JP2014187776A - Stator core for rotary electric machine - Google Patents

Stator core for rotary electric machine Download PDF

Info

Publication number
JP2014187776A
JP2014187776A JP2013060111A JP2013060111A JP2014187776A JP 2014187776 A JP2014187776 A JP 2014187776A JP 2013060111 A JP2013060111 A JP 2013060111A JP 2013060111 A JP2013060111 A JP 2013060111A JP 2014187776 A JP2014187776 A JP 2014187776A
Authority
JP
Japan
Prior art keywords
yoke
teeth
stator core
width
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013060111A
Other languages
Japanese (ja)
Other versions
JP6070329B2 (en
Inventor
Takeshi Tomonaga
岳志 朝永
Hiroyuki Hattori
宏之 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013060111A priority Critical patent/JP6070329B2/en
Publication of JP2014187776A publication Critical patent/JP2014187776A/en
Application granted granted Critical
Publication of JP6070329B2 publication Critical patent/JP6070329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress increase in magnetic resistance and loss increase even when a stress is applied to teeth in a stator core for a rotary electric machine.SOLUTION: A stator core 10 for a rotary electric machine includes: an annular yoke 12; a plurality of teeth 14 that are protruding from the yoke 12 toward inside in a radial direction. The yoke 12 includes slits 28 formed at an outside in the radial direction so as to at least retain a maximum width d1 in a circumferential direction of a root part 20 at a neighborhood of root parts of both ends in a circumferential direction of each tooth 14.

Description

本発明は、円環状のヨークと、ヨークから径方向内側に突出する複数のティースとを備える回転電機用ステータコアに関し、特に、応力集中による磁気抵抗の増大及び回転電機損失の増加の抑制に関する。   The present invention relates to a stator core for a rotating electrical machine including an annular yoke and a plurality of teeth projecting radially inward from the yoke, and more particularly to suppression of increase in magnetic resistance and increase in rotating electrical machine loss due to stress concentration.

特許文献1及び特許文献4には、ティースに巻回したコイルの少なくとも一部を樹脂モールドで覆う回転電機用ステータが記載されている。   Patent Document 1 and Patent Document 4 describe a stator for a rotating electrical machine in which at least a part of a coil wound around a tooth is covered with a resin mold.

特許文献2には、複数の分割コアを環状に連結することにより形成されるステータコアが記載されている。分割コアのヨーク構成部分のうち、ティースの根元部との連結部に、断面円形の切欠が設けられる。   Patent Document 2 describes a stator core formed by connecting a plurality of divided cores in an annular shape. A notch having a circular cross section is provided at a connecting portion with the root portion of the tooth among the yoke constituent portions of the split core.

特許文献3には、ステータコアにおいて、ヨークの内周面で隣り合うティース間に形成されるスロットの底部の周方向中間部に、径方向に伸びるスリットが形成され、ヨークの径方向内側を通過する磁束の磁気抵抗と、径方向外方側を通過する磁束の磁気抵抗との差を小さくし、磁気飽和の発生を抑制することが記載されている。   In Patent Document 3, in the stator core, a slit extending in the radial direction is formed at a circumferential intermediate portion of a bottom portion of a slot formed between adjacent teeth on the inner peripheral surface of the yoke, and passes through the radial inner side of the yoke. It describes that the difference between the magnetic resistance of the magnetic flux and the magnetic resistance of the magnetic flux passing through the radially outward side is reduced to suppress the occurrence of magnetic saturation.

特許文献4には、ティースの根元部に軸方向に対し傾斜するように形成されたスリットを含むステータコアが記載されている。特許文献4には、ティースに周方向、径方向、軸方向のいずれの方向に対しても傾斜するように形成されたスリットを含むステータコアも記載されている。   Patent Document 4 describes a stator core including a slit formed at the root of a tooth so as to be inclined with respect to the axial direction. Patent Document 4 also describes a stator core including a slit formed in a tooth so as to be inclined with respect to any of a circumferential direction, a radial direction, and an axial direction.

特開2011−45178号公報JP 2011-45178 A 特開2005−130605号公報JP 2005-130605 A 特開2010−115095号公報JP 2010-115095 A 特開2010−252453号公報JP 2010-252453 A

特許文献1及び特許文献4に記載されたステータのように、樹脂によりステータコイル及びティース間のエアギャップを少なくして、ステータコイルからティースへの放熱性を向上したり、外部からの絶縁強化を図るために少なくともコイルを樹脂モールドする構成が知られている。この構成では、製造型内で樹脂モールドする際にティースに樹脂の注入により圧縮応力または曲げ応力が発生し、その応力が発生した状態で樹脂が固化される場合がある。また、特許文献2及び特許文献3に記載されたステータのようにティースを樹脂モールドしない構成でも、ティースにコイルを巻回する場合にティースに圧縮応力または曲げ応力が発生する場合がある。この場合、ヨークの内周面から径方向に突出するティースの根元部の周方向両端付近が形状の大きく変化する部分となるので応力が集中する。このため、特許文献1から特許文献4に記載されたステータでは、磁束密度の高いティースの根元部に応力が集中する。この応力の集中によって磁束が通過しにくくなるので、ステータコアの磁気抵抗が増大し、さらに、応力集中部での磁気飽和で鉄損が増加する。鉄損の増加は回転電機損失の増加につながるので改善が望まれる。   As in the stators described in Patent Document 1 and Patent Document 4, the air gap between the stator coil and the teeth is reduced by resin to improve the heat dissipation from the stator coil to the teeth, and the insulation from the outside is enhanced. A configuration in which at least a coil is resin-molded is known for the purpose of illustration. In this configuration, when resin molding is performed in the manufacturing die, compression stress or bending stress is generated by injecting the resin into the teeth, and the resin may be solidified in a state where the stress is generated. Further, even when the teeth are not resin-molded as in the stators described in Patent Document 2 and Patent Document 3, when a coil is wound around the teeth, compressive stress or bending stress may be generated in the teeth. In this case, stress concentrates because the vicinity of both ends in the circumferential direction of the root portion of the teeth protruding in the radial direction from the inner peripheral surface of the yoke is a portion where the shape changes greatly. For this reason, in the stators described in Patent Document 1 to Patent Document 4, stress concentrates on the root portion of the teeth having a high magnetic flux density. This concentration of stress makes it difficult for the magnetic flux to pass through, so that the magnetic resistance of the stator core increases, and further, iron loss increases due to magnetic saturation at the stress concentration portion. Since an increase in iron loss leads to an increase in rotating electrical machine loss, improvement is desired.

