JP2014189619A - Fuel oil composition - Google Patents

Fuel oil composition Download PDF

Info

Publication number
JP2014189619A
JP2014189619A JP2013065699A JP2013065699A JP2014189619A JP 2014189619 A JP2014189619 A JP 2014189619A JP 2013065699 A JP2013065699 A JP 2013065699A JP 2013065699 A JP2013065699 A JP 2013065699A JP 2014189619 A JP2014189619 A JP 2014189619A
Authority
JP
Japan
Prior art keywords
oil
volume
fuel oil
residual
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013065699A
Other languages
Japanese (ja)
Other versions
JP5847750B2 (en
Inventor
Junya Hamano
純也 濱野
Yuki Ozawa
悠起 小澤
Satoshi Ito
聡史 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2013065699A priority Critical patent/JP5847750B2/en
Publication of JP2014189619A publication Critical patent/JP2014189619A/en
Application granted granted Critical
Publication of JP5847750B2 publication Critical patent/JP5847750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fuel oil composition having excellent low temperature fluidity without decreasing a cetane index.SOLUTION: Provided is a fuel oil composition having a residual carbon content of 0.2 to 1.0 mass% in 10% residual oil. The composition comprises, based on the fuel oil composition: 75 to 99 vol.% of a fuel oil base oil containing 10 to 70 vol.% of a desulfurized gas oil having a sulfur content of 10 mass ppm or less; 0.1 to 1.0 vol.% of a residual carbon adjusting material comprising at least one hydrocarbon oil selected from the group consisting of an ordinary pressure residual oil, a vacuum residual oil, a desulfurized residual oil, a slurry oil, and an extract; 0.8 to 25 vol.% of an unsaturated hydrocarbon having side chains and having 15 to 40 carbon atoms; and 1.0 to 1000 volume ppm of a flow improver.

Description

本発明は、低温下で優れた流動性を有する燃料油組成物に関し、詳しくは低温下で優れた流動性を有するA重油組成物に関する。   The present invention relates to a fuel oil composition having excellent fluidity at low temperatures, and more particularly to an A heavy oil composition having excellent fluidity at low temperatures.

A重油は一般的にハウス加温栽培用暖房機、ビル等の建築物の暖房機及び漁船等の船を
運転するための燃料等に用いられるが、ここで問題となるのが低温時の流動性である。従来、このA重油には、冬季における低温下あるいは寒冷地においてA重油中のワックス分の析出、さらには流動性の悪化という重大な問題がある。例えば、A重油中に含まれるワックス析出により、油の中の微少な夾雑物を除くためのろ過器中のフィルターを閉塞させたり、また低温下で、A重油が流動性を失い、燃料ラインそのものを閉塞させるといったような例が多くみられる。このような低温下または寒冷地で起こる問題から、A重油の低温流動性を改善することが大きな課題となっていた。
A heavy oil is generally used as a heater for house warming cultivation, a building heater such as a building, and a fuel for operating a boat such as a fishing boat. The problem here is flow at low temperatures. It is sex. Conventionally, this A heavy oil has a serious problem of precipitation of wax in the A heavy oil and deterioration of fluidity at low temperatures in winter or in cold regions. For example, the precipitation of wax contained in heavy oil A causes the filter in the filter to remove minute impurities in the oil to be clogged, or the heavy fuel oil loses its fluidity at low temperatures, and the fuel line itself In many cases, such as occlusion. From such problems that occur at low temperatures or in cold regions, it has been a major challenge to improve the low temperature fluidity of A heavy oil.

従来、低温下におけるA重油の流動性を改善する方法として、残油を添加する方法があり、アスファルテン含有量が6.0質量%以上あるいは残留炭素分が9.5質量%以上である残油を添加物として、A重油基油に対して0.5〜2.0容量%添加することにより低温流動性が改善されることが知られている(例えば、特許文献1参照)。しかし、残油を多量に添加する特許文献1の方法は、スラッジの発生という点から好ましくなく、また、低温流動性の改善効果も十分でないので、A重油の基材の変更を行いにくく、A重油の生産に支障をきたすという問題があった。   Conventionally, there is a method of adding residual oil as a method for improving the fluidity of A heavy oil at low temperature, and residual oil having an asphaltene content of 6.0% by mass or more or a residual carbon content of 9.5% by mass or more. As an additive, it is known that low temperature fluidity is improved by adding 0.5 to 2.0% by volume with respect to A heavy oil base oil (see, for example, Patent Document 1). However, the method of Patent Document 1 in which a large amount of residual oil is added is not preferable from the viewpoint of generation of sludge, and the effect of improving low-temperature fluidity is not sufficient, so that it is difficult to change the base material of A heavy oil. There was a problem that it interfered with the production of heavy oil.

また、A重油の低温流動性を改善する他の方法として、A重油中の10%残留炭素分、−10℃におけるワックス含有量、アスファルテン分及び流動性向上剤の量が低温流動性に関する重要な因子であるとの知見に基づいて、これらの量を特定の範囲に定めることによって、A重油の低温流動性を改善する方法が知られている(例えば、特許文献2参照)。しかし、この従来方法で使用されていたA重油の基油としては、当時に適用されていた硫黄分規制値から見て500〜2000質量ppm程度の硫黄分を含有した軽油が使用されていた。この軽油に対する硫黄分の規制は、環境への影響が考慮されて次第に厳しくなっており、現在では10質量ppm以下のいわゆるサルファーフリーの軽油が製造されている。しかし、このサルファーフリーの軽油は脱硫率の向上に伴って低アロマ化が進行し、それによって軽油の溶解性能が低下すると同時に軽油の中に含まれるワックス量が相対的に増加することから、この軽油をA重油の基油として用いる場合には、低温流動性の悪化が懸念されるので、一層の改善が求められている。   As another method for improving the low temperature fluidity of heavy oil A, the 10% residual carbon content in heavy oil A, the wax content at -10 ° C, the asphaltene content and the amount of fluidity improver are important for low temperature fluidity. Based on the knowledge that it is a factor, a method for improving the low temperature fluidity of A heavy oil by setting these amounts within a specific range is known (for example, see Patent Document 2). However, as a base oil of A heavy oil used in this conventional method, a light oil containing a sulfur content of about 500 to 2000 mass ppm was used in view of the sulfur content regulation value applied at that time. The regulation of the sulfur content in light oil is becoming stricter in consideration of the influence on the environment, and so-called sulfur-free light oil of 10 ppm by mass or less is currently produced. However, this sulfur-free diesel oil has been reduced in aroma as the desulfurization rate has been improved, which reduces the dissolution performance of the diesel oil and at the same time relatively increases the amount of wax contained in the diesel oil. When light oil is used as the base oil of A heavy oil, there is a concern about deterioration of low-temperature fluidity, and therefore further improvement is required.

特公平3−5438号公報Japanese Patent Publication No. 3-5438 特許第2640311号Japanese Patent No. 2640411

本発明は、上記従来の状況に鑑みてなされたものであり、セタン指数を下げることなく低温流動性に優れる燃料油組成物を提供することを課題とするものである。   This invention is made | formed in view of the said conventional condition, and makes it a subject to provide the fuel oil composition which is excellent in low-temperature fluidity | liquidity, without reducing a cetane index | exponent.

そこで、上述した課題を解決するために本発明者らはある特定の炭化水素化合物を特定量配合させることにより、セタン指数を下げることなく低温流動性に優れる燃料油組成物を得る事が出来た。   Therefore, in order to solve the above-described problems, the present inventors have been able to obtain a fuel oil composition excellent in low-temperature fluidity without lowering the cetane index by blending a specific amount of a specific hydrocarbon compound. .

