JP2014030938A - Multilayer extrusion molding apparatus - Google Patents

Multilayer extrusion molding apparatus Download PDF

Info

Publication number
JP2014030938A
JP2014030938A JP2012171983A JP2012171983A JP2014030938A JP 2014030938 A JP2014030938 A JP 2014030938A JP 2012171983 A JP2012171983 A JP 2012171983A JP 2012171983 A JP2012171983 A JP 2012171983A JP 2014030938 A JP2014030938 A JP 2014030938A
Authority
JP
Japan
Prior art keywords
flow path
channel
outer layer
layer flow
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012171983A
Other languages
Japanese (ja)
Inventor
Kenshiro Ikeda
剣志郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2012171983A priority Critical patent/JP2014030938A/en
Publication of JP2014030938A publication Critical patent/JP2014030938A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus capable, when a multilayer film is manufactured by coextruding a molten resin based on a feed block scheme, of homogenizing thicknesses of the respective layers along the widthwise direction by controlling the thicknesses of the respective layers by a simple method.SOLUTION: In the provided multilayer extrusion molding apparatus for producing a multilayer film by merging, via a feed block, and extruding, from a monolayer die, plural molten resins, the feed block is constituted by a flow plate unit, a beak unit, and a die connection unit; the flow plate unit includes plural apertures into which the multiple molten resins are respectively charged; the beak unit includes an inner-layer flow path, an outer-layer flow path, and a merging path, provided as flow paths of the plural molten resins charged respectively into the plural apertures; the inner-layer flow path is a flow path having a rectangular cross section, whereas the outer-layer flow path is a flow path having a rectangular cross section and merging with the inner-layer flow path via the profile plane, whereas the merging path is a flow path having a rectangular cross section and provided by merging the inner-layer flow path and outer-layer flow path.

Description

本発明は多層フィルムの押出成形装置、特に複数の溶融樹脂をフィードブロックで合流させて単層用ダイから吐出するフィードブロック方式の共押出法による多層押出成形装置に関する。   The present invention relates to a multilayer film extrusion molding apparatus, and more particularly to a multilayer extrusion molding apparatus using a feed block type coextrusion method in which a plurality of molten resins are joined together by a feed block and discharged from a single layer die.

熱可塑性樹脂フィルムは種々の分野で用いられているが、その際用途に適した複数の特性が付与される。そして、これら特性を付与する手段の1つとして、フィルムを多層にする方法が用いられている。   Thermoplastic resin films are used in various fields, and at that time, a plurality of properties suitable for the application are imparted. As a means for imparting these characteristics, a method of forming a multilayer film is used.

熱可塑性樹脂を多層フィルムとして製造する共押出法には、マルチマニホールド方式やフィードブロック方式がある。マルチマニホールド方式は、複数の溶融樹脂がダイ内のそれぞれの独立したマニホールドで幅方向(幅方向とは製造された多層フィルムの幅方向を指す、以下同じ)に展開され、ダイの出口直前で合流してフィルムを生成する。マルチマニホールドダイは、構造が複雑で製造価格が高いうえ、層構成やフィルムの厚みや幅ごとにダイを用意しなければならない。   Co-extrusion methods for producing a thermoplastic resin as a multilayer film include a multi-manifold method and a feed block method. In the multi-manifold system, a plurality of molten resins are spread in the width direction (the width direction refers to the width direction of the manufactured multilayer film, the same applies hereinafter) at each independent manifold in the die, and merged immediately before the die exit. To produce a film. Multi-manifold dies are complex in structure and expensive to manufacture, and dies must be prepared for each layer structure, film thickness and width.

図1は従来のフィードブロック方式による共押出法を示す。図1に示すフィードブロック方式による共押出法では、3種類の熱可塑性樹脂A、B、Cがフロープレート10のそれぞれの樹脂受入口11a〜11cから供給され、樹脂流通路12a〜12cを経て合流点Pで合流されるビーク20と、合流された溶融樹脂をダイ接続部30の合流路32を経て、単層フィルムを生成するものと同一のダイ31によって押出幅方向(紙面に対して直角方向)に広げスリット状出口34から押出して多層フィルム(図示せず)を形成するものである。   FIG. 1 shows a conventional coextrusion method using a feed block system. In the co-extrusion method using the feed block system shown in FIG. 1, three types of thermoplastic resins A, B, and C are supplied from the respective resin receiving ports 11a to 11c of the flow plate 10 and merged through the resin flow passages 12a to 12c. Extrusion width direction (perpendicular to the plane of the paper) by the same die 31 that produces the single layer film through the merged flow path 32 of the die connection portion 30 with the beak 20 merged at the point P. And a multilayer film (not shown) is formed by extrusion from the slit-shaped outlet 34.

