JP2014183810A - Method for making useful component to be taken into body of aquatic organism, and aquatic organism obtained thereby - Google Patents

Method for making useful component to be taken into body of aquatic organism, and aquatic organism obtained thereby Download PDF

Info

Publication number
JP2014183810A
JP2014183810A JP2013062948A JP2013062948A JP2014183810A JP 2014183810 A JP2014183810 A JP 2014183810A JP 2013062948 A JP2013062948 A JP 2013062948A JP 2013062948 A JP2013062948 A JP 2013062948A JP 2014183810 A JP2014183810 A JP 2014183810A
Authority
JP
Japan
Prior art keywords
aquatic organism
aquatic
protease
useful
useful component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013062948A
Other languages
Japanese (ja)
Other versions
JP6012013B2 (en
Inventor
Takahiro Nagai
崇裕 永井
Osamu Kawaguchi
修 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
Original Assignee
Hiroshima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture filed Critical Hiroshima Prefecture
Priority to JP2013062948A priority Critical patent/JP6012013B2/en
Publication of JP2014183810A publication Critical patent/JP2014183810A/en
Application granted granted Critical
Publication of JP6012013B2 publication Critical patent/JP6012013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for making a useful component to be taken into a body of an aquatic organism efficiently without giving any external injury on the aquatic organism, the method being capable to reduce the occurrence of death of the aquatic organism after the uptake.SOLUTION: A method for making a useful component to be taken into a body of an aquatic organism includes: a process for immersing the aquatic organism in a protease solution; and a process for immersing the aquatic organisms in a liquid containing the useful component after that. This invention allows the useful component to be taken into the majority of aquatic organisms effectively and inexpensively.

Description

本発明は、水生生物体内に有用成分を取り込ませる方法、およびそれを用いて得られた水生生物に関し、より詳細には、水生生物の体内に目的とする有用成分を効率良く取り込ませるための方法、および当該方法により得られた水生生物に関する。   The present invention relates to a method for incorporating a useful component into an aquatic organism, and an aquatic organism obtained by using the method, and more particularly, a method for efficiently incorporating a target useful component into the body of an aquatic organism. And aquatic organisms obtained by the method.

養殖魚などの水生生物の体内に体表から目的の物質(有用成分)を効率よく取り込ませることができれば、その水生生物に対して様々な効果を期待することができる。例えば、水生生物の体内に抗原を取り込むことができれば感染症に対する免疫力が高まる、罹患した水生生物の体内に種々の薬効成分を取り込むことができれば回復が早まる、などである。   If the target substance (useful component) can be efficiently taken into the body of aquatic organisms such as cultured fish from the body surface, various effects can be expected for the aquatic organisms. For example, if antigens can be taken into the body of aquatic organisms, immunity against infectious diseases will increase, and if various medicinal ingredients can be taken into the body of diseased aquatic organisms, recovery will be accelerated.

水生生物の体内に有用成分を取り込ませるために、従来よりいくつかの方法が知られている。例えば、有用成分を餌に混ぜて摂取させる方法、飼育水に混ぜて体表および/または鰓から取り込ませる方法、注射などにより個体ごとに強制的に注入する方法が挙げられる。   Several methods are conventionally known for incorporating useful components into the body of aquatic organisms. For example, a method in which useful ingredients are mixed with food and ingested, a method in which they are mixed with breeding water and taken in from the body surface and / or sputum, and a method in which each individual is forcibly injected by injection or the like can be mentioned.

ただし、これらの方法はいずれも実質的な効率性の観点から見て、未だ不充分と言わざるを得ない。   However, all of these methods are still insufficient from the viewpoint of substantial efficiency.

例えば、餌に混ぜて摂取させる方法は、大量の水生生物を処理するには一見効率的でありかつコストを低く抑えることができるとも考えられる。しかし、水生生物の有用成分の取り込みは餌の摂取量に影響されるため、個体ごとの活性の相違によって、有用成分の摂取量にばらつきが生じやすい。さらに摂取された有用成分の全てが確実に体内に吸収されるものでもない。   For example, it is considered that the method of ingesting by mixing with food is seemingly efficient for treating a large amount of aquatic organisms and can keep costs low. However, since the intake of useful components of aquatic organisms is affected by the intake of food, the intake of useful components tends to vary due to differences in activity among individuals. In addition, not all of the ingested useful ingredients are reliably absorbed by the body.

飼育水に混ぜて体表および/または鰓から取り込ませる方法についても、一見大量の水生生物を一度に処理することができ、コストを低く抑えることができるとも考えられる。しかし、水生生物の体表の保護層により、有用成分を効率的に体内に浸透させることは困難である。   Regarding the method of mixing with the breeding water and taking it from the body surface and / or the cage, it seems that a large amount of aquatic organisms can be treated at a glance and the cost can be kept low. However, it is difficult to efficiently infiltrate useful components into the body by the protective layer on the body surface of aquatic organisms.

体内への取り込みにあたり最も確実な方法は、注射などで強制的に注入する方法である。しかし、水生生物の一尾ずつに注入操作を必要とする点、および対象の水生生物が小さい場合には、作業が特に煩雑となる点、大量の尾数を処理するには高コストとならざるを得ない点が懸念される。さらに注入自体も体に外傷を負わすものであるため、注入後に斃死する場合もある。   The most reliable method for taking in the body is a method of forcibly injecting it by injection or the like. However, it requires an injection operation for each aquatic organism, and when the target aquatic organism is small, the work becomes particularly complicated, and it is expensive to handle a large number of fish. There is concern about the points that cannot be obtained. Furthermore, since the injection itself is traumatic to the body, it may be drowned after the injection.

生きている水生生物に有用成分を効率良く取り込ませる方法として、例えば、ワクチン成分を溶解した飼育水に水生生物を浸漬し、その環境下にて超音波を照射するとにより、水生生物の体表や鰓から直接ワクチン成分を体内に取り込ませる方法も知られている(特許文献1)。しかし、この方法は大量の魚を処理する場合に超音波の分布が偏ることがある。   As a method of efficiently incorporating useful components into living aquatic organisms, for example, by immersing aquatic organisms in breeding water in which vaccine components are dissolved and irradiating ultrasonic waves in the environment, the body surface of the aquatic organisms and A method is also known in which a vaccine component is taken directly into the body from sputum (Patent Document 1). However, in this method, the ultrasonic wave distribution may be biased when a large amount of fish is processed.

このように水生生物への有用成分のさらに効率的な取り込みを可能にする技術の開発が所望されている。   Thus, development of a technique that enables more efficient incorporation of useful components into aquatic organisms is desired.

特許第4910188号公報Japanese Patent No. 4910188

本発明は、上記問題の解決を課題とするものであり、その目的とするところは、水生生物に対して外傷を負わすことなく有用成分を効率良く取り込ませることができ、かつ取り込み後の斃死の可能性をも低減し得る、水生生物体内に有用成分を取り込ませる方法、およびそれを用いて得られた水生生物を提供することにある。   An object of the present invention is to solve the above-mentioned problems, and the object of the present invention is to allow useful components to be efficiently incorporated without causing trauma to aquatic organisms, and to drowning after incorporation. It is an object of the present invention to provide a method for incorporating a useful component into an aquatic organism, which can also reduce the possibility of the above, and an aquatic organism obtained using the method.

本発明者らは、生きている水生生物の体表および鰓表面にプロテアーゼを作用させることにより、その体表および鰓表面に存在する保護組織を一時的に除去し、有用成分を当該体表および鰓表面から効率良く取り込ませることを見出し、本発明を完成させた。   The present inventors temporarily remove the protective tissues present on the body surface and the surface of the cocoon by causing protease to act on the body surface and the surface of the cocoon of living aquatic organisms. The present invention was completed by finding that it can be efficiently incorporated from the surface of the ridge.

本発明は、水生生物の体内に有用成分を取り込ませるための方法であって、
(A)水生生物をプロテアーゼ水溶液に浸漬する工程;および
(B)該(A)工程の後、上記水生生物を、有用成分を含有する液体に浸漬する工程;
を包含する、方法である。
The present invention is a method for incorporating a useful component into the body of an aquatic organism,
(A) a step of immersing the aquatic organism in an aqueous protease solution; and (B) a step of immersing the aquatic organism in a liquid containing a useful component after the step (A);
A method comprising

1つの実施形態では、上記有用成分は水溶性成分である。   In one embodiment, the useful ingredient is a water-soluble ingredient.