本発明の目的は、ティースに応力が発生する場合でも、磁気抵抗の増大と回転電機損失の増加とを抑制できる回転電機用ステータコアを提供することである。   An object of the present invention is to provide a stator core for a rotating electrical machine that can suppress an increase in magnetic resistance and an increase in rotating electrical machine loss even when stress is generated in the teeth.

本発明に係る回転電機用ステータコアは、円環状のヨークと、前記ヨークから径方向内側に突出する複数のティースとを備え、前記ヨークは、前記各ティースの周方向両端の根元部近傍において、少なくとも前記根元部の周方向の最大幅を維持するように径方向外側に形成されたスリットを含むことを特徴とする。なお、「少なくとも根元部の周方向の最大幅を維持するように径方向外側に形成された」とは、ティース両側のスリット間の周方向の幅がティースの根元部の周方向の最大幅よりも小さくならないようにスリットを設けることを含む意味である。   A stator core for a rotating electrical machine according to the present invention includes an annular yoke and a plurality of teeth projecting radially inward from the yoke, wherein the yoke is at least in the vicinity of root portions at both ends in the circumferential direction of the teeth. It includes a slit formed radially outward so as to maintain the circumferential maximum width of the root portion. In addition, “formed at the radially outer side so as to maintain at least the maximum circumferential width of the root portion” means that the circumferential width between the slits on both sides of the teeth is larger than the maximum circumferential width of the root portion of the teeth. This also includes providing a slit so as not to be small.

本発明に係る回転電機用ステータコアにおいて、好ましくは、前記ヨークは、隣り合う前記ティース間の周方向中間部外径側で径方向幅が最小となる最小幅部を含み、前記スリットの奥端となる径方向外端位置Hと前記ヨークの外周面との間の径方向距離であるスリットヨーク外径間距離h3を、前記最小幅部の径方向幅h1以上とする。   In the stator core for a rotating electrical machine according to the present invention, preferably, the yoke includes a minimum width portion having a minimum radial width on the outer peripheral side in the circumferential direction between adjacent teeth, and the back end of the slit. The slit yoke outer diameter distance h3, which is the radial distance between the radial outer end position H and the outer peripheral surface of the yoke, is equal to or greater than the radial width h1 of the minimum width portion.

また、本発明に係る回転電機用ステータコアにおいて、好ましくは、前記ヨークは、隣り合う前記ティース間の周方向中間部外径側で径方向幅が最小となる最小幅部を含み、前記ヨークにおいて、前記スリットヨーク外径間距離h3を一辺の長さとする矩形の磁路断面S1の面積を、前記最小幅部の径方向幅h1を一辺の長さとする矩形の磁路断面S2の面積以上とする。   Further, in the stator core for a rotating electrical machine according to the present invention, preferably, the yoke includes a minimum width portion having a minimum radial width on the outer circumferential side in the circumferential direction between adjacent teeth, The area of the rectangular magnetic path section S1 having the one side length as the slit yoke outer diameter distance h3 is equal to or larger than the area of the rectangular magnetic path section S2 having the radial width h1 of the minimum width portion as one side length. .

本発明に係る回転電機用ステータコアにおいて、好ましくは、前記ヨークにおいて、隣り合う前記ティース間の周方向中間部外径側の径方向幅は、隣り合う前記ティース間の周方向端部外径側の径方向幅よりも小さい。   In the stator core for a rotating electrical machine according to the present invention, preferably, in the yoke, the radial width on the outer circumferential side in the circumferential direction between the adjacent teeth is on the outer diameter side in the circumferential end between the adjacent teeth. It is smaller than the radial width.

本発明に係る回転電機用ステータコアにおいて、好ましくは、前記スリットは、前記ヨークにおいて、前記各ティースの周方向両端の根元部近傍で、前記根元部の周方向の最大幅を維持するように径方向外側に向かって互いに平行に形成されている。   In the stator core for a rotating electrical machine according to the present invention, it is preferable that the slit is in the radial direction so as to maintain the maximum width in the circumferential direction of the root portion in the vicinity of the root portions at both circumferential ends of the teeth in the yoke. They are formed parallel to each other toward the outside.

本発明の回転電機用ステータコアによれば、ティースに応力が加わる場合でも、ティース間のスロット底部の周方向端部における内周端よりもヨークの外径側に応力集中部を移動させて、応力集中部での磁束密度の集中を緩和できるので、磁気抵抗の増大と回転電機損失増加とを抑制できる。   According to the stator core for a rotating electrical machine of the present invention, even when stress is applied to the teeth, the stress concentration portion is moved to the outer diameter side of the yoke from the inner peripheral end at the circumferential end portion of the slot bottom between the teeth. Since the concentration of the magnetic flux density at the concentrated portion can be alleviated, an increase in magnetic resistance and an increase in rotating electrical machine loss can be suppressed.

本発明の実施形態の回転電機用ステータコアの斜視図である。It is a perspective view of the stator core for rotary electric machines of embodiment of this invention. 図1のA部拡大図である。It is the A section enlarged view of FIG. 図2を軸方向に見た図である。It is the figure which looked at FIG. 2 in the axial direction. 図3のC部拡大図である。It is the C section enlarged view of FIG. 図1のステータコアを含むステータの斜視図である。FIG. 2 is a perspective view of a stator including the stator core of FIG. 1. 樹脂モールド時にティースに圧縮応力が加わる様子を誇張して示す図であって、図3のB−B断面に相当する図である。It is a figure which exaggerates and shows a mode that compression stress is added to teeth at the time of resin molding, and is a figure equivalent to a BB section of Drawing 3. 本発明の実施形態でティースからヨークに磁束が流れる様子を示す図であって、図4に相当する図である。It is a figure which shows a mode that a magnetic flux flows into the yoke from teeth in embodiment of this invention, Comprising: It is a figure equivalent to FIG. 比較例の回転電機用ステータコアの周方向一部を示す図である。It is a figure which shows the circumferential direction part of the stator core for rotary electric machines of a comparative example.