このように、フィードブロック方式は、複数の溶融樹脂をフィードブロック内で合流させてから、ダイ内の単一のマニホールドで幅方向に展開してフィルムを生成する。ダイは単層で用いているものを利用でき、フィードブロックの組み合わせを換えることによって、層構成を容易に変更できる。その反面、一般的に、複数の樹脂をフィードブロックにおいて合流させる場合、それぞれの樹脂の粘度の比や流速の比、断面積の比が大きい程、合流後の樹脂の界面の乱れ偏肉が起き易いことが知られている。また、フィードブロックで合流後、マニホールドで約10倍の幅に大きく展開しなければならないうえ、ダイの吐出口までの距離が長いため、各層の幅方向の厚みを均一にすることが難しい。合流後の流路が長いほど、流量や溶融粘度の差によって各層が偏肉する包み込み現象が起きることが知られている。   As described above, in the feed block method, a plurality of molten resins are merged in the feed block, and then developed in the width direction by a single manifold in the die to generate a film. The die used in a single layer can be used, and the layer configuration can be easily changed by changing the combination of feed blocks. On the other hand, in general, when a plurality of resins are merged in the feed block, the larger the ratio of the viscosity of each resin, the ratio of the flow velocity, and the ratio of the cross-sectional area, the more the disorder of the interface of the resin after merging occurs. It is known to be easy. In addition, after joining at the feed block, the manifold must be expanded to a width of about 10 times, and the distance to the discharge port of the die is long, so it is difficult to make the thickness of each layer uniform in the width direction. It is known that the longer the flow path after merging, the more enveloping phenomenon that each layer becomes uneven due to the difference in flow rate and melt viscosity.

特許文献1では、フィードブロック内に設けた層厚調整具の切り欠きで樹脂の流路幅を調整することで、流量に分布をつけて多層フィルムの各層の幅方向の厚み分布を均一にする押出成形装置が示されている。この方法では、樹脂や吐出条件に合わせて層厚調整具の形状を変更する必要がある上、4層以上の多層成形時は各層の層厚調整具の形状を変えなければならず、現実的に困難である。   In Patent Document 1, by adjusting the flow path width of the resin with the notch of the layer thickness adjuster provided in the feed block, the flow rate is distributed to make the thickness distribution in the width direction of each layer of the multilayer film uniform. An extrusion apparatus is shown. In this method, it is necessary to change the shape of the layer thickness adjuster in accordance with the resin and the discharge conditions, and in addition, it is necessary to change the shape of the layer thickness adjuster for each layer when forming four or more layers. It is difficult to.

特許文献2では、フィードブロックの合流部の流路断面形状を最適化することで、多層フィルムの各層の幅方向の厚み分布を均一にする押出成形装置および多層フィルムの製造方法が示されている。ただし、実質的に外層の樹脂の流路形状しか制御適用できないために、中間層の粘度や流量が大きい場合、中間層の流量分布が凸となり偏肉包みこみが発生する。
特許文献3ではフィードブロック内の温度を制御して各樹脂の粘度を均一化し、偏肉を低減する装置が示されている。温度の調整で流動特性を制御するものであるが、温度の調整による流動特性の調整には限界があり、粘度差や流量比が大きい場合には温度調整のみで各層の流量プロファイルを均一にすることは困難である。
Patent Document 2 discloses an extrusion apparatus and a method for producing a multilayer film that optimizes the cross-sectional shape of the flow path at the confluence of the feed blocks to make the thickness distribution in the width direction of each layer of the multilayer film uniform. . However, since only the flow path shape of the resin of the outer layer can be controlled and applied, when the viscosity or flow rate of the intermediate layer is large, the flow rate distribution of the intermediate layer becomes convex and uneven thickness envelopment occurs.
Patent Document 3 discloses an apparatus that controls the temperature in the feed block to equalize the viscosity of each resin and reduce uneven thickness. Although the flow characteristics are controlled by adjusting the temperature, there is a limit to the adjustment of the flow characteristics by adjusting the temperature, and when the viscosity difference or flow rate ratio is large, only the temperature adjustment makes the flow profile of each layer uniform. It is difficult.

特開平7−241897号公報Japanese Patent Laid-Open No. 7-241897 特開2002−225107号公報JP 2002-225107 A 特開平11−309770号公報Japanese Patent Laid-Open No. 11-309770

そこで本発明は上記の問題点に鑑みて、フィードブロック方式で溶融樹脂を共押出によって、ダイから多層フィルムを製造する際に、簡便な方法で各層の厚みを制御し、各層の幅方向の膜厚を均一にする装置を提供することを課題とする。なお、本発明において、ダイとは、コートハンガーダイ、フィッシュテールダイ、ストレートマニホールドダイといった、主にフラットTダイを指すものとする。   Therefore, in view of the above problems, the present invention controls the thickness of each layer by a simple method when a multilayer film is manufactured from a die by co-extrusion of a molten resin by a feed block method. It is an object of the present invention to provide an apparatus for uniforming the thickness. In the present invention, the die mainly refers to a flat T die such as a coat hanger die, a fish tail die, or a straight manifold die.

