JP2014187278A - Aluminum electrolytic capacitor - Google Patents

Aluminum electrolytic capacitor Download PDF

Info

Publication number
JP2014187278A
JP2014187278A JP2013062105A JP2013062105A JP2014187278A JP 2014187278 A JP2014187278 A JP 2014187278A JP 2013062105 A JP2013062105 A JP 2013062105A JP 2013062105 A JP2013062105 A JP 2013062105A JP 2014187278 A JP2014187278 A JP 2014187278A
Authority
JP
Japan
Prior art keywords
aluminum
capacitor
electrolytic capacitor
aluminum electrolytic
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013062105A
Other languages
Japanese (ja)
Other versions
JP6187740B2 (en
Inventor
Naoto Iwano
直人 岩野
Hiroshi Yanaka
弘 谷中
Tadahiro Nakamura
忠浩 中村
Hikaru Mitsuzuka
光 三塚
Naozumi Kimura
直純 木村
Kazufumi Kasai
一史 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP2013062105A priority Critical patent/JP6187740B2/en
Publication of JP2014187278A publication Critical patent/JP2014187278A/en
Application granted granted Critical
Publication of JP6187740B2 publication Critical patent/JP6187740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polar aluminum electrolytic capacitor of automotive electrical apparatus, in which abnormal characteristic change and appearance abnormality do not occur, even if a voltage is applied in the reverse direction.SOLUTION: A capacitor element 1 manufactured by winding an anode foil 2 having a voltage-withstanding film formed thereon and a cathode foil 3 not having the voltage-withstanding film, with a separator 4 interposed therebetween, is impregnated with a nonaqueous electrolyte and housed in a bottomed cylindrical outer case 5, and then the opening of the outer case is sealed with a sealing member 6, and the anode lead terminal 2a of the anode foil and the cathode lead terminal 3a of the cathode foil are led out while penetrating the sealing member 6. In such an aluminum electrolytic capacitor, moisture contained in the electrolyte in the outer case 5 is in a range of 0.05-0.5%.

Description

本発明は、アルミニウム電解コンデンサに関し、さらに詳しく言えば、室温で直流14Vの逆方向電圧印加時においても大きな特性変化、外観異常を起こさない、特に車載用として好適な有極性のアルミニウム電解コンデンサに関するものである。   The present invention relates to an aluminum electrolytic capacitor. More specifically, the present invention relates to a polar aluminum electrolytic capacitor that does not cause a large characteristic change and appearance abnormality even when a reverse voltage of 14 V DC is applied at room temperature, and that is particularly suitable for automotive use. It is.

アルミニウム電解コンデンサを作製するにあたっては、まず、図2(a)に示すように、耐圧皮膜(酸化皮膜)が形成されたアルミニウム材からなる陽極箔2と、耐圧皮膜を有しない対極としてのアルミニウム材からなる陰極箔3とを、セパレータ4,4を介して渦巻き状に巻回してコンデンサ素子1を得る。   In producing an aluminum electrolytic capacitor, first, as shown in FIG. 2A, an anode foil 2 made of an aluminum material on which a pressure-resistant film (oxide film) is formed, and an aluminum material as a counter electrode having no pressure-resistant film. A capacitor foil 1 is obtained by winding a cathode foil 3 made of

そして、コンデンサ素子1に電解液を含浸し、図2(b)に示すように、コンデンサ素子1を有底円筒状の外装ケース(アルミケース)5内に収納し、外装ケース5の開口部をゴム材等からなる封口部材6にて封止し、陽極箔2に接続されている陽極リード端子2aと、陰極箔3に接続されている陰極リード端子3aとを封口部材6を貫通して外部に引き出し、その後、外装ケース5に絶縁スリーブ7を被せて、最終製品としてのアルミニウム電解コンデンサを得る(例えば、特許文献1,2参照)。   Then, the capacitor element 1 is impregnated with an electrolytic solution, and the capacitor element 1 is accommodated in a bottomed cylindrical outer case (aluminum case) 5 as shown in FIG. Sealed with a sealing member 6 made of a rubber material or the like, and the anode lead terminal 2a connected to the anode foil 2 and the cathode lead terminal 3a connected to the cathode foil 3 penetrate the sealing member 6 to the outside. Then, the outer case 5 is covered with an insulating sleeve 7 to obtain an aluminum electrolytic capacitor as a final product (see, for example, Patent Documents 1 and 2).

このようなアルミニウム電解コンデンサは、化成によって陽極箔2に形成された耐圧皮膜が整流性を持つことから有極性であり、陰極箔3には耐圧を持たせるような化成処理を行っていないため、陰極箔3は本質的に耐圧がない。   Such an aluminum electrolytic capacitor is polar because the pressure-resistant film formed on the anode foil 2 by chemical conversion has a rectifying property, and the cathode foil 3 is not subjected to chemical conversion treatment to give a pressure resistance. The cathode foil 3 has essentially no breakdown voltage.

ところで、車載用バッテリーのうち、例えばRタイプとLタイプとでは正極(+)端子と負極(−)端子の位置が逆になっており、正・負の極性が紛らわしいが、そうでない場合においても、作業者の接続ミス((+)と(−)の逆接続)により、車載用途のアルミニウム電解コンデンサには、逆方向電圧が印加されることがあり得る。   By the way, among the in-vehicle batteries, for example, in the R type and the L type, the positions of the positive (+) terminal and the negative (-) terminal are reversed, and the positive / negative polarity is confused. A reverse voltage may be applied to the aluminum electrolytic capacitor for in-vehicle use due to a connection error of the operator (reverse connection of (+) and (−)).

