JP2014188580A - Manufacturing method of annular molding - Google Patents

Manufacturing method of annular molding Download PDF

Info

Publication number
JP2014188580A
JP2014188580A JP2013069205A JP2013069205A JP2014188580A JP 2014188580 A JP2014188580 A JP 2014188580A JP 2013069205 A JP2013069205 A JP 2013069205A JP 2013069205 A JP2013069205 A JP 2013069205A JP 2014188580 A JP2014188580 A JP 2014188580A
Authority
JP
Japan
Prior art keywords
annular
forging
grain size
molded body
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013069205A
Other languages
Japanese (ja)
Other versions
JP6292761B2 (en
Inventor
Hiroaki Kikuchi
弘明 菊池
Hideo Takizawa
英男 瀧澤
Yuji Ishiwari
雄二 石割
Atsushi Osone
淳 大曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MMC Superalloy Corp
Original Assignee
MMC Superalloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013069205A priority Critical patent/JP6292761B2/en
Application filed by MMC Superalloy Corp filed Critical MMC Superalloy Corp
Priority to MX2015013639A priority patent/MX2015013639A/en
Priority to RU2015146287A priority patent/RU2631221C2/en
Priority to PCT/JP2014/059277 priority patent/WO2014157662A1/en
Priority to ES14775622T priority patent/ES2932530T3/en
Priority to CN201480028783.2A priority patent/CN105228771A/en
Priority to EP14775622.5A priority patent/EP2979774B1/en
Publication of JP2014188580A publication Critical patent/JP2014188580A/en
Application granted granted Critical
Publication of JP6292761B2 publication Critical patent/JP6292761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B5/00Extending closed shapes of metal bands by rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/06Shaping thick-walled hollow articles, e.g. projectiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/761Making machine elements elements not mentioned in one of the preceding groups rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K3/00Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/06Making articles shaped as bodies of revolution rings of restricted axial length

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an annular molding capable of stably and inexpensively manufacturing the annular molding being sufficiently high in mechanical strength by securing uniformity of a structure.SOLUTION: The manufacturing method of the annular molding comprises a forging step S2 of manufacturing a discoid forging body by forging an alloy element assembly and a ring rolling step S4 of manufacturing the annular molding by ring-rolling an annular intermediate body of forming a through-hole in the forging body. In the forging step S2, hot forging is executed by at least two times or more so as to fall within a range in which a stain rate is 0.5 sor less, an absolute value εθ1 of strain in the circumferential direction of the forging body is 0.3 or more, an absolute value εh of the strain in the height direction of the forging body is 0.3 or more, and the ratio εh/εθ1 of the mutual absolute values of these strains is 0.4 or more and 2.5 or less.

Description

この発明は、例えば航空機用エンジンのタービンディスク等の環状製品を製造する際に加工素材として使用される環状成形体の製造方法に関するものである。   The present invention relates to a method for producing an annular molded body used as a processing material when producing an annular product such as a turbine disk of an aircraft engine.

前述したタービンディスクは、貫通孔を有する環状部材であり、外周側に複数のタービン翼が配設され、このタービン翼とともに回転される構成とされている。
前述のタービンディスクおいては、その外周部が燃焼ガスに晒されて600〜700℃程度の高温になる一方、内周部の温度は比較的低く抑えられており、エンジンの起動や停止にともなって、繰り返し内部に熱応力が生じることになる。そのため、優れた低サイクル疲労特性が求められるとともに、外周部では高温下で軸周りの高速回転に起因した遠心力を受けることから、高いクリープ強度特性を合わせ持つ必要がある。また、高い引張・降伏強度も要求される。
The above-described turbine disk is an annular member having a through hole, and a plurality of turbine blades are disposed on the outer peripheral side, and are configured to rotate together with the turbine blades.
In the above-described turbine disk, the outer periphery thereof is exposed to combustion gas and becomes a high temperature of about 600 to 700 ° C., while the temperature of the inner periphery is kept relatively low, and the engine is started and stopped. Thus, thermal stress is repeatedly generated inside. For this reason, excellent low cycle fatigue characteristics are required, and the outer peripheral portion is subjected to centrifugal force due to high-speed rotation around the axis at high temperature, and therefore must have high creep strength characteristics. Also, high tensile / yield strength is required.

このような種々の要求に対応し得る機械的強度を確保するため、タービンディスクに用いられる環状成形体は、例えば特許文献1,2に記載されているように、耐熱性に優れたNi基超合金からなる素材に対して鍛造加工を行い、得られた環状の鍛造体に対して切削加工を施すことによって製出されている。すなわち、鍛造により環状成形体にひずみを与えるとともに結晶粒を微細化して、引張強度や疲労強度等を向上させている。鍛造の適用設備としては、鍛造速度の厳密な制御が可能な油圧制御鍛造プレスが望ましく、環状成形体における組織(結晶粒)の周方向の均一性を得るためには、素材全体を同時に成形する全面鍛造の適用が好ましいと認識されている。   In order to ensure the mechanical strength that can meet such various demands, the annular molded body used for the turbine disk is, for example, as described in Patent Documents 1 and 2, a Ni-based superb material having excellent heat resistance. It is produced by forging a material made of an alloy and cutting the resulting annular forged body. That is, the forging is strained and the crystal grains are refined to improve the tensile strength and fatigue strength. As the forging equipment, a hydraulically controlled forging press capable of strict control of the forging speed is desirable. In order to obtain the uniformity in the circumferential direction of the structure (crystal grains) in the annular formed body, the entire material is simultaneously formed. It has been recognized that application of full forging is preferred.

ところで、近年では、航空機用エンジンの高出力化への要求にともなって、タービンディスクの大型化が求められている。このようなタービンディスクの大型化に伴って環状成形体を大型化する場合、数万トンクラスの大型の油圧制御鍛造プレスが必要になる(例えば、非特許文献1参照)。
しかしながら、前述した大型の油圧制御鍛造プレスは、非常に高価であるばかりか世界的に見ても数が少なく、このような大型の油圧制御鍛造プレスを用いた場合、環状成形体の供給能力が制限されるとともに製品コストも高止まりしてしまうことになる。また、近年のタービンディスクの大型化傾向は、大型の油圧制御鍛造プレスを用いたとしても密閉鍛造が困難な程度にまで達しており、鍛造する環状成形体の一部領域では望ましい機械的特性が得られ難く、組織の均一性が確保し難いといった課題が生じていた。
Incidentally, in recent years, with the demand for higher output of aircraft engines, there is a demand for larger turbine disks. In order to increase the size of the annular molded body as the size of the turbine disk increases, a large hydraulic control forging press of tens of thousands of tons is required (for example, see Non-Patent Document 1).
However, the large hydraulic control forging press described above is not only very expensive but also few in the world. When such a large hydraulic control forging press is used, the supply capacity of the annular molded body is low. In addition to being limited, product costs will remain high. In addition, the trend toward larger turbine disks in recent years has reached the point where hermetic forging is difficult even when large hydraulically controlled forging presses are used. There is a problem that it is difficult to obtain and it is difficult to ensure the uniformity of the structure.

一方、環状成形体を鍛造プレスにより成形する代わりに、リング圧延により成形する手法が考えられる。この場合、設備費用を削減できるとともに、環状成形体の大型化にも対応しやすい。しかしながら、一般にリング圧延品はプレス鍛造品よりも機械的特性(強度特性)の異方性が生じやすく、タービンディスクのように機械的特性の等方性が要求される製品には不向きであった。
また、鍛造プレスとリング圧延とを組み合わせて環状成形体を成形する手法も考えられるが、所望の均一微細組織を得るには、前記リング圧延後にさらに最終鍛造を施す必要性が生じて、製造工程が複雑となるとともに製造コストが嵩んでしまうといった問題があった。
On the other hand, instead of forming the annular formed body by forging press, a method of forming by ring rolling can be considered. In this case, the equipment cost can be reduced and it is easy to cope with an increase in the size of the annular molded body. However, in general, ring-rolled products are more susceptible to anisotropy in mechanical properties (strength properties) than press-forged products, and are not suitable for products that require isotropic mechanical properties such as turbine disks. .
In addition, a method of forming an annular formed body by combining forging press and ring rolling is also conceivable, but in order to obtain a desired uniform microstructure, it is necessary to perform final forging after the ring rolling, and the manufacturing process However, there is a problem in that the manufacturing cost increases.

そこで、特許文献3には、鍛造工程とリング圧延工程とを組み合わせるとともに、鍛造工程において、鍛造体の周方向のひずみεθ1と高さ方向のひずみεθ1およびこれらひずみ比εθ1/εθ1を適正な値に制御した熱間鍛造を複数回実施することにより、均一性が十分に確保された微細結晶組織を有する環状成形体を低コストで製造する方法が提案されている。   Therefore, in Patent Document 3, the forging process and the ring rolling process are combined, and in the forging process, the circumferential strain εθ1 and the strain εθ1 in the height direction and the strain ratio εθ1 / εθ1 are set to appropriate values. There has been proposed a method of manufacturing an annular molded body having a fine crystal structure with sufficiently uniform uniformity at low cost by performing controlled hot forging a plurality of times.