以下、本発明の実施形態について、図面を用いて説明する。以下では、回転電機が電動モータである場合を説明するが、回転電機は、発電機、または電動モータ及び発電機の両方の機能を有するモータジェネレータであってもよい。電動モータまたはモータジェネレータは、ハイブリッド車両または電気自動車の車輪を駆動する駆動源として使用されてもよい。以下では、すべての図面において同様の要素には同一の符号を付して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Hereinafter, a case where the rotating electrical machine is an electric motor will be described, but the rotating electrical machine may be a generator or a motor generator having both functions of the electric motor and the generator. The electric motor or the motor generator may be used as a drive source for driving the wheels of the hybrid vehicle or the electric vehicle. Below, the same code | symbol is attached | subjected and demonstrated to the same element in all the drawings.

図1は、本実施形態の回転電機用ステータコア10の斜視図を示している。以下では回転電機用ステータコア10は、単にステータコア10という。ステータコア10は、円環状のヨーク12と、ヨーク12から径方向内側に突出する複数のティース14とを含む。ステータコア10は、複数の電磁鋼板の積層体によって形成される。各ティース14には、後述する図6のステータ30を形成する場合に、ステータコイル32が集中巻きまたは分布巻きで巻回される。   FIG. 1 shows a perspective view of a stator core 10 for a rotating electrical machine according to the present embodiment. Hereinafter, the stator core 10 for a rotating electrical machine is simply referred to as a stator core 10. Stator core 10 includes an annular yoke 12 and a plurality of teeth 14 projecting radially inward from yoke 12. Stator core 10 is formed of a laminate of a plurality of electromagnetic steel plates. A stator coil 32 is wound around each tooth 14 by concentrated winding or distributed winding when a stator 30 shown in FIG. 6 to be described later is formed.

ステータコア10の周方向に隣り合うティース14間にはスロット16が形成される。スロット16は、周方向に隣り合うティース14の互いに対向する周方向側面間に形成される。図6のステータコイル32は、スロット16内に一部が収容される。   A slot 16 is formed between the teeth 14 adjacent to each other in the circumferential direction of the stator core 10. The slot 16 is formed between the circumferential side surfaces of the teeth 14 adjacent to each other in the circumferential direction. A portion of the stator coil 32 of FIG. 6 is accommodated in the slot 16.

図2は、図1のA部拡大図を示している。各ティース14は、ヨーク12の径方向内側面に設けられ、図示しないロータと対向する先端面18を有する。ティース14は、ヨーク12の周方向幅が先端面18を含む先端部で最小となり、径方向中間部から径方向外側に向かって周方向幅が徐々に増大し、径方向外端部の根元部20で周方向幅d1が最大となっている。   FIG. 2 shows an enlarged view of part A of FIG. Each tooth 14 is provided on the radially inner side surface of the yoke 12 and has a front end face 18 facing a rotor (not shown). The teeth 14 have the smallest circumferential width of the yoke 12 at the distal end including the distal end surface 18, and the circumferential width gradually increases from the radially intermediate portion toward the radially outer side. 20, the circumferential width d1 is the maximum.

図3は図2を軸方向に見た図であり、図4は図3のC部拡大図を示している。ヨーク12は、各スロット16の底部となる内周面において、スロット16の底部の周方向中央部から両側のティース14に向かって径方向内側にV字形に傾斜するように形成されたテーパ面22を有する。また、ヨーク12は、スロット16の底部の周方向中央部の外径側に設けられ、ヨーク12のうちで径方向幅が最小となる幅h1を有する最小幅部24と、ヨーク12において、スロット16の底部の周方向両端部外径側に設けられ、ティース14から周方向に外れた部分のうちで径方向幅が最大となる幅h2を有する最大幅部26とを含む。最小幅部24は、ヨーク12の内周面で2つのテーパ面22の端部がV字形に接続される点Gの外径側部分に相当する。   FIG. 3 is a view of FIG. 2 viewed in the axial direction, and FIG. 4 is an enlarged view of part C of FIG. The yoke 12 has a tapered surface 22 formed so as to be inclined in a V shape radially inward from the circumferential central portion of the bottom of the slot 16 toward the teeth 14 on both sides on the inner circumferential surface serving as the bottom of each slot 16. Have Further, the yoke 12 is provided on the outer diameter side of the central portion in the circumferential direction of the bottom portion of the slot 16, and the yoke 12 has a minimum width portion 24 having a width h 1 having a minimum radial width, and the yoke 12 has a slot. And a maximum width portion 26 having a width h2 in which the radial width is the maximum among the portions that are provided on the outer diameter side of both ends in the circumferential direction of the bottom portion of the 16 and that are separated from the teeth 14 in the circumferential direction. The minimum width portion 24 corresponds to the outer diameter side portion of the point G where the end portions of the two tapered surfaces 22 are connected in a V shape on the inner peripheral surface of the yoke 12.