さらなる実施形態では、上記有用成分は、薬剤、栄養強化剤、色素、旨み成分、鮮度保持剤、腐敗防止剤、酸化防止剤、消臭剤、および香料からなる群から選択される少なくとも1種の成分である。   In a further embodiment, the useful ingredient is at least one selected from the group consisting of drugs, nutrition enhancers, pigments, umami ingredients, freshness-preserving agents, antiseptics, antioxidants, deodorants, and fragrances. It is an ingredient.

1つの実施形態では、上記水生生物は魚である。   In one embodiment, the aquatic organism is a fish.

1つの実施形態では、本発明の上記方法は、さらに、(C)上記(B)工程の後、0.5重量%から2重量%の塩化ナトリウム濃度を有する塩水で飼育する工程を包含する。   In one embodiment, the method of the present invention further includes the step of (C) rearing in a salt water having a sodium chloride concentration of 0.5 wt% to 2 wt% after the step (B).

本発明はまた、水生生物の体内に有用成分を取り込ませるための方法であって、
(A’)水生生物を、プロテアーゼと有用成分とを含有する液体に浸漬する工程;
を包含する、方法である。
The present invention is also a method for incorporating useful components into the body of an aquatic organism,
(A ′) a step of immersing the aquatic organism in a liquid containing a protease and a useful component;
A method comprising

1つの実施形態では、上記有用成分は水溶性成分である。   In one embodiment, the useful ingredient is a water-soluble ingredient.

さらなる実施形態では、上記有用成分は、薬剤、栄養強化剤、色素、旨み成分、鮮度保持剤、腐敗防止剤、酸化防止剤、消臭剤、および香料からなる群から選択される少なくとも1種の成分である。   In a further embodiment, the useful ingredient is at least one selected from the group consisting of drugs, nutrition enhancers, pigments, umami ingredients, freshness-preserving agents, antiseptics, antioxidants, deodorants, and fragrances. It is an ingredient.

1つの実施形態では、上記水生生物は魚である。   In one embodiment, the aquatic organism is a fish.

1つの実施形態では、本発明の上記方法は、さらに(C’)上記(A’)工程の後、0.5重量%から2重量%の塩化ナトリウム濃度を有する塩水で飼育する工程を包含する。   In one embodiment, the method of the present invention further includes (C ′) after the step (A ′), the step of rearing in salt water having a sodium chloride concentration of 0.5 wt% to 2 wt%. .

本発明はまた、上記方法により得られた水生生物である。   The present invention is also an aquatic organism obtained by the above method.

本発明によれば、淡水魚および海水魚の区別なく水生生物に対し、ワクチン成分などの所望の有用成分を効率良く取り込ませることができる。さらに、この取り込みにあたり、当該水生生物には何ら外傷を与えることがないため、本発明の方法によって水生生物が斃死する可能性も著しく低減することができる。本発明の方法は、水生生物の個体毎に操作を必要とすることなく、一度に大量の水生生物に対して有用成分の取り込みを行うことができる。さらに本発明の方法によれば、有用成分の取り込みにあたり個々の水生生物に対してより均質な環境を提供することができる。これにより、有用成分で強化された水生生物を大量に生産することができる。   ADVANTAGE OF THE INVENTION According to this invention, desired useful components, such as a vaccine component, can be efficiently taken in with respect to aquatic organisms, without distinction of freshwater fish and saltwater fish. Furthermore, since this aquatic organism is not damaged at the time of this uptake | capture, possibility that an aquatic organism will be drowned by the method of this invention can also be reduced significantly. The method of this invention can take in a useful component with respect to a large amount of aquatic organisms at once, without requiring operation for each individual of aquatic organisms. Furthermore, according to the method of the present invention, it is possible to provide a more homogeneous environment for individual aquatic organisms in taking up useful components. Thereby, the aquatic organism reinforced with useful components can be produced in large quantities.

実施例1ならびに比較例1および2で行ったアユにおける冷水病ワクチンの効果を試験した際の、各試験区における累積死亡率(%)の経時変化を示したグラフである。It is the graph which showed the time-dependent change of the cumulative mortality rate (%) in each test section when testing the effect of the cold water disease vaccine in sweetfish performed in Example 1 and Comparative Examples 1 and 2. 参考例1および2ならびに参考比較例1で行ったアユにおける冷水病感染に対する効果を試験した際の、各試験区における累積死亡率(%)の経時変化を示したグラフである。It is the graph which showed the time-dependent change of the cumulative mortality (%) in each test section when the effect with respect to the cold water disease infection in ayu performed in Reference Examples 1 and 2 and Reference Comparative Example 1 was tested. 実施例2ならびに比較例3および4で行ったヒラメにおけるレンサ球菌症ワクチンの効果を試験した際の、各試験区における累積死亡率(%)の経時変化を示したグラフである。It is the graph which showed the time-dependent change of the cumulative mortality rate (%) in each test section when the effect of the streptococcal vaccine in the Japanese flounder performed in Example 2 and Comparative Examples 3 and 4. 参考例3および4ならびに参考比較例2で行ったヒラメにおけるレンサ球菌症感染に対する効果を試験した際の、各試験区における累積死亡率(%)の経時変化を示したグラフである。It is the graph which showed the time-dependent change of the cumulative mortality rate (%) in each test section when the effect with respect to the streptococcal infection in the flounder performed in Reference Examples 3 and 4 and Reference Comparative Example 2 was tested. 実施例3および比較例5および6で行ったアユにおけるレンサ球菌症ワクチンの効果を試験した際の、各試験区における抗体価測定のためのELISA吸光度(492nm)の平均値を示したグラフである。It is the graph which showed the average value of the ELISA light absorbency (492nm) for the antibody titer measurement in each test section when testing the effect of the streptococcal vaccine in the ayu performed in Example 3 and Comparative Examples 5 and 6 .

まず、本発明の水生生物の体内に有用成分を取り込ませるための第一の方法について説明する。   First, the 1st method for taking in a useful component in the body of the aquatic organism of this invention is demonstrated.

本発明の方法では、工程(A)として、水生生物がプロテアーゼ水溶液に浸漬される。   In the method of the present invention, as a step (A), an aquatic organism is immersed in an aqueous protease solution.

本発明において対象となる水生生物は、生きている状態の生物であって水中に生息するもの全般を指して言う。水生生物は、淡水魚または海水魚のように、淡水または海水のいずれに生息するものであってもよく、例えば、海洋、河川、湖沼、池などの自然水域に生育するもの、および養殖筏、養殖施設、水槽などの人工水域にて生育するもののいずれをも包含する。水生生物としては、必ずしも限定されないが、例えば、アユ、コイ、キンギョ、ヒラメ、マダイ、マグロ、カンパチ、ブリ、フグ、サケ、マスなどの硬骨魚類;エイ、サメなどの軟骨魚類;エビ、カニなどの甲殻類;イカ、タコ、貝類などの軟体動物;ならびにナマコ、ウニなどの棘皮動物;が挙げられる。   The target aquatic organism in the present invention refers to all living organisms that live in water. Aquatic organisms may be inhabited in either freshwater or seawater, such as freshwater fish or saltwater fish, such as those that grow in natural waters such as the ocean, rivers, lakes, ponds, and culture troughs, aquaculture facilities Any of those that grow in artificial water such as an aquarium are included. Examples of aquatic organisms include, but are not limited to, teleosts such as ayu, carp, goldfish, flounder, red sea bream, tuna, amberjack, yellowtail, puffer fish, salmon and trout; cartilage fish such as rays and sharks; shrimp and crabs Crustaceans; molluscs such as squid, octopus and shellfish; and echinoderms such as sea cucumber and sea urchin.

本発明に用いられるプロテアーゼは、タンパク質を分解する任意の酵素であってよく、例えば、エンドペプチフダーゼおよびエキソペプチダーゼのいずれであってもよく、例えば、アミノペプチダーゼおよびカルボキシペプチダーゼのいずれであってもよい。さらに、実用的にはコスト、入手しやすさ、安全性に優れているなどの観点から、例えば食品加工用に使用されるプロテアーゼを用いてもよい。プロテアーゼの例としては、パパイン、ブロメライン、アクチナーゼ、トリプシンが挙げられる。例えば、パパイン製剤は、新日本化学工業株式会社よりスミチームP、天野エンザイム株式会社よりパパインw−40などの商品名で市販されている。   The protease used in the present invention may be any enzyme that degrades protein, for example, any of endopeptidase and exopeptidase, for example, any of aminopeptidase and carboxypeptidase. Good. Furthermore, from the viewpoint of practically cost, availability, and safety, for example, a protease used for food processing may be used. Examples of proteases include papain, bromelain, actinase, and trypsin. For example, papain preparations are commercially available under the trade names such as Sumiteam P from Shin Nippon Chemical Industry Co., Ltd. and Papain w-40 from Amano Enzyme Inc.