この逆接続は、車載用途のアルミニウム電解コンデンサに重要な問題を引き起こす。例えば、アルミニウム電解コンデンサに直流14Vの電圧を逆方向に印加すると、コンデンサ内部に存在する水分が電気分解され、これによって発生した酸素と陰極箔が反応して陰極箔の表面に酸化皮膜が形成され、コンデンサの特性(容量やtanδ)が劣化する。   This reverse connection causes an important problem for aluminum electrolytic capacitors for in-vehicle use. For example, when a DC voltage of 14 V is applied to an aluminum electrolytic capacitor in the reverse direction, moisture present in the capacitor is electrolyzed, and oxygen generated thereby reacts with the cathode foil to form an oxide film on the surface of the cathode foil. The characteristics (capacitance and tan δ) of the capacitor deteriorate.

そればかりでなく、コンデンサの特性劣化が甚だしい場合には、逆電流による発熱に伴いコンデンサが熱暴走し、また、コンデンサ内部で発生したガスにより破裂が起こり、車載電装回路が機能不全に陥る最悪の事態となる。   In addition, when the capacitor characteristics are severely deteriorated, the capacitor runs out of heat due to heat generation due to reverse current, and the gas generated inside the capacitor bursts, causing the in-vehicle electrical circuit to malfunction. Things will happen.

陽極箔と陰極箔の双方に耐圧皮膜(酸化皮膜)を備えるバイポーラ(両極性)のアルミニウム電解コンデンサであれば、上記したような逆接続による問題は殆ど生じない。   If it is a bipolar (bipolar) aluminum electrolytic capacitor having a pressure-resistant film (oxide film) on both the anode foil and the cathode foil, the problems caused by the reverse connection as described above hardly occur.

しかしながら、バイポーラ型のアルミニウム電解コンデンサは、サイズが現行品の有極性アルミニウム電解コンデンサよりも大きく、また、そのコンデンサの特性も異なることから、有極性コンデンサの代替としてそのまま既存の車載電装回路に適用することができない。また、大幅なコストアップにもなる。   However, bipolar aluminum electrolytic capacitors are larger in size than current polar aluminum electrolytic capacitors, and the characteristics of the capacitors are also different, so they can be applied directly to existing in-vehicle electrical circuits as a substitute for polar capacitors. I can't. In addition, the cost is greatly increased.

特開平10−32146号公報(段落0002参照)Japanese Patent Laid-Open No. 10-32146 (see paragraph 0002) 特開平11−26317号公報(段落0002参照)Japanese Patent Laid-Open No. 11-26317 (see paragraph 0002)

したがって、本発明の課題は、有極性でありながら、直流−14Vの逆電圧が印加されたとしても異常な特性変化および外観異常が生じないようにした車載用途のアルミニウム電解コンデンサを提供することにある。   Accordingly, an object of the present invention is to provide an aluminum electrolytic capacitor for in-vehicle use that is polar but does not cause an abnormal characteristic change or appearance abnormality even when a reverse voltage of -14 VDC is applied. is there.

上記課題を解決するため、本発明は、耐圧皮膜が形成されたアルミニウム材からなる陽極箔と、耐圧皮膜を有しないアルミニウム材からなる陰極箔とをセパレータを介して巻回してなるコンデンサ素子に非水系の電解液を含浸させて有底筒状の外装ケース内に収納し、上記外装ケースの開口部を封口部材にて封止し、上記陽極箔に接続されている陽極リード端子と、上記陰極箔に接続されている陰極リード端子とを上記封口部材を貫通して引き出して製品化されたアルミニウム電解コンデンサにおいて、直流14Vまでの逆方向電圧印加に耐えられるようにするため、上記外装ケース内における上記電解液中に含まれる水分を0.05〜0.5wt%の範囲内とした、自動車のバッテリーを電源とする車載電装回路に用いられることを特徴としている。   In order to solve the above-described problems, the present invention provides a capacitor element in which an anode foil made of an aluminum material having a pressure-resistant film and a cathode foil made of an aluminum material having no pressure-resistant film are wound through a separator. An aqueous lead electrolyte is impregnated and accommodated in a bottomed cylindrical outer case, the opening of the outer case is sealed with a sealing member, an anode lead terminal connected to the anode foil, and the cathode In an aluminum electrolytic capacitor that has been commercialized by pulling out the cathode lead terminal connected to the foil through the sealing member, in order to withstand reverse voltage application up to DC 14V, The present invention is characterized in that it is used in an in-vehicle electrical circuit that uses a battery of an automobile as a power source, in which the moisture contained in the electrolytic solution is in a range of 0.05 to 0.5 wt%. To have.

製品化後において、上記電解液中に含まれる水分をより減ずるため、上記陽極リード端子と上記陰極リード端子とを介して上記コンデンサ素子に所定の直流電圧を正方向に所定時間印加してエージング処理を施すことが好ましい。   After commercialization, in order to further reduce moisture contained in the electrolyte solution, an aging treatment is performed by applying a predetermined DC voltage to the capacitor element in the positive direction for a predetermined time via the anode lead terminal and the cathode lead terminal. It is preferable to apply.

より好ましくは、上記製品化後でのエージング処理時に印加される直流電圧は、当該アルミニウム電解コンデンサの定格電圧よりも5〜9V高い電圧で、印加時間は少なくとも40分である。   More preferably, the DC voltage applied during the aging process after commercialization is 5 to 9 V higher than the rated voltage of the aluminum electrolytic capacitor, and the application time is at least 40 minutes.

また、上記電解液がγ−ブチロラクトンを主溶媒とするフタル酸アミジン塩系電解液であることが好ましい。   Moreover, it is preferable that the said electrolyte solution is a phthalic acid amidine salt type electrolyte solution which uses (gamma) -butyrolactone as a main solvent.

