JP2014188991A - Multilayer extrusion molding device - Google Patents

Multilayer extrusion molding device Download PDF

Info

Publication number
JP2014188991A
JP2014188991A JP2013069354A JP2013069354A JP2014188991A JP 2014188991 A JP2014188991 A JP 2014188991A JP 2013069354 A JP2013069354 A JP 2013069354A JP 2013069354 A JP2013069354 A JP 2013069354A JP 2014188991 A JP2014188991 A JP 2014188991A
Authority
JP
Japan
Prior art keywords
channel
outer layer
inner layer
width direction
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013069354A
Other languages
Japanese (ja)
Inventor
Kenshiro Ikeda
剣志郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013069354A priority Critical patent/JP2014188991A/en
Publication of JP2014188991A publication Critical patent/JP2014188991A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device that controls thickness of each layer by a simple method to uniform the film thickness in the width direction of each layer, in manufacturing a multilayer film from a die by coextruding a molten resin in a feed block method.SOLUTION: A feed block of a multilayer extrusion molding device comprises a flow plate, a beak, and a die joint. The flow plate has a plurality of openings for introducing a plurality of molten resins. The beak has an inner layer passage and an outer layer passage that are passages for the plurality of molten resins introduced to the plurality of openings and a confluent passage. The inner layer passage has a rectangular cross section and the outer layer passage has a rectangular cross section and merges to the inner layer passage from the side. The confluent passage where the outer layer passage merges to the inner layer passage has a rectangular cross section. The die joint has the confluent passage and a passage that connects to a single layer die. A partition wall having a plurality of heating elements in the width direction is arranged between the inner layer passage and the outer layer passage, the temperature of the plurality of heating elements being controlled.

Description

本発明は多層フィルムの押出成形装置、特に複数の溶融樹脂をフィードブロックで合流させて単層用ダイから吐出するフィードブロック方式の共押出法による多層押出成形装置に関する。   The present invention relates to a multilayer film extrusion molding apparatus, and more particularly to a multilayer extrusion molding apparatus using a feed block type coextrusion method in which a plurality of molten resins are joined together by a feed block and discharged from a single layer die.

熱可塑性樹脂フィルムは種々の分野で用いられているが、その際用途に適した複数の特性が付与される。そして、これら特性を付与する手段の1つとして、フィルムを多層にする方法が用いられている。   Thermoplastic resin films are used in various fields, and at that time, a plurality of properties suitable for the application are imparted. As a means for imparting these characteristics, a method of forming a multilayer film is used.

熱可塑性樹脂を多層フィルムとして製造する共押出法には、マルチマニホールド方式やフィードブロック方式がある。マルチマニホールド方式は、複数の溶融樹脂がダイ内のそれぞれの独立したマニホールドで幅方向(幅方向とは製造された多層フィルムの幅方向を指す、以下同じ)に展開され、ダイの出口直前で合流してフィルムを生成する。マルチマニホールドダイは、構造が複雑で製造価格が高いうえ、層構成やフィルムの厚みや幅ごとにダイを用意しなければならない。   Co-extrusion methods for producing a thermoplastic resin as a multilayer film include a multi-manifold method and a feed block method. In the multi-manifold system, a plurality of molten resins are spread in the width direction (the width direction refers to the width direction of the manufactured multilayer film, the same applies hereinafter) at each independent manifold in the die, and merged immediately before the die exit. To produce a film. Multi-manifold dies are complex in structure and expensive to manufacture, and dies must be prepared for each layer structure, film thickness and width.

図1は従来のフィードブロック方式による共押出法を示す。図1に示すフィードブロック方式による共押出法では、3種類の熱可塑性樹脂A、B、Cがフロープレート10のそれぞれの導入路11a〜11cから供給され、連絡路12a〜12cを経て合流点Pで合流されるビーク20と、合流された溶融樹脂をダイ接続部30の合流路32を経て、単層フィルムを生成するものと同一のダイ31によって押出幅方向(紙面に対して直角方向)に広げスリット状出口34から押出して多層フィルム(図示せず)を形成するものである。   FIG. 1 shows a conventional coextrusion method using a feed block system. In the co-extrusion method using the feed block system shown in FIG. 1, three types of thermoplastic resins A, B, and C are supplied from the respective introduction paths 11a to 11c of the flow plate 10, and the junction P is reached via the connection paths 12a to 12c. In the extrusion width direction (perpendicular to the plane of the paper) by the same die 31 that generates the single-layer film through the merged beak 20 and the merged molten resin through the merge channel 32 of the die connection portion 30. A multilayer film (not shown) is formed by extruding from the widened slit-shaped outlet 34.

このように、フィードブロック方式は、複数の溶融樹脂をフィードブロック内で合流させてから、ダイ内の単一のマニホールドで幅方向に展開してフィルムを生成する。ダイは単層で用いているものを利用でき、フィードブロックの組み合わせを換えることによって、層構成を容易に変更できる。その反面、一般的に、複数の樹脂をフィードブロックにおいて合流させる場合、それぞれの樹脂の粘度の比や流速の比、断面積の比が大きい程、合流後の樹脂の界面の乱れ偏肉が起き易いことが知られている。また、フィードブロックで合流後、マニホールドで約10倍の幅に大きく展開しなければならないうえ、ダイの吐出口までの距離が長いため、各層の幅方向の厚みを均一にすることが難しい。合流後の流路が長いほど、流量や溶融粘度の差によって各層が偏肉する包み込み現象が起きることが知られている。   As described above, in the feed block method, a plurality of molten resins are merged in the feed block, and then developed in the width direction by a single manifold in the die to generate a film. The die used in a single layer can be used, and the layer configuration can be easily changed by changing the combination of feed blocks. On the other hand, in general, when a plurality of resins are merged in the feed block, the larger the ratio of the viscosity of each resin, the ratio of the flow velocity, or the ratio of the cross-sectional area, the more the disorder of the interface of the resin after the merge occurs. It is known to be easy. In addition, after joining at the feed block, the manifold must be expanded to a width of about 10 times, and the distance to the discharge port of the die is long, so it is difficult to make the thickness of each layer uniform in the width direction. It is known that the longer the flow path after merging, the more enveloping phenomenon that each layer becomes uneven due to the difference in flow rate and melt viscosity.