すなわち、本発明は、硫黄分10質量ppm以下の脱硫軽油を燃料油基油に基づいて10〜70容量%含む燃料油基油75〜99容量%と、常圧残油、減圧残油、脱硫残油、スラリーオイル及びエキストラクトからなる群から選ばれる少なくとも1種の炭化水素油からなる残炭調整材0.1〜1.0容量%と、側鎖を有する15〜40個の炭素数を有する不飽和炭化水素0.8〜25容量%と、流動性向上剤1.0〜1000容量ppmとをそれぞれ燃料油組成物に基づいて含有させた、10%残留炭素分が0.2〜1.0質量%である前記燃料油組成物を提供することによって解決された。
したがって、本発明は、10%残留炭素分が0.2〜1.0質量%である燃料油組成物であって、硫黄分10質量ppm以下の脱硫軽油を燃料油基油に基づいて10〜70容量%含む燃料油基油75〜99容量%と、常圧残油、減圧残油、脱硫残油、スラリーオイル及びエキストラクトからなる群から選ばれる少なくとも1種の炭化水素油からなる残炭調整材0.1〜1.0容量%と、側鎖を有する15〜40個の炭素数を有する不飽和炭化水素0.8〜25容量%と、流動性向上剤1.0〜1000容量ppmとをそれぞれ前記燃料油組成物に基づいて含有することを特徴とする、前記燃料油組成物に係るものである。
That is, the present invention relates to 75 to 99 vol% of fuel oil base oil containing 10 to 70 vol% of desulfurized gas oil having a sulfur content of 10 mass ppm or less based on the fuel oil base oil, normal pressure residual oil, vacuum residual oil, desulfurization 0.1 to 1.0% by volume of a residual coal modifier made of at least one hydrocarbon oil selected from the group consisting of residual oil, slurry oil and extract, and 15 to 40 carbon atoms having side chains 10% residual carbon content of 0.2 to 1 containing 0.8 to 25 vol% of unsaturated hydrocarbon having 1.0 to 1000 volppm of fluidity improver based on the fuel oil composition. This was solved by providing the fuel oil composition of 0.0 mass%.
Therefore, the present invention provides a fuel oil composition having a 10% residual carbon content of 0.2 to 1.0 mass%, and a desulfurized gas oil having a sulfur content of 10 mass ppm or less based on the fuel oil base oil. Residual coal comprising 75 to 99% by volume of a fuel base oil containing 70% by volume and at least one hydrocarbon oil selected from the group consisting of atmospheric residual oil, vacuum residual oil, desulfurized residual oil, slurry oil and extract. Conditioner 0.1-1.0% by volume, unsaturated hydrocarbons having 15-40 carbon atoms having side chains 0.8-25% by volume, fluidity improver 1.0-1000 ppm by volume Are each based on the said fuel oil composition, It concerns on the said fuel oil composition characterized by the above-mentioned.

本発明によれば、セタン指数を低下させることなく、硫黄分10質量ppm以下の脱硫軽油を燃料油基油とする、低温流動性に優れた燃料油組成物を提供することができ、そしてこの燃料油組成物は、各成分を添加することで製造できる。この各成分の添加方法には、特に制限はなく、残炭調整材を先に燃料油基油に添加した後に不飽和炭化水素化合物を添加してもよく、逆に不飽和炭化水素化合物を先に燃料油基油に添加した後に残炭調整材を添加してもよく、さらに残炭調整材と不飽和炭化水素化合物とを予め混合した後に燃料油基油に添加してもよい。この石油留分燃料油に添加する流動性向上剤は、上記の各成分の添加後又は各成分の添加の途中で添加する。   According to the present invention, it is possible to provide a fuel oil composition excellent in low-temperature fluidity, in which a desulfurized gas oil having a sulfur content of 10 mass ppm or less is used as a fuel oil base oil without reducing the cetane index. A fuel oil composition can be manufactured by adding each component. There are no particular restrictions on the method of adding each component, and the unsaturated hydrocarbon compound may be added after the residual coal modifier is first added to the fuel base oil. Conversely, the unsaturated hydrocarbon compound may be added first. The residual coal modifier may be added to the fuel oil base oil, and the residual coal modifier and the unsaturated hydrocarbon compound may be mixed in advance and then added to the fuel base oil. The fluidity improver added to the petroleum distillate fuel oil is added after each component is added or during the addition of each component.

以下、本発明を詳細に説明する。
本発明の燃料油組成物では、側鎖を有する15〜40個の炭素数を有する不飽和炭化水素をこの燃料油組成物に基づいて0.8〜25容量%含有するために、硫黄分10質量ppm以下の脱硫軽油を燃料油基油基準に基づいて10〜70容量%含む燃料油基油を、燃料油組成物に基づいて75〜99容量%含有していても、従来の硫黄分500〜2000質量%程度の比較的硫黄分の多い従来の軽油を燃料油基油として用いた場合と同程度の低温流動性を確保することができる。本発明において燃料油基油中に含まれる脱硫軽油の含有量が70容量%以下であればこの燃料油基油の過剰な低アロマ化が防止されて、その低アロマ化によるパラフィンの溶解性の過度の低下に起因する低温流動性の悪化が防止されるので、本発明では、燃料油基油に基づく硫黄分10質量ppm以下の脱硫軽油の含有量を70容量%以下に定めた。
Hereinafter, the present invention will be described in detail.
In the fuel oil composition of the present invention, an unsaturated hydrocarbon having 15 to 40 carbon atoms having a side chain is contained in an amount of 0.8 to 25% by volume based on the fuel oil composition. Even if 75 to 99 vol% of a fuel oil base oil containing 10 to 70 vol% of desulfurized diesel oil based on the fuel oil base oil standard is contained in an amount of 75 ppm to 99 vol% based on the fuel oil composition, the conventional sulfur content is 500 A low temperature fluidity comparable to that obtained when a conventional gas oil having a relatively high sulfur content of about 2000 mass% is used as the fuel oil base oil can be secured. In the present invention, if the content of the desulfurized gas oil contained in the fuel oil base oil is 70% by volume or less, excessive reduction of the aroma of the fuel oil base oil is prevented, and the solubility of paraffin due to the reduction of the aroma is reduced. Since deterioration of low-temperature fluidity due to excessive reduction is prevented, in the present invention, the content of desulfurized gas oil having a sulfur content of 10 mass ppm or less based on the fuel oil base oil is set to 70 vol% or less.

本発明で用いられる燃料油基油としては、この脱硫軽油以外に、常圧蒸留装置で原油を常圧において蒸留することによって得られる直留灯油や直留軽油、減圧蒸留装置で常圧残油を減圧下に蒸留して得られる減圧軽油や、この減圧軽油よりも軽質な軽質減圧軽油、灯油脱硫装置で直留灯油を脱硫して得られる脱硫灯油、間接脱硫装置で減圧軽油を脱硫して得られる脱硫減圧軽油や、その場合に副生成物として得られる軽質間脱硫軽油や、重質間脱硫軽油、直接脱硫装置で常圧残油や減圧残油を脱硫した場合に副生成物として得られる直脱軽質軽油や直脱重質軽油、軽質減圧軽油を脱硫して得られる脱硫軽質減圧軽油、接触分解装置から得られるライトサイクルオイル(Light Cycle Oil:LCO)等から選ばれる1種または2種以上のものを用いることができ、これらは燃料油基油の中に30〜90容量%配合され、燃料油基油中に含まれる上記脱硫軽油の含有量が10容量%未満になると、燃料油基油の硫黄分が高くアロマ分が多くなることから、硫黄分やアロマ分の規制が厳しくなる中、環境への影響を考慮し、本発明では、燃料油基油に基づく硫黄分10質量ppm以下の脱硫軽油の含有量を10容量%以上に定めた。   As fuel oil base oil used in the present invention, in addition to this desulfurized light oil, straight-run kerosene or straight-run light oil obtained by distilling crude oil at normal pressure with an atmospheric distillation device, atmospheric residue with a vacuum distillation device Vacuum gas oil obtained by distillation under reduced pressure, light vacuum gas oil lighter than this vacuum gas oil, desulfurized kerosene obtained by desulfurizing straight-run kerosene with a kerosene desulfurizer, and desulfurized vacuum oil with an indirect desulfurizer Desulfurized vacuum gas oil obtained, light desulfurized gas oil obtained as a by-product in that case, heavy desulfurized gas oil, obtained as a by-product when desulfurizing normal pressure residue or vacuum residue with direct desulfurization equipment 1 or 2 types selected from direct degassed light gas oil, directly degassed light gas oil, desulfurized light vacuum gas oil obtained by desulfurizing light vacuum gas oil, light cycle oil (Light Cycle Oil: LCO) obtained from catalytic cracking equipment, etc. The above can be used, and these are blended in the fuel oil base oil in an amount of 30 to 90% by volume. When the content of the desulfurized light oil contained in the fuel oil base oil is less than 10% by volume, the fuel oil Since the sulfur content of the base oil is high and the aroma content is large, the regulations on the sulfur content and the aroma content are becoming stricter. In consideration of the influence on the environment, in the present invention, the sulfur content based on the fuel oil base oil is 10 mass ppm. The content of the following desulfurized gas oil was set to 10% by volume or more.