本発明によるアルミニウム電解コンデンサは、室温で300時間放置後における直流14Vの逆方向電圧10分間印加後の容量変化率が−0.42%以下の特性を有する。   The aluminum electrolytic capacitor according to the present invention has a characteristic that the rate of change in capacitance after applying a reverse voltage of 14 V DC for 10 minutes after standing at room temperature for 300 hours is −0.42% or less.

また、本発明によるアルミニウム電解コンデンサは、室温で3000時間放置後における直流14Vの逆方向電圧10分間印加後の容量変化率が−0.60%以下の特性を有する。   In addition, the aluminum electrolytic capacitor according to the present invention has a characteristic that the capacity change rate after applying a reverse voltage of 14 V DC for 10 minutes after standing at room temperature for 3000 hours is −0.60% or less.

また、本発明によるアルミニウム電解コンデンサは、定格35V1000μFで、上記電解液が125℃高温長寿命低インピーダンス用電解液である。   Moreover, the aluminum electrolytic capacitor by this invention is rated 35V1000microF, and the said electrolyte solution is an electrolyte solution for 125 degreeC high temperature long life low impedance.

有極性のアルミニウム電解コンデンサにおいて、逆方向電圧印加時には、電解液中に存在する水分の電気分解により、電極反応として、陰極箔側では皮膜形成反応、陽極側では水素ガス発生反応が進行するが、本発明によれば、製品中の電解液に含まれる水分を0.05〜0.5wt%の範囲内と減らしたしたことにより、逆方向電圧印加時の電極反応が律速され、反応電流(逆電流)が小さくなることから、コンデンサの容量変化が小さく、発熱もなく、ガス発生も少なくなりコンデンサの内圧が上昇せず、外観異常も発生しないアルミニウム電解コンデンサが得られる。   In a polar aluminum electrolytic capacitor, when a reverse voltage is applied, electrolysis of moisture present in the electrolyte causes an electrode reaction, a film formation reaction on the cathode foil side, and a hydrogen gas generation reaction on the anode side. According to the present invention, the moisture contained in the electrolytic solution in the product is reduced to the range of 0.05 to 0.5 wt%, so that the electrode reaction at the time of reverse voltage application is rate-controlled, and the reaction current (reverse) Therefore, an aluminum electrolytic capacitor can be obtained in which the capacitance change of the capacitor is small, no heat is generated, gas generation is reduced, the internal pressure of the capacitor does not increase, and no appearance abnormality occurs.

また、本発明によるアルミニウム電解コンデンサは、現行品とサイズも同じで、かつ、現行品と同等の特性および信頼性を維持しつつ、特に車載用途として−14Vの逆電圧に耐えられる仕様であることから、既存の車載電装回路を設計変更することなく搭載することができ、工業的にきわめて高い価値を有する。   In addition, the aluminum electrolytic capacitor according to the present invention is the same size as the current product, and has a specification capable of withstanding a reverse voltage of −14 V particularly for in-vehicle use while maintaining the same characteristics and reliability as the current product. Therefore, it is possible to mount an existing in-vehicle electrical circuit without changing the design, and it has extremely high industrial value.

試作製品の逆電圧印加試験結果を示すグラフ。The graph which shows the reverse voltage application test result of a prototype product. (a)箔巻回型コンデンサ素子を一部分解して示す模式的な斜視図、(b)最終製品としてのアルミニウム電解コンデンサを示す断面図。(A) The typical perspective view which decomposes | disassembles and shows a part of foil wound type capacitor | condenser element, (b) Sectional drawing which shows the aluminum electrolytic capacitor as a final product.

次に、本発明の実施形態について説明するが、本発明はこの実施形態に限定されるものではない。なお、アルミニウム電解コンデンサの構成要素の参照符号については、図2に記載の参照符号を援用する。   Next, an embodiment of the present invention will be described, but the present invention is not limited to this embodiment. In addition, about the reference code of the component of an aluminum electrolytic capacitor, the reference code of FIG. 2 is used.

本発明のアルミニウム電解コンデンサは車載用途であるが、先の図2で説明したのと同じく、基本的な構成として、陽極箔2、陰極箔3、セパレータ4、外装ケース(アルミケース)5、封口部材6および駆動用の電解液を備える。   Although the aluminum electrolytic capacitor of the present invention is used for in-vehicle use, as explained in FIG. 2, the basic configuration is as follows: anode foil 2, cathode foil 3, separator 4, outer case (aluminum case) 5, sealing A member 6 and a driving electrolyte are provided.

陽極箔2には、例えば箔容量が16.0〜18.6μF/cmの範囲内で、表面に耐圧皮膜(酸化皮膜)を有するアルミニウム材が用いられる。この実施形態では、耐圧皮膜を形成する化成電圧を65.5V以上としている。 For the anode foil 2, for example, an aluminum material having a pressure-resistant film (oxide film) on the surface thereof with a foil capacity in the range of 16.0 to 18.6 μF / cm 2 is used. In this embodiment, the formation voltage for forming the pressure-resistant film is set to 65.5 V or more.

陰極箔3には、箔表面に異種金属がほとんど存在しない純度99.8%のアルミニウム材が好ましく採用される。なお、箔表面に銅が存在している銅合金アルミニウム箔を使用すると、銅の溶解反応とアルミニウム箔の皮膜形成反応のうち、銅の溶解反応の活性化エネルギーが低いと、逆電応答電流が流れやすくなることが想定されるため、銅合金アルミニウム箔は好ましくない。   For the cathode foil 3, an aluminum material having a purity of 99.8% in which almost no foreign metal is present on the foil surface is preferably employed. In addition, when copper alloy aluminum foil in which copper is present on the foil surface is used, if the activation energy of the copper dissolution reaction is low among the copper dissolution reaction and the aluminum foil film formation reaction, the reverse current response current is A copper alloy aluminum foil is not preferable because it is assumed to flow easily.