特許文献1では、フィードブロック内に設けた層厚調整具の切り欠きで樹脂の流路幅を調整することで、流量に分布をつけて多層フィルムの各層の幅方向の厚み分布を均一にする押出成形装置が示されている。この方法では、樹脂や吐出条件に合わせて層厚調整具の形状を変更する必要がある上、4層以上の多層成形時は各層の層厚調整具の形状を変えなければならず、現実的に困難である。   In Patent Document 1, by adjusting the flow path width of the resin with the notch of the layer thickness adjuster provided in the feed block, the flow rate is distributed to make the thickness distribution in the width direction of each layer of the multilayer film uniform. An extrusion apparatus is shown. In this method, it is necessary to change the shape of the layer thickness adjuster in accordance with the resin and the discharge conditions, and in addition, it is necessary to change the shape of the layer thickness adjuster for each layer when forming four or more layers. It is difficult to.

特許文献2では、フィードブロックの合流部の流路断面形状を最適化することで、多層フィルムの各層の幅方向の厚み分布を均一にする押出成形装置および多層フィルムの製造方法が示されている。ただし、実質的に外層の樹脂の流路形状しか制御適用できないために、中間層の粘度や流量が大きい場合、中間層の流量分布が凸となり偏肉包みこみが発生する。
特許文献3ではフィードブロック内の温度を制御して各樹脂の粘度を均一化し、偏肉を低減する装置が示されている。温度の調整で流動特性を制御するものであるが、温度の調整による流動特性の調整には限界があり、粘度差や流量比が大きい場合には温度調整のみで各層の流量プロファイルを均一にすることは困難である。
Patent Document 2 discloses an extrusion apparatus and a method for producing a multilayer film that optimizes the cross-sectional shape of the flow path at the confluence portion of the feed block to make the thickness distribution in the width direction of each layer of the multilayer film uniform. . However, since only the flow path shape of the resin of the outer layer can be controlled and applied, when the viscosity or flow rate of the intermediate layer is large, the flow rate distribution of the intermediate layer becomes convex and uneven thickness envelopment occurs.
Patent Document 3 discloses an apparatus that controls the temperature in the feed block to equalize the viscosity of each resin and reduce uneven thickness. Although the flow characteristics are controlled by adjusting the temperature, there is a limit to the adjustment of the flow characteristics by adjusting the temperature, and when the viscosity difference or flow rate ratio is large, only the temperature adjustment makes the flow profile of each layer uniform. It is difficult.

特開平7−241897号公報Japanese Patent Laid-Open No. 7-241897 特開2002−225107号公報JP 2002-225107 A 特開平11−309770号公報Japanese Patent Laid-Open No. 11-309770

そこで本発明は上記の問題点に鑑みて、フィードブロック方式で溶融樹脂を共押出によって、ダイから多層フィルムを製造する際に、簡便な方法で各層の厚みを制御し、各層の幅方向の膜厚を均一にする装置を提供することを課題とする。なお、本発明において、ダイとは、コートハンガーダイ、フィッシュテールダイ、ストレートマニホールドダイといった、主にフラットTダイを指すものとする。   Therefore, in view of the above problems, the present invention controls the thickness of each layer by a simple method when a multilayer film is manufactured from a die by co-extrusion of a molten resin by a feed block method. It is an object of the present invention to provide an apparatus for uniforming the thickness. In the present invention, the die mainly refers to a flat T die such as a coat hanger die, a fish tail die, or a straight manifold die.

そこで本発明の請求項1の発明は、
複数の溶融樹脂をフィードブロックで合流させて単層ダイから押出して多層フィルムを生成する多層押出成形装置であって、
前記フィードブロックは、フロープレートと、ビークと、ダイ接続部から構成され、
フロープレートは、複数の溶融樹脂を投入する複数開口部を有し、
ビークは、前記複数開口部に投入された複数の溶融樹脂の流路である内層流路と、外層流路と、合流路とを有し、
前記内層流路は矩形状断面の流路であり、
前記外層流路は前記内層流路に対して側面から合流する矩形状断面の流路であり、
前記合流路は前記内層流路と外層流路が合流した矩形状断面の流路であり、
ダイ接続部は、前記合流路と単層ダイに繋がる流路を有するものであって、
前記内層流路と前記外層流路間には、幅方向(幅方向とは成形されるフィルムの幅方向を指す。以下同じ)に複数の発熱体を有する隔壁が備えられており、
該複数の発熱体の温度制御を行うことを特徴とする多層押出成形装置である。
Therefore, the invention of claim 1 of the present invention is
A multilayer extrusion molding apparatus for joining a plurality of molten resins in a feed block and extruding from a single layer die to produce a multilayer film,
The feed block is composed of a flow plate, a beak, and a die connection part,
The flow plate has a plurality of openings for charging a plurality of molten resins,
The beak has an inner layer channel, which is a plurality of molten resin channels introduced into the plurality of openings, an outer layer channel, and a combined channel,
The inner layer channel is a channel having a rectangular cross section,
The outer layer channel is a channel having a rectangular cross section that merges from the side with respect to the inner layer channel,
The joint channel is a channel having a rectangular cross section in which the inner layer channel and the outer layer channel are merged,
The die connection part has a flow path connected to the combined flow path and the single-layer die,
Between the inner layer flow path and the outer layer flow path, a partition wall having a plurality of heating elements in the width direction (the width direction refers to the width direction of the film to be formed; the same applies hereinafter) is provided.
A multilayer extrusion molding apparatus that controls the temperature of the plurality of heating elements.