そこで本発明の請求項1の発明は、
複数の溶融樹脂をフィードブロックで合流させて単層ダイから押出して多層フィルムを生成する多層押出成形装置であって、
前記フィードブロックは、フロープレート部と、ビーク部と、ダイ接続部から構成され、
フロープレート部は、複数の溶融樹脂を投入する複数開口部を有するもので、
ビーク部は、前記複数開口部に投入された複数の溶融樹脂の流路である内層流路と、外層流路と、合流路とを有するもので、
前記内層流路は矩形状断面の流路であって、
前記外層流路は前記内層流路に対して側面から合流する矩形状断面の流路であって、
前記合流路は前記内層流路と外層流路が合流した矩形状断面の流路であって、
前記内層流路と前記外層流路間には、移動可能な複数の隔壁が幅方向(幅方向とは成形されるフィルムの幅方向を指す。以下同じ)に備えられており、該複数の隔壁を個別に内層流路の厚み方向移動する第一の移動機構が設けられ、第一の移動機構によって内層流路の断面の大きさと断面形状が調整され、
前記外層流路の前記隔壁に対向する位置には、移動可能な複数の側壁部材が幅方向に備えられており、該複数の側壁部材を個別に外層流路の厚み方向に移動する第二の移動機構が設けられ、第二の移動機構によって外層流路の断面の大きさと断面形状が調整され、
ダイ接続部は、前記合流路と単層ダイに繋がる流路を有するものである、
ことを特徴とする多層押出成形装置である。
Therefore, the invention of claim 1 of the present invention is
A multilayer extrusion molding apparatus for joining a plurality of molten resins in a feed block and extruding from a single layer die to produce a multilayer film,
The feed block is composed of a flow plate part, a beak part, and a die connection part,
The flow plate part has a plurality of openings into which a plurality of molten resins are charged,
The beak portion has an inner layer flow path that is a flow path of a plurality of molten resins introduced into the plurality of openings, an outer layer flow path, and a combined flow path.
The inner layer channel is a channel having a rectangular cross section,
The outer layer channel is a channel having a rectangular cross section that merges from the side surface with respect to the inner layer channel,
The merged channel is a channel having a rectangular cross section in which the inner layer channel and the outer layer channel are merged,
Between the inner layer flow path and the outer layer flow path, a plurality of movable partition walls are provided in the width direction (the width direction refers to the width direction of the film to be formed; the same applies hereinafter), and the plurality of partition walls. A first moving mechanism for individually moving the inner layer flow path in the thickness direction, the first moving mechanism adjusts the size and cross-sectional shape of the inner layer flow path,
A plurality of movable side wall members are provided in the width direction at positions facing the partition walls of the outer layer flow path, and the second side wall members individually move in the thickness direction of the outer layer flow path. A moving mechanism is provided, and the second moving mechanism adjusts the cross-sectional size and cross-sectional shape of the outer layer flow path,
The die connection part has a flow path connected to the combined flow path and the single-layer die.
A multilayer extrusion molding apparatus characterized by the above.

請求項2の発明は、前記ビーク部を複数特徴とする請求項1に記載の多層押出成形装置。   The invention according to claim 2 is the multilayer extrusion molding apparatus according to claim 1, characterized in that a plurality of the beak portions are provided.

本発明における多層押出成形装置に備えられたフィードブロックは、複数の隔壁及び側壁部材の位置を移動機構によって個別に幅方向に調整することが出来るため、内層流路と外層流路の溶融樹脂の断面形状と断面積とが調節可能であり、その結果、成形不良を低減することができる。   The feed block provided in the multilayer extrusion molding apparatus according to the present invention can individually adjust the positions of the plurality of partition walls and side wall members in the width direction by the moving mechanism. The cross-sectional shape and the cross-sectional area can be adjusted, and as a result, molding defects can be reduced.

従来のフィードブロック方式による共押出法を示す図Diagram showing conventional coextrusion method using feed block method 本発明の一つの実施形態を例示した3層フィルムの押出成形装置のフィードブロック概略図Schematic diagram of a feed block of a three-layer film extrusion apparatus illustrating one embodiment of the present invention. 図2のビークを上流側から流れ方向に見た概略図Schematic view of the beak of FIG. 2 as viewed from the upstream side in the flow direction. 図2のフロープレート部を上流側から流れ方向に見た概略図Schematic view of the flow plate part of Fig. 2 as viewed from the upstream side in the flow direction. 支持体の構造を表す図2のB−B’の断面図2 is a cross-sectional view taken along line B-B ′ in FIG. 2 showing the structure of the support. 支持体の構造を表す図3のA−A’の断面図3 is a cross-sectional view of A-A ′ in FIG. 3 showing the structure of the support. 本発明の第2の実施形態を例示した5層フィルムの押出成形装置のフィードブロック概略図Schematic diagram of a feed block of a five-layer film extrusion apparatus exemplifying the second embodiment of the present invention 図7のビークを上流側から流れ方向に見た概略図Schematic view of the beak of FIG. 7 as viewed from the upstream side in the flow direction. 図7のフロープレート部を上流側から流れ方向に見た概略図Schematic view of the flow plate part of FIG. 7 as viewed from the upstream side in the flow direction.

以下に、本発明に係る多層押出成形装置の実施形態について、図面を参照して具体的に説明する。第一実施形態として、3種類の樹脂を用いた3層フィルムの押出成形装置のフィードブロックを図2〜図6に示す。図2は本発明の多層押出成形装置に備えられたフィードブロックの断面を示す図で、フィードブロック4はフロープレート部10と、ビーク部20と、ダイ接続部30で構成される。フロープレート部10は、複数の溶融樹脂を投入する複数開口部である丸穴状断面の導入路11a〜11cを有する。ビーク部20は、内層流路25と、外層流路26、27と、合流路28とを有する。ダイ接続部30は、前記合流路28と図示しない単層ダイに繋がる流路32を有する。   Embodiments of a multilayer extrusion molding apparatus according to the present invention will be specifically described below with reference to the drawings. As a first embodiment, a feed block of a three-layer film extrusion molding apparatus using three kinds of resins is shown in FIGS. FIG. 2 is a view showing a cross section of a feed block provided in the multilayer extrusion molding apparatus of the present invention. The feed block 4 includes a flow plate portion 10, a beak portion 20, and a die connection portion 30. The flow plate part 10 has introduction paths 11a to 11c having a round hole-shaped cross section which are a plurality of openings into which a plurality of molten resins are poured. The beak unit 20 includes an inner layer channel 25, outer layer channels 26 and 27, and a combined channel 28. The die connection part 30 has a flow path 32 connected to the combined flow path 28 and a single layer die (not shown).