図4に示すように、ヨーク12は、各ティース14の周方向両端の根元部20近傍に設けられたスリット28を含む。各ティース14の根元部20近傍のスリット28は、根元部20の周方向の最大幅d1を維持するように径方向外側に向かって互いに平行に形成される。各スリット28は、ヨーク12を軸方向全長にわたって貫通する。この場合、各スリット28は、各ティース14の周方向両端の根元部20近傍において、少なくとも根元部20の周方向の最大幅d1を維持するように径方向外側に形成される。なお、「少なくとも根元部20の周方向の最大幅を維持するように径方向外側に形成された」とは、ティース14両側のスリット28間の周方向の幅が根元部20の周方向の最大幅d1よりも小さくならないようにスリット28を設けることを含む意味である。なお、スリット28は、ヨーク12を軸方向全長に貫通させる構成に限定するものではなく、ヨーク12の軸方向端寄り部分にのみ形成され、ヨーク12の軸方向中間部にはスリット28が形成されないようにしてもよい。図4では、スリット28の内側に隙間として空間を設けているが、ヨーク12のうち、スリット28の両側に設けられる部分同士を接触させて、スリット28内に空間が発生しないようにしてもよい。   As shown in FIG. 4, the yoke 12 includes slits 28 provided in the vicinity of the root portions 20 at both ends in the circumferential direction of the teeth 14. The slits 28 in the vicinity of the root portion 20 of each tooth 14 are formed in parallel to each other toward the radially outer side so as to maintain the maximum width d1 in the circumferential direction of the root portion 20. Each slit 28 penetrates the yoke 12 over the entire axial length. In this case, each slit 28 is formed radially outward so as to maintain at least the circumferential maximum width d1 of the root portion 20 in the vicinity of the root portion 20 at both circumferential ends of each tooth 14. The phrase “formed at the radially outer side so as to maintain at least the maximum circumferential width of the root portion 20” means that the circumferential width between the slits 28 on both sides of the teeth 14 is the maximum in the circumferential direction of the root portion 20. This means that the slit 28 is provided so as not to be significantly smaller than d1. The slit 28 is not limited to the configuration in which the yoke 12 penetrates the entire length in the axial direction. The slit 28 is formed only in a portion near the end of the yoke 12 in the axial direction, and the slit 28 is not formed in the intermediate portion in the axial direction of the yoke 12. You may do it. In FIG. 4, a space is provided as a gap inside the slit 28, but portions of the yoke 12 provided on both sides of the slit 28 may be brought into contact with each other so that no space is generated in the slit 28. .

また、ヨーク12において、隣り合うティース14間の周方向中間部外径側の径方向幅は、最小幅部24の幅h1も含めて、隣り合うティース14間の周方向端部の外径側である最大幅部26の径方向幅h2よりも小さい。   Further, in the yoke 12, the radial width on the outer peripheral side in the circumferential direction between adjacent teeth 14 includes the outer diameter side at the end in the circumferential direction between adjacent teeth 14 including the width h 1 of the minimum width portion 24. It is smaller than the radial width h2 of the maximum width portion 26.

また、ヨーク12において、スリット28の奥端となる径方向外端位置Hとヨーク12の外周面との間の径方向距離であるスリットヨーク外径間距離h3は、最小幅部24の径方向幅h1以上である(h3≧h1)。図3、図4で破線Iは、各最小幅部24の内径側位置Gを通過する外接円の一部を示しており、この破線Iからスリットヨーク外径間距離h3と最小幅部24の径方向幅h1との関係(h3≧h1)がよく分かる。スリット28は、スリットヨーク外径間距離h3が最小幅部24の径方向幅h1よりも小さくならないように設ける。また、図1に示すように、ヨーク12において、スリットヨーク外径間距離h3を一辺の長さとする径方向の矩形の磁路断面S1の面積を、最小幅部24の径方向幅h1を一辺の長さとする径方向の矩形の磁路断面S2の面積以上とする。このようなスリット28の形成によって、ステータコア10での磁気抵抗の増大と回転電機損失の増加とを抑制できるが、この理由については後述する。   In the yoke 12, the slit yoke outer-diameter distance h <b> 3, which is the radial distance between the radial outer end position H serving as the back end of the slit 28 and the outer peripheral surface of the yoke 12, is the radial direction of the minimum width portion 24. It is not less than the width h1 (h3 ≧ h1). 3 and 4, a broken line I indicates a part of a circumscribed circle passing through the inner diameter side position G of each minimum width portion 24, and the slit yoke outer diameter distance h <b> 3 and the minimum width portion 24 are The relationship (h3 ≧ h1) with the radial width h1 is well understood. The slit 28 is provided so that the distance h3 between the slit yoke outer diameters is not smaller than the radial width h1 of the minimum width portion 24. Further, as shown in FIG. 1, in the yoke 12, the area of the radial rectangular magnetic path cross section S1 with the slit yoke outer diameter distance h3 as the length of one side is defined, and the radial width h1 of the minimum width portion 24 is defined as one side. The area is equal to or larger than the area of the rectangular magnetic path section S2 in the radial direction. The formation of such slits 28 can suppress an increase in magnetic resistance and an increase in rotating electrical machine loss in the stator core 10, and the reason will be described later.

上記のステータコア10は、図5に示すステータ30を形成するために用いられる。ステータ30は、ステータコア10と、ステータコア10の複数のティース14に巻回されたU相、V相、W相の3相のステータコイル32とを含む。ステータコイル32の軸方向両端部でステータコア10の軸方向側面から外側に突出したコイルエンドは、図3、図5の二点鎖線J部分で樹脂モールドされる。ステータ30は、図示しないケースの内側に固定される。   The stator core 10 is used to form the stator 30 shown in FIG. Stator 30 includes a stator core 10 and a three-phase stator coil 32 of U phase, V phase, and W phase wound around a plurality of teeth 14 of stator core 10. The coil ends projecting outward from the axial side surface of the stator core 10 at both axial end portions of the stator coil 32 are resin-molded at two-dot chain lines J in FIGS. The stator 30 is fixed inside a case (not shown).

なお、ステータコア10を周方向複数個所で分離される複数の分割コアにより形成し、各分割コアにステータコイルを巻回した状態でステータコイルを樹脂モールドし、その後、分割コア同士を円環状に連結してステータを形成してもよい。   The stator core 10 is formed of a plurality of divided cores separated at a plurality of locations in the circumferential direction, the stator coils are resin-molded in a state where the stator coils are wound around the respective divided cores, and then the divided cores are connected in an annular shape. Thus, a stator may be formed.