なお、陽極箔2と陰極箔3には、陽極リード端子2aと陰極リード端子3aがかしめ等により取り付けられるが、これらリード端子2a,3aは、羽子板状に形成されたアルミニウム材からなるタブ端子の丸棒部分にCP線(銅被覆鋼線)が溶接されたものが用いられてよい。   An anode lead terminal 2a and a cathode lead terminal 3a are attached to the anode foil 2 and the cathode foil 3 by caulking or the like, and these lead terminals 2a and 3a are tab terminals made of aluminum material formed in a feather plate shape. What a CP wire (copper covering steel wire) was welded to a round bar portion may be used.

セパレータ4には、従来と同様の素材が用いられてよいが、製品のインピーダンス特性およびこの実施形態での定格35Vの作動電圧を考慮して、密度が0.3g/cmで、厚みが50μmである高強度低密度二重セパレータを用いることが好ましい。 A material similar to the conventional material may be used for the separator 4, but the density is 0.3 g / cm 3 and the thickness is 50 μm in consideration of the impedance characteristics of the product and the operating voltage with a rating of 35 V in this embodiment. It is preferable to use a high strength and low density double separator.

この実施形態においても、図2(a)に示されているように、陽極箔2と陰極箔3とを、それらの間にセパレータ4を挟んで渦巻き状に巻回してなるコンデンサ素子1に駆動用の電解液が含浸されるが、この実施形態では、γ−ブチロラクトン、スルホラン、エチレングリコールの有機溶媒を含み、これにフタル酸アミジン塩を加えた非水系の125℃高温長寿命低インピーダンス電解液を使用する。   Also in this embodiment, as shown in FIG. 2 (a), the anode foil 2 and the cathode foil 3 are driven by a capacitor element 1 formed by spirally winding a separator 4 between them. In this embodiment, a non-aqueous 125 ° C. high-temperature long-life low-impedance electrolyte solution containing an organic solvent of γ-butyrolactone, sulfolane, and ethylene glycol and an amidine phthalate salt added thereto is impregnated in this embodiment. Is used.

車載用途として要求される125℃の高温を保証するうえで、酸は熱安定性の高い芳香族のカルボン酸であるフタル酸が最も好ましい。安息香酸も耐熱性が高いが、所望とする電導度が得られない。塩基はアミジンの中でも、最も溶解度が高いテトラメチルイミダゾリウムが最適である。   In order to guarantee the high temperature of 125 ° C. required for in-vehicle use, the acid is most preferably phthalic acid, which is an aromatic carboxylic acid with high thermal stability. Benzoic acid also has high heat resistance, but the desired conductivity cannot be obtained. The most suitable base is tetramethylimidazolium, which has the highest solubility among amidines.

なお、水分を50%含むエチレングリコール溶媒のアジピン酸アンモニウム塩電解液では、逆電圧印加時直後に100mA以上の電流が流れて発熱するおそれがある。このように、水分が潤沢に存在すると、陰極化成電流が大きく流れることになる。これに対して、非水系のフタル酸アミン塩によれば、アミジン塩と同等の逆電圧特性となるため、本発明においては、水系の電解液を使用することは排除される。   In addition, in an ammonium adipate salt electrolyte solution of ethylene glycol solvent containing 50% moisture, a current of 100 mA or more may flow immediately after applying a reverse voltage to generate heat. In this way, when moisture is present in abundance, the cathodic conversion current flows greatly. On the other hand, the non-aqueous amine phthalate salt has a reverse voltage characteristic equivalent to that of the amidine salt. Therefore, in the present invention, the use of an aqueous electrolyte solution is excluded.

この実施形態においても、電解液を含浸したコンデンサ素子1を、図2(b)に示すように、有底円筒状の外装ケース(アルミケース)5内に収納し、外装ケース5の開口部をゴム材等からなる封口部材6にて封止し、陽極箔2に接続されている陽極リード端子2aと、陰極箔3に接続されている陰極リード端子3aとを封口部材6を貫通して外部に引き出し、好ましくは外装ケース5に絶縁スリーブ7を被せて完成品(最終製品)としてのアルミニウム電解コンデンサを得る。   Also in this embodiment, the capacitor element 1 impregnated with the electrolytic solution is housed in a bottomed cylindrical outer case (aluminum case) 5 as shown in FIG. Sealed with a sealing member 6 made of a rubber material or the like, and the anode lead terminal 2a connected to the anode foil 2 and the cathode lead terminal 3a connected to the cathode foil 3 penetrate the sealing member 6 to the outside. An aluminum electrolytic capacitor as a finished product (final product) is obtained by preferably covering the outer casing 5 with the insulating sleeve 7.

なお、コンデンサ素子1を外装ケース5内に収納したのちに電解液を含浸するようにしてもよい。また、封口部材6は一対のリード端子挿通孔を有し、各リード端子2a,3aが挿通された状態で外装ケース5の開口部に配置され、かしめ等により強固に取り付けられる。   The capacitor element 1 may be impregnated with the electrolytic solution after being accommodated in the outer case 5. Further, the sealing member 6 has a pair of lead terminal insertion holes, is arranged in the opening of the outer case 5 in a state where the lead terminals 2a and 3a are inserted, and is firmly attached by caulking or the like.