特開平07−138719号公報JP 07-138719 A 特開昭62−211333号公報JP-A-62-211333 特開2011−255409号公報JP 2011-255409 A

「平成14年度調査報告書 超大型鍛造用プレス機を利用した革新的部材開発に関する調査研究報告書」、独立行政法人新エネルギー・産業技術総合開発機構、平成15年3月、p.10、11、37−41“Survey report on research on development of innovative materials using press machines for ultra-large forging”, New Energy and Industrial Technology Development Organization, March 2003, p. 10, 11, 37-41

ところで、最近では、高出力の航空機用エンジンの生産が活発となり、大型の環状成形体の需要も高まってきていることから、均一な組織を有する環状成形体を安定して量産することができる製造方法が求められている。
ここで、特許文献3に記載の環状成形体の製造方法について、本発明の発明者が検討した結果、鍛造体の周方向のひずみεθ1と高さ方向のひずみεθ1およびこれらひずみ比εθ1/εθ1を適正な値に制御した熱間鍛造を複数回実施することにより、確かに結晶粒径が微細で均一な環状成形体が得られることは確認されたものの、例えば肉厚の厚い大型の環状成形体においては、操業条件のばらつき等によって、稀に環状成形体の結晶粒径が不均一となることがあった。
By the way, recently, production of high-power aircraft engines has become active, and demand for large-sized annular molded bodies has increased. Therefore, manufacturing that can stably mass-produce annular molded bodies having a uniform structure is possible. There is a need for a method.
Here, as a result of the study of the method of manufacturing the annular molded body described in Patent Document 3, the inventors of the present invention have found that the strain εθ1 in the circumferential direction and the strain εθ1 in the height direction of the forged body and the strain ratio εθ1 / εθ1 are obtained. Although it has been confirmed that by carrying out hot forging controlled to an appropriate value a plurality of times, an annular molded body with a fine crystal grain size and a uniform shape can be obtained, for example, a large-scale annular molded body with a large thickness is obtained. In rare cases, the crystal grain size of the annular molded body sometimes becomes non-uniform due to variations in operating conditions.

本発明は、このような事情に鑑みてなされたものであって、組織の均一性を確保して機械的強度が十分に高い環状成形体を安定的に、かつ、低コストで製造することが可能な環状成形体の製造方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and it is possible to stably and inexpensively manufacture an annular molded body having a sufficiently high mechanical strength while ensuring the uniformity of the structure. It aims at providing the manufacturing method of the cyclic | annular molded object which can be performed.

このような課題を解決して、前記目的を達成するために、本発明の環状成形体の製造方法は、合金素体を鍛造して円板状の鍛造体を作製する鍛造工程と、前記鍛造体に貫通孔を形成してなる環状中間体をリング圧延して環状成形体を作製するリング圧延工程と、を備える環状成形体の製造方法であって、前記鍛造工程では、ひずみ速度が0.5s−1以下、前記鍛造体の周方向のひずみの絶対値εθ1が0.3以上、前記鍛造体の高さ方向のひずみの絶対値εhが0.3以上、これらひずみの絶対値同士の比εh/εθ1が0.4以上2.5以下の範囲内となる熱間鍛造を、少なくとも2回以上行うことを特徴としている。 In order to solve such problems and achieve the above object, the method for producing an annular molded body of the present invention includes a forging step of forging an alloy body to produce a disk-shaped forged body, and the forging process. A ring rolling step of ring-rolling an annular intermediate body formed by forming a through hole in the body to produce an annular molded body, wherein the forging step has a strain rate of 0. 5s −1 or less, the absolute value εθ1 in the circumferential direction of the forged body is 0.3 or more, the absolute value εh in the height direction strain of the forged body is 0.3 or more, and the ratio between the absolute values of these strains The hot forging in which εh / εθ1 is in the range of 0.4 to 2.5 is performed at least twice.

本発明の環状成形体の製造方法においては、鍛造工程におけるひずみ速度を0.5s−1以下、としている。ここで、ひずみ速度が0.5s−1を超える場合には、加工熱によって鍛造体の内部の温度が過度に上昇すること(いわゆる、ヒートビルドアップ)により、鍛造体内部の結晶粒径が粗大になる。なお、鍛造後のリング圧延では、内部にひずみを十分に与えることができないことから、鍛造体内部の結晶粒の微細化を図ることはできない。そこで、本発明では、ひずみ速度を0.5s−1以下の範囲内とすることにより、鍛造時における鍛造体の表面と内部との温度差を小さくし、組織の均一化を図ることが可能となるのである。なお、上述の作用効果を確実に奏功せしめるためには、鍛造工程におけるひずみ速度を0.15s−1以下とすることが好ましい。
なお、ひずみ速度は、以下の式で定義される。

Figure 2014188580
In the manufacturing method of the annular molded body of the present invention, the strain rate in the forging process is 0.5 s −1 or less. Here, when the strain rate exceeds 0.5 s −1 , the crystal grain size inside the forged body is coarse due to excessive increase in the temperature inside the forged body due to processing heat (so-called heat buildup). become. In addition, in ring rolling after forging, since the inside cannot be sufficiently distorted, the crystal grains inside the forged body cannot be refined. Therefore, in the present invention, by setting the strain rate within the range of 0.5 s −1 or less, it is possible to reduce the temperature difference between the surface and the inside of the forged body during forging and to make the structure uniform. It becomes. In addition, in order to make the above-mentioned operation effect effective, it is preferable that the strain rate in the forging process is 0.15 s −1 or less.
The strain rate is defined by the following equation.
Figure 2014188580

また、鍛造工程において、周方向のひずみの絶対値εθ1を0.3以上と大きく設定しているので、リング圧延工程において環状中間体に付与する周方向のひずみ量の割合を低減させることができる。さらに、高さ方向のひずみの絶対値εhを0.3以上と大きく設定しているので、リング圧延では付与しにくい高さ方向のひずみ量が十分に確保することできる。これにより、リング圧延における加工率を低くすることができ、環状成形体の強度特性の異方性が抑制されるとともに等方性が高められ、均一性が十分に確保された微細結晶組織が得られる。   In the forging process, since the absolute value εθ1 of the circumferential strain is set to a large value of 0.3 or more, the proportion of the circumferential strain applied to the annular intermediate in the ring rolling process can be reduced. . Furthermore, since the absolute value εh of the strain in the height direction is set to a large value of 0.3 or more, it is possible to secure a sufficient amount of strain in the height direction that is difficult to impart by ring rolling. As a result, the processing rate in the ring rolling can be reduced, the anisotropy of the strength characteristics of the annular molded body is suppressed, the isotropic property is enhanced, and a fine crystal structure with sufficiently ensured uniformity is obtained. It is done.

また、比εh/εθ1は付与ひずみの方向性バランスを示しており、加工前後での素材内の相対位置変化を制御する指標である。引き続くリング圧延工程では製法上、相当する数値がゼロ或いはゼロに近い数値にならざるを得ないため、鍛造工程で高さ方向へのひずみ付与比率を適切に取ることが異方性の抑制に必須であるが、εh/εθ1が0.4未満ではその効果が不十分である。一方、εh/εθ1が2.5を超えると、高さ方向への分配が過剰となるとともに、塑性流動が不安定となり、均一性の付与に不可欠な塑性流動の軸対称性が低減する。
そこで、本発明では、ひずみの絶対値同士の比εh/εθ1を0.4以上2.5以下の範囲内に規定することで、塑性流動を安定させて軸対称性を確保し、組織の均一化を図ることが可能となる。
The ratio εh / εθ1 indicates the directional balance of applied strain, and is an index for controlling the relative position change in the material before and after processing. In the subsequent ring rolling process, the corresponding numerical value must be zero or close to zero due to the manufacturing method, so it is essential to suppress the anisotropy by appropriately taking the strain application ratio in the height direction in the forging process. However, if εh / εθ1 is less than 0.4, the effect is insufficient. On the other hand, if εh / εθ1 exceeds 2.5, the distribution in the height direction becomes excessive, the plastic flow becomes unstable, and the axial symmetry of the plastic flow that is indispensable for imparting uniformity is reduced.
Therefore, in the present invention, by defining the ratio εh / εθ1 between the absolute values of strain within the range of 0.4 to 2.5, the plastic flow is stabilized and the axial symmetry is secured, and the structure is uniform. Can be achieved.

ここで、本発明に係る環状成形体の製造方法において、前記リング圧延工程では、前記環状成形体における周方向のひずみの絶対値εθ2を0.5以上付与する熱間圧延を行い、前記環状成形体における製品領域の結晶粒度をASTM結晶粒度番号で8以上とすることとしてもよい。
この場合、リング圧延工程において、環状成形体の周方向のひずみの絶対値εθ2を0.5以上付与する熱間圧延を行うことで、環状成形体において機械加工により製品とされる製品領域の結晶粒度が、ASTM結晶粒度番号で8以上に確実に微細化される。したがって、環状成形体から得られる製品の機械的強度を確実に高めることが可能となる。
なお、ASTM結晶粒度番号とは、American Society of Testing and Materials(米国材料試験協会)のASTM規格E122に規定する基準によって決定されるものである。
Here, in the method for manufacturing an annular molded body according to the present invention, in the ring rolling step, hot rolling is performed to give an absolute value εθ2 of a circumferential strain in the annular molded body of 0.5 or more, and the annular molding is performed. The grain size of the product region in the body may be 8 or more in terms of ASTM grain size number.
In this case, in the ring rolling process, by performing hot rolling that gives an absolute value εθ2 of the circumferential distortion of the annular molded body of 0.5 or more, crystals in the product region that is made into a product by machining in the annular molded body The grain size is reliably refined to 8 or more by ASTM grain size number. Accordingly, it is possible to reliably increase the mechanical strength of the product obtained from the annular molded body.
The ASTM grain size number is determined according to the standard specified in ASTM standard E122 of American Society of Testing and Materials (American Society for Testing Materials).

さらに、本発明に係る環状成形体の製造方法において、前記環状成形体の軸線を含む断面内における該環状成形体の製品領域の結晶粒度差が、ASTM結晶粒度番号差で±2の範囲内であることとしてもよい。
この場合、環状成形体の断面内の製品領域における結晶粒度差が、ASTM結晶粒度番号差で±2の範囲内とされているので、この環状成形体は、径方向及び高さ方向における結晶粒度の均一性が確保されている。
Further, in the method for producing an annular molded body according to the present invention, the crystal grain size difference in the product region of the annular molded body in a cross section including the axis of the annular molded body is within a range of ± 2 in terms of ASTM grain size number difference. It may be there.
In this case, since the crystal grain size difference in the product region in the cross section of the annular shaped product is within the range of ± 2 in terms of ASTM grain size number difference, this annular shaped product has a crystal grain size in the radial direction and the height direction. Uniformity is ensured.