図示しない回転電機は、ロータが固定された回転軸をケースに対し回転可能に支持し、ステータ30の内側にロータを対向配置することによって形成される。ロータは、周方向複数個所に設けられる永久磁石またはロータコイルを含む。回転電機を電動モータとして用いる場合、3相のステータコイル32に3相の交流電流を流すことで、ステータ30からロータに作用する回転磁界が発生する。ロータは、ステータ30から作用する回転磁界により回転駆動される。   A rotating electrical machine (not shown) is formed by rotatably supporting a rotating shaft on which a rotor is fixed with respect to a case, and disposing the rotor inside the stator 30 so as to face each other. The rotor includes permanent magnets or rotor coils provided at a plurality of locations in the circumferential direction. When a rotating electrical machine is used as an electric motor, a rotating magnetic field that acts on the rotor from the stator 30 is generated by passing a three-phase alternating current through the three-phase stator coil 32. The rotor is driven to rotate by a rotating magnetic field acting from the stator 30.

上記の構成を有するステータコア10によれば、各ティース14の周方向両端の根元部20近傍において、根元部20の周方向の最大幅d1を維持するように径方向外側に向かって互いに平行にスリット28が形成される。このため、ティース14に応力が発生する場合でも、磁気抵抗の増大と損失増加とを抑制できる。この理由を次に説明する。   According to the stator core 10 having the above-described configuration, slits parallel to each other toward the radially outer side so as to maintain the circumferential maximum width d1 of the root portion 20 in the vicinity of the root portions 20 at both circumferential ends of the teeth 14. 28 is formed. For this reason, even when a stress is generated in the teeth 14, an increase in magnetic resistance and an increase in loss can be suppressed. The reason for this will be described next.

ティース14が図示しない製造型内での樹脂注入で樹脂モールドされる際に、ティース14には圧縮応力または曲げ応力が発生し、その状態で樹脂が固化される場合がある。図6は、樹脂モールド時にティース14に圧縮応力が発生する様子を誇張して示す図であって、図3のB−B断面に相当する図を示している。なお、電磁鋼板である板材34の数は図6から想定される数に限定するものではなく、図6の場合よりも多くしてもよいのは勿論である。図6に二点鎖線で示すように軸方向に板材34が積層された積層体で形成されるステータコア10のティース14の軸方向長さは、樹脂注入前にヨーク12の軸方向長さと同じである。この場合、板材34間には各板材34の微小な曲がりによって隙間が存在する。一方、ティース14の周囲に巻回された図示しないステータコイルの周囲に樹脂が注入されることにより、ティース14が実線で示すように板材34間の隙間がなくなるように曲げ変形して圧縮される。   When the teeth 14 are resin-molded by injecting resin in a manufacturing mold (not shown), compressive stress or bending stress is generated in the teeth 14, and the resin may be solidified in that state. FIG. 6 is a diagram exaggeratingly showing a state in which compressive stress is generated in the teeth 14 during resin molding, and shows a diagram corresponding to the BB cross section of FIG. 3. It should be noted that the number of plate members 34, which are electromagnetic steel plates, is not limited to the number assumed from FIG. 6, but may be increased as compared with the case of FIG. As shown by a two-dot chain line in FIG. 6, the axial length of the teeth 14 of the stator core 10 formed of a laminated body in which plate members 34 are laminated in the axial direction is the same as the axial length of the yoke 12 before resin injection. is there. In this case, there is a gap between the plate members 34 due to the slight bending of each plate member 34. On the other hand, by injecting resin around a stator coil (not shown) wound around the teeth 14, the teeth 14 are bent and compressed so that there is no gap between the plate members 34 as indicated by solid lines. .

一方、本実施形態では、上記のスリット28の形成によって、ヨーク12の形状が急激に変化する部分が外径側に移動する。この場合、図6の枠Rで示す部分、及び、図3、図7に斜線の四角枠P1で示す部分に応力集中部が発生する。この応力集中部は、スロット16底部の周方向端部における内周端K(図3、4、6、7)よりもヨーク12の外径側となる。この場合、図7に矢印で磁束を示すように、ティース14の根元部20からヨーク12のスロット16側部分に流れる磁束として、ティース14の根元からスリット28をまたいで流れる磁束と、この根元から径方向外側に向かいスリット28をまたがないで流れる磁束とが生じる。このため、ティースの根元からヨークの径方向外側にだけ応力集中部を通って磁束が流れる場合と異なり、応力集中部での磁束密度の集中を緩和できるので、ステータコア10の磁気抵抗の増大を抑制できる。また、ティース14の根元からスリット28をまたいで周方向に磁束が流れて、応力集中部での磁気飽和を生じにくくして鉄損を小さくできる。このため、回転電機損失の増加を抑制できるので、回転電機のトルク低下を抑制できる。   On the other hand, in the present embodiment, the portion where the shape of the yoke 12 changes abruptly moves to the outer diameter side by the formation of the slit 28 described above. In this case, a stress concentration portion is generated in a portion indicated by a frame R in FIG. 6 and a portion indicated by a hatched square frame P1 in FIGS. This stress concentration portion is on the outer diameter side of the yoke 12 with respect to the inner peripheral end K (FIGS. 3, 4, 6, and 7) at the circumferential end of the bottom portion of the slot 16. In this case, as indicated by an arrow in FIG. 7, as the magnetic flux flowing from the root portion 20 of the tooth 14 to the slot 16 side portion of the yoke 12, the magnetic flux flowing across the slit 28 from the root of the tooth 14, and from this root A magnetic flux that flows radially outward and does not cross the slit 28 is generated. For this reason, unlike the case where the magnetic flux flows through the stress concentration portion only from the root of the tooth to the outside in the radial direction of the yoke, the concentration of the magnetic flux density at the stress concentration portion can be alleviated, thereby suppressing an increase in the magnetic resistance of the stator core 10. it can. Further, the magnetic flux flows in the circumferential direction from the root of the tooth 14 across the slit 28, and it is difficult to cause magnetic saturation in the stress concentration portion, thereby reducing the iron loss. For this reason, since the increase in rotating electrical machine loss can be suppressed, the torque fall of a rotating electrical machine can be suppressed.