本発明において、プロテアーゼは、飼育水(例えば、海水、河川水、水道水、およびイオン交換水)に所定量を溶解させることにより、プロテアーゼ水溶液が調製される。   In the present invention, a protease aqueous solution is prepared by dissolving a predetermined amount of protease in breeding water (for example, seawater, river water, tap water, and ion exchange water).

また、プロテアーゼは種類によってその作用が異なるため、水生生物の体表および/または鰓の表面に存在する保護組織を一時的に効率よく除去するためには、複数のプロテアーゼを組み合わせることによって、プロテアーゼ水溶液を調製してもよい。   In addition, since the action of protease varies depending on the type, in order to temporarily and efficiently remove the protective tissue existing on the surface of the aquatic organism and / or the surface of the cocoon, an aqueous protease solution can be obtained by combining a plurality of proteases. May be prepared.

このプロテアーゼ水溶液におけるプロテアーゼの含有量(濃度)は、水生生物の種類、成長段階、個体数または密度などの条件によって変動するため必ずしも限定されないが、例えば、上記パパイン製剤などのプロテアーゼを使用する場合に調製される濃度は、好ましくは0.01mg/ml〜10mg/ml、より好ましくは0.1mg/ml〜5mg/mlである。プロテアーゼの濃度が0.01mg/ml未満であると、水生生物に対して、その体表または鰓の保護層に当該プロテアーゼが充分に機能せず、後述する有用成分の取り込みが充分に達成されない場合がある。一方、プロテアーゼの濃度が10mg/mlを上回ると、水生生物の体表等の保護層への影響が大きくなり、当該水生生物が斃死に至る場合がある。あるいは、例えば、上記パパイン製剤などのプロテアーゼを使用する場合に調製される濃度は、好ましくは4ユニット(U)/ml〜4000ユニット(U)/ml、より好ましくは40ユニット(U)/ml〜2000ユニット(U)/mlである。   The content (concentration) of the protease in the aqueous protease solution is not necessarily limited because it varies depending on conditions such as the type of aquatic organisms, the growth stage, the number of individuals, or the density. For example, when a protease such as the papain preparation is used. The concentration to be prepared is preferably 0.01 mg / ml to 10 mg / ml, more preferably 0.1 mg / ml to 5 mg / ml. When the concentration of the protease is less than 0.01 mg / ml, the protease does not sufficiently function in the body surface or the protective layer of the coral for aquatic organisms, and the incorporation of useful components described later cannot be sufficiently achieved. There is. On the other hand, when the concentration of the protease exceeds 10 mg / ml, the influence on the protective layer such as the body surface of the aquatic organism is increased, and the aquatic organism may be drowned. Alternatively, for example, the concentration prepared when using a protease such as the papain preparation is preferably 4 units (U) / ml to 4000 units (U) / ml, more preferably 40 units (U) / ml to 2000 units (U) / ml.

プロテアーゼ水溶液には、必要に応じて、水生生物の生育に必要な他の添加剤(例えば、ブドウ糖)が含有されていてもよい。さらに、プロテアーゼ水溶液には、浸漬の間の水生生物の活性を低下させないために、エアーポンプなどの当該分野にて周知の手段を用いて充分な酸素が予めおよび/または浸漬の間供給されていてもよい。さらにヒーター等を用いて、当該水生生物の生育に通常要求される水温に予め設定がなされていてもよい。   The protease aqueous solution may contain other additives (for example, glucose) necessary for the growth of aquatic organisms, if necessary. Furthermore, in order to not reduce the activity of aquatic organisms during immersion, the protease aqueous solution is supplied with sufficient oxygen in advance and / or during immersion using means well known in the art such as an air pump. Also good. Further, a water temperature ordinarily required for the growth of the aquatic organism may be set in advance using a heater or the like.

このようなプロテアーゼ水溶液への水生生物の浸漬は、例えば、所定容量の水槽中で1個体毎に行われてもよく、あるいは複数個体を一括して行ってもよい。作業効率性を勘案すれば、複数個体を一括して浸漬することが好ましい。   Such immersion of aquatic organisms in an aqueous protease solution may be performed, for example, for each individual in a predetermined volume of water tank, or may be performed for a plurality of individuals at once. In consideration of work efficiency, it is preferable to immerse a plurality of individuals at once.

水生生物の浸漬時間もまた、水生生物の種類、成長段階、個体数および密度、ならびにプロテアーゼ水溶液の調製濃度などによって変動するため必ずしも限定されないが、好ましくは1分〜30分、より好ましくは5分〜20分である。   The immersion time of the aquatic organism is not necessarily limited because it varies depending on the type of aquatic organism, the growth stage, the number and density of the aquatic organism, the preparation concentration of the aqueous protease solution, and the like, but preferably 1 minute to 30 minutes, more preferably 5 minutes. ~ 20 minutes.

プロテアーゼ水溶液への浸漬によって、水生生物の体表および/または鰓の表面に存在する保護層のタンパク質が分解される。その結果、後述する有用成分の取り込みが一層容易な環境が水生生物に形成される。   By dipping in an aqueous protease solution, the protein in the protective layer present on the surface of the aquatic organism and / or the surface of the cocoon is degraded. As a result, an environment in which useful components described later can be more easily taken up is formed in aquatic organisms.

浸漬後、水生生物はプロテアーゼ水溶液から取り出される。取り出された水生生物は、特に水洗等が行われることなく、そのまま次の工程に供される。   After soaking, the aquatic organisms are removed from the aqueous protease solution. The extracted aquatic organism is directly subjected to the next step without being washed.

上記プロテアーゼ水溶液への浸漬の後、水生生物は有用成分を含有する液体に浸漬される。   After immersion in the protease aqueous solution, the aquatic organism is immersed in a liquid containing useful components.

本発明に用いられる有用成分は、水生生物の成長促進、病気等の予防または治療、商品としての価値向上等の目的で、通常、給餌、注射その他任意の手法を用いて水生生物の体内に取り込みが行われる物質、または当該物質を含有する材料を包含する。このような有用成分の例としては、薬剤(ワクチン成分、ホルモン成分を包含する)、栄養強化剤、色素、旨み成分、鮮度保持剤、腐敗防止剤、酸化防止剤、消臭剤、および香料、ならびにこれらの組合せが挙げられる。有用成分は水溶性のものであることが好ましい。   The useful components used in the present invention are usually taken into the body of aquatic organisms by feeding, injection or any other method for the purpose of promoting the growth of aquatic organisms, preventing or treating diseases, etc., and improving the value of products. Or a material containing the substance. Examples of such useful ingredients include drugs (including vaccine ingredients, hormone ingredients), nutrition enhancers, pigments, umami ingredients, freshness-preserving agents, anti-corruption agents, antioxidants, deodorants, and fragrances, As well as combinations thereof. The useful component is preferably water-soluble.

本発明において、有用成分は、飼育水(例えば、海水、河川水、水道水、およびイオン交換水)に所定量を溶解または懸濁させることにより、有用成分を含有する液体(以下、「有用成分液」という)が調製される。このような有用成分液は、含有される有用成分の種類に応じて、水溶液または懸濁液のいずれかである。   In the present invention, a useful component is a liquid containing a useful component (hereinafter referred to as “useful component”) by dissolving or suspending a predetermined amount in breeding water (for example, seawater, river water, tap water, and ion-exchanged water). Liquid)) is prepared. Such a useful component liquid is either an aqueous solution or a suspension depending on the kind of useful component contained.

この有用成分液における有用成分の含有量(濃度)は、水生生物の種類、成長段階、個体数または密度などの条件によって変動するため必ずしも限定されず、有用成分の種類に応じて当業者が任意の濃度を調製することができる。   The content (concentration) of useful components in the useful component solution is not necessarily limited because it varies depending on conditions such as the type of aquatic organisms, the growth stage, the number of individuals, or the density, and can be arbitrarily determined by those skilled in the art depending on the types of useful components. Concentrations can be prepared.