また、本発明に係る環状成形体の製造方法において、前記鍛造工程では、前記鍛造体の結晶粒度をASTM結晶粒度番号で7以上とすることとしてもよい。
この場合、鍛造工程において、前述のように高いひずみ量を付与することによって、鍛造体の結晶粒度がASTM結晶粒度番号で7以上に微細化できる。従って、次のリング圧延工程において付与するひずみ量を低減しつつも、環状成形体の組織の微細化が可能となる。
Moreover, in the manufacturing method of the annular molded body according to the present invention, in the forging step, the crystal grain size of the forged body may be 7 or more in terms of ASTM grain size number.
In this case, in the forging process, by applying a high strain amount as described above, the crystal grain size of the forged body can be refined to 7 or more by the ASTM crystal grain size number. Therefore, the structure of the annular molded body can be refined while reducing the amount of strain applied in the next ring rolling step.

さらに、本発明に係る環状成形体の製造方法において、前記環状中間体における径方向の厚さTと該環状中間体の軸線方向に沿う高さHとの比T/Hが0.6以上2.3以下の範囲内となるように該環状中間体を成形した後、リング圧延して、前記環状成形体に周方向均等に設定した複数の等価位置同士の結晶粒度差を、ASTM結晶粒度番号差で±1.5の範囲内とすることとしてもよい。
この場合、環状中間体における径方向の厚さTと高さHとの比T/Hが0.6以上2.3以下の範囲内となるように環状中間体を成形した後、リング圧延することにより、環状成形体における周方向の等価位置同士の結晶粒度差をASTM結晶粒度番号差で±1.5の範囲内に抑制することができる。すなわち、この環状中間体を成形して得られる環状成形体は、周方向における結晶粒度の均一性が確保される。詳しくは、リング圧延は局部加工であるものの一般的な部分鍛造とは異なり、加工の連続性を有することから成形後の組織の軸対称性が高く、環状成形体における周方向の材料特性の偏差が小さくなることが知られている。本発明では、リング圧延前の環状中間体において前記比T/Hを前述の範囲内に設定することによって、成形された環状成形体の形状(真円度)及び組織の軸対称性を一段と高くできる。
Furthermore, in the manufacturing method of the annular molded body according to the present invention, the ratio T / H between the radial thickness T of the annular intermediate body and the height H along the axial direction of the annular intermediate body is 0.6 or more and 2 .3 after forming the annular intermediate so as to be in the range of 3 or less, ring rolling, the crystal grain size difference between a plurality of equivalent positions set uniformly in the circumferential direction on the annular molded body, ASTM grain size number The difference may be within a range of ± 1.5.
In this case, the annular intermediate is formed so that the ratio T / H between the radial thickness T and the height H of the annular intermediate is in the range of 0.6 to 2.3, and then ring-rolled. Thereby, the crystal grain size difference between the circumferential equivalent positions in the annular molded body can be suppressed within a range of ± 1.5 by the ASTM crystal grain size number difference. That is, the annular molded body obtained by molding this annular intermediate body ensures the uniformity of the crystal grain size in the circumferential direction. Specifically, ring rolling is local processing, but unlike general partial forging, it has high continuity of processing, so the structure has a high axial symmetry, and deviation in material properties in the circumferential direction in an annular molded body. Is known to be small. In the present invention, by setting the ratio T / H within the aforementioned range in the annular intermediate body before ring rolling, the shape (roundness) of the molded annular molded body and the axial symmetry of the structure are further increased. it can.

すなわち、前記比T/Hが0.6以上2.3以下の範囲内とされていることにより、均一性付与に必須な圧延の安定性がもたらされる。詳しくは、T/Hが0.6未満の領域では、圧延する両ロール(メインロール及びマンドレルロール)と素材との接触面積が大きくなり、相対的に抜熱の影響度が増すために、周方向の均一性が得られ難くなる。一方、T/Hが大きくなるほど座屈が発生し易くなる。詳しくは、T/Hが2.3を超える領域では同傾向が強まるために周方向の均一性が得られ難くなる。   That is, when the ratio T / H is in the range of 0.6 or more and 2.3 or less, rolling stability essential for imparting uniformity is brought about. Specifically, in the region where T / H is less than 0.6, the contact area between the two rolls to be rolled (main roll and mandrel roll) and the material is increased, and the influence of heat removal is relatively increased. Uniformity in direction becomes difficult to obtain. On the other hand, buckling is more likely to occur as T / H increases. Specifically, in the region where T / H exceeds 2.3, the same tendency becomes stronger, so that it is difficult to obtain circumferential uniformity.

本発明によれば、組織の均一性を確保して機械的強度が十分に高い環状成形体を安定的に、かつ、低コストで製造することが可能な環状成形体の製造方法を提供することができる。   According to the present invention, there is provided a method for producing an annular molded body capable of stably and inexpensively producing an annular molded body having a sufficiently high mechanical strength while ensuring the uniformity of the structure. Can do.

本発明の一実施形態である環状成形体の上面図である。It is a top view of the cyclic molded object which is one Embodiment of this invention. 図1におけるX−X断面矢視図である。FIG. 2 is a cross-sectional view taken along the line XX in FIG. 1. 本発明の一実施形態である環状成形体及びタービンディスクの製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the annular molded object and turbine disk which are one Embodiment of this invention. 図3に示す製造方法において用いられる環状中間体の断面図である。It is sectional drawing of the cyclic | annular intermediate body used in the manufacturing method shown in FIG. 図3に示す製造方法において用いられるリング圧延の説明図である。It is explanatory drawing of the ring rolling used in the manufacturing method shown in FIG. マンドレルロールとメインロールとを用いたリング圧延工程の説明図である。It is explanatory drawing of the ring rolling process using a mandrel roll and a main roll. マンドレルロールとメインロールとを用いたリング圧延工程の説明図である。It is explanatory drawing of the ring rolling process using a mandrel roll and a main roll. 本発明の実施例に係る環状成形体の引張強さ−絞り相関図である。It is a tensile strength-drawing correlation figure of the cyclic molded object which concerns on the Example of this invention. 本発明の実施例に係る環状成形体の耐力−絞り相関図である。It is a yield strength-drawing correlation diagram of an annular molded body according to an example of the present invention.

以下に、本発明の一実施形態について添付した図面を参照して説明する。
本実施形態に係る環状成形体10は、航空機用エンジンのタービンディスクを成形する加工素材として使用されるものである。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
The annular molded body 10 according to the present embodiment is used as a processing material for molding a turbine disk of an aircraft engine.

環状成形体10は、図1及び図2に示すように、貫通孔を有するとともに、軸線Oを中心とする円環状をなしており、本体部11と、本体部11から径方向内方に向けて突出した内側凸条部12と、本体部11から径方向外方に向けて突出した外側凸条部13と、を備えている。
また、環状成形体10は、耐熱性に優れたNi基超合金で構成されており、本実施形態では、Ni基合金Alloy718で構成されている。
As shown in FIGS. 1 and 2, the annular molded body 10 has a through hole and an annular shape centering on the axis O, and is directed radially inward from the main body 11 and the main body 11. And an outer ridge 13 projecting radially outward from the main body 11.
Further, the annular molded body 10 is made of a Ni-base superalloy excellent in heat resistance, and in this embodiment, is made of a Ni-base alloy Alloy718.

なお、Ni基合金Alloy718の合金組成は、Ni;50.00〜55.00質量%、Cr;17.0〜21.0質量%、Nb;4.75〜5.60質量%、Mo;2.8〜3.3質量%、Ti;0.65〜1.15質量%、Al;0.20〜0.80質量%、C;0.01〜0.08質量%、残部がFe及び不可避不純物とされている。   The alloy composition of the Ni-based alloy Alloy 718 is as follows: Ni: 50.00 to 55.00 mass%, Cr: 17.0 to 21.0 mass%, Nb: 4.75 to 5.60 mass%, Mo; 2 .8 to 3.3 mass%, Ti; 0.65 to 1.15 mass%, Al; 0.20 to 0.80 mass%, C; 0.01 to 0.08 mass%, the balance being Fe and inevitable It is considered as an impurity.

そして、この環状成形体10は、機械加工してタービンディスク(製品)とされる不図示の所望領域(以下「製品領域」とする)における組織の結晶粒度が、ASTM結晶粒度番号でASTM No.8以上とされている。また、図2に符号VS1、VS2で示す仮想平面は、環状成形体10の軸線Oを含む断面であり、これら仮想平面VS1、VS2は環状成形体10を周方向均等に2分割した等価位置に設定されている。この環状成形体10は、仮想平面VS1(又はVS2)の断面内における前記製品領域の組織の結晶粒度差が、ASTM結晶粒度番号差で±2の範囲内とされ、均一性が確保されている。また、環状成形体10の周方向の等価位置同士における結晶粒度差、すなわち仮想平面VS1における結晶粒度と仮想平面VS2における結晶粒度との差は、ASTM結晶粒度番号差で±1.5の範囲内とされている。   The annular molded body 10 has a grain size of ASTM in the desired region (hereinafter referred to as “product region”) (not shown) that is machined into a turbine disk (product). 8 or more. 2 are cross sections including the axis O of the annular molded body 10, and these virtual planes VS1 and VS2 are at equivalent positions obtained by equally dividing the annular molded body 10 into two in the circumferential direction. Is set. In the annular molded body 10, the crystal grain size difference in the structure of the product region in the cross section of the virtual plane VS1 (or VS2) is within the range of ± 2 in terms of ASTM crystal grain size number difference, and uniformity is ensured. . Further, the difference in crystal grain size between the equivalent positions in the circumferential direction of the annular molded body 10, that is, the difference between the crystal grain size in the virtual plane VS1 and the crystal grain size in the virtual plane VS2 is within the range of ± 1.5 in terms of the ASTM crystal grain size number difference. It is said that.