本発明では、車載バッテリーの逆接続による直流14Vまでの逆電圧印加に耐えられるようにするため、完成品状態における電解液中に含まれる水分を0.05〜0.5wt%の範囲内とする。   In the present invention, in order to be able to withstand reverse voltage application up to DC 14V due to reverse connection of the on-vehicle battery, the moisture contained in the electrolyte in the finished product state is in the range of 0.05 to 0.5 wt%. .

電解液は、コンデンサの特性を左右する重要な要素であるが、水分を全く含んでいないと、製造工程で行われるエージング工程において、陽極箔のスリット面や、陽極箔のリード端子かしめ部の未化成部分に酸化皮膜を形成することができない。なお、この製造工程でのエージングは、上記した未化成部分に酸化皮膜を形成するため、通常、電解液含浸後に85℃以上の温度で、正方向に電圧を印加して行われるが、製品の漏れ電流以内に電流が絞れるまで、少なくとも40分以上は電圧を印加する。   The electrolyte is an important factor that affects the characteristics of the capacitor, but if it does not contain any moisture, it will not be used for the slit surface of the anode foil or the lead terminal crimped portion of the anode foil in the aging process performed in the manufacturing process. An oxide film cannot be formed on the chemical conversion part. The aging in this manufacturing process is usually performed by applying a voltage in the positive direction at a temperature of 85 ° C. or higher after impregnation with the electrolytic solution in order to form an oxide film on the unformed part. The voltage is applied for at least 40 minutes until the current is reduced within the leakage current.

このことから、電解液中にはある程度の水分が含まれるが、酸化皮膜形成に必要な水分量は、例えば定格35V1000μF,外径12.5mm,軸長25mmの製品では1mg以下であり、電解液中の水分量の5wt%程度のわずかな量でしかない。したがって、電解液中に含まれる水分が0.05〜0.5wt%であっても問題はない。   Therefore, although some amount of moisture is contained in the electrolytic solution, the amount of water necessary for forming the oxide film is, for example, 1 mg or less for a product having a rating of 35 V 1000 μF, an outer diameter of 12.5 mm, and an axial length of 25 mm. It is only a small amount of about 5 wt% of the water content in it. Therefore, there is no problem even if the moisture contained in the electrolytic solution is 0.05 to 0.5 wt%.

現行品(例として、出願人製のRKDシリーズの定格35V1000μFのアルミニウム電解コンデンサ)内の電解液を分析したところ、その水分構成は、当初から電解液自体に含まれている水分が0.5wt%,コンデンサ素子保有の水分が1.0wt%,電解液含浸から封口までの工程中に吸湿される工程吸湿水分が1.1wt%で、合計2.6wt%であるとの知見を得た。   Analyzing the electrolyte in the current product (for example, the RKD series aluminum electrolytic capacitor rated at 35V1000μF manufactured by the applicant), the moisture composition is 0.5wt% of the moisture contained in the electrolyte itself from the beginning. It was found that the moisture content possessed by the capacitor element was 1.0 wt%, the process moisture absorption absorbed during the process from the electrolyte impregnation to the sealing was 1.1 wt%, and the total was 2.6 wt%.

このうち、工程吸湿水分は、湿度の低い例えば露点−30〜−55度のドライボックス内で、電解液含浸から封口までの工程を行うことにより少なくすることができる。なお、セパレータには、その重量の約7%の水分が含まれているが、セパレータ内の水分はコンデンサ素子の乾燥工程(例えば、85℃,1時間の熱風乾燥)で殆ど除去できる。   Among these, moisture in the process can be reduced by performing the steps from the electrolytic solution impregnation to the sealing in a dry box having a low humidity, for example, a dew point of −30 to −55 degrees. The separator contains about 7% of its weight by weight, but the moisture in the separator can be almost removed by the capacitor element drying step (for example, hot air drying at 85 ° C. for 1 hour).

また、上記したように製造工程でエージング処理が行われるが、製品化したのちに、正方向電圧を印加してエージング処理を行えば、酸化皮膜の修復や、未化成部分の酸化皮膜形成に水分が消費されるため、その分、電解液中の水分をより減らすことができる。したがって、製品化後においても、エージング処理を行うことが好ましい。   Also, as described above, the aging process is performed in the manufacturing process. After the product is commercialized, if the aging process is performed by applying a positive voltage, moisture is used to repair the oxide film and to form the oxide film in the unformed part. Therefore, the water in the electrolyte can be further reduced accordingly. Therefore, it is preferable to perform aging treatment even after commercialization.

逆電圧印加後の特性変化を小さくするうえで、製品化後のエージング電圧は高い方が好ましいが、あまり高くすると短絡する危険性があるので、定格35Vの場合、最大で44V程度とするのすがよい。また、エージング時間も長く例えば1時間程度が好ましいが、少なくとも40分は必要である。   In order to reduce the characteristic change after application of reverse voltage, it is preferable that the aging voltage after commercialization is high. However, if the voltage is too high, there is a risk of short-circuiting. Is good. The aging time is also long, for example, preferably about 1 hour, but at least 40 minutes are required.

直流14Vの逆電圧印加対策としては、電解液中の水分を0.05wt%よりも低くしてもよいが、そうすると、エージング処理での酸化皮膜の形成や修復、未化成部分の酸化皮膜形成反応に長時間を要し、これが製造工程の律速(ボトルネック)になるため、生産性の点で好ましくない。   As a countermeasure for applying a reverse voltage of DC 14V, the moisture in the electrolytic solution may be lower than 0.05 wt%. However, in that case, the formation or repair of an oxide film by aging treatment, the oxide film formation reaction of an unformed part It takes a long time and becomes the rate-limiting (bottleneck) of the manufacturing process, which is not preferable in terms of productivity.