請求項2の発明は、前記外層流路の前記隔壁に対向する位置に、幅方向に複数の発熱体を有するビークが備えられたことを特徴とする請求項1に記載の多層押出成形装置である。   The invention according to claim 2 is the multilayer extrusion molding apparatus according to claim 1, wherein a beak having a plurality of heating elements in the width direction is provided at a position facing the partition wall of the outer layer flow path. is there.

請求項3の発明は、前記内層または外層を構成する樹脂のうち、高粘度或いはMFRの低い樹脂に対し、ビークの発熱体を作動させ、特に幅方向端部の発熱体で加熱することを特徴とする請求項1または2に記載の多層押出成形装置である。   The invention according to claim 3 is characterized in that a heat generating element of a beak is operated with respect to a resin having a high viscosity or a low MFR among resins constituting the inner layer or the outer layer, and in particular, heating is performed by a heat generating element at an end in the width direction. The multilayer extrusion molding apparatus according to claim 1 or 2.

請求項4の発明は、前記内層または外層を構成する樹脂のうち、低粘度或いはMFRの高い樹脂に対し、ビークの発熱体のうち、幅方向中央の発熱体で加熱することを特徴とする請求項1または2に記載の多層押出成形装置である。   The invention according to claim 4 is characterized in that, among the resins constituting the inner layer or the outer layer, a low viscosity or high MFR resin is heated by a heating element at the center in the width direction among the heating elements of the beak. Item 3. The multilayer extrusion molding apparatus according to Item 1 or 2.

請求項5の発明は、前記ビークを複数備えたことを特徴とする請求項1から4のいずれかに記載の多層押出成形装置である。   A fifth aspect of the present invention is the multilayer extrusion molding apparatus according to any one of the first to fourth aspects, wherein a plurality of the beaks are provided.

本発明におけるフィードブロックは、隔壁及び外装流路の対向側に発熱体を配置することで、内層流路、外層流路の樹脂の温度を個別に制御可能である。一般に熱可塑性の溶融樹脂は、温度上昇により粘度が低くなり流動性が高まる。従って、幅方向で薄くなる部位の層の温度を上げると樹脂の流量が増えるため、層厚が均一化する。また、粘度或いはMFRの異なる樹脂の共押出は、粘度の高い樹脂を粘度の低い樹脂が包み込むように膜厚が不均一になる。つまり、高粘度の樹脂は幅方向端部が薄くなるため、ビークの流路端部を温度上昇させて流量を増やすことで、包み込みを抑えることができる。同様に、低粘度の樹脂は幅方向中央が薄くなるため、ビークの流路中央を温度上昇させて流量を増やすことで、包み込みを抑えることができる。
本発明におけるフィードブロックは、複数の発熱体の温度制御を行うことにより、各溶融樹脂の厚み分布が調節可能であり、その結果、成形不良を低減することができる。
The feed block according to the present invention can individually control the temperature of the resin in the inner layer channel and the outer layer channel by disposing a heating element on the opposite side of the partition wall and the outer channel. In general, a thermoplastic molten resin has a lower viscosity and a higher fluidity as the temperature rises. Therefore, if the temperature of the layer that becomes thinner in the width direction is raised, the flow rate of the resin increases, so that the layer thickness becomes uniform. Further, in the case of coextrusion of resins having different viscosities or MFRs, the film thickness becomes non-uniform so that a resin having a high viscosity is wrapped with a resin having a low viscosity. That is, since the high-viscosity resin has a thin end in the width direction, enveloping can be suppressed by increasing the flow rate by increasing the temperature of the end of the flow path of the beak. Similarly, since the low-viscosity resin has a thin center in the width direction, enveloping can be suppressed by increasing the flow rate by raising the temperature in the center of the flow path of the beak.
The feed block in the present invention can adjust the thickness distribution of each molten resin by controlling the temperature of a plurality of heating elements, and as a result, molding defects can be reduced.

従来のフィードブロック方式による共押出法を示す図。The figure which shows the coextrusion method by the conventional feed block system. 本発明の一つの実施形態を例示した3層フィルムの押出成形装置のフィードブロック概略図。1 is a schematic diagram of a feed block of a three-layer film extrusion apparatus illustrating one embodiment of the present invention. 図2のフロープレートを上流側から流れ方向に見た概略図。The schematic which looked at the flow plate of FIG. 2 in the flow direction from the upstream. ビークの構造を表す図2のA−A’の断面図。Sectional drawing of A-A 'of FIG. 2 showing the structure of a beak. 本発明の第2の実施形態を例示した5層フィルムの押出成形装置のフィードブロック概略図。The feed block schematic diagram of the extrusion molding apparatus of the 5 layer film which illustrated the 2nd Embodiment of this invention. 図5のフロープレートを上流側から流れ方向に見た概略図。Schematic which looked at the flow plate of FIG. 5 from the upstream in the flow direction. 図5のB−B’の断面図。Sectional drawing of B-B 'of FIG. 生成された3層フィルムの断面図。Sectional drawing of the produced | generated three-layer film. 本発明の一つの実施形態における流路の温度分布。The temperature distribution of the flow path in one embodiment of this invention. 本発明の一つの実施形態における合流路の樹脂分布。The resin distribution of the combined flow path in one embodiment of this invention. せん断粘度の温度依存性を示す図。The figure which shows the temperature dependence of shear viscosity.