内層流路25は矩形状断面の流路であって、外層流路26、27は内層流路25に対して側面から合流する矩形状断面の流路であり、合流路28は内層流路25と外層流路26,27が合流した矩形状断面の流路であり、内層流路25と外層流路26、27間の隔壁21、23は、第一の移動機構によって移動可能な複数の隔壁で構成されており、更に該複数の隔壁を個別に矢印52で示す内層流路の厚み方向に第一の移動機構によって移動することによって、内層流路の断面の大きさと断面形状を調整することが出来る。   The inner layer flow path 25 is a flow path having a rectangular cross section, the outer layer flow paths 26 and 27 are flow paths having a rectangular cross section that merge from the side surface with respect to the inner layer flow path 25, and the combined flow path 28 is the inner layer flow path 25. And the outer layer channels 26 and 27 are merged, and the partition walls 21 and 23 between the inner layer channel 25 and the outer layer channels 26 and 27 are a plurality of partition walls movable by the first moving mechanism. And adjusting the cross-sectional size and cross-sectional shape of the inner layer flow path by moving the plurality of partition walls individually by the first moving mechanism in the thickness direction of the inner layer flow path indicated by the arrow 52. I can do it.

隔壁21、23に対向する外層流路の位置に設けられた複数からなる側壁部材22、24を矢印52で示す外層流路の厚み方向に第二の移動機構によって移動することによって、外層流路26、27の断面の大きさと断面形状を調整することが出来る。   By moving the plurality of side wall members 22, 24 provided at the position of the outer layer flow channel facing the partition walls 21, 23 by the second moving mechanism in the thickness direction of the outer layer flow channel indicated by the arrow 52, the outer layer flow channel The cross-sectional size and cross-sectional shape of 26 and 27 can be adjusted.

フロープレート部10を説明する。図3はフロープレート部10を上流側から流れ方向に見た概略図を示す。図3(a)は、3台の押出機1〜3(図2)を接続する場合のフロープレート部10である。押出機1〜3がそれぞれ接続する丸穴状に開口した導入路11a〜11cは、矩形に変化しながら連絡路12a〜12cに接続され、ビーク側に開口する。なお、押出機は3台に限るものではなく、図3(b)に2台の押出機を接続する場合のフロープレート部を示す。押出機1〜2が接続する導入路11a、11bは丸穴状に開口し、前記導入路11aはフロープレート部10の内部で2分岐して矩形に変化しながら連絡路12a、12cに接続され、前記導入路11bは矩形に変化しながら連絡路12bに接続され、ビーク側に開口する。   The flow plate unit 10 will be described. FIG. 3 is a schematic view of the flow plate portion 10 as viewed from the upstream side in the flow direction. Fig.3 (a) is the flow plate part 10 in the case of connecting the three extruders 1-3 (FIG. 2). The introduction paths 11a to 11c opened in the shape of round holes to which the extruders 1 to 3 are connected are connected to the communication paths 12a to 12c while changing to a rectangular shape, and open to the beak side. Note that the number of extruders is not limited to three, and FIG. 3B shows a flow plate portion in the case of connecting two extruders. The introduction paths 11a and 11b to which the extruders 1 and 2 are connected open in a round hole shape, and the introduction path 11a is branched into two inside the flow plate portion 10 and is connected to the connection paths 12a and 12c while changing into a rectangle. The introduction path 11b is connected to the communication path 12b while changing to a rectangle, and opens to the beak side.