水分含有率(いずれもwt%)が0.20%,0.50%,1.00%,1.50%,3.0%のγ−ブチロラクトンを溶媒とするフタル酸アミジン塩系電解液(以下、単に「電解液」という)を5種類用意した。   Phthalic acid amidine salt electrolyte using γ-butyrolactone as a solvent with a moisture content (all wt%) of 0.20%, 0.50%, 1.00%, 1.50%, 3.0% Hereinafter, five types of “electrolyte solutions” were prepared.

定格35V1000μF(外径12.5mm,軸長25mm)のコンデンサ素子(5個)を、85℃の熱風乾燥機中で1時間放置して水分を除去したのち、湿度コントロールされたグローブボックス(露点−30〜−55度のドライボックス)内で、各コンデンサ素子に上記水分含有率の異なる電解液を含浸し、組立・封口を行ったのち、グローブボックスから取り出して、製品化のエージング処理として、85℃の雰囲気中で直流40Vの正方向電圧を1時間加えて、5個の試料(アルミニウム電解コンデンサ)を作製した。   Capacitor elements (5 pieces) rated at 35V1000μF (outer diameter 12.5mm, shaft length 25mm) were left in a hot air dryer at 85 ° C for 1 hour to remove moisture, and then humidity controlled glove box (dew point- 30 to -55 degrees dry box), each capacitor element was impregnated with the above-mentioned electrolytes having different moisture contents, assembled and sealed, and then taken out from the glove box, and as an aging process for commercialization, 85 A positive voltage of 40 V DC was applied for 1 hour in an atmosphere at 0 ° C. to prepare five samples (aluminum electrolytic capacitors).

そして、各試料を室温で300時間放置したのち、直流14Vの逆電圧(−14V)を1サイクルを1分として10サイクル(合計10分間)印加し、試料に流れる逆電流を測定した。その1サイクルごとに測定した逆電流値(mA)、発熱の有無、10サイクル後の容量変化率を次表の表1に示す。また、各試料に流れた逆電流の推移を図1に示す。   Each sample was allowed to stand at room temperature for 300 hours, and then a reverse voltage of DC 14V (−14V) was applied for 10 cycles (1 minute as one minute) for a total of 10 minutes, and the reverse current flowing through the sample was measured. Table 1 in the following table shows the reverse current value (mA) measured for each cycle, the presence or absence of heat generation, and the capacity change rate after 10 cycles. Moreover, the transition of the reverse current flowing through each sample is shown in FIG.

これによると、電解液の水分含有率が3%の場合には、逆電流が20.5→90(mA)へと大幅に増加し、また、発熱もあり、容量変化率も−4.2%と大きい。   According to this, when the water content of the electrolytic solution is 3%, the reverse current greatly increases from 20.5 to 90 (mA), there is also heat generation, and the capacity change rate is -4.2. % And big.

電解液の水分含有率が1.00%,1.50%では、逆電流の増加率が3%の場合よりも低いものの、ともに発熱が見られ、また、容量変化率についても、電解液の水分含有率が1.00%で、容量変化率−1.20%、電解液の水分含有率が1.50%で、容量変化率−1.80%であり、直流14Vの逆電圧印加対策品としては不十分である。   When the water content of the electrolytic solution was 1.00% and 1.50%, although the increase rate of the reverse current was lower than that of 3%, both generated heat, and the rate of change in capacity was also that of the electrolytic solution. With a water content of 1.00%, a capacity change rate of -1.20%, a water content of the electrolyte of 1.50%, a capacity change rate of -1.80%, and a DC 14V reverse voltage application measure It is insufficient as a product.

これに対して、電解液の水分含有率が0.50%の場合には、逆電流が11.1→8.6(mA)へと減少しており、発熱もなく、容量変化率も−0.42%と小さく抑えられており、直流14Vの逆電圧印加対策品として通用する。   In contrast, when the water content of the electrolyte is 0.50%, the reverse current decreases from 11.1 to 8.6 (mA), there is no heat generation, and the capacity change rate is − It is suppressed to a small value of 0.42%, and it can be used as a countermeasure against DC 14V reverse voltage application.

また、電解液の水分含有率をより少なくした0.20%の場合も同様に、逆電流が8.4→6.8(mA)へと減少しており、発熱もなく、しかも容量変化率は0.00%、すなわち容量は変化がなく、直流14Vの逆電圧印加対策品としてきわめて良好な結果が得られた。   Similarly, in the case of 0.20% where the water content of the electrolytic solution is further reduced, the reverse current is decreased from 8.4 to 6.8 (mA), there is no heat generation, and the capacity change rate. Was 0.00%, that is, the capacity did not change, and a very good result was obtained as a countermeasure against reverse voltage application of DC 14V.

このように、電解液の水分含有率0.20%で、発熱がなく容量変化率0.00%が達成されているので、電解液の水分含有率を0.20%よりさらに少なくすることは余り意味がないが、0.05%よりも少なくすると、上記したように、エージング処理に長時間を要することになるため、水分含有率の下限値は0.05%であることが好ましい。   Thus, since the moisture content of the electrolytic solution is 0.20% and the capacity change rate is 0.00% without heat generation, it is possible to further reduce the moisture content of the electrolytic solution to less than 0.20%. Although there is not much meaning, if it is less than 0.05%, as described above, it takes a long time for the aging treatment, so the lower limit of the moisture content is preferably 0.05%.

次に、別の試験として、水分含有率が0.20%〜3.0%の電解液による同じ試料を5個作製し、室温で3000時間(125日)放置したのちに、同じく直流14Vの逆電圧を1サイクルを1分として10サイクル(合計10分間)印加し、10サイクル後の容量変化率を算出し、また、外観検査を行った。その結果を次表の表2に示す。   Next, as another test, five samples of the same electrolyte solution having a water content of 0.20% to 3.0% were prepared and allowed to stand for 3000 hours (125 days) at room temperature. A reverse voltage was applied for 10 cycles (total 10 minutes) with 1 cycle as 1 minute, the capacity change rate after 10 cycles was calculated, and an appearance inspection was performed. The results are shown in Table 2 below.

