存在し、耐熱性、成形性ともに劣る。   Sample 7A does not absorb C and N because it does not contain C and N in the atmosphere, and does not show a difference between at least one of its surfaces and the inner center, and there are many coarse compounds produced during dissolution, Both formability is poor.

なお、同結果より、C、Nは熱処理での吸収による固溶量が溶解での添加(特許文献28、29により開示された発明)に比べ上昇し、より高性能を示すことが確認される。試料7BはNが本発明の上限値を超え、特性に劣る。   From these results, it is confirmed that C and N show higher performance by increasing the amount of solid solution due to absorption in heat treatment compared to addition by dissolution (invention disclosed by Patent Documents 28 and 29). . In Sample 7B, N exceeds the upper limit of the present invention, and the characteristics are inferior.

溶製時の添加でC、Nの一方または両方が本発明の上限値を越える試料7A、7B、8A、8B、9A、9Bは、吸収の有無によらず、粗大な化合物が多数確認され、耐熱性、加工性ともに低い値であった。さらに、他の成分についても試料11A〜16Aの結果より、本発明の範囲を超えた場合に、優れた特性を得られないことがわかる。   Samples 7A, 7B, 8A, 8B, 9A, and 9B, in which one or both of C and N exceed the upper limit of the present invention by addition during melting, a large number of coarse compounds are confirmed regardless of the presence or absence of absorption, Both heat resistance and workability were low. Furthermore, it can be seen from the results of Samples 11A to 16A that other characteristics cannot be obtained when the range of the present invention is exceeded.

さらに、表2の総合評価の欄に示すように、本発明材は総合評価で全て◎となり、さらに過酷になる高温での使用環境にも耐え、素材の製造および加工が容易であることがわかる。これに対し、比較材の総合評価は、特許文献28、29により開示された発明に対応する熱処理でのC、Nの吸収がなされていない、あるいは不十分な試料6C〜Gが△であり、それ以外が×となった。   Furthermore, as shown in the column of comprehensive evaluation in Table 2, all of the materials of the present invention are evaluated as ◎ in the comprehensive evaluation, and can withstand the use environment at high temperatures that are more severe, and it is easy to manufacture and process the material. . On the other hand, the overall evaluation of the comparative materials is that the samples 6C to G in which C or N is not absorbed or insufficient in the heat treatment corresponding to the invention disclosed in Patent Documents 28 and 29 are Δ, Other than that became X.

Claims (6)

質量%で、C:0.05〜0.20%、Si:1.0%未満、Mn:2.0%以下、P:0.04%以下、S:0.01%以下、Cr:20.0〜30.0%、Ni:10.0〜15.0%、N:0.10〜0.42%、B:0.0010〜0.01%、La+Ce:0.01〜0.10%、sol.Al:0.01〜0.20%、残部Feおよび不純物からなる化学組成を有し、厚さ方向の表層におけるC濃度が厚さ方向の中心におけるC濃度よりも0.03%以上高いこと、および/または、厚さ方向の表層におけるN濃度が厚さ方向の中心におけるN濃度よりも0.03%以上高いことを特徴とするオーステナイト系ステンレス鋼。   In mass%, C: 0.05 to 0.20%, Si: less than 1.0%, Mn: 2.0% or less, P: 0.04% or less, S: 0.01% or less, Cr: 20 0.0 to 30.0%, Ni: 10.0 to 15.0%, N: 0.10 to 0.42%, B: 0.0010 to 0.01%, La + Ce: 0.01 to 0.10 %, Sol. Al: 0.01 to 0.20%, having a chemical composition consisting of the balance Fe and impurities, the C concentration in the surface layer in the thickness direction being 0.03% or more higher than the C concentration in the center in the thickness direction, And / or an austenitic stainless steel in which the N concentration in the surface layer in the thickness direction is 0.03% or more higher than the N concentration in the center in the thickness direction. さらに、LaまたはCeを含む化合物のうち最大径が20μm以上である化合物の内在量が質量5g当たり30個以下である請求項1に記載されたオーステナイト系ステンレス鋼。   The austenitic stainless steel according to claim 1, wherein the compound having a maximum diameter of 20 μm or more among compounds containing La or Ce has 30 or less per 5 g of mass. 請求項1または請求項2に記載されたオーステナイト系ステンレス鋼からなることを特徴とするステンレス鋼製品。   A stainless steel product comprising the austenitic stainless steel according to claim 1 or 2. 請求項1に記載された化学組成を有する素材に、熱間加工および冷間加工を行った後に熱処理を1回以上繰り返して行うことによりオーステナイト系ステンレス鋼を製造する方法であって、少なくとも最終工程の熱処理を、Cおよび/またはNを含み、露点が−30℃未満である雰囲気で、900℃超で行うことを特徴とするオーステナイト系ステンレス鋼の製造方法。   A method for producing austenitic stainless steel by repeatedly performing heat treatment one or more times after performing hot working and cold working on a material having the chemical composition according to claim 1, wherein at least the final step A method for producing an austenitic stainless steel, characterized in that the heat treatment is performed at 900 ° C. or higher in an atmosphere containing C and / or N and having a dew point of less than −30 ° C. 前記最終工程の熱処理を行う前に、表面酸化被膜除去処理を行う請求項4に記載されたオーステナイト系ステンレス鋼の製造方法。   The method for producing an austenitic stainless steel according to claim 4, wherein a surface oxide film removal treatment is performed before the heat treatment in the final step. 請求項4または請求項5に記載された製造方法により製造されたオーステナイト系ステンレス鋼に、加工および/または熱処理を行うことを特徴とするステンレス鋼製品の製造方法。   A method for producing a stainless steel product, comprising processing and / or heat-treating the austenitic stainless steel produced by the production method according to claim 4 or 5.
JP2010108475A 2010-05-10 2010-05-10 Austenitic stainless steel, stainless steel products, and methods for producing them Active JP5464037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010108475A JP5464037B2 (en) 2010-05-10 2010-05-10 Austenitic stainless steel, stainless steel products, and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108475A JP5464037B2 (en) 2010-05-10 2010-05-10 Austenitic stainless steel, stainless steel products, and methods for producing them