燃料油組成物中に含まれる燃料油基油の含有量が75容量%未満になると、不飽和炭化水素の含有量が多くなり、スラッジ発生等により燃料フィルターが閉塞する懸念がある。
また、その含有量が99容量%を超えると、冬季における低温下あるいは寒冷地において燃料油基油のワックス分の析出、流動性の悪化という問題が生じることから、本発明では、燃料油組成物中に含まれる燃料油基油の含有量を75〜99容量%と定めた。この燃料油基油の含有量は、好ましくは78〜97容量%である。
When the content of the fuel base oil contained in the fuel oil composition is less than 75% by volume, the content of unsaturated hydrocarbons increases, and there is a concern that the fuel filter may be clogged due to sludge generation or the like.
Further, when the content exceeds 99% by volume, problems such as precipitation of wax content of fuel oil base oil and deterioration of fluidity occur at low temperatures in winter or in cold regions. Therefore, in the present invention, the fuel oil composition The content of the fuel base oil contained therein was determined to be 75 to 99% by volume. The content of the fuel oil base oil is preferably 78 to 97% by volume.

本発明の燃料油組成物は、前記の燃料油基油に加え、常圧残油、減圧残油、脱硫残油、スラリーオイル及びエキストラクトからなる群から選ばれる少なくとも1種の炭化水素油からなる残炭調整材を含んでいる。
前記の残炭調整材として用いられる常圧残油とは、常圧蒸留装置で原油を常圧で蒸留することによって得られる残油であり、減圧残油とは、減圧蒸留装置で常圧残油を減圧下に蒸留することによって得られる残油であり、脱硫残油とは、直接脱硫装置で常圧残油または減圧残油を脱硫することによって得られる残油である。
スラリーオイルとは、流動接触分解装置から得られる、350℃以上の沸点を有する残油であり、エキストラクトとは、潤滑油原料製造用の減圧蒸留装置から得られる留分を溶剤抽出法によって抽出分離した成分のうち、潤滑油に適さない芳香族成分を指している。残炭調整材として用いられるこれらの炭化水素油は、1種単独で添加してもよいが、2種以上組み合わせて使用してもよい。
The fuel oil composition of the present invention comprises at least one hydrocarbon oil selected from the group consisting of atmospheric residual oil, vacuum residual oil, desulfurized residual oil, slurry oil, and extract in addition to the fuel oil base oil. It contains the remaining charcoal conditioning material.
The atmospheric residual oil used as the residual coal modifier is a residual oil obtained by distilling crude oil at atmospheric pressure with an atmospheric distillation apparatus, and the vacuum residual oil is an atmospheric residue with a vacuum distillation apparatus. It is a residual oil obtained by distilling oil under reduced pressure, and a desulfurization residual oil is a residual oil obtained by desulfurizing a normal-pressure residual oil or a vacuum residual oil with a direct desulfurization apparatus.
Slurry oil is a residual oil having a boiling point of 350 ° C. or higher obtained from a fluid catalytic cracking device, and extract is a fraction obtained from a vacuum distillation device for producing a lubricating oil raw material by a solvent extraction method. Among the separated components, it refers to an aromatic component that is not suitable for lubricating oil. These hydrocarbon oils used as the residual coal modifier may be added singly or in combination of two or more.

本発明の燃料油組成物は、常圧残油、減圧残油、脱硫残油、スラリーオイル、及びエキストラクトから選ばれた少なくとも1種の炭化水素油からなる残炭調整材を0.1〜1.0容量%、好ましくは0.1〜0.7容量%、さらに好ましくは0.2〜0.7容量%を含む。前記残炭調整材の配合量が0.1〜1.0容量%であれば、スラッジの発生を抑制し、燃料フィルタの閉塞を回避することができる。
本発明の燃料油組成物において、それの10%残留炭素分が0.2質量%未満になると、「10%残油の残留炭素分0.2質量%以上」というA重油の免税条件を満たすことができなくなり、また、10%残留炭素分が1.0%を超えると、スラッジの発生を抑制しにくくなるところから、本発明では、燃料油組成物中の10%残留炭素分を0.2〜1.0質量%と定めた。この10%残留炭素分は、好ましくは0.2〜0.9質量%、より好ましくは0.2〜0.6質量%である。
10%残留炭素分の値はJIS K 2270「原油及び石油製品−残留炭素分試験方法」に準じて測定される値を意味する。
The fuel oil composition of the present invention comprises a residual carbon modifier comprising at least one hydrocarbon oil selected from atmospheric residual oil, vacuum residual oil, desulfurized residual oil, slurry oil, and extract. 1.0 volume%, Preferably it contains 0.1-0.7 volume%, More preferably, it contains 0.2-0.7 volume%. If the blending amount of the residual coal adjuster is 0.1 to 1.0% by volume, generation of sludge can be suppressed and blockage of the fuel filter can be avoided.
In the fuel oil composition of the present invention, when the 10% residual carbon content of the fuel oil composition is less than 0.2% by mass, the duty-free condition for heavy fuel oil A “residual carbon content of 10% residual oil is 0.2% by mass or more” is satisfied. In addition, when the 10% residual carbon content exceeds 1.0%, it becomes difficult to suppress the generation of sludge. Therefore, in the present invention, the 10% residual carbon content in the fuel oil composition is reduced to 0. It was determined to be 2 to 1.0% by mass. The 10% residual carbon content is preferably 0.2 to 0.9 mass%, more preferably 0.2 to 0.6 mass%.
The value of 10% residual carbon content means a value measured according to JIS K 2270 “Crude oil and petroleum products—residual carbon content test method”.

本発明において燃料油組成物の低温流動性を改善するために添加される、側鎖を有する15〜40個の炭素数を有する不飽和炭化水素の含有量がこの燃料油組成物に基づいて0.8容量%未満になると、低温流動性において所望の低温流動性改善効果が得られなくなり、また、その含有量が25容量%を超えると、10%残留炭素分が増加しスラッジの発生を抑制しにくくなる。このことから本発明では、燃料油組成物中に含有させる前記不飽和炭化水素の含有量を0.8〜25容量%と定めた。側鎖を有する15〜40個の炭素数を有する不飽和炭化水素の含有量は、好ましくは3〜22容量%である。   Based on this fuel oil composition, the content of unsaturated hydrocarbons having 15 to 40 carbon atoms having side chains added to improve the low temperature fluidity of the fuel oil composition in the present invention is 0. If it is less than 8% by volume, the desired low temperature fluidity improvement effect cannot be obtained in low temperature fluidity, and if its content exceeds 25% by volume, the residual carbon content increases by 10% and sludge generation is suppressed. It becomes difficult to do. Therefore, in the present invention, the content of the unsaturated hydrocarbon contained in the fuel oil composition is set to 0.8 to 25% by volume. The content of unsaturated hydrocarbons having 15 to 40 carbon atoms having side chains is preferably 3 to 22% by volume.

前記不飽和炭化水素の炭素数は、15〜40個、好ましくは 20〜40個、より好ましくは25〜35個である。
前記不飽和炭化水素の骨格構造は鎖状構造または環状構造であり、好ましくは鎖状構造である。
The unsaturated hydrocarbon has 15 to 40 carbon atoms, preferably 20 to 40 carbon atoms, and more preferably 25 to 35 carbon atoms.
The skeleton structure of the unsaturated hydrocarbon is a chain structure or a cyclic structure, preferably a chain structure.