ビーク部20を説明する。ビーク部20は上記図2に示すように、連絡路12bに連結された矩形状断面の内層流路25と、連絡路12aに連結された矩形状断面の外層流路26と、連絡路12cに連結された矩形状断面の外層流路27と、前記内層流路25と外層流路26と外層流路27が合流した矩形状断面の合流路28を備える。また、ビーク部20は、ビーク筐体29の中に、内層流路25と外層流路26の間には内層流路の厚み方向52に移動可能な隔壁21と、外層流路26の壁面と合流路32の壁面が流路の厚み方向52に移動可能な側壁部材22と、内層流路25と外層流路27を隔壁し内層流路の厚み方向52に移動可能な隔壁23と、外層流路27の壁面と合流路32の壁面が流路の厚み方向52に移動可能な側壁部材24と、を有する。隔壁21、隔壁23はそれぞれ第一の移動機構である支持体43、44によって移動調整され、側壁部材22、側壁部材24は第二の移動機構である支持体41、42、によって移動調節され上記のように矢印52に示す流路の厚み方向に移動される。   The beak unit 20 will be described. As shown in FIG. 2, the beak portion 20 has a rectangular cross-section inner layer flow path 25 connected to the communication path 12b, a rectangular cross-section outer layer flow path 26 connected to the communication path 12a, and a communication path 12c. The outer layer channel 27 having a rectangular cross section connected to the inner layer channel 25, the outer layer channel 26, and the outer layer channel 27 are joined. Further, the beak portion 20 includes a partition wall 21 that can move in the thickness direction 52 of the inner layer flow path between the inner layer flow path 25 and the outer layer flow path 26, and a wall surface of the outer layer flow path 26. The side wall member 22 whose wall surface of the combined flow path 32 can move in the thickness direction 52 of the flow path, the partition wall 23 that partitions the inner layer flow path 25 and the outer layer flow path 27 and can move in the thickness direction 52 of the inner layer flow path, and the outer layer flow The wall surface of the path 27 and the wall surface of the combined flow path 32 have a side wall member 24 that can move in the thickness direction 52 of the flow path. The partition wall 21 and the partition wall 23 are moved and adjusted by supports 43 and 44, which are first moving mechanisms, respectively, and the side wall member 22 and the side wall member 24 are moved and adjusted by support bodies 41 and 42, which are second moving mechanisms. In this way, it is moved in the thickness direction of the flow path indicated by the arrow 52.

図4にビーク部20を上流側から矢印51で示す流れ方向に見た図を示す。側壁部材22、側壁部材24、隔壁21、隔壁23は矢印53で示す各流路の幅方向に7つに分割されており、その各分割片を矢印52で示す厚み方向に個別に移動することが出来る。ここで、側壁部材22、側壁部材24、隔壁21、隔壁23の分割数は7つに限らず複数であれば良く、合流部壁面を滑らかにするため、分割数が多いことが望ましい。第二の移動機構である支持体41、42はビーク筐体29を貫通して側壁部材22、24を固定し、ビーク筐体29から突出した部位を回転させることで、厚み方向52に各側壁部材22、24の位置を調節できる。   FIG. 4 shows a view of the beak portion 20 viewed from the upstream side in the flow direction indicated by the arrow 51. The side wall member 22, the side wall member 24, the partition wall 21, and the partition wall 23 are divided into seven in the width direction of each flow path indicated by an arrow 53, and each divided piece is individually moved in the thickness direction indicated by an arrow 52. I can do it. Here, the number of divisions of the side wall member 22, the side wall member 24, the partition wall 21, and the partition wall 23 is not limited to seven, and may be any plural number. The support bodies 41 and 42 which are the second moving mechanisms pass through the beak housing 29 and fix the side wall members 22 and 24, and rotate the portions protruding from the beak housing 29, thereby rotating each side wall in the thickness direction 52. The positions of the members 22 and 24 can be adjusted.

第一の移動機構である支持体43、44は同じ構造である。例として支持体44の移動機構を説明する。図5に図4のB−B’における断面図、図6に図4のA−A’における断面図を示す。支持体44は分割された隔壁231を隔壁231の上面から固定する上部支持体444と、上部支持体444の内部に回転可能に固着したねじ軸440からなる。上部支持体444は幅方向53に配置され、ビーク筐体29に設けられた切り欠き部290に屈曲させ、ねじ軸440を固着させる。ねじ軸440は雄ねじ部441を有し、ビーク筐体29に形成された雌ねじ部442に螺合されビーク筐体29の外側へ厚み方向52に突出する。ねじ軸440の捻回操作でねじ軸440が隔壁片231と一体に軸方向移動するようになっている。このようにして内層流路25の断面の大きさと断面形状を調整することが出来る。   The supports 43 and 44 as the first moving mechanism have the same structure. As an example, a moving mechanism of the support 44 will be described. 5 is a cross-sectional view taken along the line B-B ′ of FIG. 4, and FIG. 6 is a cross-sectional view taken along the line A-A ′ of FIG. 4. The support body 44 includes an upper support body 444 that fixes the divided partition wall 231 from the upper surface of the partition wall 231, and a screw shaft 440 that is rotatably fixed inside the upper support body 444. The upper support 444 is disposed in the width direction 53 and is bent at a notch 290 provided in the beak housing 29 to fix the screw shaft 440. The screw shaft 440 has a male screw portion 441, and is screwed into a female screw portion 442 formed in the beak housing 29 and protrudes in the thickness direction 52 to the outside of the beak housing 29. The screw shaft 440 moves in the axial direction integrally with the partition piece 231 by the twisting operation of the screw shaft 440. In this way, the cross-sectional size and cross-sectional shape of the inner layer flow path 25 can be adjusted.

ダイ接続部30は、上記図2に示すように矩形状断面の流路32を有し、ビーク部20の合流路28とダイ31の流路を接続する。   As shown in FIG. 2, the die connection part 30 has a flow path 32 having a rectangular cross section, and connects the combined flow path 28 of the beak part 20 and the flow path of the die 31.

第二実施形態として、2つのビークを用いた5層フィルムの押出成形装置のフィードブロックを図7〜図9に示す。図7に示されるフィードブロック4はフロープレート部10、第一のビーク部80、連絡ブロック60、62、第二のビーク部70、ダイ接続部30と、で構成されている。   As a second embodiment, FIG. 7 to FIG. 9 show a feed block of a five-layer film extrusion molding apparatus using two beaks. The feed block 4 shown in FIG. 7 includes a flow plate portion 10, a first beak portion 80, communication blocks 60 and 62, a second beak portion 70, and a die connection portion 30.