以下に、本発明に係る多層押出成形装置の実施形態について、図面を参照して具体的に説明する。第一実施形態として、3種類の樹脂を用いた3層フィルムの押出成形装置のフィードブロックを図2〜図4に示す。図2は本発明の多層押出成形装置に備えられたフィードブロックの断面を示す図で、フィードブロックはフロープレート10と、ビーク20と、ダイ接続部30で構成される。フロープレート10は、複数の溶融樹脂を投入する複数開口部である丸穴状断面の導入路11a〜11cを有する。ビーク20は、内層流路25と、外層流路26、27と、合流路28とを有する。ダイ接続部30は、前記合流路28と図示しない単層ダイに繋がる流路32を有する。   Embodiments of a multilayer extrusion molding apparatus according to the present invention will be specifically described below with reference to the drawings. As a first embodiment, a feed block of a three-layer film extrusion molding apparatus using three kinds of resins is shown in FIGS. FIG. 2 is a view showing a cross section of a feed block provided in the multilayer extrusion molding apparatus of the present invention, and the feed block includes a flow plate 10, a beak 20, and a die connection part 30. The flow plate 10 has introduction paths 11a to 11c having a round hole-shaped cross section, which are a plurality of openings into which a plurality of molten resins are poured. The beak 20 includes an inner layer channel 25, outer layer channels 26 and 27, and a combined channel 28. The die connection part 30 has a flow path 32 connected to the combined flow path 28 and a single layer die (not shown).

フロープレート10を説明する。図3はフロープレート10を上流側から流れ方向に見た概略図を示す。図3(a)は、3台の押出機1〜3(図2)を接続する場合のフロープレート10である。押出機1〜3がそれぞれ接続する丸穴状に開口した導入路11a〜11cは、矩形に変化しながら連絡路12a〜12cに接続され、ビーク側に開口する。なお、押出機は3台に限るものではなく、図3(b)に2台の押出機を接続する場合のフロープレートを示す。押出機1〜2が接続する導入路11a、11bは丸穴状に開口し、前記導入路11aはフロープレート10の内部で2分岐して矩形に変化しながら連絡路12a、12cに接続され、前記導入路11bは矩形に変化しながら連絡路12bに接続され、ビーク側に開口する。   The flow plate 10 will be described. FIG. 3 is a schematic view of the flow plate 10 as viewed from the upstream side in the flow direction. Fig.3 (a) is the flow plate 10 in the case of connecting the three extruders 1-3 (FIG. 2). The introduction paths 11a to 11c opened in the shape of round holes to which the extruders 1 to 3 are connected are connected to the communication paths 12a to 12c while changing to a rectangular shape, and open to the beak side. The number of extruders is not limited to three, and FIG. 3B shows a flow plate in the case of connecting two extruders. The introduction paths 11a and 11b to which the extruders 1 and 2 are connected open in a round hole shape, and the introduction path 11a is branched into two inside the flow plate 10 and connected to the communication paths 12a and 12c while changing into a rectangle. The introduction path 11b is connected to the communication path 12b while changing to a rectangle, and opens to the beak side.

ビーク20を説明する。ビーク20は図2に示すように、連絡路12bに連結された矩形状断面の内層流路25と、連絡路12aに連結された矩形状断面の外層流路26と、連絡路12cに連結された矩形状断面の外層流路27と、前記内層流路25と外層流路26と外層流路27が合流した矩形状断面の合流路28を備える。内層流路25は矩形状断面の流路であって、外層流路26、27は内層流路25に対して側面から合流する矩形状断面の流路であり、合流路28は内層流路25と外層流路26,27が合流した矩形状断面の流路であり、内層流路25と外層流路26、27間の隔壁21、23は、幅方向(幅方向とは成形されるフィルムの幅方向を指す。以下同じ)に複数の発熱体43、44を有することによって、内層流路25の樹脂の幅方向に温度分布を与え、粘度の差が生じることで流量を調整することが出来る。   The beak 20 will be described. As shown in FIG. 2, the beak 20 is connected to the communication path 12b, the inner layer flow path 25 having a rectangular cross section connected to the communication path 12b, the outer layer flow path 26 having a rectangular cross section connected to the communication path 12a, and the communication path 12c. The outer layer channel 27 having a rectangular cross section, and the merge channel 28 having a rectangular section in which the inner layer channel 25, the outer layer channel 26, and the outer layer channel 27 merge. The inner layer flow path 25 is a flow path having a rectangular cross section, the outer layer flow paths 26 and 27 are flow paths having a rectangular cross section that merge from the side surface with respect to the inner layer flow path 25, and the combined flow path 28 is the inner layer flow path 25. And the outer layer channels 26 and 27 are combined with each other, and the partition walls 21 and 23 between the inner layer channel 25 and the outer layer channels 26 and 27 are arranged in the width direction (the width direction is the shape of the film to be molded). By having a plurality of heating elements 43 and 44 in the width direction (the same applies hereinafter), a temperature distribution is given in the width direction of the resin of the inner layer flow path 25, and the flow rate can be adjusted by causing a difference in viscosity. .