前記不飽和炭化水素の側鎖は、好ましくは1〜3個の炭素数を有する炭化水素基であり、この炭化水素基の炭素数は好ましくは1個または2個であり、より好ましくは1個であり、側鎖の数は好ましくは1〜12個、より好ましくは2〜10個、更に好ましくは4〜8個である。
前記不飽和炭化水素の骨格構造の中の不飽和結合の数は好ましくは1〜12個であり、
より好ましくは2〜10個、更に好ましくは4〜8個である。
前記不飽和炭化水素化合物の構造が上記範囲であれば、低温流動性を向上することができる。
前記不飽和炭化水素は、上記範囲を満足する不飽和炭化水素を1種単独で添加してもよいが、2種以上を組み合わせて添加してもよい。
The side chain of the unsaturated hydrocarbon is preferably a hydrocarbon group having 1 to 3 carbon atoms, and the hydrocarbon group preferably has 1 or 2 carbon atoms, more preferably 1 carbon atom. The number of side chains is preferably 1 to 12, more preferably 2 to 10, and still more preferably 4 to 8.
The number of unsaturated bonds in the skeleton structure of the unsaturated hydrocarbon is preferably 1 to 12,
More preferably, it is 2-10 pieces, More preferably, it is 4-8 pieces.
If the structure of the unsaturated hydrocarbon compound is within the above range, the low temperature fluidity can be improved.
As the unsaturated hydrocarbon, one type of unsaturated hydrocarbon that satisfies the above range may be added alone, or two or more types may be added in combination.

前記不飽和炭化水素化合物としては、例えば、オレフィン類、テルペン類、及びそれらの誘導体などが挙げられる。そのうち、オレフィン類としては、2,6,10,13,17,21−ヘキサメチル−10−ビニルドコサ−2,6,11,16,20−ヘキサエン、2,3,6,10,13,17,21−ヘプタメチル−10−ビニルドコサ−1,6,11,16,20−ヘキサエン、2,3,6,10,13,17,20,21−オクタメチル−10−ビニルドコサ−1,6,11,16,21−ヘキサエン等が挙げられ、また、テルペン類の例はセスキテルペン、ジテルペン、セスタテルペン、トリテルペン、テトラテルペンが挙げられ、好ましくはトリテルペンであり、より好ましくはスクアレンである。
また、前記不飽和炭化水素化合物を含むのであれば、天然品を用いても良い。例えば、スクワレンを含むサメの肝油や、ボトリオコッカス、オーランチオキトリウムなどの微細藻類から得られる前記不飽和炭化水素化合物を含む油分を用いても良い。
Examples of the unsaturated hydrocarbon compound include olefins, terpenes, and derivatives thereof. Among them, as olefins, 2,6,10,13,17,21-hexamethyl-10-vinyldocosa-2,6,11,16,20-hexaene, 2,3,6,10,13,17,21 -Heptamethyl-10-vinyldocosa-1,6,11,16,20-hexaene, 2,3,6,10,13,17,20,21-octamethyl-10-vinyldocosa-1,6,11,16,21 -Hexaene etc. are mentioned, and examples of terpenes include sesquiterpenes, diterpenes, sesterterpenes, triterpenes, tetraterpenes, preferably triterpenes, more preferably squalene.
A natural product may be used as long as it contains the unsaturated hydrocarbon compound. For example, a shark liver oil containing squalene or an oil containing the unsaturated hydrocarbon compound obtained from microalgae such as Botryococcus or Aurantiochytrium may be used.

本発明の燃料油組成物の流動点は、−20℃以下、好ましくは−22.5℃以下である。
流動点が−20℃以下であることにより、低温下において燃料の固化によるディーゼル車の低温作動性の問題が起きる可能性が小さくなるため好ましい。
この流動点は、JIS K 2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」に準じて測定される流動点を意味する。
The pour point of the fuel oil composition of the present invention is −20 ° C. or lower, preferably −22.5 ° C. or lower.
A pour point of −20 ° C. or lower is preferable because the possibility of a problem of low-temperature operability of a diesel vehicle due to solidification of fuel at low temperatures is reduced.
This pour point means a pour point measured according to JIS K 2269 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.

本発明の燃料油組成物に添加する流動性向上剤は特に制限されることなく、市販のものをはじめ各種流動性向上剤を使用することができ、特に制限はないが、エチレン−エチレン性不飽和エステル共重合体に代表されるポリマータイプ、例えばエチレン−酢酸ビニル共重合体、あるいは長鎖ジカルボン酸アミドに代表される油溶性分散剤タイプが好ましい。
流動性向上剤の添加量が燃料油組成物に基づいて1.0容量ppm以上であれば、前記不飽和炭化水素による低温流動性向上効果が一層顕著になり、また、その添加量が燃料油組成物に基づいて1000容量ppmを超えても、この流動性向上剤の併用による低温流動性の向上効果は、その添加量の増加に見合うほどの改善をもたらすことがないところから、流動性向上剤の添加量は1.0容量ppm〜1000容量ppmであるのが好ましい。
The fluidity improver added to the fuel oil composition of the present invention is not particularly limited, and various fluidity improvers including commercially available ones can be used. A polymer type typified by a saturated ester copolymer, for example, an ethylene-vinyl acetate copolymer, or an oil-soluble dispersant type typified by a long-chain dicarboxylic amide is preferred.
If the addition amount of the fluidity improver is 1.0 ppm by volume or more based on the fuel oil composition, the effect of improving the low temperature fluidity by the unsaturated hydrocarbon becomes more prominent, and the addition amount is the fuel oil. Even if it exceeds 1000 ppm by volume based on the composition, the improvement effect of the low temperature fluidity by the combined use of the fluidity improver does not bring about an improvement that can be commensurate with the increase in the amount added, so that the fluidity is improved. The added amount of the agent is preferably 1.0 ppm by volume to 1000 ppm by volume.

本発明の燃料油組成物の15℃における密度は一般に0.83〜0.89g/cm 、好ましくは0.85〜0.87g/cmである。
この15℃における密度はJIS K 2249「原油及び石油製品−密度試験方法」に準じて測定される密度を意味する。
The density at 15 ° C. of the fuel oil composition of the present invention is generally 0.83 to 0.89 g / cm 3 , preferably 0.85 to 0.87 g / cm 3 .
The density at 15 ° C. means a density measured according to JIS K 2249 “Crude oil and petroleum products—Density test method”.

本発明の燃料油組成物の引火点は一般に安全性の観点から、60℃以上、好ましくは62℃以上である。
この引火点はJIS K 2265「原油及び石油製品−引火点試験方法」に準じて測定される引火点を意味する。
The flash point of the fuel oil composition of the present invention is generally 60 ° C. or higher, preferably 62 ° C. or higher, from the viewpoint of safety.
This flash point means a flash point measured according to JIS K 2265 “Crude oil and petroleum products—Flash point test method”.

本発明の燃料油組成物の50℃における動粘度は1.7〜5.0mm/sであることが好ましく、より好ましくは2.0〜3.5mm/sである。この範囲であれば、冬季に燃料をタンクから燃焼機器へ問題なく供給し、バーナー燃焼において良好な噴霧、気化を行うことができる。
この50℃における動粘度はJIS K 2283「原油及び石油製品−動粘度試験方法」に準じて測定される動粘度を意味する。
Kinematic viscosity at 50 ° C. of the fuel oil composition of the present invention is preferably from 1.7~5.0mm 2 / s, more preferably 2.0~3.5mm 2 / s. If it is this range, a fuel can be supplied from a tank to a combustion apparatus without a problem in winter, and favorable spraying and vaporization can be performed in burner combustion.
The kinematic viscosity at 50 ° C. means a kinematic viscosity measured according to JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method”.