次に、この環状成形体10の製造方法及びタービンディスクの製造方法について、図3から図7を参照して説明する。   Next, a method for manufacturing the annular molded body 10 and a method for manufacturing the turbine disk will be described with reference to FIGS.

(溶解鋳造工程S1)
まず、Ni基合金Alloy718の溶湯を溶製する。ここで、前述したNi基合金Alloy718の成分範囲になるように、溶解原料を調製し、真空誘導加熱溶解(VIM:Vacuum Induction Melting)を行って、インゴットを製出する。次に、このインゴットをエレクトロスラグ再溶解(ESR:Electro Slag Remelting)して、再度インゴットを製出する。さらに、このインゴットを、真空アーク再溶解(VAR:Vacuum Arc Remelting)した後、熱間鍛造を行い円柱状のビレット(合金素体)を製出する。
(Melting casting process S1)
First, a melt of Ni-based alloy Alloy 718 is melted. Here, a melting raw material is prepared so as to be in the component range of the above-described Ni-based alloy Alloy 718, and vacuum induction heating melting (VIM: Vacuum Induction Melting) is performed to produce an ingot. Next, this ingot is electroslag remelted (ESR: Electro Slag Remelting) to produce the ingot again. Further, this ingot is subjected to vacuum arc remelting (VAR) and then hot forging is performed to produce a cylindrical billet (alloy body).

ビレットは、例えば、直径が7inch〜12inch程度に成形される。また、製出されたビレットの組織は、ASTM結晶粒度番号でASTM No.6程度とされる。前述のように、3回の溶解(三重溶解)を行うことによって、合金成分の凝固偏析が小さく凝固組織が制御された、介在物が極めて少ない高清浄度のビレットが製出されることになる。   For example, the billet is formed to have a diameter of about 7 inches to 12 inches. The produced billet structure is ASTM No. It is about 6. As described above, by performing the dissolution three times (triple dissolution), a billet with a high cleanliness is produced, in which the solidification segregation of the alloy components is small and the solidification structure is controlled, and there are very few inclusions.

(鍛造工程S2)
次に、ビレットに対して、該ビレットの軸線方向に押圧するように鍛造加工を行い、円板状の鍛造体を作製する。
この鍛造工程S2においては、ビレットの温度を、例えば950〜1075℃に加熱した状態で、鍛造体の周方向のひずみの絶対値εθ1が0.3以上、鍛造体の高さ方向のひずみの絶対値εhが0.3以上、かつ、これらひずみの絶対値同士の比εh/εθ1が0.4以上2.5以下の範囲内となるように熱間鍛造を、少なくとも2回以上実施する。
(Forging process S2)
Next, the billet is forged so as to press in the axial direction of the billet, and a disk-shaped forged body is produced.
In this forging process S2, the absolute value εθ1 of the circumferential strain of the forged body is 0.3 or more and the absolute strain of the forged body in the height direction with the billet temperature heated to 950 to 1075 ° C., for example. Hot forging is carried out at least twice so that the value εh is 0.3 or more and the ratio εh / εθ1 between the absolute values of these strains is in the range of 0.4 to 2.5.

そして、鍛造工程S2の熱間鍛造におけるひずみ速度を0.5s−1以下に設定している。
本実施形態においては、鍛造工程S2の熱間鍛造を、油圧制御鍛造プレス装置を用いて実施している。この油圧制御鍛造プレス装置は、油圧制御によって、鍛造時のひずみ速度を上述の範囲内となるように精度良く調整することが可能である。なお、本実施形態では、鍛造工程S2の熱間鍛造におけるひずみ速度を0.01s−1以上としている。
And the strain rate in the hot forging in the forging step S2 is set to 0.5 s −1 or less.
In the present embodiment, the hot forging in the forging step S2 is performed using a hydraulically controlled forging press apparatus. This hydraulically controlled forging press apparatus can accurately adjust the strain rate during forging so as to be within the above-described range by hydraulic control. In the present embodiment, the strain rate in the hot forging in the forging step S2 is set to 0.01 s −1 or more.

さらに、本実施形態においては、周方向に付与されるひずみ量の絶対値εθ1は、0.3以上に設定されている。また、鍛造体の軸線方向に沿う高さ方向に付与されるひずみ量の絶対値εhは、0.3以上に設定されている。
この鍛造工程S2により、鍛造体の高さは、例えば60mm〜500mm程度に調整される。このような鍛造工程によって、鍛造体にはひずみが十分に付与されて、該鍛造体の結晶粒度はASTM結晶粒度番号で7以上に微細化される。
Furthermore, in the present embodiment, the absolute value εθ1 of the strain applied in the circumferential direction is set to 0.3 or more. Moreover, the absolute value εh of the strain applied in the height direction along the axial direction of the forged body is set to 0.3 or more.
By this forging step S2, the height of the forged body is adjusted to, for example, about 60 mm to 500 mm. By such a forging process, the forged body is sufficiently strained, and the crystal grain size of the forged body is refined to 7 or more by the ASTM grain size number.

(穿孔加工+中間リング圧延工程S3)
次いで、得られた鍛造体の中央部に、ウォーターカッターによって断面円形の貫通孔を形成する。さらに、貫通孔形成後に必要に応じて中間リング圧延を行う。この穿孔加工+中間リング圧延工程S3によって、環状中間体20が製出されることになる。
本実施形態では、環状中間体20は、図4に示すように、周方向に直交する断面が概略多角形状をなしており、軸線Oに対して略直交する方向に延びる上面及び下面を有する基体部21と、この基体部21から径方向内方に向けて突出した内側凸部22と、基体部21から径方向外方に向けて突出した外側凸部23と、を備えている。
(Drilling process + Intermediate ring rolling process S3)
Next, a through hole having a circular cross section is formed by a water cutter in the center of the obtained forged body. Furthermore, intermediate ring rolling is performed as necessary after forming the through holes. The annular intermediate body 20 is produced by this drilling process + intermediate ring rolling step S3.
In the present embodiment, as shown in FIG. 4, the annular intermediate body 20 has a top surface and a bottom surface that have a substantially polygonal cross section orthogonal to the circumferential direction and extend in a direction substantially orthogonal to the axis O. A portion 21, an inner convex portion 22 projecting radially inward from the base portion 21, and an outer convex portion 23 projecting radially outward from the base portion 21 are provided.

詳しくは、この環状中間体20(基体部21)の軸線O方向に沿う高さHは、H=60mm〜500mmの範囲内に設定される。また、環状中間体20において軸線Oに直交する径方向の肉厚(厚さ)Tと前記高さHとの比T/Hが0.6以上2.3以下の範囲内となるように成形される。   Specifically, the height H of the annular intermediate body 20 (base portion 21) along the axis O direction is set within a range of H = 60 mm to 500 mm. Further, the annular intermediate body 20 is molded so that the ratio T / H between the radial thickness (thickness) T perpendicular to the axis O and the height H is in the range of 0.6 to 2.3. Is done.

(リング圧延工程S4)
次に、この環状中間体20に対してリング圧延を行う。なお、このリング圧延は熱間圧延で行われ、その温度は、例えば900℃〜1050℃の範囲内とされている。
ここで、リング圧延装置30は、図5に示すように、環状中間体20の外周側に配設されるメインロール40と、環状中間体20の内周側に配設されるマンドレルロール50と、環状中間体20の軸線O方向端面(本実施形態では、基体部21の上面および下面)に当接される一対のアキシャルロール31、32と、を備えている。
(Ring rolling process S4)
Next, the annular intermediate 20 is subjected to ring rolling. In addition, this ring rolling is performed by hot rolling, and the temperature is in the range of 900 ° C. to 1050 ° C., for example.
Here, as shown in FIG. 5, the ring rolling device 30 includes a main roll 40 disposed on the outer peripheral side of the annular intermediate body 20, and a mandrel roll 50 disposed on the inner peripheral side of the annular intermediate body 20. And a pair of axial rolls 31 and 32 that are in contact with the end face in the axis O direction of the annular intermediate body 20 (in this embodiment, the upper surface and the lower surface of the base portion 21).

メインロール40とマンドレルロール50とは、その回転軸が互いに平行となるように配置され、環状中間体20を内周側及び外周側から挟持して押圧し、環状中間体20を周方向に回転させつつ圧延する構成とされている。また、一対のアキシャルロール31、32は、軸線O方向において環状中間体20を挟持して押圧する構成とされており、環状中間体20の高さ寸法を制御するものである。   The main roll 40 and the mandrel roll 50 are arranged so that the rotation axes thereof are parallel to each other, sandwich and press the annular intermediate body 20 from the inner peripheral side and the outer peripheral side, and rotate the annular intermediate body 20 in the circumferential direction. It is set as the structure rolled while making it. The pair of axial rolls 31 and 32 are configured to sandwich and press the annular intermediate body 20 in the axis O direction, and control the height dimension of the annular intermediate body 20.