フロープレート部10は、図示しない例えば5台の押出機に接続する丸穴状断面の導入路11a〜11eと、それに連なる矩形状断面の連絡路12a〜12eと、が形成されており、第一のビーク部80及び連絡ブロック60、連絡ブロック62に連結している。フロープレート部10の構造を説明するため、図8は例えば3台の押出機1〜3を接続する場合のフロープレート部10を上流側から流れ方向に見た概略図を示す。押出機1〜3が接続する導入路11a〜11cは丸穴状に開口し、前記導入路11a、11cはフロープレート部10の内部で2分岐して矩形に変化しながらそれぞれ連絡路12aと12c及び12dと12eに接続され、前記導入路11bは矩形に変化しながら連絡路12bに接続され、ビーク側に開口する。なお、押出機は3台に限るものではなく、5台未満の押出機を用いた5層フィルムの場合は、導入路11を適宜分岐して矩形状断面の連絡路12a〜12eに接続されたフロープレート部を用いる。   The flow plate portion 10 is formed with, for example, round hole-shaped cross-section introduction paths 11a to 11e connected to five extruders (not shown), and communication paths 12a to 12e having a rectangular cross-section connected thereto. The beak portion 80 and the communication block 60 and the communication block 62 are connected. In order to explain the structure of the flow plate part 10, FIG. 8 shows a schematic view of the flow plate part 10 viewed from the upstream side in the flow direction when, for example, three extruders 1 to 3 are connected. The introduction paths 11a to 11c to which the extruders 1 to 3 are connected open in a round hole shape, and the introduction paths 11a and 11c are branched into two inside the flow plate portion 10 and change into a rectangular shape, respectively, and the connection paths 12a and 12c. The introduction path 11b is connected to the communication path 12b while changing to a rectangle, and opens to the beak side. The number of extruders is not limited to three, and in the case of a five-layer film using less than five extruders, the introduction path 11 is appropriately branched and connected to the communication paths 12a to 12e having a rectangular cross section. Use the flow plate section.

第一のビーク部80の形状は、第一実施形態で説明したものと同一の構造であり、省略する。   The shape of the first beak portion 80 has the same structure as that described in the first embodiment, and is omitted.

フロープレート部10の連絡路12a〜12cは、それぞれ第一のビーク部80の外層
流路26、内層流路25、外層流路27に接続され、フロープレート部10の連絡路12dと連絡路12eはそれぞれ連絡ブロック60の連絡路61と連絡ブロック62の連絡路63に接続される。
The communication paths 12a to 12c of the flow plate section 10 are connected to the outer layer flow path 26, the inner layer flow path 25, and the outer layer flow path 27 of the first beak section 80, respectively, and the communication paths 12d and 12e of the flow plate section 10 are connected. Are connected to the communication path 61 of the communication block 60 and the communication path 63 of the communication block 62, respectively.

第二のビーク部70は、合流路28に連結された矩形状断面の内層流路75と、連絡路61に連結された矩形状断面の外層流路76と、連絡路63に連結された矩形状断面の外層流路77と、前記内層流路75と外層流路76と外層流路77が合流した矩形状断面の合流路78を備える。また、第二のビーク部70は、ビーク筐体79の中に、内層流路75と外層流路76の隔壁71と、外層流路76の壁面と合流路壁面が流路の厚み方向52に移動可能な側壁部材72と、内層流路75と外層流路77を隔壁し内層流路の厚み方向52に移動可能な隔壁73と、外層流路77の壁面と合流路壁面が流路の厚み方向52に移動可能な側壁部材74とを有する。隔壁71、隔壁73は第一の移動機構である支持体47、48によって内層流路75の厚み方向52に移動可能となっている。また側壁部材72、側壁部材74は、第二の移動機構である支持体45、46によって外層流路76、77の厚み方向52に移動可能となっている。   The second beak portion 70 includes a rectangular cross-section inner layer flow path 75 connected to the combined flow path 28, a rectangular cross-section outer layer flow path 76 connected to the communication path 61, and a rectangular cross section connected to the communication path 63. An outer layer flow channel 77 having a cross-sectional shape, and a merge channel 78 having a rectangular cross section in which the inner layer flow channel 75, the outer layer flow channel 76, and the outer layer flow channel 77 merge. Further, the second beak portion 70 includes a partition wall 71 of the inner layer flow path 75 and the outer layer flow path 76, a wall surface of the outer layer flow path 76 and a wall surface of the combined flow path in the thickness direction 52 of the flow path. The movable side wall member 72, the inner layer channel 75 and the outer layer channel 77 are separated from each other, the partition wall 73 is movable in the thickness direction 52 of the inner layer channel, and the wall surface of the outer layer channel 77 and the combined channel wall surface are the thickness of the channel. And a side wall member 74 movable in the direction 52. The partition wall 71 and the partition wall 73 can be moved in the thickness direction 52 of the inner layer flow path 75 by supports 47 and 48 which are first moving mechanisms. Further, the side wall member 72 and the side wall member 74 are movable in the thickness direction 52 of the outer layer flow paths 76 and 77 by the support bodies 45 and 46 which are the second moving mechanisms.