本発明の燃料油組成物において、硫黄分は2.0質量%以下、好ましくは0.5質量%以下、より好ましくは0.1質量%以下である。硫黄分が2.0質量%以下であることにより、工業炉やボイラーなどで燃焼した際に排出されるSOx量を低減するとともに、煙道腐食を抑制することが出来る。
硫黄分の含有量は少ない方が好ましいが、通常、0.01質量%含有する。
なお、硫黄分は、JIS K 2541「原油及び石油製品−硫黄分試験方法」に準じて測定した値を意味する。
In the fuel oil composition of the present invention, the sulfur content is 2.0% by mass or less, preferably 0.5% by mass or less, more preferably 0.1% by mass or less. When the sulfur content is 2.0% by mass or less, the amount of SOx discharged when burned in an industrial furnace or a boiler can be reduced and flue corrosion can be suppressed.
The content of sulfur is preferably as small as possible, but is usually 0.01% by mass.
The sulfur content means a value measured according to JIS K 2541 “Crude oil and petroleum products—Sulfur content test method”.

本発明の燃料油組成物のセタン指数は一般に40〜70であり、好ましくは、40〜60である。この範囲であれば、良好な着火性を有する燃料油組成物となる。
なお、このセタン指数はJIS K 2204に準じて算出される値を意味する。
The cetane index of the fuel oil composition of the present invention is generally 40 to 70, preferably 40 to 60. If it is this range, it will become a fuel oil composition which has favorable ignitability.
The cetane index means a value calculated according to JIS K 2204.

本発明の燃料油組成物の曇り点は一般に5℃以下であり、好ましくは3℃以下である。
本発明の燃料油組成物において、曇り点が5℃以下であることにより、タンク内のワックス析出を抑制し、フィルターや配管の閉塞を防止し、燃料を問題なく供給する事が出来る。
この曇り点はJIS K 2269「石油製品−曇り点試験方法」に準じて測定される温度を意味する。
The cloud point of the fuel oil composition of the present invention is generally 5 ° C or lower, preferably 3 ° C or lower.
In the fuel oil composition of the present invention, when the cloud point is 5 ° C. or less, wax precipitation in the tank can be suppressed, the filter and piping can be blocked, and fuel can be supplied without any problem.
This cloud point means a temperature measured according to JIS K 2269 “Petroleum products—Cloud point test method”.

本発明の燃料油組成物の目詰まり点(CFPP)は一般に0℃以下であり、好ましくは−3℃以下であり、より好ましくは−10℃以下である。
本発明の燃料油組成物は、このように0℃以下という低い目詰まり点を有するため、冬季または寒冷地において夾雑物を除去するための濾過装置におけるフィルターの目詰まりを防止することができる。
この目詰まり点はJIS K 2288「軽油−目詰まり点試験方法」に準じて測定される目詰まり点を意味する。
The clogging point (CFPP) of the fuel oil composition of the present invention is generally 0 ° C. or lower, preferably −3 ° C. or lower, more preferably −10 ° C. or lower.
Since the fuel oil composition of the present invention has a low clogging point of 0 ° C. or lower as described above, it is possible to prevent clogging of a filter in a filtering device for removing impurities in winter or in a cold region.
This clogging point means a clogging point measured according to JIS K 2288 “Light oil—clogging point test method”.

本発明の燃料油組成物の総発熱量は一般に42〜46MJ/kgであることが好ましく、44〜46MJ/kgであることがより好ましい。
本発明の燃料油組成物において、総発熱量が上記範囲にあることで効率的な燃焼が可能となる。この総発熱量はJIS K 2279「原油及び石油製品軽油−発熱量試験方法及び計算による推定方法」に準じて測定される総発熱量を意味する。
In general, the total calorific value of the fuel oil composition of the present invention is preferably 42 to 46 MJ / kg, and more preferably 44 to 46 MJ / kg.
In the fuel oil composition of the present invention, efficient combustion is possible when the total calorific value is in the above range. This total calorific value means the total calorific value measured according to JIS K 2279 “Crude oil and petroleum product gas oil—heat calorific value test method and calculation estimation method”.

本発明の燃料油組成物の10容量%留出温度(T10)は一般に170〜260℃、好ましくは180〜260℃、より好ましくは190〜260℃である。
引火点低下による安全性への影響から170℃以上が好ましく、低温性能の点から、260℃以下であることが好ましい。
50容量%留出温度(T50)は一般に230〜320℃、好ましくは240〜310℃、より好ましくは250〜310℃である。
230℃未満の場合は発熱量が悪化する傾向にあり、一方、燃焼性の観点から、320℃以下であることが好ましい。
そして90容量%留出温度(T90)は一般に280〜380℃、好ましくは290〜380℃、より好ましくは300〜380℃である。
発熱量の点から、280℃以上であることが好ましい。一方、380℃を超える場合、気化が進みにくく、完全燃焼し難い傾向にあり、ワックス含有量が多すぎて低温流動性向上剤などの添加剤の効果が現れにくい。
なお、10容量%留出温度(T10)、50容量%留出温度(T50)および90容量%留出温度(T90)はJIS K 2254「石油製品軽油−蒸留試験方法」に準じて測定される留出温度を意味する。
The 10 vol% distillation temperature (T10) of the fuel oil composition of the present invention is generally 170 to 260 ° C, preferably 180 to 260 ° C, more preferably 190 to 260 ° C.
170 ° C. or higher is preferable from the influence on safety due to the reduction of the flash point, and 260 ° C. or lower is preferable from the viewpoint of low temperature performance.
The 50 vol% distillation temperature (T50) is generally 230-320 ° C, preferably 240-310 ° C, more preferably 250-310 ° C.
When the temperature is less than 230 ° C., the calorific value tends to be deteriorated.
And 90 volume% distillation temperature (T90) is 280-380 degreeC generally, Preferably it is 290-380 degreeC, More preferably, it is 300-380 degreeC.
It is preferable that it is 280 degreeC or more from the point of the emitted-heat amount. On the other hand, when it exceeds 380 ° C., vaporization is difficult to proceed, and it tends to be difficult to burn completely, and the wax content is too high, and the effect of additives such as a low-temperature fluidity improver is hardly exhibited.
In addition, 10 volume% distillation temperature (T10), 50 volume% distillation temperature (T50), and 90 volume% distillation temperature (T90) are measured according to JISK2254 "petroleum product light oil-distillation test method". It means the distillation temperature.

燃料油組成物の飽和分含有割合は、40.0〜56.0容量%、好ましくは45.0〜55.0容量%である。また、燃料油組成物のナフテン分含有割合は、20.0〜27.0容量%、好ましくは22.0〜27.0容量%である。飽和分とナフテン分の含有割合がこの範囲内となることにより、低温流動性に影響を与えるワックスの主成分であるn−パラフィンが希釈される効果が大きくなり好ましい。   The saturated oil content of the fuel oil composition is 40.0 to 56.0% by volume, preferably 45.0 to 55.0% by volume. The naphthene content of the fuel oil composition is 20.0 to 27.0 vol%, preferably 22.0 to 27.0 vol%. When the content ratio of the saturated component and the naphthene component falls within this range, the effect of diluting the n-paraffin, which is the main component of the wax affecting the low-temperature fluidity, is preferably increased.

なお、ここでの飽和分含有割合は、JPI−5S−49−2007「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」に基づいて求められる。
また、ナフテン分含有割合は、高速液体クロマトグラフ法(HPLC)により燃料油組成物を芳香族分と飽和分に分画採取した後、飽和分をガスクロマトグラフ法−質量分析法(GC−MS)で分析し、ASTM D 2786に従って解析を行い、ナフテン類割合を算出し、ここで得られた割合を、JPI−5S−49−2007「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」により求めた飽和分割合に乗ずることで求められる。
In addition, the saturated content rate here is calculated | required based on JPI-5S-49-2007 "Petroleum product-hydrocarbon type test method-high performance liquid chromatograph method".
The naphthene content is determined by gas chromatography-mass spectrometry (GC-MS) after the fuel oil composition is fractionated into aromatics and saturated components by high performance liquid chromatography (HPLC). In accordance with ASTM D 2786, the ratio of naphthenes is calculated, and the ratio obtained here is determined according to JPI-5S-49-2007 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method”. It is obtained by multiplying the saturation ratio obtained by the above.