外層流路26,27に対し、隔壁21、23に対向する位置の幅方向に複数の発熱体41、42を有することによって、外層流路26,27の樹脂の幅方向に温度分布を与え、粘度の差が生じることで流量を調整することが出来る。   By providing a plurality of heating elements 41, 42 in the width direction of the outer layer channels 26, 27 facing the partition walls 21, 23, a temperature distribution is given in the resin width direction of the outer layer channels 26, 27, and The flow rate can be adjusted by the difference in viscosity.

図4に図2のA−A’における断面図を示す。隔壁21、隔壁23、及びビーク筐体29に配置した発熱体41〜44は矢印53で示す各流路の幅方向に5つ配列されており、その各発熱体を個別に発熱することが出来る。ここで、発熱体41〜44の配列数は5つに限らず複数であれば良く、ペルティエ素子の様に吸熱機能を有するものでも良い。
各発熱体41〜42に対し、外層流路26、27側に温度計81、82を配置、各発熱体43〜44に対し、内層流路25側に温度計83、84を配置することで発熱量をフィードバックできる。
FIG. 4 is a cross-sectional view taken along line AA ′ of FIG. Five heating elements 41 to 44 arranged in the partition wall 21, the partition wall 23, and the beak housing 29 are arranged in the width direction of each flow path indicated by an arrow 53, and each heating element can individually generate heat. . Here, the number of the heat generating elements 41 to 44 is not limited to five, but may be plural, and may have a heat absorbing function like a Peltier element.
By arranging thermometers 81 and 82 on the outer layer flow paths 26 and 27 side with respect to the respective heating elements 41 to 42, and arranging thermometers 83 and 84 on the inner layer flow path 25 side with respect to the respective heating elements 43 to 44, The calorific value can be fed back.

ダイ接続部30は、上記図2に示すように矩形状断面の流路32を有し、ビーク20の合流路28とダイ31の流路を接続する。   As shown in FIG. 2, the die connection portion 30 has a flow path 32 having a rectangular cross section, and connects the combined flow path 28 of the beak 20 and the flow path of the die 31.

第二実施形態として、2つのビークを用いた5層フィルムの押出成形装置のフィードブロックを図5〜図7に示す。図5に示されるフィードブロック4はフロープレート10、第一のビーク80、連絡ブロック60、62、第二のビーク70、ダイ接続部30で構成されている。   As a second embodiment, a feed block of a five-layer film extrusion molding apparatus using two beaks is shown in FIGS. The feed block 4 shown in FIG. 5 includes a flow plate 10, a first beak 80, communication blocks 60 and 62, a second beak 70, and a die connection part 30.

フロープレート10は、例えば図示しない5台の押出機に接続する丸穴状断面の導入路11a〜11eと、それに連なる矩形状断面の連絡路12a〜12eが形成されており、第一のビーク80及び連絡ブロック60、連絡ブロック62に連結している。図6は例えば3台の押出機1〜3を接続する場合のフロープレート10を上流側から流れ方向に見た概略図を示す。押出機1〜3が接続する導入路11a〜11cは丸穴状に開口し、前記導入路11a、11cはフロープレート10の内部で2分岐して矩形に変化しながらそれぞれ連絡路12aと12c及び12dと12eに接続され、前記導入路11bは矩形に変化しながら連絡路12bに接続され、ビーク側に開口する。なお、押出機は3台に限るものではなく、5台未満の押出機を用いた5層フィルムの場合は、導入路11を適宜分岐して矩形状断面の連絡路12a〜12eに接続されたフロープレートを用いる。   The flow plate 10 includes, for example, round hole-shaped cross-section introduction paths 11a to 11e connected to five unillustrated extruders, and rectangular cross-section connecting paths 12a to 12e connected thereto, and the first beak 80 is formed. The communication block 60 and the communication block 62 are connected. FIG. 6 shows a schematic view of the flow plate 10 viewed from the upstream side in the flow direction when, for example, three extruders 1 to 3 are connected. The introduction paths 11a to 11c to which the extruders 1 to 3 are connected are opened in a round hole shape, and the introduction paths 11a and 11c are branched into two inside the flow plate 10 and change into a rectangular shape, respectively, and the communication paths 12a and 12c, Connected to 12d and 12e, the introduction path 11b is connected to the communication path 12b while changing to a rectangle, and opens to the beak side. The number of extruders is not limited to three, and in the case of a five-layer film using less than five extruders, the introduction path 11 is appropriately branched and connected to the communication paths 12a to 12e having a rectangular cross section. Use a flow plate.

第一のビーク80の形状は、第一実施形態で説明したものと同一の構造であり、省略する。   The shape of the first beak 80 is the same as that described in the first embodiment, and is omitted.

フロープレート10の連絡路12a〜12cは、それぞれ第一のビーク80の外層流路26、内層流路25、外層流路27に接続され、フロープレート10の連絡路12dと連絡路12eはそれぞれ連絡ブロック60の連絡路61と連絡ブロック62の連絡路63に接続される。   The communication paths 12a to 12c of the flow plate 10 are respectively connected to the outer layer flow path 26, the inner layer flow path 25, and the outer layer flow path 27 of the first beak 80, and the communication path 12d and the communication path 12e of the flow plate 10 communicate with each other. The communication path 61 of the block 60 and the communication path 63 of the communication block 62 are connected.