図9に第二のビーク部70を上流側から矢印51で示す流れ方向に見た図を示す。側壁部材72、側壁部材74、隔壁71、隔壁73は矢印53で示す幅方向に7つに分割されており、その各分割片は矢印52で示す厚み方向に移動できるようになっている。ここで、側壁部材72、側壁部材74、隔壁71、隔壁73の分割数は7つに限らず複数であれば良く、合流部壁面を滑らかにするため、分割数が多いことが望ましい。   FIG. 9 shows the second beak portion 70 viewed from the upstream side in the flow direction indicated by the arrow 51. The side wall member 72, the side wall member 74, the partition wall 71, and the partition wall 73 are divided into seven in the width direction indicated by the arrow 53, and each of the divided pieces can be moved in the thickness direction indicated by the arrow 52. Here, the number of divisions of the side wall member 72, the side wall member 74, the partition wall 71, and the partition wall 73 is not limited to seven, and may be a plurality.

ダイ接続部30は、矩形状断面の流路32を有し、第二のビーク部70の合流路78とダイ31の流路を接続する。   The die connection part 30 has a flow path 32 having a rectangular cross section, and connects the combined flow path 78 of the second beak part 70 and the flow path of the die 31.

第二実施形態では、ビークを2つに限ることなく、3つ以上のビークを重ねて用いることによって、5層以上の多層フィルムを成形することができる。   In the second embodiment, the number of beaks is not limited to two, and a multilayer film of five or more layers can be formed by using three or more beaks in an overlapping manner.

以上のように、本発明のフィードブロックを備えた多層押出成形装置によれば、各層のフィルムの流路の断面の大きさと断面形状を調整することが出来るため、各層の厚みを制御することが可能で、その結果、フィルムの幅方向の膜厚を均一にすることが出来る。   As described above, according to the multilayer extrusion molding apparatus provided with the feed block of the present invention, the cross-sectional size and cross-sectional shape of the flow path of the film of each layer can be adjusted, so that the thickness of each layer can be controlled. As a result, the film thickness in the width direction of the film can be made uniform.

1・・・押出機
2・・・押出機
3・・・押出機
4・・・フィードブロック
10・・・フロープレート部
11・・・導入路
12・・・導入路
13・・・導入路
20・・・ビーク部
21・・・隔壁
22・・・側壁部材
23・・・隔壁
24・・・側壁部材
25・・・内層流路
26・・・外層流路
27・・・外層流路
28・・・合流路
29・・・ビーク筐体
30・・・ダイ接続部
31・・・ダイ
32・・・合流路
34・・・スリット状出口
41・・・支持体
42・・・支持体
43・・・支持体
44・・・支持体
51・・・流れ方向
52・・・厚み方向
53・・・幅方向
60・・・連絡ブロック
61・・・連絡路
62・・・連絡ブロック
63・・・連絡路
70・・・ビーク
71・・・隔壁
72・・・側壁部材
73・・・隔壁
74・・・側壁部材
75・・・内層流路
76・・・外層流路
77・・・外層流路
78・・・合流路
79・・・ビーク筐体
290・・・切りかき部
DESCRIPTION OF SYMBOLS 1 ... Extruder 2 ... Extruder 3 ... Extruder 4 ... Feed block 10 ... Flow plate part 11 ... Introduction path 12 ... Introduction path 13 ... Introduction path 20 ... Beak part 21 ... Partition wall 22 ... Side wall member 23 ... Partition wall 24 ... Side wall member 25 ... Inner layer channel 26 ... Outer layer channel 27 ... Outer layer channel 28 .. Combined flow path 29... Beak housing 30. ··· Support 44 ··· Support 51 ··· Flow direction 52 ··· Thickness direction 53 ··· Width direction 60 ··· Communication block 61 ··· Communication path 62 ··· Communication block 63 Connecting path 70 ... Beak 71 ... Partition wall 72 ... Side wall member 73 ... Partition wall 74 ... Side wall member 75 ... The inner layer flow path 76 ... outer layer flow path 77 ... outer layer flow path 78 ... the combined channel 79 ... beak housing 290 ... notch

Claims (2)

