JP2014188389A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2014188389A5 JP2014188389A5 JP2013063627A JP2013063627A JP2014188389A5 JP 2014188389 A5 JP2014188389 A5 JP 2014188389A5 JP 2013063627 A JP2013063627 A JP 2013063627A JP 2013063627 A JP2013063627 A JP 2013063627A JP 2014188389 A5 JP2014188389 A5 JP 2014188389A5
- Authority
- JP
- Japan
- Prior art keywords
- carbon catalyst
- carbon
- catalyst according
- transition metal
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 13
- 229910052799 carbon Inorganic materials 0.000 claims 11
- 239000003054 catalyst Substances 0.000 claims 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 6
- 238000004519 manufacturing process Methods 0.000 claims 4
- 229910052757 nitrogen Inorganic materials 0.000 claims 3
- 239000002245 particle Substances 0.000 claims 3
- 229910052723 transition metal Inorganic materials 0.000 claims 3
- 150000001875 compounds Chemical class 0.000 claims 2
- 229910002804 graphite Inorganic materials 0.000 claims 2
- 239000010439 graphite Substances 0.000 claims 2
- 239000002253 acid Substances 0.000 claims 1
- 239000011230 binding agent Substances 0.000 claims 1
- 239000003575 carbonaceous material Substances 0.000 claims 1
- 239000002270 dispersing agent Substances 0.000 claims 1
- 239000000446 fuel Substances 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- -1 phthalocyanine compound Chemical class 0.000 claims 1
- 239000005518 polymer electrolyte Substances 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 239000002904 solvent Substances 0.000 claims 1
- 238000001694 spray drying Methods 0.000 claims 1
- 239000010409 thin film Substances 0.000 claims 1
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013063627A JP6028650B2 (ja) | 2013-03-26 | 2013-03-26 | 炭素触媒、炭素触媒の製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013063627A JP6028650B2 (ja) | 2013-03-26 | 2013-03-26 | 炭素触媒、炭素触媒の製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2014188389A JP2014188389A (ja) | 2014-10-06 |
| JP2014188389A5 true JP2014188389A5 (enExample) | 2015-12-17 |
| JP6028650B2 JP6028650B2 (ja) | 2016-11-16 |
Family
ID=51835292
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2013063627A Active JP6028650B2 (ja) | 2013-03-26 | 2013-03-26 | 炭素触媒、炭素触媒の製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6028650B2 (enExample) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10770734B2 (en) | 2015-08-14 | 2020-09-08 | Lg Chem, Ltd. | Lithium air battery and manufacturing method therefor |
| KR101845786B1 (ko) * | 2016-07-21 | 2018-04-05 | 현대자동차주식회사 | 연료전지용 전극의 제조방법 및 그 전극 |
| JP7752515B2 (ja) * | 2021-01-08 | 2025-10-10 | 三井化学株式会社 | オレフィン重合用触媒およびオレフィン重合体の製造方法 |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5482110B2 (ja) * | 2009-11-04 | 2014-04-23 | 富士電機株式会社 | 固体酸及びその製造方法 |
| US20120261612A1 (en) * | 2009-12-22 | 2012-10-18 | Kwang Suck Suh | Dispersion of graphene-based materials modified with poly(ionic liquid) |
| JP2012188683A (ja) * | 2011-03-08 | 2012-10-04 | Mitsui Chemicals Inc | ガス生成装置およびガス生成方法 |
-
2013
- 2013-03-26 JP JP2013063627A patent/JP6028650B2/ja active Active
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Gandla et al. | High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels | |
| Harilal et al. | One-dimensional assembly of conductive and capacitive metal oxide electrodes for high-performance asymmetric supercapacitors | |
| Pendashteh et al. | Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors | |
| Zhu et al. | Hierarchically MnO2–nanosheet covered submicrometer-FeCo2O4-tube forest as binder-free electrodes for high energy density all-solid-state supercapacitors | |
| Abouali et al. | Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors | |
| Unnikrishnan et al. | Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application | |
| Ye et al. | Highly efficient materials assembly via electrophoretic deposition for electrochemical energy conversion and storage devices | |
| Patil et al. | Fern-like rGO/BiVO4 hybrid nanostructures for high-energy symmetric supercapacitor | |
| Ma et al. | One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials | |
| Zheng et al. | Preparation of mesoporous Co3O4 nanoparticles via solid− liquid route and effects of calcination temperature and textural parameters on their electrochemical capacitive behaviors | |
| Ma et al. | Graphene‐based materials for lithium‐ion hybrid supercapacitors | |
| Jiang et al. | Nanostructured core-shell electrode materials for electrochemical capacitors | |
| Li et al. | Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell | |
| Li et al. | Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors | |
| Moosavifard et al. | Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors | |
| Tang et al. | Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@ Ni (OH) 2 core–shell electrode | |
| Tu et al. | Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode | |
| Rakhi et al. | Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration | |
| Wang et al. | Co3O4@ MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors | |
| Qu et al. | Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors | |
| Wang et al. | Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties | |
| Xing et al. | Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage | |
| Meher et al. | Ultralayered Co3O4 for high-performance supercapacitor applications | |
| Park et al. | Bimodal mesoporous titanium nitride/carbon microfibers as efficient and stable electrocatalysts for Li–O2 batteries | |
| CN103943380B (zh) | 碳多孔电极的制备方法 |