ここで、図6に示すように、メインロール40の外周部には、環状中間体20の一部が収容可能な収容凹部41が設けられており、本実施形態では、環状中間体20の外側凸部23、基体部21及び内側凸部22の外周部分が収容可能な深さとされている。また、この収容凹部41の底部41Aには、環状成形体10の外側凸条部13を成形するための第1成形溝42が、メインロール40における径方向内方(図6において右方)に向けて凹むように形成されている。なお、この第1成形溝42は、成形される外側凸条部13の突出高さと同一の深さとされている。   Here, as shown in FIG. 6, an accommodation recess 41 that can accommodate a part of the annular intermediate body 20 is provided on the outer peripheral portion of the main roll 40. In this embodiment, the outer side of the annular intermediate body 20 is provided. The depth is such that the outer peripheral portions of the convex portion 23, the base portion 21, and the inner convex portion 22 can be accommodated. In addition, a first molding groove 42 for molding the outer protruding portion 13 of the annular molded body 10 is formed in the bottom portion 41A of the housing recess 41 on the radially inner side (right side in FIG. 6) of the main roll 40. It is formed so as to be recessed. In addition, this 1st shaping | molding groove | channel 42 is made into the same depth as the protrusion height of the outer side protruding item | line part 13 shape | molded.

一方、マンドレルロール50の外周部には、メインロール40の収容凹部41内に嵌入可能な構成とされた嵌入部51が設けられており、この嵌入部51の外周面には、環状成形体10の内側凸条部12を成形するための第2成形溝52が、マンドレルロール50における径方向内方(図6において左方)に向けて凹むように形成されている。なお、この第2成形溝52は、成形される内側凸条部12の突出高さと同一の深さとされている。   On the other hand, on the outer peripheral portion of the mandrel roll 50, an insertion portion 51 configured to be inserted into the housing recess 41 of the main roll 40 is provided, and the annular molded body 10 is provided on the outer peripheral surface of the insertion portion 51. A second forming groove 52 for forming the inner ridge portion 12 is formed so as to be recessed toward the radially inner side (left side in FIG. 6) of the mandrel roll 50. In addition, this 2nd shaping | molding groove | channel 52 is made into the same depth as the protrusion height of the inner side protruding item | line part 12 shape | molded.

このような構成とされたメインロール40とマンドレルロール50とが互いに接近するように作動することにより、環状中間体20は、メインロール40とマンドレルロール50とに挟持されて押圧される。詳しくは、メインロール40を該メインロール40の回転軸を中心に回転させながら、メインロール40とマンドレルロール50とを互いに接近させていくことにより、メインロール40との間の摩擦抵抗によって環状中間体20を軸線O回りに回転させる。   When the main roll 40 and the mandrel roll 50 configured as described above operate so as to approach each other, the annular intermediate body 20 is sandwiched and pressed between the main roll 40 and the mandrel roll 50. Specifically, by rotating the main roll 40 around the rotation axis of the main roll 40, the main roll 40 and the mandrel roll 50 are brought close to each other, so that an intermediate ring is formed by the frictional resistance between the main roll 40 and the main roll 40. The body 20 is rotated around the axis O.

一方、マンドレルロール50は該マンドレルロール50の回転軸を中心に回転自在とされており、環状中間体20との間の摩擦抵抗により従動回転する。環状中間体20は、メインロール40の収容凹部41及び第1成形溝42、マンドレルロール50の第2成形溝52内に充填されるように塑性変形し、環状成形体10が成形されることになる。このとき、環状成形体10における内側凸条部12は、第2成形溝52の形状に対応して塑性変形する。また、外側凸条部13は、第1成形溝42の形状に対応して塑性変形する。   On the other hand, the mandrel roll 50 is rotatable about the rotation axis of the mandrel roll 50 and is driven to rotate by frictional resistance with the annular intermediate body 20. The annular intermediate body 20 is plastically deformed so as to be filled in the housing recess 41 and the first molding groove 42 of the main roll 40 and the second molding groove 52 of the mandrel roll 50, and the annular molded body 10 is molded. Become. At this time, the inner ridge 12 in the annular molded body 10 is plastically deformed corresponding to the shape of the second molding groove 52. In addition, the outer ridge 13 is plastically deformed corresponding to the shape of the first forming groove 42.

このようにリング圧延を行うことによって、環状中間体20は周方向に延びるように塑性変形していくとともに、その内径及び外径が拡大されて、図7に示す環状成形体10が作製されるのである。
そして、このリング圧延工程S4では、環状成形体10における周方向のひずみの絶対値εθ2を0.5以上付与することとしている。詳しくは、少なくとも1回以上の熱間圧延を施して、前記ひずみの絶対値εθ2が総計で0.5以上1.3以下の範囲内に設定されるようにしている。
By carrying out the ring rolling in this way, the annular intermediate body 20 is plastically deformed so as to extend in the circumferential direction, and the inner diameter and the outer diameter thereof are enlarged to produce the annular molded body 10 shown in FIG. It is.
And in this ring rolling process S4, it is supposed that 0.5 or more of absolute value (epsilon) (theta) 2 of the distortion | strain of the circumferential direction in the annular molded object 10 is provided. Specifically, at least one hot rolling is performed, and the absolute value εθ2 of the strain is set within a range of 0.5 to 1.3 in total.

(熱処理工程S5/切削加工工程S6)
前述のようにして製出された環状成形体10は、熱処理によって特性が調整されるとともに、切削加工によって最終形状に成形され、航空機用エンジンのタービンディスクとされる。
(Heat treatment step S5 / Cutting step S6)
The annular molded body 10 produced as described above is adjusted in characteristics by heat treatment, and is formed into a final shape by cutting to be a turbine disk of an aircraft engine.

以上のような構成とされた本実施形態である環状成形体の製造方法によれば、ビレットを鍛造して鍛造体を作製する鍛造工程S2において、ひずみ速度を0.5s−1以下としているので、加工熱によって鍛造体の内部の温度が過度に上昇すること(いわゆる、ヒートビルドアップ)を抑制できる。よって、鍛造時における鍛造体の表面と内部との温度差を小さくでき、鍛造体の組織の均一化を図ることが可能となる。なお、この作用効果を確実に奏功せしめるためには、鍛造工程S2におけるひずみ速度を0.15s−1以下とすることが好ましい。 According to the method for manufacturing an annular molded body according to the present embodiment configured as described above, the strain rate is set to 0.5 s −1 or less in the forging step S2 in which a billet is forged to produce a forged body. And it can suppress that the temperature inside a forging body rises excessively by processing heat (so-called heat buildup). Therefore, the temperature difference between the surface and the inside of the forged body during forging can be reduced, and the structure of the forged body can be made uniform. In addition, in order to ensure that this effect is achieved, it is preferable to set the strain rate in the forging step S2 to 0.15 s −1 or less.

また、鍛造工程S2において、周方向のひずみの絶対値εθ1を0.3以上と大きく設定しているので、リング圧延工程S4において環状中間体20に付与する周方向のひずみ量の割合を低減させることができる。さらに、高さ方向のひずみの絶対値εhを0.3以上と大きく設定しているので、リング圧延工程S4では付与しにくい高さ方向のひずみ量が十分に確保することできる。これにより、リング圧延工程S4における加工率を低くすることができ、環状成形体10の強度特性の異方性が抑制されるとともに等方性が高められ、均一性が十分に確保された微細結晶組織が得られる。   Further, in the forging step S2, the absolute value εθ1 of the strain in the circumferential direction is set to a large value of 0.3 or more, so the ratio of the strain amount in the circumferential direction applied to the annular intermediate body 20 in the ring rolling step S4 is reduced. be able to. Furthermore, since the absolute value εh of the strain in the height direction is set to a large value of 0.3 or more, a sufficient amount of strain in the height direction that is difficult to impart in the ring rolling step S4 can be secured. Thereby, the processing rate in the ring rolling step S4 can be lowered, the anisotropy of the strength property of the annular molded body 10 is suppressed, the isotropic property is enhanced, and the fine crystal in which the uniformity is sufficiently secured. Organization is obtained.

また、周方向のひずみの絶対値εθ1と高さ方向のひずみの絶対値εhとの比εh/εθ1を0.4以上としているので、高さ方向へのひずみ付与比率が十分に確保されることになり、その後のリング圧延工程S4で高さ方向へのひずみを十分に与えることができなくても、組織の均一性を確保することができる。また、比εh/εθ1を2.5以下としているので、高さ方向への分配が過剰とならず、塑性流動が安定し、均一性の付与に不可欠な塑性流動の軸対称性を確保することができる。   In addition, since the ratio εh / εθ1 between the absolute value εθ1 of the strain in the circumferential direction and the absolute value εh of the strain in the height direction is 0.4 or more, a sufficient strain application ratio in the height direction is ensured. Thus, even if the subsequent ring rolling step S4 cannot sufficiently impart strain in the height direction, the uniformity of the structure can be ensured. Moreover, since the ratio εh / εθ1 is 2.5 or less, the distribution in the height direction is not excessive, the plastic flow is stable, and the axial symmetry of the plastic flow that is indispensable for imparting uniformity is ensured. Can do.

さらに、本実施形態では、鍛造工程S2において、周方向に付与されるひずみ量の絶対値εθ1が、0.3以上に設定されており、鍛造体の軸線方向に沿う高さ方向に付与されるひずみ量の絶対値εhが、0.3以上に設定されているので、加工熱によって鍛造体の内部の温度が上昇して結晶が粗大化することを抑制できる。   Furthermore, in this embodiment, in the forging step S2, the absolute value εθ1 of the strain applied in the circumferential direction is set to 0.3 or more, and is applied in the height direction along the axial direction of the forged body. Since the absolute value εh of the strain amount is set to 0.3 or more, it can be suppressed that the temperature inside the forged body rises due to processing heat and the crystal becomes coarse.

また、リング圧延工程において、環状成形体10の周方向のひずみの絶対値εθ2を0.5以上付与する熱間圧延を行う構成としているので、環状成形体10における前記製品領域の結晶粒度が、ASTM結晶粒度番号で8以上に確実に微細化される。従って、環状成形体10から得られる製品の機械的強度が確実に高められる。   Further, in the ring rolling step, since the hot rolling is performed to give an absolute value εθ2 of the circumferential strain of the annular molded body 10 of 0.5 or more, the grain size of the product region in the annular molded body 10 is It is surely refined to 8 or more by ASTM grain size number. Therefore, the mechanical strength of the product obtained from the annular molded body 10 is reliably increased.