複数の溶融樹脂をフィードブロックで合流させて単層ダイから押出して多層フィルムを生成する多層押出成形装置であって、
前記フィードブロックは、フロープレート部と、ビーク部と、ダイ接続部から構成され、
フロープレート部は、複数の溶融樹脂を投入する複数開口部を有するもので、
ビーク部は、前記複数開口部に投入された複数の溶融樹脂の流路である内層流路と、外層流路と、合流路とを有するもので、
前記内層流路は矩形状断面の流路であって、
前記外層流路は前記内層流路に対して側面から合流する矩形状断面の流路であって、
前記合流路は前記内層流路と外層流路が合流した矩形状断面の流路であって、
前記内層流路と前記外層流路間には、移動可能な複数の隔壁が幅方向(幅方向とは成形されるフィルムの幅方向を指す。以下同じ)に備えられており、該複数の隔壁を個別に内層流路の厚み方向に移動する第一の移動機構が設けられ、第一の移動機構によって内層流路の断面の大きさと断面形状が調整され、
前記外層流路の前記隔壁に対向する位置には、移動可能な複数の側壁部材が幅方向に備えられており、該複数の側壁部材を個別に外層流路の厚み方向に移動する第二の移動機構が設けられ、第二の移動機構によって外層流路の断面の大きさと断面形状が調整され、
ダイ接続部は、前記合流路と単層ダイに繋がる流路を有するものである、
ことを特徴とする多層押出成形装置。
A multilayer extrusion molding apparatus for joining a plurality of molten resins in a feed block and extruding from a single layer die to produce a multilayer film,
The feed block is composed of a flow plate part, a beak part, and a die connection part,
The flow plate part has a plurality of openings into which a plurality of molten resins are charged,
The beak portion has an inner layer flow path that is a flow path of a plurality of molten resins introduced into the plurality of openings, an outer layer flow path, and a combined flow path.
The inner layer channel is a channel having a rectangular cross section,
The outer layer channel is a channel having a rectangular cross section that merges from the side surface with respect to the inner layer channel,
The merged channel is a channel having a rectangular cross section in which the inner layer channel and the outer layer channel are merged,
Between the inner layer flow path and the outer layer flow path, a plurality of movable partition walls are provided in the width direction (the width direction refers to the width direction of the film to be formed; the same applies hereinafter), and the plurality of partition walls. A first moving mechanism for individually moving the inner layer flow path in the thickness direction, and the first moving mechanism adjusts the cross-sectional size and cross-sectional shape of the inner layer flow path,
A plurality of movable side wall members are provided in the width direction at positions facing the partition walls of the outer layer flow path, and the second side wall members individually move in the thickness direction of the outer layer flow path. A moving mechanism is provided, and the second moving mechanism adjusts the cross-sectional size and cross-sectional shape of the outer layer flow path,
The die connection part has a flow path connected to the combined flow path and the single-layer die.
A multilayer extrusion molding apparatus characterized by that.
前記ビーク部を複数備えたことを特徴とする請求項1に記載の多層押出成形装置。   The multilayer extrusion molding apparatus according to claim 1, comprising a plurality of the beak portions.
JP2012171983A 2012-08-02 2012-08-02 Multilayer extrusion molding apparatus Pending JP2014030938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012171983A JP2014030938A (en) 2012-08-02 2012-08-02 Multilayer extrusion molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012171983A JP2014030938A (en) 2012-08-02 2012-08-02 Multilayer extrusion molding apparatus

Publications (1)

Publication Number Publication Date
JP2014030938A true JP2014030938A (en) 2014-02-20

Family

ID=50281163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012171983A Pending JP2014030938A (en) 2012-08-02 2012-08-02 Multilayer extrusion molding apparatus

Country Status (1)

Country Link
JP (1) JP2014030938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014188991A (en) * 2013-03-28 2014-10-06 Toppan Printing Co Ltd Multilayer extrusion molding device
CN112092323A (en) * 2020-09-08 2020-12-18 佛山市南海崇泰防火材料有限公司 Hard composite fire-proof strip, manufacturing method and manufacturing device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014188991A (en) * 2013-03-28 2014-10-06 Toppan Printing Co Ltd Multilayer extrusion molding device
CN112092323A (en) * 2020-09-08 2020-12-18 佛山市南海崇泰防火材料有限公司 Hard composite fire-proof strip, manufacturing method and manufacturing device thereof

Similar Documents

Publication Publication Date Title
KR880001779B1 (en) Coextrusion device
KR102496140B1 (en) Coextrusion apparatus, monolayer extrusion apparatus, retrofitting kit, and process for measuring layer thickness, for manufacturing plastic film and for retrofitting extrusion apparatus
US6409494B1 (en) Device for the extrusion of multi-layer plastic films, boards or tubes
US3334382A (en) Extrusion adapter
JP2005523831A5 (en)
JP2016153230A (en) System and method for adjusting land channel length on extrusion die
JP2015080933A (en) Multilayer extrusion molding device
JP2014030938A (en) Multilayer extrusion molding apparatus
JP2015223843A (en) Multi-manifold extrusion die with deckle system and method of using the same
JP3931391B2 (en) Multilayer support molding method and molding die apparatus thereof
JP3973755B2 (en) Multilayer extrusion molding method and apparatus
JPS6238132B2 (en)
KR20080023757A (en) Flat die and process for producing layered resin film or sheet
JP2020097144A (en) Feed block, manufacturing method of multilayer extrusion molded article, and manufacturing apparatus of multilayer extrusion molded article
JP2009029104A (en) Feed block, molding device for stacked resin film or sheet, and method for producing the same
JP5166767B2 (en) Feed block, laminated resin film or sheet molding apparatus and manufacturing method
JP2014188991A (en) Multilayer extrusion molding device
JP5492385B2 (en) Sheet forming die and sheet forming method
KR102220615B1 (en) Feed block, sheet manufacturing apparatus including same, and sheet manufacturing method
JPS6189823A (en) Molding equipment of co-extruded resin laminated body
JPS62240525A (en) Co-extrusion feed block
JP2007045020A (en) Flat die and manufacturing method of laminated resin film or sheet
JPH06344414A (en) Co-extrusion multi-layer molding method
JPH07241897A (en) Extruder for multilayer film
JP4690155B2 (en) Extrusion mold