有用成分液には、必要に応じて、他の有用成分および/または水生生物の生育に必要な他の添加剤(例えば、ブドウ糖)が含有されていてもよい。さらに、有用成分液には、浸漬の間の水生生物の活性を低下させないために、エアーポンプなどの当該分野にて周知の手段を用いて充分な酸素が予めおよび/または浸漬の間供給されていてもよい。さらにヒーター等を用いて、当該水生生物の生育に通常要求される水温に予め設定がなされていてもよい。   The useful component liquid may contain other useful components and / or other additives necessary for the growth of aquatic organisms (for example, glucose) as necessary. Further, the useful component liquid is supplied with sufficient oxygen in advance and / or during immersion so as not to reduce the activity of aquatic organisms during immersion, using means well known in the art such as an air pump. May be. Further, a water temperature ordinarily required for the growth of the aquatic organism may be set in advance using a heater or the like.

このような有用成分液への水生生物の浸漬もまた、例えば、所定容量の水槽中で1個体毎に行われてもよく、あるいは複数個体を一括して行ってもよい。作業効率性を勘案すれば、複数個体を一括して浸漬することが好ましい。   The immersion of aquatic organisms in such useful component liquids may also be performed for each individual in a predetermined volume of water tank, or a plurality of individuals may be performed in a lump. In consideration of work efficiency, it is preferable to immerse a plurality of individuals at once.

水生生物の浸漬時間もまた、水生生物の種類、成長段階、個体数および密度、ならびに有用成分液の調製濃度などによって変動するため必ずしも限定さえないが、好ましくは1分〜60分、より好ましくは5分〜30分である。   The immersion time of the aquatic organism is not necessarily limited because it varies depending on the type of aquatic organism, the growth stage, the number and density of the aquatic organism, the preparation concentration of the useful component liquid, etc., but preferably 1 minute to 60 minutes, more preferably 5 to 30 minutes.

このような浸漬後、水生生物は有用成分液から取り出される。   After such immersion, aquatic organisms are removed from the useful component liquid.

なお、本発明においては、上記有用成分液への浸漬の後、水生生物を当該生物の体液と等張の飼育水、あるいは0.5重量%から2重量%の塩化ナトリウム濃度を有する塩水(例えば、河川水、水道水および/またはイオン交換水を用いて希釈した海水、あるいは当該濃度範囲になるように人工的に調製した食塩水であって、水生生物の体液と等張またはほぼ等張の飼育水)で飼育してもよい。上記プロテアーゼ水溶液への浸漬によって、除去または弱められた水生生物の体表等の保護層をより早期に回復させるためである。   In the present invention, after being immersed in the useful component liquid, aquatic organisms are kept isotonic with body fluids of the organisms, or salt water having a sodium chloride concentration of 0.5 to 2% by weight (for example, , Seawater diluted with river water, tap water and / or ion-exchanged water, or saline prepared artificially to reach the concentration range, and isotonic or nearly isotonic with body fluids of aquatic organisms You may breed with breeding water. This is because the protective layer such as the surface of aquatic organisms removed or weakened by immersion in the protease aqueous solution can be recovered earlier.

このような飼育は保護層の回復のために一時的に行われる。飼育期間は、水生生物の種類、成長段階、個体数および密度等によって変動するため必ずしも限定されないが、例えば、1日〜3日程度である。   Such breeding is temporarily performed to recover the protective layer. The breeding period is not necessarily limited because it varies depending on the type of aquatic organism, the growth stage, the number of individuals, the density, and the like, but is, for example, about 1 to 3 days.

このようにして水生生物の体内に有用成分を取り込ませることができる。   In this way, useful components can be taken into the body of aquatic organisms.

次に、本発明の水生生物の体内に有用成分を取り込ませるための第二の方法について説明する。   Next, the 2nd method for taking in a useful component in the body of the aquatic organism of this invention is demonstrated.

本発明の第二の方法では、水生生物が、プロテアーゼと有用成分とを含有する液体(以下、「プロテアーゼ−有用成分液」という)に浸漬される。このようなプロテアーゼ−有用成分液は、含有される有用成分の種類に応じて、水溶液または懸濁液のいずれかである。   In the second method of the present invention, an aquatic organism is immersed in a liquid containing a protease and a useful component (hereinafter referred to as “protease-useful component liquid”). Such a protease-useful component solution is either an aqueous solution or a suspension depending on the kind of useful component contained.

上記第一の方法と異なり、浸漬される液体は1種類であり、当該液体に上記プロテアーゼおよび有用成分が共存する。本発明の第二の方法で使用され得るプロテアーゼの種類および調製濃度、有用成分の種類および調製濃度、その他添加可能な材料等は上記第一の方法と同様である。   Unlike the first method, there is only one kind of liquid to be immersed, and the protease and useful components coexist in the liquid. The kind and preparation concentration of the protease that can be used in the second method of the present invention, the kind and preparation concentration of useful components, and other materials that can be added are the same as in the first method.

水生生物の浸漬時間は、水生生物の種類、成長段階、個体数および密度、ならびに有用成分水溶液の調製濃度などによって変動するため必ずしも限定されないが、好ましくは1分〜60分、より好ましくは5分〜30分である。   The immersion time of the aquatic organism is not necessarily limited because it varies depending on the type of aquatic organism, the growth stage, the number and density of the aquatic organism, the preparation concentration of the useful component aqueous solution, etc., but preferably 1 minute to 60 minutes, more preferably 5 minutes. ~ 30 minutes.

これにより、水生生物の体表および/または鰓の保護層におけるタンパク質の分解と、当該体表および/または鰓からの有用成分の取り込みが一度の浸漬操作によって達成され得る。   Thereby, protein decomposition in the body surface of the aquatic organism and / or the protective layer of the cocoon, and incorporation of useful components from the body surface and / or the cocoon can be achieved by a single dipping operation.

所定時間の浸漬の後、水生生物はプロテアーゼ−有用成分液から取り出される。   After immersion for a predetermined time, the aquatic organism is removed from the protease-useful component solution.

なお、本発明においては、上記プロテアーゼ−有用成分液への浸漬の後、水生生物を0.5重量%から2重量%の塩化ナトリウム濃度を有する塩水(例えば、河川水、水道水および/またはイオン交換水を用いて希釈した海水、あるいは当該濃度範囲になるように人工的に調製した食塩水であって、水生生物の体液と等張またはほぼ等張の飼育水)で飼育してもよい。このような飼育手法および飼育手段は上記第一の方法と同様のものが当業者によって適宜選択される。   In the present invention, after immersion in the protease-useful component solution, aquatic organisms are mixed with salt water (for example, river water, tap water and / or ions) having a sodium chloride concentration of 0.5 wt% to 2 wt%. Seawater diluted with exchange water, or saline prepared artificially so as to be in the concentration range, may be reared in the body fluid of aquatic organisms and isotonic or nearly isotonic). Such breeding techniques and breeding means are appropriately selected by those skilled in the art as those in the first method.

このようにして水生生物の体内に有用成分を取り込ませることができる。   In this way, useful components can be taken into the body of aquatic organisms.

本発明の上記第一または第二の方法を経て取り出された水生生物は、特に水洗等が行われることなく、例えば、元の飼育環境(例えば、海洋、河川、湖沼、池、養殖筏、養殖施設、水槽など)に戻される。あるいは、当該水生生物を水産加工食品として使用する場合は、水産加工のための次の工程に移されてもよい。   The aquatic organisms extracted through the first or second method of the present invention are not particularly washed with water, for example, in the original breeding environment (for example, the ocean, rivers, lakes, ponds, culture troughs, aquaculture) Returned to the facility, aquarium, etc.) Or when using the said aquatic organism as a fishery processed food, you may move to the next process for fishery processing.

なお、上記第一の方法および第二の方法では、生きている水生生物を用いた場合の例について説明したが、本発明は必ずしも上記に限定されない。すなわち、有用成分の取り込みは、例えば、水産加工を目的として水揚げ後、すでに死んでいる状態である水生生物に対しても適用することができる。   In addition, although the example at the time of using the living aquatic organism was demonstrated in said 1st method and 2nd method, this invention is not necessarily limited above. That is, the incorporation of useful components can be applied to aquatic organisms that are already dead after landing for the purpose of processing fisheries, for example.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples.