Publications (2)

Publication Number Publication Date
JP2011236465A true JP2011236465A (en) 2011-11-24
JP5464037B2 JP5464037B2 (en) 2014-04-09

Family

ID=45324762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108475A Active JP5464037B2 (en) 2010-05-10 2010-05-10 Austenitic stainless steel, stainless steel products, and methods for producing them

Country Status (1)

Country Link
JP (1) JP5464037B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211348A (en) * 2011-03-18 2012-11-01 Sumitomo Metal Ind Ltd Cold-rolled stainless steel sheet excellent in high temperature settling resistance, and manufacturing method therefor
JP2016204714A (en) * 2015-04-24 2016-12-08 新日鐵住金ステンレス株式会社 Stainless steel for automobile exhaust system component fastening component
JP2020111806A (en) * 2019-01-15 2020-07-27 日本製鉄株式会社 Stainless steel sheet and method for producing the same, separator for fuel battery, fuel battery cell, and fuel battery stack
JP2020111805A (en) * 2019-01-15 2020-07-27 日本製鉄株式会社 Stainless steel sheet, separator for fuel battery, fuel battery cell, and fuel battery stack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188869A (en) * 1993-11-11 1995-07-25 Sumitomo Metal Ind Ltd Stainless steel for high temp. service and its manufacture
JPH09209035A (en) * 1996-01-31 1997-08-12 Sumitomo Metal Ind Ltd Production of austenitic stainless steel for high temperature use
JP2006291290A (en) * 2005-04-11 2006-10-26 Sumitomo Metal Ind Ltd Austenitic stainless steel
JP2007070696A (en) * 2005-09-07 2007-03-22 Sumitomo Metal Ind Ltd Continuously variable transmission belt, stainless steel sheet for the belt and method for manufacturing the steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188869A (en) * 1993-11-11 1995-07-25 Sumitomo Metal Ind Ltd Stainless steel for high temp. service and its manufacture
JPH09209035A (en) * 1996-01-31 1997-08-12 Sumitomo Metal Ind Ltd Production of austenitic stainless steel for high temperature use
JP2006291290A (en) * 2005-04-11 2006-10-26 Sumitomo Metal Ind Ltd Austenitic stainless steel
JP2007070696A (en) * 2005-09-07 2007-03-22 Sumitomo Metal Ind Ltd Continuously variable transmission belt, stainless steel sheet for the belt and method for manufacturing the steel sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211348A (en) * 2011-03-18 2012-11-01 Sumitomo Metal Ind Ltd Cold-rolled stainless steel sheet excellent in high temperature settling resistance, and manufacturing method therefor
JP2016204714A (en) * 2015-04-24 2016-12-08 新日鐵住金ステンレス株式会社 Stainless steel for automobile exhaust system component fastening component
JP2020111806A (en) * 2019-01-15 2020-07-27 日本製鉄株式会社 Stainless steel sheet and method for producing the same, separator for fuel battery, fuel battery cell, and fuel battery stack
JP2020111805A (en) * 2019-01-15 2020-07-27 日本製鉄株式会社 Stainless steel sheet, separator for fuel battery, fuel battery cell, and fuel battery stack
JP7257794B2 (en) 2019-01-15 2023-04-14 日鉄ステンレス株式会社 Stainless steel plate and its manufacturing method, fuel cell separator, fuel cell, and fuel cell stack
JP7257793B2 (en) 2019-01-15 2023-04-14 日鉄ステンレス株式会社 Stainless steel plate, fuel cell separator, fuel cell, and fuel cell stack

Also Published As

Publication number Publication date
JP5464037B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
RU2429306C1 (en) Thermal resistant ferrite stainless steel
JP4948998B2 (en) Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
CN102471841B (en) The ferrite-group stainless steel of excellent heat resistance
RU2443796C1 (en) Ferritic stainless steel with excellent heat resistance and viscosity
JP5609571B2 (en) Ferritic stainless steel with excellent oxidation resistance
JP6205407B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP5658893B2 (en) Ferritic stainless steel sheet with excellent heat resistance and method for producing the same
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
WO2003106722A1 (en) Heat-resistant ferritic stainless steel and method for production thereof
WO2017208946A1 (en) Duplex stainless steel and duplex stainless steel manufacturing method
JP5703075B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP2010156039A (en) Ferritic stainless steel superior in heat resistance
JP5464037B2 (en) Austenitic stainless steel, stainless steel products, and methods for producing them
EP3249067A1 (en) Ferritic stainless steel for exhaust system member having excellent corrosion resistance after heating
JP3551892B2 (en) Heat resistant ferritic stainless steel and its steel plate
WO2019188601A1 (en) Ferritic stainless steel having excellent salt corrosion resistance
JP6296435B2 (en) Manufacturing method of heat-resistant austenitic stainless steel for metal gasket
JP5239642B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP5239645B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP5780212B2 (en) Ni-based alloy
JP5239644B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness
JP5958412B2 (en) Ferritic stainless steel with excellent thermal fatigue properties
JP2009235571A (en) Ferritic stainless steel having excellent heat resistance and workability
JP5239643B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and workability
JP2023145223A (en) Austenitic stainless steel, steel plate, and steel pipe and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R151 Written notification of patent or utility model registration

Ref document number: 5464037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350