また、環状成形体10の軸線Oを含む断面内の製品領域における結晶粒度差が、ASTM結晶粒度番号差で±2の範囲内とされているので、この環状成形体10は、径方向及び高さ方向における結晶粒度の均一性が十分に確保されている。   Further, since the crystal grain size difference in the product region in the cross section including the axis O of the annular molded body 10 is within the range of ± 2 in terms of the ASTM crystal grain size number difference, the annular molded body 10 has a radial direction and a high height. The uniformity of crystal grain size in the vertical direction is sufficiently secured.

また、鍛造工程において、前述のように高いひずみ量を付与することによって、鍛造体の結晶粒度がASTM結晶粒度番号で7以上に微細化できる。従って、次のリング圧延工程において付与するひずみ量を低減しつつも、環状成形体10の組織の微細化が可能となる。   Further, in the forging process, by applying a high strain amount as described above, the crystal grain size of the forged body can be refined to 7 or more by ASTM grain size number. Therefore, the structure of the annular molded body 10 can be refined while reducing the amount of strain applied in the next ring rolling step.

また、環状中間体20における径方向の厚さTと高さHとの比T/Hが0.6以上2.3以下の範囲内となるように該環状中間体20を成形した後、リング圧延する構成としているので、環状成形体10における周方向の等価位置同士の結晶粒度差をASTM結晶粒度番号差で±1.5の範囲内に抑制することができる。すなわち、この環状中間体20を成形して得られる環状成形体10は、周方向における結晶粒度の均一性が十分に確保される。   In addition, after the annular intermediate body 20 is molded so that the ratio T / H between the radial thickness T and the height H of the annular intermediate body 20 is in the range of 0.6 or more and 2.3 or less, Since it is set as the structure rolled, the crystal grain size difference of the circumferential equivalent position in the cyclic | annular molded object 10 can be suppressed in the range of +/- 1.5 by ASTM crystal grain size number difference. That is, in the annular molded body 10 obtained by molding the annular intermediate body 20, the uniformity of the crystal grain size in the circumferential direction is sufficiently ensured.

詳しくは、リング圧延は局部加工であるものの一般的な部分鍛造とは異なり、加工の連続性を有することから成形後の組織の軸対称性が高く、環状成形体10における周方向の材料特性の偏差が小さくなることが知られている。そこで、本実施形態のように、リング圧延前の環状中間体20において前記比T/Hを前述した範囲内に設定することによって、成形された環状成形体10の形状(真円度)及び組織の軸対称性を一段と高くできるのである。   In detail, the ring rolling is local processing, but unlike general partial forging, it has high continuity of processing and thus has high axial symmetry of the structure after forming, and the material properties in the circumferential direction of the annular formed body 10 are high. It is known that the deviation becomes smaller. Therefore, as in this embodiment, by setting the ratio T / H within the above-described range in the annular intermediate body 20 before ring rolling, the shape (roundness) and structure of the molded annular molded body 10 are determined. The axial symmetry of can be further increased.

すなわち、前記比T/Hが0.6以上2.3以下の範囲内とされていることにより、均一性付与に必須な圧延の安定性がもたらされる。詳しくは、T/Hが0.6未満の領域では、圧延する両ロール(メインロール40及びマンドレルロール50)と素材との接触面積が大きくなり、相対的に抜熱の影響度が増すために、周方向の均一性が得られ難くなる。一方、T/Hが大きくなるほど座屈が発生し易くなる。詳しくは、T/Hが2.3を超える領域では同傾向が強まるために周方向の均一性が得られ難くなる。   That is, when the ratio T / H is in the range of 0.6 or more and 2.3 or less, rolling stability essential for imparting uniformity is brought about. Specifically, in the region where T / H is less than 0.6, the contact area between the two rolls to be rolled (main roll 40 and mandrel roll 50) and the material is increased, and the influence of heat removal is relatively increased. It becomes difficult to obtain uniformity in the circumferential direction. On the other hand, buckling is more likely to occur as T / H increases. Specifically, in the region where T / H exceeds 2.3, the same tendency becomes stronger, so that it is difficult to obtain circumferential uniformity.

以上のように、本実施形態である環状成形体の製造方法によれば、組織の均一性を確保して機械的強度が十分に高い環状成形体を安定的に、かつ、低コストで製造することが可能となる。   As described above, according to the method for manufacturing an annular molded body according to the present embodiment, an annular molded body having a sufficiently high mechanical strength while ensuring the uniformity of the structure is manufactured stably and at low cost. It becomes possible.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、環状成形体10及び環状中間体20の形状は、本実施形態に限定されるものではなく、製出するタービンディスク等の環状製品の形状を考慮して適宜設計変更することが可能である。
また、環状成形体10及び環状中間体20がNi基合金Alloy718で構成されたものとして説明したが、これに限定されることはなく、その他の材質(例えば、Waspaloy(登録商標)(United Technology Inc.)、Alloy720、Co基合金、Fe基合金等)で構成されたものであってもよい。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the shapes of the annular molded body 10 and the annular intermediate body 20 are not limited to this embodiment, and can be appropriately changed in design in consideration of the shape of the annular product such as a turbine disk to be produced. .
In addition, the annular molded body 10 and the annular intermediate body 20 have been described as being constituted by the Ni-based alloy Alloy 718. However, the present invention is not limited to this, and other materials (for example, Waspaloy (registered trademark) (United Technology Inc.) .), Alloy 720, Co-based alloy, Fe-based alloy, etc.).

また、Ni基合金Alloy718の溶湯を溶製し、鋳造によってビレットを製出するものとして説明したが、これに限定されるものではなく、粉末成形法によってビレットを製出し、このビレットに鍛造工程及びリング圧延工程を行う構成としてもよい。
また、ビレットを前述の三重溶解により製出する代わりに、二重溶解(VIM+ESR、又はVIM+VAR)により製出してもよい。
In addition, it has been described that the melt of the Ni-based alloy Alloy 718 is melted and the billet is produced by casting. However, the present invention is not limited to this, and the billet is produced by a powder molding method. It is good also as a structure which performs a ring rolling process.
Moreover, you may produce a billet by double melt | dissolution (VIM + ESR or VIM + VAR) instead of producing by the above-mentioned triple melt | dissolution.

また、本実施形態では、円板状の鍛造体の中央部にウォーターカッターによって貫通孔を形成する穿孔工程を有するものとして説明したが、これに限定されることはなく、ウォーターカッター以外の手法で貫通孔を形成してもよい。あるいは、鍛造の時点で貫通孔を形成しておき、穿孔工程自体を省略してもよい。また、鍛造工程の途中段階でウォーターカッター等による穿孔も可能である。   Moreover, in this embodiment, although demonstrated as what has a perforation process which forms a through-hole by the water cutter in the center part of a disk-shaped forged body, it is not limited to this, By methods other than a water cutter A through hole may be formed. Alternatively, a through hole may be formed at the time of forging, and the drilling process itself may be omitted. Further, drilling with a water cutter or the like is possible in the middle of the forging process.

また、図3において、リング圧延工程S4により環状成形体10を成形した後、熱処理工程S5の前に、該環状成形体10に形状付与や形状寸法調整を目的とした部分鍛造等の加工を施してもよい。   Further, in FIG. 3, after the annular formed body 10 is formed by the ring rolling step S4, before the heat treatment step S5, the annular formed body 10 is subjected to processing such as partial forging for the purpose of giving a shape and adjusting the shape dimension. May be.

また、本実施形態では、環状成形体10を周方向均等に2分割した等価位置(仮想平面VS1、VS2)を用いて、仮想平面VS1における結晶粒度と仮想平面VS2における結晶粒度との差がASTM結晶粒度番号差で±1.5の範囲内とされているとしたが、比較する仮想平面の数は2つに限定されるものではない。すなわち、この環状成形体10は、周方向全周における等価性が確保されていることから、前述した2分割に限らず、周方向均等に3分割以上した等価位置同士の結晶粒度差においても、ASTM結晶粒度番号差で±1.5の範囲内とされている。また、環状成形体10において、等価位置を設定する周方向位置についても限定されるものではない。   In this embodiment, the difference between the crystal grain size in the virtual plane VS1 and the crystal grain size in the virtual plane VS2 is determined according to ASTM using equivalent positions (virtual planes VS1, VS2) obtained by equally dividing the annular molded body 10 in the circumferential direction. Although the crystal grain size number difference is assumed to be within a range of ± 1.5, the number of virtual planes to be compared is not limited to two. That is, since the annular molded body 10 is ensured equivalence in the entire circumference in the circumferential direction, not only in the above-described two divisions, but also in the crystal grain size difference between equivalent positions divided into three or more equally in the circumferential direction, The difference in ASTM grain size number is within a range of ± 1.5. Further, in the annular molded body 10, the circumferential position for setting the equivalent position is not limited.

以下、本発明を実施例により具体的に説明する。ただし本発明はこの実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to this embodiment.

(試料の作製)
まず、Ni基合金Alloy718の溶湯を溶製した。詳しくは、前述の実施形態で説明したNi基合金Alloy718の成分範囲になるように溶解原料を調製した。そして、この溶湯に対して三重溶解を施した。詳しくは、真空誘導加熱溶解(VIM)、エレクトロスラグ再溶解(ESR)、真空アーク再溶解(VAR)を施して、直径φ254mmの円柱状のビレットを製出した。
(Sample preparation)
First, a melt of Ni-based alloy Alloy 718 was melted. Specifically, the melting raw material was prepared so as to be in the component range of the Ni-based alloy Alloy 718 described in the above embodiment. And triple dissolution was given to this molten metal. Specifically, vacuum induction heating melting (VIM), electroslag remelting (ESR), and vacuum arc remelting (VAR) were performed to produce a cylindrical billet with a diameter of 254 mm.