(実施例1:アユへの冷水病ワクチンの取り込み)
ワクチン作製用の菌株として、2004年に広島県内の養殖場の冷水病のアユから分離されたFlavobacteirum psychrophilum PH−0424株を、CGY培地(0.25重量%カシトン、0.15重量%ゼラチン、および0.05重量%酵母エキスを含有)を用い、対数増殖後期まで15℃にて振盪培養(110rpm)したものに、0.3(v/v)%となるようにホルマリンを添加して不活化させることにより、冷水病ワクチンを得た。
(Example 1: Incorporation of cold water disease vaccine into sweetfish)
As a vaccine-producing strain, Flavobacterium syphilophilum PH-0424 strain isolated from a cold water ayu of a farm in Hiroshima Prefecture in 2004 was used as a CGY medium (0.25 wt% cashitones, 0.15 wt% gelatin, and 0.05% by weight yeast extract) and inactivated by adding formalin to 0.3 (v / v)% after shaking culture (110 rpm) at 15 ° C. until late in logarithmic growth By doing so, a cold water disease vaccine was obtained.

平均体重2.0gの人工生産されたアユ30尾を実験区の1区として用いた。パパイン製剤(新日本化学工業株式会社製スミチームP)1gを5Lの淡水に溶解した水溶液を水槽に仕込み、この水槽に当該区のアユを14.0℃で15分間浸漬した。その後、全てのアユを水槽から取り出し、これらのアユを、淡水で容量比1/10まで希釈した上記冷水病ワクチン懸濁液5Lに14.0℃で15分間浸漬した。   Thirty artificially-produced sweetfish with an average weight of 2.0 g were used as one of the experimental plots. An aqueous solution prepared by dissolving 1 g of papain preparation (Sumiteam P, manufactured by Shinnippon Kagaku Kogyo Co., Ltd.) in 5 L of fresh water was placed in a water tank, and the ayu of the section was immersed in the water tank at 14.0 ° C. for 15 minutes. Thereafter, all sweetfish were taken out from the water tank, and these sweetfish were immersed in 5 L of the cold water disease vaccine suspension diluted to 1/10 volume ratio with fresh water at 14.0 ° C. for 15 minutes.

全てのアユをワクチン懸濁液から取り出し、通常の飼育水槽に移して15日間飼育した。   All sweetfish were removed from the vaccine suspension, transferred to a normal breeding aquarium and raised for 15 days.

上記ワクチン処理から15日経過後、この実験区の全てのアユを、冷水病菌培養液(PH−1037株培養液;106.8CFU/mL)に30分間浸漬した。なお、当該PH−1037株は、2010年に広島県内の養殖場で発生した冷水病のアユから分離されたF.psychrophilumである。 After 15 days from the vaccine treatment, all sweetfish in this experimental group were immersed in a cold water fungus culture solution (PH-1037 strain culture solution; 10 6.8 CFU / mL) for 30 minutes. In addition, the PH-1037 strain was isolated from a cold water ayu that occurred in a farm in Hiroshima in 2010. psychromium.

その後アユを通常の飼育環境に戻し、このまま14日間アユの飼育を継続し、その期間における死亡したアユの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図1に示す。   Thereafter, the sweetfish was returned to the normal breeding environment, and the breeding of the sweetfish was continued for 14 days, and the number of dead sweetfish during that period was counted. FIG. 1 shows the number of dead individuals calculated as a percentage of the cumulative number of deaths during the breeding period.

(比較例1:アユへの冷水病ワクチンの取り込み)
パパイン製剤を溶解した水溶液への浸漬を行わず、ワクチン懸濁液への浸漬のみを行ったこと以外は実施例1と同様にしてアユの飼育を行った。その後、実施例1と同様にしてアユを冷水病菌培養液にて浸漬し、その後アユを通常の飼育環境に戻した状態で飼育し、その期間における死亡したアユの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図1に示す。
(Comparative Example 1: Incorporation of cold water disease vaccine into sweetfish)
Ayu was bred in the same manner as in Example 1 except that it was not immersed in an aqueous solution in which a papain preparation was dissolved, but only immersed in a vaccine suspension. Thereafter, in the same manner as in Example 1, sweetfish was dipped in a culture solution of cold water disease bacteria, and then raised in a state where the sweetfish was returned to a normal breeding environment, and the number of dead sweetfish during that period was counted. FIG. 1 shows the number of dead individuals calculated as a percentage of the cumulative number of deaths during the breeding period.

(比較例2:対照区(非免疫区))
対照区として、パパイン製剤を溶解した水溶液への浸漬を行わず、かつワクチン懸濁液への浸漬も行わなかったこと以外は実施例1と同様にしてアユの飼育を行った。その後、実施例1と同様にしてアユを冷水病菌培養液にて浸漬し、その後アユを通常の飼育環境に戻した状態で飼育し、その期間における死亡したアユの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図1に示す。
(Comparative example 2: control group (non-immune group))
As a control group, sweetfish was bred in the same manner as in Example 1 except that it was not immersed in an aqueous solution in which a papain preparation was dissolved and was not immersed in a vaccine suspension. Thereafter, in the same manner as in Example 1, sweetfish was dipped in a culture solution of cold water disease bacteria, and then raised in a state where the sweetfish was returned to a normal breeding environment, and the number of dead sweetfish during that period was counted. FIG. 1 shows the number of dead individuals calculated as a percentage of the cumulative number of deaths during the breeding period.

図1に示すように、14日後の累積死亡率は比較例2の対照区で63.3%,ワクチンのみで処理した比較例1の実験区で73.3%、プロテアーゼ処理かつワクチン処理した実施例1の実験区44.8%となり、ワクチン処理前にプロテアーゼ水溶液で処理することにより、該当する実験区のアユに対してワクチンの効果が高まっていたことがわかる。   As shown in FIG. 1, the cumulative mortality after 14 days was 63.3% in the control group of Comparative Example 2 and 73.3% in the experimental group of Comparative Example 1 treated with the vaccine alone. It became 44.8% in the experimental section of Example 1, and it can be seen that the effect of the vaccine was enhanced against the sweetfish in the corresponding experimental section by treating with the protease aqueous solution before the vaccine treatment.

(参考例1:アユへのプロテアーゼ処理の効果)
平均体重4.7gの人工生産されたアユ20尾を実験区の1区として用いた。パパイン製剤(新日本化学工業株式会社製スミチームP)0.5gを10Lの淡水に溶解した水溶液を水槽に仕込み、この水槽に当該区のアユを15.5℃で30分間浸漬した。
(Reference Example 1: Effect of protease treatment on sweetfish)
Twenty artificially-produced sweetfish with an average body weight of 4.7 g were used as one of the experimental plots. An aqueous solution prepared by dissolving 0.5 g of papain preparation (Sumiteam P, manufactured by Shinnippon Kagaku Kogyo Co., Ltd.) in 10 L of fresh water was placed in a water tank, and the ayu of the section was immersed in the water tank at 15.5 ° C. for 30 minutes.

全てのアユをパパイン水溶液から取り出し、この実験区の全てのアユを、冷病菌培養液(PH−0424株培養液;106.9CFU/mL)に1時間浸漬した。 All sweetfish were taken out from the papain aqueous solution, and all sweetfish in this experimental section were immersed in a cold disease bacterial culture solution (PH-0424 strain culture solution; 10 6.9 CFU / mL) for 1 hour.

その後アユを通常の飼育環境に戻し、このまま14日間アユの飼育を継続し、その期間における死亡したアユの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図2に示す。   Thereafter, the sweetfish was returned to the normal breeding environment, and the breeding of the sweetfish was continued for 14 days, and the number of dead sweetfish during that period was counted. FIG. 2 shows the number of dead individuals calculated as a ratio of the cumulative number of deaths during the breeding period.

(参考例2:アユへのプロテーゼ処理および回復処理の効果)
参考例1と同様にしてプロテアーゼ水溶液によるアユの浸漬処理を行った。全てのアユをプロテアーゼ水溶液から取り出して、1日間淡水中で飼育した(回復処理)。
(Reference Example 2: Effect of prosthesis treatment and recovery treatment on sweetfish)
Ayu was soaked with an aqueous protease solution in the same manner as in Reference Example 1. All sweetfish were taken out from the protease aqueous solution and reared in fresh water for 1 day (recovery treatment).

その後、参考例1と同様にしてアユを冷水病菌培養液にて浸漬し、その後アユを通常の飼育環境に戻した状態で飼育し、その期間における死亡したアユの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図2に示す。   Thereafter, in the same manner as in Reference Example 1, sweetfish was dipped in a culture solution of cold water disease bacteria, and then raised in a state where the sweetfish was returned to a normal breeding environment, and the number of dead sweetfish during that period was counted. FIG. 2 shows the number of dead individuals calculated as a ratio of the cumulative number of deaths during the breeding period.

