JP2014182048A - Method and device for measuring pipe thickness of metal pipe during bending processing - Google Patents

Method and device for measuring pipe thickness of metal pipe during bending processing Download PDF

Info

Publication number
JP2014182048A
JP2014182048A JP2013057588A JP2013057588A JP2014182048A JP 2014182048 A JP2014182048 A JP 2014182048A JP 2013057588 A JP2013057588 A JP 2013057588A JP 2013057588 A JP2013057588 A JP 2013057588A JP 2014182048 A JP2014182048 A JP 2014182048A
Authority
JP
Japan
Prior art keywords
thickness
metal tube
bending
cooling
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013057588A
Other languages
Japanese (ja)
Other versions
JP6091275B2 (en
Inventor
Yoichi Matsubara
洋一 松原
Shigeru Ide
茂 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOA NONDESTRUCTIVE INSPECTION CO Ltd
Dai Ichi High Frequency Co Ltd
Original Assignee
TOA NONDESTRUCTIVE INSPECTION CO Ltd
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOA NONDESTRUCTIVE INSPECTION CO Ltd, Dai Ichi High Frequency Co Ltd filed Critical TOA NONDESTRUCTIVE INSPECTION CO Ltd
Priority to JP2013057588A priority Critical patent/JP6091275B2/en
Publication of JP2014182048A publication Critical patent/JP2014182048A/en
Application granted granted Critical
Publication of JP6091275B2 publication Critical patent/JP6091275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring a pipe thickness of the back face of a pipe during bending processing, achieving highly efficient inspection work, easy to handle, and low in cost.SOLUTION: A method for bending a metal pipe 1 includes: making a narrow region in the longitudinal direction of a metal pipe pass through a heating/cooling device for heating and cooling; clamping a tip end side of the metal pipe to be processed to a rotatable bending arm 3; deforming the metal pipe 1 by propelling it in the longitudinal direction while heating it by the heating/cooling device; and cooling a part of the metal pipe 1 just after being heated and deformed. In this method, a case accommodating a probe of an ultrasonic thickness gauge of a device for measuring the pipe thickness of the metal pipe is disposed in the vicinity of a water cooling line which is a contact point between cooling water 8 and the metal pipe in the cooling part so as to be movable in a direction perpendicular to a bending center o of the metal pipe, the case is pushed onto the back face of the metal pile by driving a driving device, as necessary, a preset clearance is formed between the probe and a surface of the metal pipe so that the cooling water can pass through the clearance, and the pipe thickness of the metal pile is measured by utilizing the cooling water as a contact medium.

Description

本発明は、曲げ加工中の金属管の管厚を測定する方法及び装置に関するもので、特に、オンラインで金属管の背面の管厚を測定する方法とその装置に関するものである。   The present invention relates to a method and apparatus for measuring the thickness of a metal tube during bending, and more particularly to a method and apparatus for measuring the thickness of the back surface of a metal tube online.

石油化学プラント、ゴミ処理プラント等エネルギープラントの建設が積極的に行われ、各種流体を搬送するパイプとして、直管を曲げ加工した曲げ管を含む金属管が多く使用されるようになり、この事から曲げ管の製造技術は、減肉率を抑制する技術が開発される等日進月歩している。   The construction of energy plants such as petrochemical plants and garbage treatment plants has been actively carried out, and metal pipes, including bent pipes obtained by bending straight pipes, are often used as pipes for transporting various fluids. Since then, the manufacturing technology for bending pipes is progressing steadily, such as the development of technology to reduce the rate of thinning.

一方、曲げ管の品質を保証する金属管の背面の管厚を測定する技術は、曲げ管を曲げ機から検査定盤に載せかえて、決められた測定点にチョーク等を使用してプロットし、その測定点に超音波厚さ計を用いて検査員が手動で測定してデータを検査表に記載しる方法が取られている。特許文献1に記載された発明には、小口径の配管のベンド部に対して容易にしかも短時間で非破壊検査を行うことが示されている。   On the other hand, the technology to measure the thickness of the back surface of a metal tube that guarantees the quality of the bent tube is to place the bent tube from the bending machine on the inspection platen, and plot using a chalk or the like at the determined measurement point A method is used in which an inspector manually measures the measurement point using an ultrasonic thickness gauge and records the data in an inspection table. The invention described in Patent Document 1 shows that a non-destructive inspection is easily performed in a short time on a bend portion of a small-diameter pipe.