第二のビーク70は、合流路28に連結された矩形状断面の内層流路75と、連絡路61に連結された矩形状断面の外層流路76と、連絡路63に連結された矩形状断面の外層流路77と、前記内層流路75と外層流路76と外層流路77が合流した矩形状断面の合流路78を備える。また、第二のビーク70は、ビーク筐体79の中に、内層流路75と外層流路76の隔壁71と、内層流路75と外層流路77の隔壁73を有する。隔壁71、73は、幅方向に複数の発熱体47、48を有することによって、内層流路75の樹脂の幅方向に温度分布を与え、粘度の差が生じることで流量を調整することが出来る。   The second beak 70 has a rectangular cross-section inner layer flow path 75 connected to the combined flow path 28, a rectangular cross-section outer layer flow path 76 connected to the communication path 61, and a rectangular shape connected to the communication path 63. The outer layer channel 77 having a cross-section, and the merged channel 78 having a rectangular cross section in which the inner layer channel 75, the outer layer channel 76, and the outer layer channel 77 are joined. Further, the second beak 70 includes a partition wall 71 of an inner layer channel 75 and an outer layer channel 76 and a partition wall 73 of an inner layer channel 75 and an outer layer channel 77 in a beak housing 79. The partition walls 71, 73 have a plurality of heating elements 47, 48 in the width direction, thereby providing a temperature distribution in the resin width direction of the inner layer flow path 75 and adjusting the flow rate by causing a difference in viscosity. .

外層流路76、77に対し、隔壁71、73に対向する位置の幅方向に複数の発熱体45、46を有することによって、外層流路76、77の樹脂の幅方向に温度分布を与え、粘度の差が生じることで流量を調整することが出来る。   By providing a plurality of heating elements 45 and 46 in the width direction of the positions facing the partition walls 71 and 73 with respect to the outer layer channels 76 and 77, a temperature distribution is given in the width direction of the resin of the outer layer channels 76 and 77, The flow rate can be adjusted by the difference in viscosity.

図7に図5のB−B’における断面図を示す。隔壁71、隔壁73、及びビーク筐体79に配置した発熱体45〜48は矢印53で示す各流路の幅方向に5つ配列されており、その各発熱体を個別に発熱することが出来る。ここで、発熱体45〜48の配列数は5つに限らず複数であれば良く、ペルティエ素子の様に吸熱機能を有するものでも良い。   FIG. 7 is a cross-sectional view taken along B-B ′ of FIG. Five heating elements 45 to 48 arranged in the partition wall 71, the partition wall 73, and the beak housing 79 are arranged in the width direction of each flow path indicated by an arrow 53, and each heating element can individually generate heat. . Here, the number of the heat generating elements 45 to 48 is not limited to five, but may be plural, and may have a heat absorbing function like a Peltier element.

各発熱体45〜46に対し、外層流路76、77側に温度計85、86を配置、各発熱体47〜48に対し、内層流路75側に温度計87、88を配置することで発熱量をフィードバックできる。   By arranging thermometers 85, 86 on the outer layer flow paths 76, 77 side for each heating element 45-46, and arranging thermometers 87, 88 on the inner layer flow path 75 side for each heating element 47-48. The calorific value can be fed back.

ダイ接続部30は、矩形状断面の流路32を有し、第二のビーク70の合流路78とダイ31の流路を接続する。   The die connection part 30 has a channel 32 having a rectangular cross section, and connects the combined channel 78 of the second beak 70 and the channel of the die 31.

第二実施形態では、ビークを2つに限ることなく、3つ以上のビークを重ねて用いることによって、5層以上の多層フィルムを成形することができる。   In the second embodiment, the number of beaks is not limited to two, and a multilayer film of five or more layers can be formed by using three or more beaks in an overlapping manner.

<実施例1>
第一実施形態例として内層をEVOHとし外層をLDPEとした3層フィルムの製造を考える。各樹脂の温度に対するせん断粘度を図11に示す。250℃で押し出した場合、ビーク20で合流した直後の合流路32では、図2のC−C’における断面である図10の(a)の様に均一厚みであるが、EVOHの粘度が高い為、下流に従って包み込みが起き、T−ダイから吐出したフィルムは、図8の(a)の様にEVOH層の端部、LDPE層の中央が薄くなる。本発明によれば、発熱体43、44の幅方向端部、及び発熱体41、42の幅方向中央を高温にすることによって、図9(a)の様な内層流路の温度分布、図9(b)の様な外層流路の温度分布となるため、生成シートの各層の薄い部位の流量が増え、膜厚が均一化し図8の(b)の様な分布になる。
<Example 1>
As an example of the first embodiment, consider the production of a three-layer film in which the inner layer is EVOH and the outer layer is LDPE. The shear viscosity with respect to the temperature of each resin is shown in FIG. When extruded at 250 ° C., the joint channel 32 immediately after joining at the beak 20 has a uniform thickness as shown in FIG. 10 (a), which is a cross-section at CC ′ in FIG. 2, but the viscosity of EVOH is high. Therefore, enveloping occurs downstream, and the film discharged from the T-die has a thin end portion of the EVOH layer and the center of the LDPE layer as shown in FIG. According to the present invention, the temperature distribution of the inner layer flow path as shown in FIG. 9A is obtained by increasing the widthwise ends of the heating elements 43 and 44 and the center of the heating elements 41 and 42 in the width direction. Since the temperature distribution of the outer layer flow path is as shown in FIG. 9B, the flow rate of the thin portion of each layer of the generated sheet is increased, the film thickness is uniformed, and the distribution is as shown in FIG.