(参考比較例1:対照区(非免疫区))
対照区として、パパイン製剤を溶解した水溶液への浸漬を行わなかったこと以外は参考例1と同様にしてアユの飼育を行った。その後、参考例1と同様にしてアユを冷水病菌培養液にて浸漬し、その後アユを通常の飼育環境に戻した状態で飼育し、その期間における死亡したアユの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図2に示す。
(Reference Comparative Example 1: Control group (non-immune group))
As a control, sweetfish was bred in the same manner as in Reference Example 1 except that it was not immersed in an aqueous solution in which a papain preparation was dissolved. Thereafter, in the same manner as in Reference Example 1, sweetfish was dipped in a culture solution of cold water disease bacteria, and then raised in a state where the sweetfish was returned to a normal breeding environment, and the number of dead sweetfish during that period was counted. FIG. 2 shows the number of dead individuals calculated as a ratio of the cumulative number of deaths during the breeding period.

図2に示すように、14日後の累積死亡率は参考比較例1の対照区で45%、プロテアーゼ処理のみを行った参考例1の実験区で70%、プロテアーゼ処理と回復処理とを行った参考例2の実験区で20%となった。このことから、プロテアーゼ処理によって、アユは、実施例1のようなワクチンだけでなく、水溶液中の細菌を取り込みやすくなっており、むしろ参考例1と参考比較例1とを比較した場合は、プロテアーゼ処理を行った参考例1の方が冷水病菌の取り込みが増大されたことがわかる。これに対し、プロテアーゼ処理と回復処理とを行った参考例2の実験区では、プロテアーゼ処理で失われた体表粘液が1日後には回復していることがわかる。   As shown in FIG. 2, the cumulative mortality after 14 days was 45% in the control group of Reference Comparative Example 1, 70% in the experimental group of Reference Example 1 where only protease treatment was performed, and protease treatment and recovery treatment were performed. It was 20% in the experimental section of Reference Example 2. From this, the protease treatment makes it easier for ayu to take up not only the vaccine as in Example 1 but also the bacteria in the aqueous solution. It can be seen that the treatment of Reference Example 1 in which treatment was performed increased the intake of cold water disease bacteria. On the other hand, in the experimental group of Reference Example 2 in which the protease treatment and the recovery treatment were performed, it can be seen that the body surface mucus lost by the protease treatment was recovered after one day.

(実施例2:ヒラメへのレンサ球菌症ワクチンの取り込み)
平均体重28.5gの人工生産されたヒラメ20尾を実験区の1区として用いた。パパイン製剤(新日本化学工業株式会社製スミチームP)5gを1Lの海水に溶解した水溶液を水槽に仕込み、この水槽に当該区のヒラメを19.0℃で15分間浸漬した。その後、全てのヒラメを水槽から取り出し、これらのヒラメを、海水で容量比1/10まで希釈したレンサ球菌ワクチン(Mバックイニエ;共立製薬株式会社製)を含有する懸濁液1Lに19.0℃で30分間浸漬した。
(Example 2: Uptake of streptococcal vaccine into Japanese flounder)
Twenty artificially produced flounder with an average weight of 28.5 g was used as one of the experimental plots. An aqueous solution prepared by dissolving 5 g of papain preparation (Sumiteam P, manufactured by Shin Nippon Chemical Industry Co., Ltd.) in 1 L of seawater was placed in a water tank, and the flounder of the section was immersed in this water tank at 19.0 ° C. for 15 minutes. Thereafter, all the flounder were removed from the aquarium, and these flounder were placed at 19.0 ° C. in 1 L of a suspension containing a streptococcal vaccine diluted with seawater to a volume ratio of 1/10 (M Buckinye; manufactured by Kyoritsu Pharmaceutical Co., Ltd.). Soaked for 30 minutes.

全てのヒラメをワクチン懸濁液から取り出し、通常の飼育水槽に移して14日間飼育した。   All flounder was taken out from the vaccine suspension, transferred to a normal breeding aquarium and raised for 14 days.

上記ワクチン処理から14日経過後、この実験区の全てのヒラメを、トリプトソーヤブイヨン(日水製薬株式会社製)で培養したStreptococcus iniae Psi402株(松岡ら、魚病研究、2007年、第42号、pp.181−189)を104.1CFU/個体となるようにそれぞれ腹腔内注射した。 After 14 days from the vaccine treatment, all the flounder in this experimental section were cultured in Streptococcus bouillon (manufactured by Nissui Pharmaceutical Co., Ltd.) Streptococcus iniae Psi402 strain (Matsuoka et al., Fish Disease Research, 2007, No. 42) , Pp.181-189) were each intraperitoneally injected so as to be 10 4.1 CFU / individual.

その後ヒラメを通常の飼育環境に戻し、このまま13日間ヒラメの飼育を継続し、その期間における死亡したヒラメの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図3に示す。   Thereafter, the flounder was returned to a normal breeding environment, and flounder breeding was continued for 13 days as it was, and the number of dead flounder individuals during that period was counted. FIG. 3 shows the number of dead individuals calculated as a ratio of the cumulative number of deaths during the breeding period.

(比較例3:ヒラメへのレンサ球菌症ワクチンの取り込み)
パパイン製剤を溶解した水溶液への浸漬を行わず、ワクチン懸濁液への浸漬のみを行ったこと以外は実施例2と同様にしてヒラメの飼育を行った。その後、実施例2と同様にしてPsi402株の腹腔内注射を行い、その後ヒラメを通常の飼育環境に戻した状態で飼育し、その期間における死亡したヒラメの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図3に示す。
(Comparative Example 3: Uptake of streptococcal vaccine into Japanese flounder)
Flounder was reared in the same manner as in Example 2 except that it was not immersed in the aqueous solution in which the papain preparation was dissolved, but only immersed in the vaccine suspension. Thereafter, intraperitoneal injection of the Psi402 strain was performed in the same manner as in Example 2, and then the flounder was reared in a normal breeding environment, and the number of dead flounder individuals during that period was counted. FIG. 3 shows the number of dead individuals calculated as a ratio of the cumulative number of deaths during the breeding period.

(比較例4:対照区(非免疫区))
対照区として、パパイン製剤を溶解した水溶液への浸漬を行わず、かつワクチン懸濁液への浸漬も行わなかったこと以外は実施例2と同様にしてヒラメの飼育を行った。その後、実施例2と同様にしてPsi402株の腹腔内注射を行い、その後ヒラメを通常の飼育環境に戻した状態で飼育し、その期間における死亡したヒラメの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図3に示す。
(Comparative Example 4: Control group (non-immune group))
As a control group, flounder was bred in the same manner as in Example 2 except that it was not immersed in an aqueous solution in which a papain preparation was dissolved and was not immersed in a vaccine suspension. Thereafter, intraperitoneal injection of the Psi402 strain was performed in the same manner as in Example 2, and then the flounder was reared in a normal breeding environment, and the number of dead flounder individuals during that period was counted. FIG. 3 shows the number of dead individuals calculated as a ratio of the cumulative number of deaths during the breeding period.

図3に示すように、13日後の累積死亡率は比較例4の対照区で95.0%、ワクチンのみで処理した比較例3の実験区で45.0%、プロテアーゼ処理かつワクチン処理した実施例2の実験区で20.0%となりワクチン処理前にプロテアーゼ水溶液で処理することにより、該当する実験区のヒラメに対してワクチンの効果が高まっていたことがわかる。   As shown in FIG. 3, the cumulative mortality rate after 13 days was 95.0% in the control group of Comparative Example 4 and 45.0% in the experimental group of Comparative Example 3 treated with the vaccine alone. In the experimental group of Example 2, it was 20.0%, and it was found that the effect of the vaccine was enhanced against the Japanese flounder in the corresponding experimental group by treating with the protease aqueous solution before the vaccine treatment.

(参考例3:ヒラメへのプロテアーゼ処理の効果)
平均体重28.5gの人工生産されたヒラメ10尾を実験区の1区として用いた。パパイン製剤(新日本化学工業株式会社製スミチームP)2gを溶解させ、かつ容量比で1/4にまで淡水で希釈した海水2Lで構成される水溶液を水槽に仕込み、この水槽に当該区のヒラメを26.5℃で15分間浸漬した。
(Reference Example 3: Effect of protease treatment on Japanese flounder)
Ten artificially produced flounder with an average weight of 28.5 g was used as one of the experimental plots. An aqueous solution composed of 2 L of seawater in which 2 g of papain preparation (Sumiteam P, manufactured by Shinnippon Chemical Co., Ltd.) is dissolved and diluted with fresh water to a volume ratio of 1/4 is charged into the aquarium. Was immersed at 26.5 ° C. for 15 minutes.