次いで、このビレットに対して鍛造工程を実施し、円板状の鍛造体を作製した。鍛造加工は、ビレットの温度を1000℃に加熱した熱間鍛造で2回行った。
鍛造工程は、鍛造体の周方向のひずみの絶対値εθ1、鍛造体の高さ方向のひずみの絶対値εh、これらひずみの絶対値同士の比εh/εθ1、ひずみ速度について、表1に示す条件で実施した。
Next, a forging process was performed on the billet to produce a disk-shaped forged body. Forging was performed twice by hot forging in which the temperature of the billet was heated to 1000 ° C.
The forging process is performed under the conditions shown in Table 1 with respect to the absolute value εθ1 of the strain in the circumferential direction of the forged body, the absolute value εh of the strain in the height direction of the forged body, the ratio εh / εθ1 between the absolute values of these strains, and the strain rate. It carried out in.

次いで、鍛造体の中央部にウォーターカッターによって貫通孔を形成し、環状中間体20を作製した。なお、環状中間体20は、その厚さTと高さHとの比T/Hが表1に示す値となるように成形した。   Next, a through hole was formed in the center of the forged body with a water cutter, and an annular intermediate 20 was produced. The annular intermediate 20 was molded such that the ratio T / H between the thickness T and the height H was a value shown in Table 1.

次いで、この環状中間体20に対してリング圧延を行った。リング圧延は、環状中間体20の温度を1000℃に加熱した熱間圧延で2回行った。なお、これら2回の熱間圧延によって、環状成形体10の周方向のひずみの絶対値εθ2の総計が表1に示す条件となるように、リング圧延を行った。
次いで、環状成形体10に熱処理を実施した。直接時効材として、リング圧延後水冷し、718℃/8時間+621℃/8時間+A.C.時効処理を施したものを作製した。また、溶体化時効材として、リング圧延後970℃/1時間+W.Q.溶体化処理後、718℃/8時間+A.C.時効処理を施したものを作製した。
Next, the annular intermediate 20 was subjected to ring rolling. The ring rolling was performed twice by hot rolling in which the temperature of the annular intermediate 20 was heated to 1000 ° C. In addition, the ring rolling was performed so that the total of the absolute value εθ2 of the circumferential strain of the annular molded body 10 was in the condition shown in Table 1 by these two hot rollings.
Next, the annular molded body 10 was subjected to heat treatment. As a direct aging material, water-cooled after ring rolling, 718 ° C./8 hours + 621 ° C./8 hours + A. C. An aging treatment was produced. Further, as a solution aging material, 970 ° C./1 hour + W. Q. 718 ° C./8 hours + A. After solution treatment. C. An aging treatment was produced.

Figure 2014188580
Figure 2014188580

(結晶粒度測定)
作製された環状成形体10を用いて、仮想平面VS1、VS2を含む断面内の製品領域における最大結晶粒度と最大結晶粒周辺の平均結晶粒度を測定し対比した。なお、最大結晶粒周辺の平均結晶粒度は、最大結晶粒確認部(最大結晶粒を除く)の平均結晶粒度とした。結果を表2に示す。
(Crystal grain size measurement)
Using the produced annular molded body 10, the maximum crystal grain size in the product region in the cross section including the virtual planes VS1 and VS2 and the average crystal grain size around the maximum crystal grain were measured and compared. The average crystal grain size around the maximum crystal grain was the average crystal grain size of the maximum crystal grain confirmation part (excluding the maximum crystal grain). The results are shown in Table 2.

Figure 2014188580
Figure 2014188580

(高温引張特性確認試験)
前述のように作製された環状成形体10のうち本発明例1と比較例3について、図1の仮想平面VS1、VS2を含む等価位置から周方向、高さ方向、径方向の引張試験片をそれぞれ採取し、650℃高温引張試験をそれぞれ行った。なお、試験は平行部径6.35mmのASTM E8 small size試験片を用いてASTM E21に準拠して実施し、引張強さ、耐力(0.2%耐力)及び絞りについてそれぞれ測定した。また、周方向、高さ方向、径方向の各測定値の偏差を確認するため、周方向の測定値を1(100%)とした場合の高さ方向及び径方向の割合を算出した。図8に引張強さ−絞り相関図を、図9に耐力−絞り相関図をそれぞれ示す。
(High temperature tensile property confirmation test)
Of the annular molded body 10 produced as described above, for the inventive example 1 and the comparative example 3, tensile test pieces in the circumferential direction, the height direction, and the radial direction from the equivalent positions including the virtual planes VS1 and VS2 in FIG. Each was sampled and subjected to a 650 ° C. high temperature tensile test. The test was conducted in accordance with ASTM E21 using an ASTM E8 small size test piece having a parallel part diameter of 6.35 mm, and the tensile strength, proof stress (0.2% proof stress), and drawing were measured. Moreover, in order to confirm the deviation of each measured value of the circumferential direction, the height direction, and the radial direction, the ratio of the height direction and the radial direction when the circumferential measured value was set to 1 (100%) was calculated. FIG. 8 shows a tensile strength-drawing correlation diagram, and FIG. 9 shows a proof stress-drawing correlation diagram.

鍛造工程におけるひずみ速度が0.5s−1を超える比較例1,2においては、最大結晶粒度とその周辺の平均結晶粒度とが大きく異なっており、組織が均一化されていないことが確認される。加工熱によって鍛造体の内部の温度が過度に上昇すること(いわゆる、ヒートビルドアップ)により、鍛造体内部の結晶粒径が局所的に粗大化したためと推測される。
一方、鍛造工程におけるひずみ速度が0.5s−1以下とした本発明例1−4においては、最大結晶粒度とその周辺の平均結晶粒度との差が小さく、組織が十分に均一化されていることが確認される。ひずみ速度を0.5s−1以下の範囲内とすることにより、鍛造時における鍛造体の表面と内部との温度差が小さくなり、組織の均一化を図ることができたと推測される。なお、ひずみ速度を0.15s−1以下とした本発明例1,2,4においては、さらに組織の均一化が図られている。
In Comparative Examples 1 and 2 in which the strain rate in the forging process exceeds 0.5 s −1 , the maximum crystal grain size and the average crystal grain size in the vicinity thereof are greatly different, and it is confirmed that the structure is not uniformized. . It is presumed that the crystal grain size inside the forged body is locally coarsened due to excessive increase in the temperature inside the forged body due to processing heat (so-called heat buildup).
On the other hand, in the present invention example 1-4 in which the strain rate in the forging process is 0.5 s −1 or less, the difference between the maximum crystal grain size and the average crystal grain size in the vicinity thereof is small, and the structure is sufficiently uniformized. That is confirmed. By setting the strain rate within the range of 0.5 s −1 or less, it is presumed that the temperature difference between the surface and the inside of the forged body during forging is reduced, and the structure can be made uniform. In Examples 1, 2, and 4 of the present invention in which the strain rate is 0.15 s −1 or less, the structure is further uniformized.

また、図8、図9に示すように、高温引張特性確認試験の結果、本発明例1は、引張強さ、0.2%耐力、絞りのすべてにおいて比較例2よりも優れていることが確認された。すなわち、本発明例1は、強度特性の等方性が高められているとともに、均一性が十分に確保された微細結晶組織を有していることがわかった   Further, as shown in FIGS. 8 and 9, as a result of the high-temperature tensile property confirmation test, Example 1 of the present invention is superior to Comparative Example 2 in all of tensile strength, 0.2% proof stress, and drawing. confirmed. That is, it was found that Example 1 of the present invention has a fine crystal structure in which the isotropy of strength characteristics is enhanced and the uniformity is sufficiently ensured.

10 環状成形体
20 環状中間体
H 環状中間体の軸線方向に沿う高さ
O 軸線
S2 鍛造工程
S4 リング圧延工程
T 環状中間体における径方向の厚さ
VS1 仮想平面(等価位置)
VS2 仮想平面(等価位置)
DESCRIPTION OF SYMBOLS 10 Ring molded object 20 Ring intermediate body H Height along the axial direction of a ring intermediate body O Axis line S2 Forging process S4 Ring rolling process T Thickness of radial direction in ring intermediate body VS1 Virtual plane (equivalent position)
VS2 virtual plane (equivalent position)

Claims (4)