<実施例2>
一般的に、EVOHとLDPEの圧着性が悪い為、前記、第二実施形態例として、内層EVOHと外層LDPEの間に接着層を追加した5層フィルムの製造を考える。その場合でも、内層EVOHと接着層は一体で偏肉するため、第2ビーク70において、図9(a)の様な内層流路の温度分布、図9(b)の様な外層流路の温度分布を与えれば、第一実施形態例と同様の均一に近い膜厚が得られる。
<Example 2>
In general, since the pressure-bonding property between EVOH and LDPE is poor, the production of a five-layer film in which an adhesive layer is added between the inner layer EVOH and the outer layer LDPE is considered as the second embodiment. Even in that case, since the inner layer EVOH and the adhesive layer are integrally uneven, the temperature distribution of the inner layer flow path as shown in FIG. 9A and the outer layer flow path as shown in FIG. If a temperature distribution is given, a nearly uniform film thickness similar to the first embodiment can be obtained.

以上のように、本発明のフィードブロックを備えた多層押出成形装置によれば、各層のフィルムの流路の幅方向の粘度と流量を調整することが出来るため、各層の厚み分布を制御することが可能で、その結果、フィルムの幅方向の膜厚を均一化することが出来る。   As described above, according to the multilayer extrusion molding apparatus provided with the feed block of the present invention, the thickness distribution of each layer can be controlled because the viscosity and flow rate in the width direction of the film flow path of each layer can be adjusted. As a result, the film thickness in the width direction of the film can be made uniform.

1−3・・・押出機
4・・・フィードブロック
10・・・フロープレート
20・・・ビーク
30・・・ダイ接続部
11・・・導入路
12・・・連絡路
21、23・・・隔壁
25・・・内層流路
26、27・・・外層流路
28・・・合流路
29・・・ビーク筐体
31・・・ダイ
32・・・合流路
34・・・スリット状出口
41−48・・・発熱体
51・・・流れ方向
52・・・厚み方向
53・・・幅方向
60、62・・・連絡ブロック
61、63・・・連絡路
70・・・ビーク
71、73・・・隔壁
75・・・内層流路
76、77・・・外層流路
78・・・合流路
79・・・ビーク筐体
80・・・ビーク
81−88・・・温度計
1-3 ... Extruder 4 ... Feed block 10 ... Flow plate 20 ... Beak 30 ... Die connection part 11 ... Introduction path 12 ... Communication path 21, 23 ... Partition 25 ... Inner layer channel 26, 27 ... Outer layer channel 28 ... Combined channel 29 ... Beak housing 31 ... Die 32 ... Combined channel 34 ... Slit-shaped outlet 41- 48 ... heating element 51 ... flow direction 52 ... thickness direction 53 ... width direction 60, 62 ... communication block 61, 63 ... communication path 70 ... beak 71, 73 ... -Partition 75 ... Inner layer channel 76, 77 ... Outer layer channel 78 ... Combined channel 79 ... Beak housing 80 ... Beak 81-88 ... Thermometer

Claims (5)

複数の溶融樹脂をフィードブロックで合流させて単層ダイから押出して多層フィルムを生成する多層押出成形装置であって、
前記フィードブロックは、フロープレートと、ビークと、ダイ接続部から構成され、
フロープレートは、複数の溶融樹脂を投入する複数開口部を有し、
ビークは、前記複数開口部に投入された複数の溶融樹脂の流路である内層流路と、外層流路と、合流路とを有し、
前記内層流路は矩形状断面の流路であり、
前記外層流路は前記内層流路に対して側面から合流する矩形状断面の流路であり、
前記合流路は前記内層流路と外層流路が合流した矩形状断面の流路であり、
ダイ接続部は、前記合流路と単層ダイに繋がる流路を有するものであって、
前記内層流路と前記外層流路間には、幅方向(幅方向とは成形されるフィルムの幅方向を指す。以下同じ)に複数の発熱体を有する隔壁が備えられており、
該複数の発熱体の温度制御を行うことを特徴とする多層押出成形装置。
A multilayer extrusion molding apparatus for joining a plurality of molten resins in a feed block and extruding from a single layer die to produce a multilayer film,
The feed block is composed of a flow plate, a beak, and a die connection part,
The flow plate has a plurality of openings for charging a plurality of molten resins,
The beak has an inner layer channel, which is a plurality of molten resin channels introduced into the plurality of openings, an outer layer channel, and a combined channel,
The inner layer channel is a channel having a rectangular cross section,
The outer layer channel is a channel having a rectangular cross section that merges from the side with respect to the inner layer channel,
The joint channel is a channel having a rectangular cross section in which the inner layer channel and the outer layer channel are merged,
The die connection part has a flow path connected to the combined flow path and the single-layer die,
Between the inner layer flow path and the outer layer flow path, a partition wall having a plurality of heating elements in the width direction (the width direction refers to the width direction of the film to be formed; the same applies hereinafter) is provided.
A multilayer extrusion molding apparatus that controls the temperature of the plurality of heating elements.
前記外層流路の前記隔壁に対向する位置に、幅方向に複数の発熱体を有するビークが備えられたことを特徴とする請求項1に記載の多層押出成形装置。   The multilayer extrusion molding apparatus according to claim 1, wherein a beak having a plurality of heating elements in the width direction is provided at a position facing the partition wall of the outer layer flow path. 前記内層または外層を構成する樹脂のうち、高粘度或いはMFRの低い樹脂に対し、ビークの発熱体を作動させ、特に幅方向端部の発熱体で加熱することを特徴とする請求項1または2に記載の多層押出成形装置。   The beak heating element is operated on a resin having a high viscosity or low MFR among the resins constituting the inner layer or the outer layer, and the heating element is heated by the heating element at the end in the width direction. The multilayer extrusion molding apparatus described in 1. 前記内層または外層を構成する樹脂のうち、低粘度或いはMFRの高い樹脂に対し、ビークの発熱体のうち、幅方向中央の発熱体で加熱することを特徴とする請求項1または2に記載の多層押出成形装置。   The resin according to claim 1 or 2, wherein a resin having a low viscosity or a high MFR is heated by a heating element at a center in a width direction of a heating element of a beak among resins constituting the inner layer or the outer layer. Multi-layer extrusion molding equipment. 前記ビークを複数備えたことを特徴とする請求項1から4のいずれかに記載の多層押出成形装置。   The multilayer extrusion molding apparatus according to any one of claims 1 to 4, wherein a plurality of the beaks are provided.
JP2013069354A 2013-03-28 2013-03-28 Multilayer extrusion molding device Pending JP2014188991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013069354A JP2014188991A (en) 2013-03-28 2013-03-28 Multilayer extrusion molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069354A JP2014188991A (en) 2013-03-28 2013-03-28 Multilayer extrusion molding device