この別の試験では、電解液の水分含有率が1.50%,3.00%では、ともに破裂が起こり、最悪の結果となっている。また、電解液の水分含有率が1.00%の場合には、破裂にまでは至らないものの、封口ゴムに膨れが発生し、容量変化率も−6%であり、製品として使用できない状態になった。   In another test, when the water content of the electrolytic solution is 1.50% and 3.00%, both ruptures occur, which is the worst result. Moreover, when the water content of the electrolyte is 1.00%, it does not lead to rupture, but the sealing rubber swells and the capacity change rate is -6%, so that it cannot be used as a product. became.

これに対して、電解液の水分含有率が0.50%の場合には、容量変化率が−0.60%で、300時間試験での容量変化率−0.42%よりも若干大きくなっているが、外観には異常がなく、直流14Vの逆電圧印加対策品として通用する。   On the other hand, when the water content of the electrolytic solution is 0.50%, the capacity change rate is -0.60%, which is slightly larger than the capacity change rate in the 300 hour test -0.42%. However, there is no abnormality in the external appearance, and it can be used as a DC 14 V reverse voltage application countermeasure product.

また、電解液の水分含有率をより少なくした0.20%の場合には、容量変化率は0.00%、すなわち容量は変化がなく、外観にも異常がなく、直流14Vの逆電圧印加対策品としてきわめて良好な結果が得られた。   Further, in the case of 0.20% where the water content of the electrolytic solution is further reduced, the capacity change rate is 0.00%, that is, the capacity does not change, there is no abnormality in the appearance, and a reverse voltage of 14V DC is applied. A very good result was obtained as a countermeasure product.

1 コンデンサ素子
2 陽極箔
2a 陽極リード端子
3 陰極箔
3a 陰極リード端子
4 セパレータ
5 外装ケース(アルミケース)
6 封口部材(封口ゴム)
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Anode foil 2a Anode lead terminal 3 Cathode foil 3a Cathode lead terminal 4 Separator 5 Exterior case (aluminum case)
6 Sealing material (sealing rubber)

Claims (7)

耐圧皮膜が形成されたアルミニウム材からなる陽極箔と、耐圧皮膜を有しないアルミニウム材からなる陰極箔とをセパレータを介して巻回してなるコンデンサ素子に非水系の電解液を含浸させて有底筒状の外装ケース内に収納し、上記外装ケースの開口部を封口部材にて封止し、上記陽極箔に接続されている陽極リード端子と、上記陰極箔に接続されている陰極リード端子とを上記封口部材を貫通して引き出して製品化されたアルミニウム電解コンデンサにおいて、
直流14Vまでの逆方向電圧印加に耐えられるようにするため、上記外装ケース内における上記電解液中に含まれる水分を0.05〜0.5wt%の範囲内とした、自動車のバッテリーを電源とする車載電装回路に用いられることを特徴とするアルミニウム電解コンデンサ。
A bottomed cylinder is formed by impregnating a non-aqueous electrolyte into a capacitor element formed by winding an anode foil made of an aluminum material with a pressure-resistant film and a cathode foil made of an aluminum material without a pressure-resistant film through a separator. An exterior lead case connected to the anode foil, and a cathode lead terminal connected to the cathode foil. In the aluminum electrolytic capacitor that has been commercialized by penetrating the sealing member,
In order to be able to withstand reverse voltage application up to a direct current of 14 V, a battery of an automobile in which the moisture contained in the electrolytic solution in the outer case is in a range of 0.05 to 0.5 wt% is used as a power source. An aluminum electrolytic capacitor characterized by being used in an on-vehicle electrical circuit.
製品化後において、上記陽極リード端子と上記陰極リード端子とを介して上記コンデンサ素子に所定の直流電圧を正方向に所定時間印加してエージング処理を施したことを特徴とする請求項1に記載のアルミニウム電解コンデンサ。   2. The product according to claim 1, wherein after the commercialization, an aging treatment is performed by applying a predetermined DC voltage to the capacitor element in a positive direction for a predetermined time through the anode lead terminal and the cathode lead terminal. Aluminum electrolytic capacitor. 上記製品化後でのエージング処理時に印加される直流電圧は当該アルミニウム電解コンデンサの定格電圧よりも5〜9V高い電圧で、印加時間は少なくとも40分であることを特徴とする請求項2に記載のアルミニウム電解コンデンサ。   The DC voltage applied at the time of the aging process after commercialization is 5 to 9 V higher than the rated voltage of the aluminum electrolytic capacitor, and the application time is at least 40 minutes. Aluminum electrolytic capacitor. 上記電解液がγ−ブチロラクトンを主溶媒とするフタル酸アミジン塩系電解液であることを特徴とする請求項1ないし3のいずれか1項に記載のアルミニウム電解コンデンサ。   The aluminum electrolytic capacitor according to any one of claims 1 to 3, wherein the electrolytic solution is a phthalic acid amidine salt electrolytic solution containing γ-butyrolactone as a main solvent. 室温で300時間放置後における直流14Vの逆方向電圧10分間印加後の容量変化率が−0.42%以下であることを特徴とする請求項1ないし4のいずれか1項に記載のアルミニウム電解コンデンサ。   The aluminum electrolysis according to any one of claims 1 to 4, wherein a capacity change rate after applying a reverse voltage of 14V DC for 10 minutes after standing at room temperature for 300 hours is -0.42% or less. Capacitor. 室温で3000時間放置後における直流14Vの逆方向電圧10分間印加後の容量変化率が−0.60%以下であることを特徴とする請求項1ないし5のいずれか1項に記載のアルミニウム電解コンデンサ。   6. The aluminum electrolysis according to claim 1, wherein a capacity change rate after applying a reverse voltage of 14 V DC for 10 minutes after standing at room temperature for 3000 hours is −0.60% or less. Capacitor. 定格35V1000μFで、上記電解液が125℃高温長寿命低インピーダンス用電解液であることを特徴とする請求項1ないし6のいずれか1項に記載のアルミニウム電解コンデンサ。   The aluminum electrolytic capacitor according to any one of claims 1 to 6, wherein the electrolytic solution has a rating of 35 V and 1000 µF, and the electrolytic solution is a 125 ° C high-temperature long-life low-impedance electrolytic solution.
JP2013062105A 2013-03-25 2013-03-25 Method for manufacturing aluminum electrolytic capacitor Active JP6187740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013062105A JP6187740B2 (en) 2013-03-25 2013-03-25 Method for manufacturing aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062105A JP6187740B2 (en) 2013-03-25 2013-03-25 Method for manufacturing aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2014187278A true JP2014187278A (en) 2014-10-02
JP6187740B2 JP6187740B2 (en) 2017-08-30