合金素体を鍛造して円板状の鍛造体を作製する鍛造工程と、前記鍛造体に貫通孔を形成してなる環状中間体をリング圧延して環状成形体を作製するリング圧延工程と、を備える環状成形体の製造方法であって、
前記鍛造工程では、ひずみ速度が0.5s−1以下、前記鍛造体の周方向のひずみの絶対値εθ1が0.3以上、前記鍛造体の高さ方向のひずみの絶対値εhが0.3以上、これらひずみの絶対値同士の比εh/εθ1が0.4以上2.5以下の範囲内となる熱間鍛造を、少なくとも2回以上行うことを特徴とする環状成形体の製造方法。
A forging step of forging an alloy body to produce a disc-shaped forged body, a ring rolling step of ring-rolling an annular intermediate formed by forming a through hole in the forged body, and producing an annular shaped body, A method for producing an annular molded body comprising:
In the forging step, the strain rate is 0.5 s −1 or less, the absolute strain value εθ1 in the circumferential direction of the forged body is 0.3 or more, and the absolute strain value εh in the height direction of the forged body is 0.3. As described above, a method for producing an annular molded body is characterized in that hot forging is performed at least twice or more so that the ratio εh / εθ1 between the absolute values of these strains is in the range of 0.4 to 2.5.
前記環状成形体の軸線を含む断面内における該環状成形体の製品領域の結晶粒度差が、ASTM結晶粒度番号差で±2の範囲内であることを特徴とする請求項1に記載の環状成形体の製造方法。   2. The annular molding according to claim 1, wherein a crystal grain size difference in a product region of the annular molded body in a cross section including an axis of the annular molded body is within a range of ± 2 in terms of ASTM grain size number difference. Body manufacturing method. 前記鍛造工程では、前記鍛造体の結晶粒度をASTM結晶粒度番号で7以上とすることを特徴とする請求項1又は請求項2に記載の環状成形体の製造方法。   3. The method for producing an annular molded body according to claim 1, wherein in the forging step, a crystal grain size of the forged body is set to 7 or more in ASTM grain size number. 前記環状中間体における径方向の厚さTと該環状中間体の軸線方向に沿う高さHとの比T/Hが0.6以上2.3以下の範囲内となるように該環状中間体を成形した後、リング圧延して、前記環状成形体に周方向均等に設定した複数の等価位置同士の結晶粒度差を、ASTM結晶粒度番号差で±1.5の範囲内とすることを特徴とする請求項1から請求項3のいずれか一項に記載の環状成形体の製造方法。   The annular intermediate body has a ratio T / H between a radial thickness T of the annular intermediate body and a height H along the axial direction of the annular intermediate body in the range of 0.6 to 2.3. After forming, the ring rolling is performed, and the crystal grain size difference between a plurality of equivalent positions set uniformly in the circumferential direction in the annular molded body is set within a range of ± 1.5 in terms of ASTM crystal grain size number difference. The method for producing an annular molded body according to any one of claims 1 to 3.
JP2013069205A 2013-03-28 2013-03-28 Method for producing annular molded body Active JP6292761B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013069205A JP6292761B2 (en) 2013-03-28 2013-03-28 Method for producing annular molded body
RU2015146287A RU2631221C2 (en) 2013-03-28 2014-03-28 Method of manufacture of annular moulded body
PCT/JP2014/059277 WO2014157662A1 (en) 2013-03-28 2014-03-28 Method for manufacturing annular molded article
ES14775622T ES2932530T3 (en) 2013-03-28 2014-03-28 Method for manufacturing ring-shaped bodies
MX2015013639A MX2015013639A (en) 2013-03-28 2014-03-28 Method for manufacturing annular molded article.
CN201480028783.2A CN105228771A (en) 2013-03-28 2014-03-28 The manufacture method of annular shaped body
EP14775622.5A EP2979774B1 (en) 2013-03-28 2014-03-28 Method for manufacturing annular formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069205A JP6292761B2 (en) 2013-03-28 2013-03-28 Method for producing annular molded body

Publications (2)

Publication Number Publication Date
JP2014188580A true JP2014188580A (en) 2014-10-06
JP6292761B2 JP6292761B2 (en) 2018-03-14

Family

ID=51624619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069205A Active JP6292761B2 (en) 2013-03-28 2013-03-28 Method for producing annular molded body

Country Status (7)

Country Link
EP (1) EP2979774B1 (en)
JP (1) JP6292761B2 (en)
CN (1) CN105228771A (en)
ES (1) ES2932530T3 (en)
MX (1) MX2015013639A (en)
RU (1) RU2631221C2 (en)
WO (1) WO2014157662A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436365A (en) * 2015-12-08 2016-03-30 山西冠力法兰有限公司 Die and method for producing slab type two-in-one forge pieces through ring rolling equipment
WO2021131963A1 (en) * 2019-12-25 2021-07-01 日立金属株式会社 Method of manufacturing ring-rolled element

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6854484B2 (en) * 2017-06-29 2021-04-07 大同特殊鋼株式会社 Rolling method of ring-shaped material
US20200362444A1 (en) * 2017-11-17 2020-11-19 Materion Corporation Metal rings formed from beryllium-copper alloys
RU2699428C1 (en) * 2018-05-28 2019-09-05 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Method of forging rolling rings
US11319617B2 (en) * 2018-09-19 2022-05-03 Hitachi Metals, Ltd. Production method for ring-rolled material of Fe—Ni-based superalloy
WO2020059798A1 (en) * 2018-09-19 2020-03-26 日立金属株式会社 PRODUCTION METHOD FOR RING-ROLLED MATERIAL OF Fe-Ni-BASED SUPER-HEAT-RESISTANT ALLOY
RU2703764C1 (en) * 2019-02-21 2019-10-22 Акционерное общество "Металлургический завод "Электросталь" Method for production of large-size annular part of gas turbine engine from heat-resistant nickel-base alloy
RU2741046C1 (en) * 2020-07-27 2021-01-22 Акционерное общество "Металлургический завод "Электросталь" Method for production of large-size contour annular article from heat-resistant nickel-base alloy
CN115156455A (en) * 2022-08-09 2022-10-11 上海电气上重铸锻有限公司 Forging forming method of circular or arc-shaped forge piece with full-section boss

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132241A (en) * 1984-12-03 1986-06-19 Mitsubishi Metal Corp Production of ring
US6059904A (en) * 1995-04-27 2000-05-09 General Electric Company Isothermal and high retained strain forging of Ni-base superalloys
JP2011255409A (en) * 2010-06-10 2011-12-22 Mitsubishi Materials Corp Method for manufacturing annular molding
JP2012051029A (en) * 2010-08-31 2012-03-15 General Electric Co <Ge> Powder compact rotor forging preform and forged powder compact turbine rotor and method of making the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617486B2 (en) 1986-03-10 1994-03-09 株式会社神戸製鋼所 Method for forging powder-made Ni-base superalloy
US4957567A (en) * 1988-12-13 1990-09-18 General Electric Company Fatigue crack growth resistant nickel-base article and alloy and method for making
JP2965841B2 (en) 1993-11-13 1999-10-18 株式会社神戸製鋼所 Method of manufacturing forged Ni-base superalloy product
RU2256001C1 (en) * 2002-04-26 2005-07-10 ДжФЕ СТИЛ КОРПОРЕЙШН Titanium alloy blank forging method and blank of titanium alloy for forging
US6908519B2 (en) * 2002-07-19 2005-06-21 General Electric Company Isothermal forging of nickel-base superalloys in air
RU2286862C1 (en) * 2005-06-01 2006-11-10 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Ring making method
US7763129B2 (en) * 2006-04-18 2010-07-27 General Electric Company Method of controlling final grain size in supersolvus heat treated nickel-base superalloys and articles formed thereby
RU2342215C2 (en) * 2006-09-25 2008-12-27 ОАО "Русполимет" Method for production of rolled ring blanks from high-alloy nickel alloys
US20090000706A1 (en) * 2007-06-28 2009-01-01 General Electric Company Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys
JP5613468B2 (en) * 2010-06-10 2014-10-22 Mmcスーパーアロイ株式会社 Method for producing annular molded body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132241A (en) * 1984-12-03 1986-06-19 Mitsubishi Metal Corp Production of ring
US6059904A (en) * 1995-04-27 2000-05-09 General Electric Company Isothermal and high retained strain forging of Ni-base superalloys
JP2011255409A (en) * 2010-06-10 2011-12-22 Mitsubishi Materials Corp Method for manufacturing annular molding
JP2012051029A (en) * 2010-08-31 2012-03-15 General Electric Co <Ge> Powder compact rotor forging preform and forged powder compact turbine rotor and method of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鍛造ハンドブック編集委員会, 鍛造ハンドブック, JPN6017030934, 30 March 1971 (1971-03-30), JP, pages 403−405ページ *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436365A (en) * 2015-12-08 2016-03-30 山西冠力法兰有限公司 Die and method for producing slab type two-in-one forge pieces through ring rolling equipment
CN105436365B (en) * 2015-12-08 2017-10-03 山西冠力法兰有限公司 Applied to the mould and method for rolling over the ring apparatus production two-in-one forging of flat-type
WO2021131963A1 (en) * 2019-12-25 2021-07-01 日立金属株式会社 Method of manufacturing ring-rolled element
JP2021102222A (en) * 2019-12-25 2021-07-15 日立金属株式会社 Manufacturing method of rolled ring material
JP7121929B2 (en) 2019-12-25 2022-08-19 日立金属株式会社 Method for manufacturing ring rolled material

Also Published As

Publication number Publication date
CN105228771A (en) 2016-01-06
EP2979774A4 (en) 2016-09-28
RU2015146287A (en) 2017-05-04
RU2631221C2 (en) 2017-09-19
JP6292761B2 (en) 2018-03-14
ES2932530T3 (en) 2023-01-20
EP2979774B1 (en) 2022-11-16
MX2015013639A (en) 2016-06-02
WO2014157662A1 (en) 2014-10-02
EP2979774A1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP6292761B2 (en) Method for producing annular molded body
JP5613467B2 (en) Method for producing annular molded body
JP5613468B2 (en) Method for producing annular molded body
US9592547B2 (en) Method of manufacturing annular molding
JP5895111B1 (en) Method for producing ring molded body
EP2977124B1 (en) Material for ring rolling
JP5680292B2 (en) Method for producing annular molded body
JP5795838B2 (en) Method for producing ring-shaped molded body
JP6395040B2 (en) Rolling roll and ring rolling method
JP6040944B2 (en) Molding method of heat-resistant alloy ring
US11208910B2 (en) Ring molded article manufacturing method and ring material
JP6410135B2 (en) Hot forging die
US10543523B2 (en) Forging tool for the manufacturing of a shaped rolled ring, notably for the manufacture of a turbomachine disc
JP6347410B2 (en) Hot forging method for disc-shaped materials

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140627

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141205

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180213

R150 Certificate of patent or registration of utility model

Ref document number: 6292761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350