全てのヒラメをパパイン水溶液から取り出し、この実験区の全てのヒラメを、レンサ球菌培養液(Psi402株培養液;108.1CFU/mL)に30分間浸漬した。 All flounder was taken out from the papain aqueous solution, and all flounder in this experimental group was immersed in a streptococcal culture solution (Psi402 strain culture solution: 10 8.1 CFU / mL) for 30 minutes.

その後ヒラメを通常の飼育環境に戻し、このまま2週間ヒラメの飼育を継続し、その期間における死亡したヒラメの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図4に示す。   Thereafter, the flounder was returned to the normal breeding environment, and flounder breeding was continued for 2 weeks as it was, and the number of flounder dead during that period was counted. FIG. 4 shows the number of dead individuals calculated as a ratio of the cumulative number of deaths during the breeding period.

(参考例4:ヒラメへの酵素処理および回復処理の効果)
参考例3と同様にしてパパイン水溶液によるヒラメの浸漬処理を行った。全てのヒラメをパパイン水溶液から取り出して、1日間海水中で飼育した(回復処理)。
(Reference Example 4: Effect of enzyme treatment and recovery treatment on Japanese flounder)
In the same manner as in Reference Example 3, flounder immersion treatment with a papain aqueous solution was performed. All flounder was taken out from the papain aqueous solution and reared in seawater for 1 day (recovery treatment).

その後、参考例3と同様にしてヒラメをレンサ球菌培養液にて浸漬し、その後ヒラメを通常の飼育環境に戻した状態で飼育し、その期間における死亡したヒラメの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図4に示す。   Thereafter, flounder was immersed in a streptococcal culture solution in the same manner as in Reference Example 3, and then flounder was raised in a normal breeding environment, and the number of dead flounder individuals during that period was counted. FIG. 4 shows the number of dead individuals calculated as a ratio of the cumulative number of deaths during the breeding period.

(参考比較例2:対照区(非免疫区))
対照区として、パパイン製剤を溶解した水溶液への浸漬を行わなかったこと以外は参考例3と同様にしてヒラメの飼育を行った。その後、参考例1と同様にしてヒラメをレンサ球菌培養液にて浸漬し、その後ヒラメを通常の飼育環境に戻した状態で飼育し、その期間における死亡したヒラメの個体数をカウントした。この死亡した個体数について、飼育期間の累積死亡数の割合として算出したものを図4に示す。
(Reference Comparative Example 2: Control group (non-immune group))
As a control, flounder was bred in the same manner as in Reference Example 3 except that it was not immersed in an aqueous solution in which a papain preparation was dissolved. Thereafter, flounder was dipped in a streptococcal culture solution in the same manner as in Reference Example 1, and then flounder was raised in a normal breeding environment, and the number of dead flounder individuals during that period was counted. FIG. 4 shows the number of dead individuals calculated as a ratio of the cumulative number of deaths during the breeding period.

図4に示すように、2週間後の累積死亡率は、参考比較例2の対照区で10%、プロテアーゼ処理のみを行った参考例3の実験区で90%、プロテアーゼ処理と回復処理とを行った参考例4の実験区で10%となった。このことから、プロテアーゼ処理によって、ヒラメは、実施例2のようなワクチンだけでなく、水溶液中の細菌を取り込みやすくなっており、むしろ参考例3と参考比較例2とを比較した場合は、プロテアーゼ処理を行った参考例3の方がレンサ球菌の取り込みが増大されたことがわかる。これに対し、プロテアーゼ処理と回復処理とを行った参考例4の実験区では、プロテアーゼ処理で失われた体表粘液が1日後には回復していることがわかる。   As shown in FIG. 4, the cumulative mortality rate after 2 weeks was 10% in the control group of Reference Comparative Example 2, 90% in the experimental group of Reference Example 3 where only protease treatment was performed, and protease treatment and recovery treatment. It was 10% in the experimental section of Reference Example 4 performed. From this, by the treatment with protease, flounder can easily take up not only the vaccine as in Example 2 but also bacteria in an aqueous solution. It can be seen that the treatment of Reference Example 3 in which treatment was performed increased the uptake of streptococci. On the other hand, in the experimental section of Reference Example 4 in which the protease treatment and the recovery treatment were performed, it was found that the body surface mucus lost by the protease treatment was recovered after one day.

(実施例3:アユへのレンサ球菌症ワクチンの取り込み)
平均体重12.5gの人工生産されたアユ25尾を実験区の1区として用いた。パパイン製剤(新日本化学工業株式会社製スミチームP)0.4gを2Lの淡水に溶解した水溶液を水槽に仕込み、この水槽に当該区のアユを20.0℃で15分間浸漬した。その後、全てのアユを水槽から取り出し、これらのアユを、淡水で容量比1/10まで希釈したレンサ球菌ワクチン(Mバックイニエ;共立製薬株式会社製)を含有する懸濁液1Lに20.0℃で10分間浸漬した。
(Example 3: Uptake of streptococcal vaccine into ayu)
25 artificially-produced sweetfish with an average body weight of 12.5 g were used as the experimental section. An aqueous solution prepared by dissolving 0.4 g of papain preparation (Sumiteam P, manufactured by Shinnippon Kagaku Kogyo Co., Ltd.) in 2 L of fresh water was placed in a water tank, and ayu of the section was immersed in the water tank at 20.0 ° C. for 15 minutes. Thereafter, all the sweetfish were taken out from the water tank, and these sweetfish were added to 1L of a suspension containing a streptococcal vaccine (M Bakynier; manufactured by Kyoritsu Pharmaceutical Co., Ltd.) diluted with fresh water to a volume ratio of 1/10 at 20.0 ° C. Soaked for 10 minutes.

全てのアユをワクチン懸濁液から取り出し、通常の飼育水槽に移して13日間飼育した。   All sweetfish were taken out from the vaccine suspension, transferred to a normal breeding tank and raised for 13 days.

上記ワクチン処理から13日経過後、この実験区から5尾のアユを取り出し、それぞれ尾部血管から採血し、血液を遠心分離(5000g、5分間)にかけて血清を回収した。得られた血清から、抗体価を、抗アユIgMモノクローナル抗体(フナコシ株式会社製)を用いたELISA法によって測定した。得られた結果を図5に示す。   After 13 days from the vaccine treatment, 5 sweetfish were taken out from this experimental group, blood was collected from the tail blood vessels, and the blood was centrifuged (5000 g, 5 minutes) to collect serum. From the obtained serum, the antibody titer was measured by ELISA using anti-Ayu IgM monoclonal antibody (Funakoshi Co., Ltd.). The obtained results are shown in FIG.

(比較例5:アユへのレンサ球菌症ワクチンの取り込み)
パパイン製剤を溶解した水溶液への浸漬を行わず、ワクチン懸濁液への浸漬のみを行ったこと以外は実施例3と同様にしてアユの飼育を行った。その後、実施例3と同様にして血清を得、抗アユIgMモノクローナル抗体を用いたELISA法によって抗体価を測定した。得られた結果を図5に示す。
(Comparative Example 5: Uptake of streptococcal vaccine into ayu)
Ayu was bred in the same manner as in Example 3 except that it was not immersed in an aqueous solution in which a papain preparation was dissolved, but only immersed in a vaccine suspension. Thereafter, serum was obtained in the same manner as in Example 3, and the antibody titer was measured by ELISA using an anti-Ayu IgM monoclonal antibody. The obtained results are shown in FIG.

(比較例6:対照区(非免疫区))
対照区として、パパイン製剤を溶解した水溶液への浸漬を行わず、かつワクチン懸濁液への浸漬も行わなかったこと以外は実施例3と同様にしてアユの飼育を行った。その後、実施例3と同様にして血清を得、抗アユIgMモノクローナル抗体を用いたELISA法によって抗体価を測定した。得られた結果を図5に示す。
(Comparative Example 6: control group (non-immune group))
As a control group, sweetfish was bred in the same manner as in Example 3 except that it was not immersed in an aqueous solution in which a papain preparation was dissolved and was not immersed in a vaccine suspension. Thereafter, serum was obtained in the same manner as in Example 3, and the antibody titer was measured by ELISA using an anti-Ayu IgM monoclonal antibody. The obtained results are shown in FIG.

図5に示すように、抗体価は、プロテアーゼ処理かつワクチン処理した実施例3のアユの場合に最も高くなっており、プロテアーゼ処理によってワクチン成分の取り込みが促進されていたことがわかる。   As shown in FIG. 5, the antibody titer was the highest in the case of the sweetfish of Example 3 treated with the protease and the vaccine, indicating that the uptake of the vaccine component was promoted by the protease treatment.