また、ヨーク12のスリット28両側部分同士を接触させて、スリット28内の空間をなくす場合には、スリット28の一方側から他方側に流れる磁束の磁気抵抗を小さくできる。このため、スリット28をまたいで流れる磁束を多くして、磁気抵抗の増大及び回転電機損失の増加をより効率よく抑制できる。   In addition, when both sides of the slit 28 of the yoke 12 are brought into contact with each other to eliminate the space in the slit 28, the magnetic resistance of the magnetic flux flowing from one side to the other side of the slit 28 can be reduced. For this reason, the magnetic flux which flows across the slit 28 can be increased, and the increase in magnetic resistance and the increase in rotating electrical machine loss can be suppressed more efficiently.

一方、ステータコア10にスリット28が形成されない比較例の場合には、ティース14に応力が加わる場合の応力集中部は、根元部20の径方向内側寄りの図3に二点鎖線の四角枠P2で示す部分となる。このため、比較例では応力集中部となるティース14の根元部20で磁束が通過しにくくなり、根元部20での磁束密度が増大することで磁気抵抗が増大し、さらに磁束密度が高い根元部20での磁気飽和によって鉄損が増大して回転電機損失が増加するおそれがある。   On the other hand, in the case of the comparative example in which the slit 28 is not formed in the stator core 10, the stress concentration portion when stress is applied to the teeth 14 is a two-dot chain line square frame P <b> 2 in FIG. It becomes a part to show. For this reason, in a comparative example, it becomes difficult for a magnetic flux to pass in the root part 20 of the teeth 14 used as a stress concentration part, the magnetic resistance increases by increasing the magnetic flux density in the root part 20, and the root part having a higher magnetic flux density. The magnetic saturation at 20 may increase the iron loss and increase the rotating electrical machine loss.

また、本実施形態では、スリット28の奥端となる径方向外端位置H(図4)とヨーク12の外周面との間のスリットヨーク外径間距離h3が、ヨーク12の最小幅部24の径方向幅h1以上(h3≧h1)となる。また、スリットヨーク外径間距離h3を一辺の長さとする矩形の磁路断面S1の面積が、最小幅部24の径方向幅h1を一辺の長さとする矩形の磁路断面S2の面積以上である。このため、ヨーク12にスリット28を形成する場合でも、ヨーク12で磁束が通過し、磁路断面積が最小値となる最小幅部24を含む磁路断面S2の面積よりも、スリットヨーク外径間距離h3の一辺を含む磁路断面S1の面積が小さくはならない。したがって、ヨーク12の磁路断面積を小さくすることなく、スリット28を形成できるので、効率よく磁気抵抗及び鉄損の低減を図れる。   Further, in this embodiment, the distance h3 between the slit yoke outer diameters between the radial outer end position H (FIG. 4) serving as the back end of the slit 28 and the outer peripheral surface of the yoke 12 is the minimum width portion 24 of the yoke 12. The radial width of h1 is greater than or equal to h1 (h3 ≧ h1). Further, the area of the rectangular magnetic path cross section S1 having the length of one side as the slit yoke outer diameter distance h3 is equal to or larger than the area of the rectangular magnetic path cross section S2 having the radial width h1 of the minimum width portion 24 as the length of one side. is there. Therefore, even when the slit 28 is formed in the yoke 12, the slit yoke outer diameter is larger than the area of the magnetic path cross section S2 including the minimum width portion 24 through which the magnetic flux passes through the yoke 12 and the magnetic path cross sectional area becomes the minimum value. The area of the magnetic path cross section S1 including one side of the distance h3 does not become small. Therefore, since the slit 28 can be formed without reducing the magnetic path cross-sectional area of the yoke 12, it is possible to efficiently reduce the magnetic resistance and the iron loss.

また、ティース14の周方向両端の根元部20近傍において、互いに平行にスリット28が形成されるので、スリット28がヨーク12においてスロット16側に周方向に伸びることがなく、ヨーク12のうち、ティース14から周方向に外れた部分において、スリット28で磁路が制限されることを抑制できる。なお、本実施形態と異なる別の実施形態として、各ティース14の根元部20近傍のスリット28は、根元部20の周方向の最大幅d1を維持するように径方向外側に向かって互いに間隔が広がるように形成される構成としてもよい。この場合も、各スリット28は、各ティース14の周方向両端の根元部20近傍において、少なくとも根元部20の周方向の最大幅d1を維持するように径方向外側に形成される。   In addition, since slits 28 are formed in parallel with each other in the vicinity of the root portions 20 at both ends in the circumferential direction of the teeth 14, the slits 28 do not extend in the circumferential direction toward the slots 16 in the yoke 12, and the teeth 12 of the yoke 12 are included. It is possible to suppress the magnetic path from being restricted by the slit 28 in a portion deviated from the circumferential direction 14. As another embodiment different from this embodiment, the slits 28 in the vicinity of the root portion 20 of each tooth 14 are spaced apart from each other toward the radially outer side so as to maintain the maximum circumferential width d1 of the root portion 20. It is good also as a structure formed so that it may spread. Also in this case, each slit 28 is formed radially outward so as to maintain at least the circumferential maximum width d1 of the root portion 20 in the vicinity of the root portion 20 at both circumferential ends of each tooth 14.

また、本実施形態では、ヨーク12において、隣り合うティース14間の周方向中間部外径側の径方向幅は、ティース14間の周方向端部外径側の径方向幅よりも小さい。例えば、ヨーク12において、隣り合うティース14間の周方向中間部外径側の径方向幅は、ティース14間の周方向端部での最大幅部26の径方向幅h2よりも小さい。このため、ヨーク12において、スロット16底部の外径側の周方向中間部での径方向幅を、必要となる磁路断面積よりも過度に大きくしないので、ステータコア10の軽量化と材料低減による低コスト化とを図れる。   In the present embodiment, in the yoke 12, the radial width on the outer circumferential side in the circumferential direction between adjacent teeth 14 is smaller than the radial width on the outer circumferential side in the circumferential direction between the teeth 14. For example, in the yoke 12, the radial width on the outer peripheral side in the circumferential direction between the adjacent teeth 14 is smaller than the radial width h <b> 2 of the maximum width portion 26 at the circumferential end between the teeth 14. For this reason, in the yoke 12, the radial width at the circumferential intermediate portion on the outer diameter side of the bottom portion of the slot 16 is not excessively larger than the required magnetic path cross-sectional area, thereby reducing the weight of the stator core 10 and reducing the material. Cost reduction can be achieved.