特開2007−212406号公報JP 2007-212406 A

上記特許文献1に記載された非破壊検査冶具及び超音波非破壊検査装置の発明には、当該特許文献1の図9において、ベンド部の両端部を固定して、探触子をベンド部の背側の外周面の長手方向に摺動走査させて全領域について非破壊検査を行うことが示されている。これらは曲げ管をオフラインで手動又は自動で測定する方法であるため、曲げ途中でのオンラインで曲げ管の背側の肉厚を測定することができない。
本願発明は、かかる状況に鑑みてなされたものであって、その目的は、曲げ加工中の金属管の背面の管厚の測定をオンライン化することで検査作業の高効率化をはかり、又、取り扱いが簡単で、かつ安価な曲げ加工中の金属管の背面の管厚を測定する方法及び装置を提供することである。
In the invention of the nondestructive inspection jig and the ultrasonic nondestructive inspection apparatus described in Patent Document 1, both ends of the bend part are fixed in FIG. 9 of Patent Document 1, and the probe is attached to the bend part. It is shown that non-destructive inspection is performed on the entire area by sliding and scanning in the longitudinal direction of the outer peripheral surface on the back side. Since these are methods for manually or automatically measuring the bending pipe offline, it is not possible to measure the thickness of the back side of the bending pipe online during bending.
The present invention has been made in view of such circumstances, and its purpose is to increase the efficiency of the inspection work by bringing the measurement of the tube thickness of the back surface of the metal tube being bent online. It is an object of the present invention to provide a method and apparatus for measuring the thickness of the back surface of a metal tube during bending which is easy to handle and inexpensive.

本発明者は、前記課題に関して鋭意研究を行った結果、下記の知見を得た。
すなわち、金属管の加熱部に曲げモーメントを作用させて変形させ、その直後の部分を冷却する金属管の曲げ加工方法に於いて、該冷却部分の冷却水と該金属管の接触点である水冷線の近傍に金属管の管厚を測定する装置の超音波厚さ計のプローブを収納したケースを、該金属管の曲げ中心oに垂直方向に移動できるように配設し、該ケースを必要に応じて駆動装置を駆動して該金属管の背面に押し付け、該プローブと該金属管の表面との間に予め設定した隙間を形成して、該隙間を該冷却水が通過できるようにすることで、該冷却水を接触媒質として利用して該金属管の背面の管厚を測定することが出来ることを見出した。
As a result of intensive studies on the above problems, the present inventors have obtained the following knowledge.
That is, in a bending method of a metal tube in which a bending moment is applied to the heated portion of the metal tube to deform and the portion immediately after that is cooled, the water cooling that is a contact point between the cooling water of the cooling portion and the metal tube A case containing an ultrasonic thickness gauge probe for measuring the thickness of a metal tube in the vicinity of the wire is arranged so that it can be moved vertically to the bending center o of the metal tube, and the case is necessary. The driving device is driven in accordance with the pressure and pressed against the back surface of the metal tube to form a preset gap between the probe and the surface of the metal tube so that the cooling water can pass through the gap. Thus, it has been found that the thickness of the back surface of the metal tube can be measured using the cooling water as a contact medium.

本願請求項1の発明は、以上の知見を基になされたものである。   The invention of claim 1 of the present application is based on the above knowledge.

本願請求項1の発明を実施するための金属管の管厚を測定する装置は下記の構成からなる。
すなわち、曲げ加工中の金属管の冷却部分の冷却水と該金属管の接触点である水冷線の近傍の管厚を測定するためのプローブと、該プローブを収納したケースと、該プローブと該金属管の表面との隙間を調整した後ロックするセットボルトと、該プローブと該金属管の表面との該隙間を一定に確保するため該ケースに取付けたローラと、該ケースと該金属管の表面との距離を駆動して可変する駆動装置を備えてなることを特徴とするものである。
An apparatus for measuring the thickness of a metal tube for carrying out the invention of claim 1 has the following configuration.
That is, a cooling water in a cooling portion of a metal pipe being bent, a probe for measuring a pipe thickness in the vicinity of a water cooling line that is a contact point of the metal pipe, a case housing the probe, the probe, and the probe A set bolt that locks after adjusting the gap with the surface of the metal tube, a roller that is attached to the case to ensure the gap between the probe and the surface of the metal tube, and the case and the metal tube It is characterized by comprising a drive device that drives and varies the distance to the surface.

本願請求項1の発明の基本的な測定原理を説明する。
図1は、本発明の基本的な原理を説明する図であり、図2の正面図のA−Aから下側を拡大した図で、曲げ加工中の金属管の曲げ部の背面に管厚を測定する装置を押し付けた状態を示す図である。
曲げ加工中の金属管の曲げ部の背面の管厚を測定するため、金属管の管厚を測定する装置100のプローブ101を収納したケース103を、駆動装置102を用いて金属管の曲げ中心o方向に駆動して、冷却部分の冷却水8と金属管2の接触点である水冷線の近傍にセットした状態を示す図であり、この時、プローブ101と金属管2の表面との間に適宜の隙間gが保たれるようにセットボルト105を用いて予め調整しておき、この隙間gを通過する冷却水8をハッチィングで示すように接触媒質として利用するようにしている。
又、プローブ101と金属管2の表面との隙間gを一定に保つため、駆動装置102を用いて、ローラ104が金属管2の表面に接触するまで押し付けている。
The basic measurement principle of the invention of claim 1 will be described.
FIG. 1 is a diagram for explaining the basic principle of the present invention. FIG. 1 is an enlarged view of the lower side from AA in the front view of FIG. It is a figure which shows the state which pressed the apparatus which measures this.
In order to measure the thickness of the back surface of the bent portion of the metal pipe being bent, the case 103 containing the probe 101 of the apparatus 100 for measuring the thickness of the metal pipe is used as the bending center of the metal pipe using the driving device 102. It is a figure which shows the state set to the vicinity of the water cooling line which is driven to o direction, and is the contact point of the cooling water 8 of the cooling part, and the metal tube 2, and is between the surface of the probe 101 and the metal tube 2 at this time In order to maintain an appropriate gap g, a set bolt 105 is used to adjust in advance, and the cooling water 8 passing through the gap g is used as a contact medium as indicated by hatching.
Further, in order to keep the gap g between the probe 101 and the surface of the metal tube 2 constant, the driving device 102 is used to press the roller 104 until it contacts the surface of the metal tube 2.