本発明によれば、水生生物の体内に有用成分を効率良く取り込ませることができる。このことにより、大多数の水生生物に対しても低コストで効率的に有用成分を取り込ませることが可能である。さらに、本発明は、水生生物の成長段階に関わらず適用可能なため、例えば、従来では注射による取り込みが困難であった稚魚に対しても適用することができる。このように本発明は、例えば水産分野等において有用である。   According to the present invention, useful components can be efficiently taken into the body of aquatic organisms. This makes it possible to efficiently incorporate useful components at a low cost for the majority of aquatic organisms. Furthermore, since the present invention can be applied regardless of the growth stage of aquatic organisms, it can also be applied to, for example, juvenile fish that have conventionally been difficult to take in by injection. Thus, the present invention is useful in, for example, the fishery field.

Claims (12)

水生生物の体内に有用成分を取り込ませるための方法であって、
(A)水生生物をプロテアーゼ水溶液に浸漬する工程;および
(B)該(A)工程の後、該水生生物を、有用成分を含有する液体に浸漬する工程;
を包含する、方法。
A method for incorporating useful components into the body of aquatic organisms,
(A) a step of immersing the aquatic organism in an aqueous protease solution; and (B) a step of immersing the aquatic organism in a liquid containing a useful component after the step (A);
Including the method.
前記有用成分が水溶性成分である、請求項1に記載の方法。   The method according to claim 1, wherein the useful component is a water-soluble component. 前記有用成分が、薬剤、栄養強化剤、色素、旨み成分、鮮度保持剤、腐敗防止剤、酸化防止剤、消臭剤、および香料からなる群から選択される少なくとも1種の成分である、請求項1または2に記載の方法。   The useful component is at least one component selected from the group consisting of a drug, a nutrient enhancer, a pigment, a savory component, a freshness-preserving agent, an antiseptic, an antioxidant, a deodorant, and a fragrance. Item 3. The method according to Item 1 or 2. 前記水生生物が魚である、請求項1から3のいずれかに記載の方法。   The method according to claim 1, wherein the aquatic organism is a fish. さらに、(C)前記(B)工程の後、0.5重量%から2重量%の塩化ナトリウム濃度を有する塩水で飼育する工程を包含する、請求項1から4のいずれかに記載の方法。   The method according to any one of claims 1 to 4, further comprising the step of (C) rearing in a salt water having a sodium chloride concentration of 0.5 wt% to 2 wt% after the step (B). 水生生物の体内に有用成分を取り込ませるための方法であって、
(A’)水生生物を、プロテアーゼと有用成分とを含有する液体に浸漬する工程;
を包含する、方法。
A method for incorporating useful components into the body of aquatic organisms,
(A ′) a step of immersing the aquatic organism in a liquid containing a protease and a useful component;
Including the method.
前記有用成分が水溶性成分である、請求項6に記載の方法。   The method according to claim 6, wherein the useful component is a water-soluble component. 前記有用成分が、薬剤、栄養強化剤、色素、旨み成分、鮮度保持剤、腐敗防止剤、酸化防止剤、消臭剤、および香料からなる群から選択される少なくとも1種の成分である、請求項6または7に記載の方法。   The useful component is at least one component selected from the group consisting of a drug, a nutrient enhancer, a pigment, a savory component, a freshness-preserving agent, an antiseptic, an antioxidant, a deodorant, and a fragrance. Item 8. The method according to Item 6 or 7. 前記水生生物が魚である、請求項6から8のいずれかに記載の方法。   The method according to claim 6, wherein the aquatic organism is a fish. さらに、(C’)前記(A’)工程の後、0.5重量%から2重量%の塩化ナトリウム濃度を有する塩水で飼育する工程を包含する、請求項6から9のいずれかに記載の方法。   The method according to any one of claims 6 to 9, further comprising the step of (C ') rearing in a salt water having a sodium chloride concentration of 0.5 wt% to 2 wt% after the step (A'). Method. 請求項1から5のいずれかに記載の方法により得られた水生生物。   An aquatic organism obtained by the method according to any one of claims 1 to 5. 請求項6から10のいずれかに記載の方法により得られた水生生物。   An aquatic organism obtained by the method according to claim 6.
JP2013062948A 2013-03-25 2013-03-25 Method for incorporating useful components into the body of aquatic organisms, and aquatic organisms obtained using the same Active JP6012013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013062948A JP6012013B2 (en) 2013-03-25 2013-03-25 Method for incorporating useful components into the body of aquatic organisms, and aquatic organisms obtained using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062948A JP6012013B2 (en) 2013-03-25 2013-03-25 Method for incorporating useful components into the body of aquatic organisms, and aquatic organisms obtained using the same

Publications (2)

Publication Number Publication Date
JP2014183810A true JP2014183810A (en) 2014-10-02
JP6012013B2 JP6012013B2 (en) 2016-10-25

Family

ID=51832017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062948A Active JP6012013B2 (en) 2013-03-25 2013-03-25 Method for incorporating useful components into the body of aquatic organisms, and aquatic organisms obtained using the same

Country Status (1)

Country Link
JP (1) JP6012013B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699423A (en) * 1980-09-10 1981-08-10 Kitasato Inst:The Immune endowment to cultured fish by vaccine of vibrio disease
JPH0523115A (en) * 1991-07-18 1993-02-02 Tanabe Seiyaku Co Ltd Feed improver for cultured eel
JP2008035855A (en) * 2006-07-12 2008-02-21 Japan Science & Technology Agency Method for producing resting egg of rotifer, method for suppressing resting egg production potential of rotifer, method for determining rotifer strain and new rotifer strain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699423A (en) * 1980-09-10 1981-08-10 Kitasato Inst:The Immune endowment to cultured fish by vaccine of vibrio disease
JPH0523115A (en) * 1991-07-18 1993-02-02 Tanabe Seiyaku Co Ltd Feed improver for cultured eel
JP2008035855A (en) * 2006-07-12 2008-02-21 Japan Science & Technology Agency Method for producing resting egg of rotifer, method for suppressing resting egg production potential of rotifer, method for determining rotifer strain and new rotifer strain

Also Published As

Publication number Publication date
JP6012013B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
Davis Care and diseases of trout
Berejikian et al. Innate and enhanced predator recognition in hatchery-reared chinook salmon
Kent et al. Transmission of Loma salmonae (Microsporea) to chinook salmon in sea water.
CN110178973A (en) A kind of pharmaceutical chemistry additive for preventing and treating litopenaeus vannamei liver sausage born of the same parents worm
O’Rourke et al. Biology and diseases of amphibians
DK202070450A1 (en) Probiotic bacteria for fish
Loh et al. Fish vetting essentials
Vercauteren et al. Scrutinizing the triad of Vibrio tapetis, the skin barrier and pigmentation as determining factors in the development of skin ulcerations in wild common dab (Limanda limanda)
Rosny et al. Dietary supplementation of garlic (Allium sativum) to prevent Acanthocephala infection in aquaculture
Sherrill et al. Common cuttlefish (Sepia officinalis) mortality at the National Zoological Park: implications for clinical management
Pozio Foodborne nematodes
JPH089821A (en) Breeding of fish fry
JP6012013B2 (en) Method for incorporating useful components into the body of aquatic organisms, and aquatic organisms obtained using the same
Kochkarovich et al. Episootology, Treatment and Prevention of Lerneosis of Fish
Chen et al. Copper sulfate treatment decreases hatchery mortality of larval white seabass Atractoscion nobilis
Abbas et al. Parasites of Fish and Aquaculture and their Control
Almendras Immunity and biological methods of disease prevention and control
Frye Reptiles and Amphibians: Self-Assessment Color Review
Mileva Infectious pancreatic necrosis of salmonid fish—Distribution and laboratory methods for diagnosis
RU2115308C1 (en) Method for improving fish and fishlike object's viability at early stages of development
JP4476349B2 (en) Method for enhancing immunity of fish
Wolf Further observations on ulcer disease of trout
EFSA Panel on Biological Hazards (BIOHAZ) Scientific opinion on assessment of epidemiological data in relation to the health risks resulting from the presence of parasites in wild caught fish from fishing grounds in the Baltic Sea
JP4183800B2 (en) Disease prevention / treatment method for organisms other than human body, information storage medium used in this method, and information-stored ceramic body
Ashwath et al. Bacterial Diseases of Finfish Prevalent in Coldwater Aquaculture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160407

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6012013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250