一方、特許文献2に記載された構成では、ティースの根元部の周方向端部に断面円形の溝部が形成されている。しかしながらこのような構成では、溝部によって、ティースの根元部における周方向幅が小さくなり、ティースにおける磁路断面積が減少する。このため、磁束密度が増大して回転電機のトルクが低下して、損失が増大するおそれがある。また、ティースに巻回されたステータコイルが樹脂モールドされる場合にティースの根元部に曲げ応力が集中する部分に磁束が集中して、さらに回転電機損失が増加する。本実施形態によれば、スリット28を形成しても、ティース14の根元部20の周方向幅d1を小さくしないので、このような不都合を防止できる。   On the other hand, in the configuration described in Patent Document 2, a groove having a circular cross section is formed at the circumferential end of the root portion of the tooth. However, in such a configuration, the circumferential width at the root portion of the tooth is reduced by the groove portion, and the magnetic path cross-sectional area at the tooth is reduced. For this reason, the magnetic flux density increases, the torque of the rotating electrical machine decreases, and the loss may increase. Further, when the stator coil wound around the teeth is resin-molded, the magnetic flux concentrates on the portion where the bending stress is concentrated at the root of the teeth, and the rotating electrical machine loss further increases. According to this embodiment, even if the slit 28 is formed, the circumferential width d1 of the root portion 20 of the tooth 14 is not reduced, so that such inconvenience can be prevented.

図8は、比較例の回転電機用ステータコア10の周方向一部を示す図である。比較例では、ヨーク12においてスロット16の底部の周方向中間部に径方向外側に伸びるようにスリット40が形成されている。このような比較例では、スリット40が形成されない場合に応力集中部が図8の破線枠Q1で示す部分であるのに対して、スリット40が形成されることで応力集中部が破線枠Q2で示す部分となり、径方向外側に移動する。一方、この応力集中部はヨーク12において、スロット16の底部の周方向中間部付近である、スリット40の径方向外端付近にまで達し、応力集中部の周方向長さが大きくなる。このため、回転電機での損失低減効果を期待できない。本実施形態では、ティース14の根元部20近傍に、根元部20の周方向幅d1を維持するようにスリット28が形成されるので、応力集中部を周方向に大きくすることがない。このため、回転電機損失を効率よく低減できる。   FIG. 8 is a view showing a part in the circumferential direction of a stator core 10 for a rotating electrical machine of a comparative example. In the comparative example, a slit 40 is formed in the yoke 12 so as to extend radially outward at a circumferential intermediate portion of the bottom of the slot 16. In such a comparative example, when the slit 40 is not formed, the stress concentration portion is a portion indicated by a broken line frame Q1 in FIG. 8, whereas when the slit 40 is formed, the stress concentration portion is a broken line frame Q2. It becomes a portion to be shown and moves to the outside in the radial direction. On the other hand, in the yoke 12, this stress concentration portion reaches the vicinity of the radially outer end of the slit 40, which is near the circumferential middle portion of the bottom of the slot 16, and the circumferential length of the stress concentration portion increases. For this reason, the loss reduction effect in a rotary electric machine cannot be expected. In this embodiment, since the slit 28 is formed in the vicinity of the root portion 20 of the tooth 14 so as to maintain the circumferential width d1 of the root portion 20, the stress concentration portion is not increased in the circumferential direction. For this reason, rotating electrical machine loss can be reduced efficiently.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。例えば、上記では、ステータコイルを樹脂モールドする場合を説明したが、本発明はステータコイルを樹脂モールドしない構成にも適用できる。この構成でも、ティースにステータコイルが高い張力で巻回され、ティースに応力が加わる場合でも、ティースの磁気抵抗の増大と回転電機損失の増加とを抑制できる。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course. For example, although the case where the stator coil is resin-molded has been described above, the present invention can also be applied to a configuration in which the stator coil is not resin-molded. Even in this configuration, even when the stator coil is wound around the teeth with high tension and stress is applied to the teeth, an increase in the magnetic resistance of the teeth and an increase in the rotating electrical machine loss can be suppressed.

また、上記の実施形態では、ティースの周方向幅が外径側の根元部に向かって徐々に小さくなるように周方向両側面を互いに傾斜させたテーパ状とする場合を説明したが、ティースの周方向幅が根元部から先端部にわたって等しくなるティース形状としてもよい。   In the above embodiment, the case has been described in which the circumferential widths of the teeth are tapered such that the circumferential side surfaces are inclined so as to gradually decrease toward the root portion on the outer diameter side. It is good also as a teeth shape from which a circumferential direction width becomes equal from a base part to a tip part.

10 ステータコア、12 ヨーク、14 ティース、16 スロット、18 先端面、20 根元部、22 テーパ面、24 最小幅部、26 最大幅部、28 スリット、、30 ステータ、32 ステータコイル、34 板材、40 スリット。   10 Stator Core, 12 Yoke, 14 Teeth, 16 Slot, 18 Tip Surface, 20 Root, 22 Tapered Surface, 24 Minimum Width, 26 Maximum Width, 28 Slit, 30 Stator, 32 Stator Coil, 34 Plate, 40 Slit .