Family

ID=51834512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062105A Active JP6187740B2 (en) 2013-03-25 2013-03-25 Method for manufacturing aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP6187740B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021121037A (en) * 2015-04-28 2021-08-19 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method of the same
JP2021145135A (en) * 2015-04-28 2021-09-24 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method therefor
JP2021145136A (en) * 2015-05-28 2021-09-24 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method therefor
CN115172063A (en) * 2022-06-09 2022-10-11 陈建 High-temperature packaging method for liquid aluminum electrolytic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093660A (en) * 2000-09-19 2002-03-29 Matsushita Electric Ind Co Ltd Capacitor and its manufacturing method
JP2004153101A (en) * 2002-10-31 2004-05-27 Mitsubishi Chemicals Corp Aluminum electrolytic capacitor
JP2004304010A (en) * 2003-03-31 2004-10-28 Rubycon Corp Flat aluminium electrolytic capacitor and its manufacturing method
JP2006012983A (en) * 2004-06-23 2006-01-12 Nippon Chemicon Corp Electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093660A (en) * 2000-09-19 2002-03-29 Matsushita Electric Ind Co Ltd Capacitor and its manufacturing method
JP2004153101A (en) * 2002-10-31 2004-05-27 Mitsubishi Chemicals Corp Aluminum electrolytic capacitor
JP2004304010A (en) * 2003-03-31 2004-10-28 Rubycon Corp Flat aluminium electrolytic capacitor and its manufacturing method
JP2006012983A (en) * 2004-06-23 2006-01-12 Nippon Chemicon Corp Electrolytic capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021121037A (en) * 2015-04-28 2021-08-19 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method of the same
JP2021145135A (en) * 2015-04-28 2021-09-24 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method therefor
JP7233015B2 (en) 2015-04-28 2023-03-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof
JP7361284B2 (en) 2015-04-28 2023-10-16 パナソニックIpマネジメント株式会社 Manufacturing method of electrolytic capacitor
JP2021145136A (en) * 2015-05-28 2021-09-24 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method therefor
JP7117552B2 (en) 2015-05-28 2022-08-15 パナソニックIpマネジメント株式会社 Electrolytic capacitor
JP7233016B2 (en) 2015-05-28 2023-03-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof
CN115172063A (en) * 2022-06-09 2022-10-11 陈建 High-temperature packaging method for liquid aluminum electrolytic capacitor
CN115172063B (en) * 2022-06-09 2024-02-06 陈建 High-temperature packaging method for liquid aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP6187740B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6893311B2 (en) Electrolytic capacitor
JP6187740B2 (en) Method for manufacturing aluminum electrolytic capacitor
CN108461295A (en) A kind of high solid-liquid mixing aluminium electrolutic capacitor and preparation method thereof of energizing
KR20050099990A (en) Capacitor and production method for the capacitor
JP5353958B2 (en) Anode foil for electrolytic capacitor, aluminum electrolytic capacitor or functional polymer aluminum electrolytic capacitor using the same, and method for producing anode foil for electrolytic capacitor
US11380493B2 (en) Electrolytic capacitor
JPWO2009113285A1 (en) Solid electrolytic capacitor and manufacturing method thereof
CN105051848A (en) Solid electrolytic capacitor and housing for solid electrolytic capacitor
JP2015050237A (en) Electrolyte capacitor, and method for manufacturing the same
CN101354963B (en) Method for preparing high backward voltage capacitor
JP2019029598A (en) Electrolyte solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP3806503B2 (en) Solid electrolytic capacitor
US20110154632A1 (en) Method for manufacturing niobium solid electrolytic capacitor
CN201725692U (en) Complex electrolytic capacitor capable of resisting high-frequency ripple current
JP4548730B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
CN214848226U (en) Lead wire type aluminum electrolytic capacitor
JP2014045115A (en) Solid electrolytic capacitor
JPH02135719A (en) Electrolyte for electrical-double-layer capacitor
JP2019029597A (en) Aluminum electrolytic capacitor
JP4101938B2 (en) Polarized aluminum electrolytic capacitor
CN112735827A (en) Lead wire type aluminum electrolytic capacitor
JP2007180432A (en) Electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2022039173A (en) Electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170718

R150 Certificate of patent or registration of utility model

Ref document number: 6187740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250