本発明の燃料油組成物を製造する場合に、どのような順序で残炭調整材および不飽和炭化水素を燃料油基油に添加してもよい。本発明の燃料油組成物の各成分の添加方法には、特に制限はなく、残炭調整材を先に燃料油基油に添加した後に不飽和炭化水素化合物を添加してもよく、逆に不飽和炭化水素化合物を先に燃料油基油に添加した後に残炭調整材を添加してもよく、さらに残炭調整材と不飽和炭化水素化合物とを予め混合した後に燃料油基油に添加してもよい。また、残炭調整材や不飽和炭化水素化合物は適当な溶剤の溶液として添加してもよい。また、本発明の燃料油組成物は、石油留分燃料油に通常添加される、防錆剤、酸化防止剤、防食剤、静電気防止剤、セタン価向上剤、金属不活性化剤などの添加剤を添加してもよい。
また、この石油留分燃料油に添加する流動性向上剤は、上記の各成分の添加後又は各成分の添加の途中で添加する。
When producing the fuel oil composition of the present invention, the residual coal modifier and the unsaturated hydrocarbon may be added to the fuel base oil in any order. The method for adding each component of the fuel oil composition of the present invention is not particularly limited, and the unsaturated hydrocarbon compound may be added after the residual coal modifier is first added to the fuel oil base oil. The residual coal modifier may be added after the unsaturated hydrocarbon compound is first added to the fuel oil base oil, and the residual coal modifier and the unsaturated hydrocarbon compound are mixed in advance and then added to the fuel oil base oil. May be. Moreover, you may add a residual coal modifier and an unsaturated hydrocarbon compound as a solution of a suitable solvent. In addition, the fuel oil composition of the present invention is usually added to petroleum distillate fuel oil, such as rust inhibitor, antioxidant, anticorrosive agent, antistatic agent, cetane number improver, metal deactivator, etc. An agent may be added.
Moreover, the fluidity improver added to this petroleum fraction fuel oil is added after the addition of each of the above components or during the addition of each component.

以下、実施例を参照して本発明を更に詳しく説明するが、これらの実施例は本発明を実施した場合の代表的な例を示すもので、本発明は本実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples show typical examples when the present invention is implemented, and the present invention is not limited to these examples. is not.

以下の実施例および比較例において用いられた燃料油基油の構成成分として採用した脱硫軽油、直留軽油、間脱軽油、LCO、脱硫軽質減圧軽油、軽質減圧軽油のそれぞれに関する特性、すなわち、15℃における密度、引火点、50℃における動粘度、流動点、硫黄分、残留炭素分、セタン指数、曇り点、目詰まり点、総発熱量および蒸留性状は、それぞれ、JIS K 2249、JIS K 2265、JIS K 2283、JIS K 2269、JIS K 2541、JIS K 2270、JIS K2204、JIS K 2269、JIS K 2288、JIS K 2279およびJIS K 2254に定められている方法に準拠して測定し、その結果を表1に示した。   Characteristics relating to each of desulfurized light oil, straight-run gas oil, intermediate degasified oil, LCO, desulfurized light vacuum gas oil, and light vacuum gas oil employed as constituents of the fuel base oil used in the following Examples and Comparative Examples, namely 15 The density at ℃, the flash point, the kinematic viscosity at 50 ° C, the pour point, the sulfur content, the residual carbon content, the cetane index, the cloud point, the clogging point, the total calorific value and the distillation properties are JIS K 2249 and JIS K 2265, respectively. , JIS K 2283, JIS K 2269, JIS K 2541, JIS K 2270, JIS K 2204, JIS K 2269, JIS K 2288, JIS K 2279 and JIS K 2254 Are shown in Table 1.

飽和分含有割合は、JPI−5S−49−2007に定められている方法に準拠して測定した。HPLCの装置構成及び分析条件を以下に示す。
装置:Agilent 1100 Series(ALS:G1329A,Bin
Pump:G1312A,Degasser:G1379A,Rid:G1362A,C
olcom:G1316A)
移動相:n−ヘキサン
流量:1.0ml/min
カラム:硝酸銀含浸シリカカラム(4.6mml.D.*70mmL.センシュー科
学製 AgNO3−1071−Y)
アミン修飾カラム(4.0mml.D.*250mmL.2本 センシュー科学製
LICHROSORB−NH2)
カラム温度:35℃
試料濃度:10vol%
注入量:5μl
The saturated content ratio was measured in accordance with the method defined in JPI-5S-49-2007. The apparatus configuration and analysis conditions of HPLC are shown below.
Apparatus: Agilent 1100 Series (ALS: G1329A, Bin
Pump: G1312A, Degasser: G1379A, Rid: G1362A, C
olcom: G1316A)
Mobile phase: n-hexane Flow rate: 1.0 ml / min
Column: Silver nitrate impregnated silica column (4.6 ml. D. * 70 mm L. AgNO3-1071-Y manufactured by Senshu Kagaku)
Amine modified column (4.0 ml.D. * 250 mm L. 2)
LICHROSORB-NH2)
Column temperature: 35 ° C
Sample concentration: 10 vol%
Injection volume: 5 μl

ナフテン分含有割合は下記方法で測定した。
まず試料をHPLCにより飽和分と芳香族分により分画後、飽和分についてGC−MSによりタイプ分析を行った。ここで得られた分析結果を基に、ASTMD2786に従って解析を行い、飽和分中のパラフィン分と、ナフテン分の含有割合を求めた。ここで得られた飽和分中のナフテン分の割合を、上記のように求めた飽和分割合に乗ずることで、ナフテン分含有割合を求めた。
The naphthene content was measured by the following method.
First, a sample was fractionated by a saturated component and an aromatic component by HPLC, and then a type analysis was performed on the saturated component by GC-MS. Based on the analysis result obtained here, the analysis was performed according to ASTM D2786, and the content ratio of the paraffin content in the saturated content and the naphthene content was determined. The ratio of naphthene content was determined by multiplying the ratio of naphthene content in the saturated content obtained here by the saturation content ratio determined as described above.

GC−MSの分析条件を下記に示す。
装置:HP−6890 HP5975四重極質量分析計
カラム:DB−1:30m×0.25mmI.D.×0.25μm
オーブン温度:40℃(1min)→10℃/min→280℃(5min)
注入口温度:43℃ Oven track mode ON
インターフェース温度:300℃
キャリアガス:He:55KPa Constant flow mode ON
Solvent Delay:5.3min
質量範囲:50〜500 Threshold=100 Sampling♯3
イオン化電圧:70eV
注入方法:オンカラム注入 1.0μl
The analysis conditions of GC-MS are shown below.
Apparatus: HP-6890 HP5975 quadrupole mass spectrometer Column: DB-1: 30 m × 0.25 mm I.D. D. × 0.25μm
Oven temperature: 40 ° C. (1 min) → 10 ° C./min→280° C. (5 min)
Inlet temperature: 43 ° C. Even track mode ON
Interface temperature: 300 ° C
Carrier gas: He: 55 KPa Constant flow mode ON
Solvent Delay: 5.3min
Mass range: 50-500 Threshold = 100 Sampling # 3
Ionization voltage: 70 eV
Injection method: On-column injection 1.0 μl

Figure 2014189619
Figure 2014189619

また、減圧残渣油およびエキストラクトの15℃における密度、硫黄分および残留炭素分について測定した結果を表2に示した。   Table 2 shows the results of measurement of the density, sulfur content and residual carbon content at 15 ° C. of the vacuum residue oil and extract.

Figure 2014189619
実施例および比較例で用いた不飽和炭化水素は次の通りであった。
スクアレン:C3050、融点-75℃
スクアラン:C3062、融点-38℃
ミルセン:C1016、融点50℃
(R)-(+)-リモネン:C1016、融点-96.6℃
Figure 2014189619
The unsaturated hydrocarbons used in the examples and comparative examples were as follows.
Squalene: C 30 H 50 , melting point -75 ° C
Squalane: C 30 H 62 , melting point -38 ° C.
Myrcene: C 10 H 16 , melting point 50 ° C.
(R)-(+)-Limonene: C 10 H 16 , melting point −96.6 ° C.