Claims (5)

円環状のヨークと、前記ヨークから径方向内側に突出する複数のティースとを備え、
前記ヨークは、前記各ティースの周方向両端の根元部近傍において、少なくとも前記根元部の周方向の最大幅を維持するように径方向外側に形成されたスリットを含むことを特徴とする回転電機用ステータコア。
An annular yoke and a plurality of teeth projecting radially inward from the yoke;
The yoke includes a slit formed on the radially outer side so as to maintain at least the maximum circumferential width of the root portion in the vicinity of the root portions at both ends in the circumferential direction of the teeth. Stator core.
請求項1に記載の回転電機用ステータコアにおいて、
前記ヨークは、隣り合う前記ティース間の周方向中間部外径側で径方向幅が最小となる最小幅部を含み、前記スリットの奥端となる径方向外端位置Hと前記ヨークの外周面との間の径方向距離であるスリットヨーク外径間距離h3を、前記最小幅部の径方向幅h1以上とすることを特徴とする回転電機用ステータコア。
In the stator core for rotating electrical machines according to claim 1,
The yoke includes a minimum width portion having a minimum radial width on the outer peripheral side in the circumferential direction between adjacent teeth, and a radially outer end position H serving as a back end of the slit and an outer peripheral surface of the yoke. A stator core for a rotating electrical machine, wherein a distance y3 between the outer diameters of the slit yokes, which is a radial distance between the first and second coils, is equal to or greater than a radial width h1 of the minimum width portion.
請求項1または請求項2に記載の回転電機用ステータコアにおいて、
前記ヨークは、隣り合う前記ティース間の周方向中間部外径側で径方向幅が最小となる最小幅部を含み、前記ヨークにおいて、前記スリットヨーク外径間距離h3を一辺の長さとする矩形の磁路断面S1の面積を、前記最小幅部の径方向幅h1を一辺の長さとする矩形の磁路断面S2の面積以上とすることを特徴とする回転電機用ステータコア。
In the stator core for rotating electrical machines according to claim 1 or 2,
The yoke includes a minimum width portion having a minimum radial width on the outer peripheral side in the circumferential direction between adjacent teeth, and the yoke has a rectangular length having a length h1 between the slit yoke outer diameters. The stator core for a rotating electrical machine is characterized in that the area of the magnetic path cross section S1 is equal to or larger than the area of the rectangular magnetic path cross section S2 having the radial width h1 of the minimum width portion as one side length.
請求項1に記載の回転電機用ステータコアにおいて、
前記ヨークにおいて、隣り合う前記ティース間の周方向中間部外径側の径方向幅は、隣り合う前記ティース間の周方向端部外径側の径方向幅よりも小さいことを特徴とする回転電機用ステータコア。
In the stator core for rotating electrical machines according to claim 1,
In the yoke, the radial width on the outer circumferential side in the circumferential direction between the adjacent teeth is smaller than the radial width on the outer diameter side in the circumferential end between the adjacent teeth. Stator core.
請求項1から請求項4のいずれか1に記載の回転電機用ステータにおいて、
前記スリットは、前記ヨークにおいて、前記各ティースの周方向両端の根元部近傍で、前記根元部の周方向の最大幅を維持するように径方向外側に向かって互いに平行に形成されていることを特徴とする回転電機用ステータ。
The stator for a rotating electrical machine according to any one of claims 1 to 4,
In the yoke, the slits are formed in parallel to each other outward in the radial direction so as to maintain the maximum width in the circumferential direction of the root portion in the vicinity of the root portions at both ends in the circumferential direction of the teeth. A stator for a rotating electrical machine.
JP2013060111A 2013-03-22 2013-03-22 Stator core for rotating electrical machines Active JP6070329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013060111A JP6070329B2 (en) 2013-03-22 2013-03-22 Stator core for rotating electrical machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013060111A JP6070329B2 (en) 2013-03-22 2013-03-22 Stator core for rotating electrical machines

Publications (2)

Publication Number Publication Date
JP2014187776A true JP2014187776A (en) 2014-10-02
JP6070329B2 JP6070329B2 (en) 2017-02-01

Family

ID=51834802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013060111A Active JP6070329B2 (en) 2013-03-22 2013-03-22 Stator core for rotating electrical machines

Country Status (1)

Country Link
JP (1) JP6070329B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850948B1 (en) * 2016-01-05 2018-04-23 서울시립대학교 산학협력단 Eco-mold module and construction method of wooden building using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644353U (en) * 1992-11-18 1994-06-10 黒田精工株式会社 Strip-shaped steel plate used for stator core of rotating electric machine
JP2006034008A (en) * 2004-07-16 2006-02-02 Nissan Motor Co Ltd Structure of stator of rotary electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644353U (en) * 1992-11-18 1994-06-10 黒田精工株式会社 Strip-shaped steel plate used for stator core of rotating electric machine
JP2006034008A (en) * 2004-07-16 2006-02-02 Nissan Motor Co Ltd Structure of stator of rotary electric machine

Also Published As

Publication number Publication date
JP6070329B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
CN102629787B (en) For the rotor of electric rotating machine
US10862355B2 (en) Armature with a core having teeth of different circumferential widths and electric motor including the armature and a rotor
US10199890B2 (en) Embedded permanent magnet electric motor
KR101558349B1 (en) Rotor structure of drive motor
JP5421396B2 (en) Electric motor having an iron core having primary teeth and secondary teeth
JP5665660B2 (en) Permanent magnet rotating electric machine
WO2011007694A1 (en) Permanent-magnet type synchronous motor
JP2007259541A (en) Permanent magnet type motor
JP6630690B2 (en) Rotating electric machine rotor
JP2016073023A (en) Permanent magnet type rotor and permanent magnet type synchronous rotary electric machine
JP2014155373A (en) Multi-gap rotary electric machine
JP2017169419A (en) Stator of rotary electric machine
JP5605721B2 (en) Rotating electric machine
KR101247683B1 (en) Amorphous Stator, Electric Motor Using the Same, and Producing Method thereof
JP5465866B2 (en) Stator core and rotating electric machine
JP6070329B2 (en) Stator core for rotating electrical machines
JP2019161828A (en) Rotary electric machine
JP2018148675A (en) Stator for rotary electric machine
JP6012046B2 (en) Brushless motor
JP5884464B2 (en) Rotating electric machine
JP5712852B2 (en) Rotating electric machine stator
JP6733568B2 (en) Rotating electric machine
JP6436065B2 (en) Rotating electric machine
JP2010004690A (en) Permanent-magnet dynamo-electric machine and elevator device using the same
JP2018064323A (en) Synchronous reluctance rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R151 Written notification of patent or utility model registration

Ref document number: 6070329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151