Publications (1)

Publication Number Publication Date
JP2014188991A true JP2014188991A (en) 2014-10-06

Family

ID=51835748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069354A Pending JP2014188991A (en) 2013-03-28 2013-03-28 Multilayer extrusion molding device

Country Status (1)

Country Link
JP (1) JP2014188991A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245121A (en) * 1988-08-05 1990-02-15 Modern Mach Kk Combining adaptor
JPH11309770A (en) * 1998-04-28 1999-11-09 Toshiba Mach Co Ltd Method and apparatus for multi-layer extrusion molding
JPH11348096A (en) * 1998-05-25 1999-12-21 Windmoeller & Hoelscher Extruder for multilayer plastic film, board or tube
JP2005144876A (en) * 2003-11-17 2005-06-09 Toyo Kohan Co Ltd Multi-layer resin film, resin-coated metal plate, method for producing multi-layer resin film, and method for producing resin-coated metal plate
JP2006188018A (en) * 2005-01-07 2006-07-20 Nippon Zeon Co Ltd Multilayer extruder, method for producing multilayer film, and method for producing multilayer oriented film
JP2014030938A (en) * 2012-08-02 2014-02-20 Toppan Printing Co Ltd Multilayer extrusion molding apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245121A (en) * 1988-08-05 1990-02-15 Modern Mach Kk Combining adaptor
JPH11309770A (en) * 1998-04-28 1999-11-09 Toshiba Mach Co Ltd Method and apparatus for multi-layer extrusion molding
JPH11348096A (en) * 1998-05-25 1999-12-21 Windmoeller & Hoelscher Extruder for multilayer plastic film, board or tube
JP2005144876A (en) * 2003-11-17 2005-06-09 Toyo Kohan Co Ltd Multi-layer resin film, resin-coated metal plate, method for producing multi-layer resin film, and method for producing resin-coated metal plate
JP2006188018A (en) * 2005-01-07 2006-07-20 Nippon Zeon Co Ltd Multilayer extruder, method for producing multilayer film, and method for producing multilayer oriented film
JP2014030938A (en) * 2012-08-02 2014-02-20 Toppan Printing Co Ltd Multilayer extrusion molding apparatus

Similar Documents

Publication Publication Date Title
US6409494B1 (en) Device for the extrusion of multi-layer plastic films, boards or tubes
EP2326481B1 (en) Die,system, and method for coextruding a plurality of fluid layers
KR880001779B1 (en) Coextrusion device
TW201618932A (en) Coextrusion apparatus, single-layer extrusion apparatus, and retrofit kit, as well as method for measuring a layer thickness for producing a plastic film, and for retrofitting an extrusion apparatus
JP2015080933A (en) Multilayer extrusion molding device
JP3973755B2 (en) Multilayer extrusion molding method and apparatus
JP7215138B2 (en) Feedblock, method for producing multi-layer extrudates, and apparatus for producing multi-layer extrudates
JP2014030938A (en) Multilayer extrusion molding apparatus
JP2014188991A (en) Multilayer extrusion molding device
JP5492385B2 (en) Sheet forming die and sheet forming method
US3825644A (en) Process for producing multilaminate film
JP2009029104A (en) Feed block, molding device for stacked resin film or sheet, and method for producing the same
JP5270593B2 (en) Multi-layer extrusion equipment
KR102220615B1 (en) Feed block, sheet manufacturing apparatus including same, and sheet manufacturing method
JP5166767B2 (en) Feed block, laminated resin film or sheet molding apparatus and manufacturing method
JP5809881B2 (en) Multi-layer extrusion equipment
JP6874444B2 (en) Extrusion molding equipment and sheet manufacturing method
JPH06344414A (en) Co-extrusion multi-layer molding method
JPH0732443A (en) Feed block molding of composite film or sheet
JPH07241897A (en) Extruder for multilayer film
JP2668843B2 (en) Feed block for forming multi-layer composite film or sheet
JP2005014356A (en) Method and apparatus for manufacturing two-layered film by coextrusion
JP3564623B2 (en) Method of forming multilayer sheet or multilayer film
JPH10151659A (en) Multi-manifold die and manufacture of multilayer film
WO2012117513A1 (en) Multilayer extrusion molding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170221