以下表3に記載した実施例1〜4及び比較例1〜5について説明する。
実施例1
燃料油基油に基づいて、それぞれ表1に示した性状を有するサルファーフリーの脱硫軽油23.7容量%(燃料油基油中の前記脱硫軽油の割合:25容量%)、直留軽油4.8容量%、間脱軽油17.1容量%、LCO21.8容量%、脱硫軽質減圧軽油27.3容量%、残炭調整材としてそれぞれ表2に示した性状を有する減圧残渣油0.3容量%およびスクアレン5.0容量%を混合した後、市販のエチレン−酢酸ビニル共重合体系流動性向上剤を燃料油組成物に基づく含有量が200容量ppmとなるように、この流動性向上剤を前記混合物に添加、混合して、燃料油組成物を調製した。
*請求項に流動性向上剤を含める場合。
Hereinafter, Examples 1 to 4 and Comparative Examples 1 to 5 described in Table 3 will be described.
Example 1
3. Sulfur-free desulfurized gas oil 23.7% by volume (ratio of the desulfurized gas oil in the fuel oil base oil: 25% by volume), straight-run gas oil, each having the properties shown in Table 1, based on the fuel oil base oil. 8% by volume, 17.1% by volume of degassed oil, 21.8% by volume of LCO, 27.3% by volume of desulfurized light vacuum oil, 0.3% of vacuum residual oil having the properties shown in Table 2 as a residual coal modifier. % And squalene 5.0% by volume, and then adding a commercially available ethylene-vinyl acetate copolymer based fluidity improver so that the content based on the fuel oil composition is 200 ppm by volume. A fuel oil composition was prepared by adding to and mixing with the mixture.
* When the claim contains a fluidity improver.

実施例2
前記脱硫軽油を22.5容量%(燃料油基油中の前記脱硫軽油の割合:25容量%)、直留軽油を4.5容量%、間脱軽油を16.2容量%、LCOを20.7容量%、脱硫軽質減圧軽油を25.8容量%、スクアレン10.0容量%を用いる以外は、実施例1と同様にして燃料油組成物を調製した。
Example 2
22.5% by volume of the desulfurized gas oil (ratio of the desulfurized gas oil in the fuel oil base oil: 25% by volume), 4.5% by volume of straight run gas oil, 16.2% by volume of degassed light oil, and 20% of LCO A fuel oil composition was prepared in the same manner as in Example 1, except that 0.7% by volume, 25.8% by volume of desulfurized light vacuum gas oil, and 10.0% by volume of squalene were used.

実施例3
前記脱硫軽油を20.0容量%(燃料油基油中の前記脱硫軽油の割合:25容量%)、直留軽油を4.0容量%、間脱軽油を14.4容量%、LCOを18.4容量%、脱硫軽質減圧軽油を22.9容量%、スクアレン20.0容量%を用いる以外は、実施例1と同様にして燃料油組成物を調製した。
Example 3
20.0% by volume of the desulfurized gas oil (ratio of the desulfurized gas oil in the fuel oil base oil: 25% by volume), 4.0% by volume of straight run gas oil, 14.4% by volume of degassed light oil, 18% of LCO A fuel oil composition was prepared in the same manner as in Example 1 except that 4% by volume, 22.9% by volume of desulfurized light vacuum gas oil, and 20.0% by volume of squalene were used.

実施例4
前記脱硫軽油を24.0容量%(燃料油基油中の前記脱硫軽油の割合:25容量%)、直留軽油を21.9容量%、LCOを22.8容量%、軽質減圧軽油を25.7容量%、残炭調整材として表2に性状を示したエキストラクト0.6容量%、スクアレン5.0容量%を混合した後、流動性向上剤を燃料油組成物基準で500容量ppmとなるように添加し混合した。
Example 4
24.0% by volume of the desulfurized gas oil (ratio of the desulfurized gas oil in the fuel base oil: 25% by volume), 21.9% by volume of straight-run gas oil, 22.8% by volume of LCO, 25 of light vacuum gas oil .7% by volume, after mixing 0.6% by volume of the extract shown in Table 2 as a residual coal modifier and 5.0% by volume of squalene, the flowability improver was 500 ppm by volume based on the fuel oil composition. It added and mixed so that it might become.

比較例1
前記脱硫軽油を25.0容量%(燃料油基油中の前記脱硫軽油の割合:25容量%)、直留軽油を5.0容量%、間脱軽油を18.0容量%、LCOを23.0容量%、脱硫軽質減圧軽油を28.7容量%、残炭調整材として表2に性状を示した減圧残渣油0.3容量%を混合した後、流動性向上剤を燃料油組成物基準で200容量ppmとなるように添加し混合した。
Comparative Example 1
25.0% by volume of the desulfurized gas oil (ratio of the desulfurized gas oil in the fuel base oil: 25% by volume), 5.0% by volume of straight run gas oil, 18.0% by volume of degassed light oil, and 23% of LCO 0.0 vol%, 28.7 vol% desulfurized light vacuum gas oil, and 0.3 vol% vacuum residue oil whose properties are shown in Table 2 as a residual coal modifier are mixed, and then a fluidity improver is added to the fuel oil composition. It added and mixed so that it might become 200 volume ppm on the basis.

比較例2
前記脱硫軽油を17.5容量%(燃料油基油中の前記脱硫軽油の割合:25容量%)、直留軽油を3.5容量%、間脱軽油を12.6容量%、LCOを16.1容量%、脱硫軽質減圧軽油を20.0容量%、スクアレン30.0容量%を用いる以外は、実施例1と同様にして燃料油組成物を調製した。
Comparative Example 2
17.5% by volume of the desulfurized gas oil (ratio of the desulfurized gas oil in the fuel base oil: 25% by volume), 3.5% by volume of straight run gas oil, 12.6% by volume of degassed light oil, and 16% of LCO A fuel oil composition was prepared in the same manner as in Example 1 except that 1% by volume, 20.0% by volume of desulfurized light vacuum gas oil, and 30.0% by volume of squalene were used.

比較例3
スクアレンの代わりにスクアランを5.0容量%用いる以外は、実施例1と同様にして燃料油組成物を調製した。
Comparative Example 3
A fuel oil composition was prepared in the same manner as in Example 1 except that 5.0% by volume of squalane was used instead of squalene.

比較例4
スクアレンの代わりにミルセンを5.0容量%用いる以外は、実施例1と同様にして燃料油組成物を調製した。
Comparative Example 4
A fuel oil composition was prepared in the same manner as in Example 1 except that 5.0% by volume of myrcene was used instead of squalene.

比較例5
スクアレンの代わりに(R)-(+)-リモネンを5.0容量%用いる以外は、実施例1と同様にして燃料油組成物を調製した。
Comparative Example 5
A fuel oil composition was prepared in the same manner as in Example 1, except that 5.0% by volume of (R)-(+)-limonene was used instead of squalene.

Figure 2014189619
Figure 2014189619

Figure 2014189619
Figure 2014189619

表4より、実施例1〜4で得られた本発明の燃料油組成物は、硫黄分10質量ppm以下の脱硫軽油を10〜70容量%含有する燃料油基油を75〜99容量%と、常圧残油、減圧残油、脱硫残油、スラリーオイル及びエキストラクトから選ばれた少なくとも1種の炭化水素油からなる残炭調整材を0.1〜1.0容量%と、側鎖を有する炭素数が15〜40の不飽和炭化水素化合物を0.8〜25容量%と、流動性向上剤とを含有してなる燃料油組成物であって、前記流動性向上剤の含有量が燃料油組成物基準で1.0〜1000容量ppmを含有してなる燃料油組成物であることにより、前記不飽和炭化水素化合物を含有していない比較例1と比較して、セタン指数を下げることなく低温流動性に優れている事が分かる。   From Table 4, the fuel oil composition of the present invention obtained in Examples 1 to 4 contains 75 to 99% by volume of a fuel oil base oil containing 10 to 70% by volume of desulfurized light oil having a sulfur content of 10 mass ppm or less. 0.1 to 1.0% by volume of a residual carbon modifier comprising at least one hydrocarbon oil selected from normal pressure residual oil, reduced pressure residual oil, desulfurized residual oil, slurry oil and extract, and side chain A fuel oil composition comprising 0.8 to 25% by volume of an unsaturated hydrocarbon compound having 15 to 40 carbon atoms and a fluidity improver, the content of the fluidity improver Is a fuel oil composition containing 1.0 to 1000 ppm by volume on the basis of the fuel oil composition, so that the cetane index is compared with Comparative Example 1 not containing the unsaturated hydrocarbon compound. It can be seen that the low temperature fluidity is excellent without lowering.

表4より、比較例2〜比較例5で得られた燃料油組成物は、炭素数が15〜40の不飽和炭化水素含有量の上限を超えた場合(比較例2)、低温流動性は改善されているが、10%残留炭素分が本発明の範囲外である。
また、炭素数が15〜40の不飽和炭化水素の構造と異なる炭化水素を用いた場合(比較例3〜比較例5)、低温流動性が改善できていない事が分かる。
From Table 4, when the fuel oil compositions obtained in Comparative Examples 2 to 5 exceed the upper limit of the unsaturated hydrocarbon content having 15 to 40 carbon atoms (Comparative Example 2), the low temperature fluidity is Although improved, 10% residual carbon is outside the scope of the present invention.
Moreover, when hydrocarbons different from the structure of unsaturated hydrocarbons having 15 to 40 carbon atoms are used (Comparative Examples 3 to 5), it can be seen that the low temperature fluidity cannot be improved.

Claims (3)

10%残留炭素分が0.2〜1.0質量%である燃料油組成物であって、硫黄分10質量ppm以下の脱硫軽油を燃料油基油に基づいて10〜70容量%含む燃料油基油75〜99容量%と、常圧残油、減圧残油、脱硫残油、スラリーオイル及びエキストラクトからなる群から選ばれる少なくとも1種の炭化水素油からなる残炭調整材0.1〜1.0容量%と、側鎖を有する15〜40個の炭素数を有する不飽和炭化水素0.8〜25容量%と、流動性向上剤1.0〜1000容量ppmとをそれぞれ前記燃料油組成物に基づいて含有することを特徴とする、前記燃料油組成物。   A fuel oil composition having a 10% residual carbon content of 0.2 to 1.0% by mass, comprising 10 to 70% by volume of desulfurized gas oil having a sulfur content of 10 mass ppm or less based on the fuel oil base oil. Residue adjusting agent 0.1 to 75% by volume of base oil and at least one hydrocarbon oil selected from the group consisting of atmospheric residual oil, vacuum residual oil, desulfurized residual oil, slurry oil and extract 1.0% by volume, 0.8 to 25% by volume of unsaturated hydrocarbons having 15 to 40 carbon atoms having side chains, and 1.0 to 1000 ppm by volume of fluidity improver, respectively. The fuel oil composition described above, which is contained based on the composition. 前記不飽和炭化水素の骨格構造の中の不飽和結合が、1〜12個であることを特徴とする請求項1に記載された燃料油組成物。   The fuel oil composition according to claim 1, wherein the unsaturated hydrocarbon has 1 to 12 unsaturated bonds in the skeleton structure. 前記不飽和炭化水素が、1〜3個の炭素数を有する側鎖を1〜12個有することを特徴とする請求項1または請求項2に記載された燃料油組成物。   The fuel oil composition according to claim 1 or 2, wherein the unsaturated hydrocarbon has 1 to 12 side chains having 1 to 3 carbon atoms.
JP2013065699A 2013-03-27 2013-03-27 Fuel oil composition Active JP5847750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013065699A JP5847750B2 (en) 2013-03-27 2013-03-27 Fuel oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013065699A JP5847750B2 (en) 2013-03-27 2013-03-27 Fuel oil composition

Publications (2)

Publication Number Publication Date
JP2014189619A true JP2014189619A (en) 2014-10-06
JP5847750B2 JP5847750B2 (en) 2016-01-27

Family

ID=51836227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013065699A Active JP5847750B2 (en) 2013-03-27 2013-03-27 Fuel oil composition

Country Status (1)

Country Link
JP (1) JP5847750B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443006B1 (en) 2018-11-27 2019-10-15 Exxonmobil Research And Engineering Company Low sulfur marine fuel compositions
US10597594B1 (en) 2018-11-27 2020-03-24 Exxonmobil Research And Engineering Company Low sulfur marine fuel compositions
US10781391B2 (en) 2018-11-27 2020-09-22 Exxonmobil Research And Engineering Company Low sulfur marine fuel compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353597A (en) * 1991-05-31 1992-12-08 Nippon Zeon Co Ltd Agent for improving low-temperature stability of fuel oil and fuel oil composition containing the same
JPH06116573A (en) * 1992-10-06 1994-04-26 Cosmo Sogo Kenkyusho:Kk Low-temperature flowable fuel oil composition
JP2006321960A (en) * 2005-05-17 2006-11-30 Yasuhara Chemical Co Ltd Fuel oil for diesel engine
JP2008120972A (en) * 2006-11-15 2008-05-29 Cosmo Oil Co Ltd Low-temperature flowable fuel oil composition
JP2010121084A (en) * 2008-11-21 2010-06-03 Adeka Corp Low temperature fluidity improver for biodiesel fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353597A (en) * 1991-05-31 1992-12-08 Nippon Zeon Co Ltd Agent for improving low-temperature stability of fuel oil and fuel oil composition containing the same
JPH06116573A (en) * 1992-10-06 1994-04-26 Cosmo Sogo Kenkyusho:Kk Low-temperature flowable fuel oil composition
JP2006321960A (en) * 2005-05-17 2006-11-30 Yasuhara Chemical Co Ltd Fuel oil for diesel engine
JP2008120972A (en) * 2006-11-15 2008-05-29 Cosmo Oil Co Ltd Low-temperature flowable fuel oil composition
JP2010121084A (en) * 2008-11-21 2010-06-03 Adeka Corp Low temperature fluidity improver for biodiesel fuel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015038966; Energy & Fuels Vol.27, No.2, p.883-888 (2013). *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443006B1 (en) 2018-11-27 2019-10-15 Exxonmobil Research And Engineering Company Low sulfur marine fuel compositions
US10597594B1 (en) 2018-11-27 2020-03-24 Exxonmobil Research And Engineering Company Low sulfur marine fuel compositions
US10781391B2 (en) 2018-11-27 2020-09-22 Exxonmobil Research And Engineering Company Low sulfur marine fuel compositions

Also Published As

Publication number Publication date
JP5847750B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP6373530B1 (en) C heavy oil composition
JP2006137922A (en) Light oil composition
JP5847750B2 (en) Fuel oil composition
JP4615913B2 (en) Fuel oil composition
JP3999912B2 (en) A heavy oil composition
JP4577925B2 (en) A heavy oil composition
JP5154817B2 (en) Gas oil base and gas oil composition
JP6057509B2 (en) Light oil fuel composition
JP2006137921A (en) Light oil composition
JP3999911B2 (en) A heavy oil composition
JP2017114948A (en) Fuel oil composition for outer combustion engine
JP2006137920A (en) Light oil composition
JP4856958B2 (en) Fuel oil composition
JP6609749B2 (en) Method for producing light oil composition
JP5896815B2 (en) A heavy oil composition
JP2011068729A (en) A heavy oil composition
JP6196918B2 (en) A heavy oil for external combustion equipment
JP6228943B2 (en) Light oil composition
JP5312649B2 (en) Fuel oil composition for diesel engines
JP6057508B2 (en) Light oil fuel composition
JP5105895B2 (en) Light oil composition
JP7402098B2 (en) Aircraft fuel oil composition
RU2788009C2 (en) Diesel fuel with improved ignition characteristics
JP4761717B2 (en) A heavy oil composition
JP5483913B2 (en) Light oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151125

R150 Certificate of patent or registration of utility model

Ref document number: 5847750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250