なお、駆動装置は、エアーシリンダー、油圧シリンダー、電動モータ等を意味し、本図はエアーシリンダーの場合である。
又、駆動装置にはケースの回り止め機能が付いている(図示せず)。
The drive device means an air cylinder, a hydraulic cylinder, an electric motor or the like, and this figure is a case of an air cylinder.
Further, the drive device has a case detent function (not shown).

図2は、金属管の管厚を測定する装置100を示し、金属管の曲げ中心o方向に駆動するように配設する。   FIG. 2 shows an apparatus 100 for measuring the thickness of a metal pipe, which is arranged to be driven in the direction of the bending center o of the metal pipe.

本発明の、金属管の管厚を測定する方法及び装置を用いることで、曲げ加工中の金属管の背面の管厚の測定をオンライン化でき、生産性の向上に寄与することが出来る。   By using the method and apparatus for measuring the thickness of a metal tube according to the present invention, the measurement of the thickness of the back surface of the metal tube during bending can be made online, which can contribute to the improvement of productivity.

図1は、本発明の基本的な原理を説明する図であり、図2の正面図のA−Aから下側を拡大した図である。FIG. 1 is a diagram for explaining the basic principle of the present invention, and is an enlarged view of the lower side from AA in the front view of FIG. 図2は、金属管の管厚を測定する装置を示す。FIG. 2 shows an apparatus for measuring the thickness of a metal tube. 図3は、本発明請求項1の本発明を実施するための説明図を示す。FIG. 3 is an explanatory diagram for carrying out the present invention according to claim 1 of the present invention.

本願請求項1を実施するための形態
実施の形態1
図3に、本願請求項1の本発明を実施するための説明図を示す。
図3の(A)は、曲げ待機中の曲げ機と金属管の管厚を測定する装置100の関係位置を示す図。
図3の(B)は、曲げ加工中の図で、金属管2の背面に、金属管の管厚を測定する装置100のプローブ101を収納したケース103を、駆動装置102を用いて金属管の曲げ中心o方向に駆動して冷却部分の冷却水8と金属管2の接触点である水冷線の近傍にローラ104が接触するまで押し付けた状態を示す図である。
この時には、予めプローブ101と金属管2の表面との間に適宜の隙間gが保たれるように調整されており、この隙間gを通過する冷却水8を接触媒質として利用するようにしている。
金属管の管厚の測定値は厚さ変換器6の出力信号tと、アームの旋回角度検出器5の出力信号θと共に記録計9に送られ記録される。
金属管の管厚の測定値tは、旋回角度θをパラメータとして、任意に設定した旋回角度ピッチでオンラインで記録計9に記録される。
Embodiment for Implementing Claim 1 of the Present Embodiment Embodiment 1
FIG. 3 is an explanatory diagram for carrying out the present invention of claim 1 of the present application.
FIG. 3A is a view showing a relative position between a bending machine in a bending standby state and an apparatus 100 for measuring the thickness of a metal pipe.
FIG. 3B is a diagram during the bending process. A case 103 in which the probe 101 of the apparatus 100 for measuring the thickness of the metal tube is accommodated on the back surface of the metal tube 2 is connected to the metal tube using the driving device 102. It is a figure which shows the state pressed until the roller 104 contacted to the vicinity of the water cooling line which is driven in the direction of the bending center o, and the cooling water 8 of the cooling part and the metal tube 2 contact point.
At this time, an appropriate gap g is maintained between the probe 101 and the surface of the metal tube 2 in advance, and the cooling water 8 passing through the gap g is used as a contact medium. .
The measured value of the thickness of the metal tube is sent to the recorder 9 and recorded together with the output signal t of the thickness converter 6 and the output signal θ of the arm turning angle detector 5.
The measured value t of the thickness of the metal tube is recorded on the recorder 9 online at an arbitrarily set turning angle pitch with the turning angle θ as a parameter.

尚、管厚を測定する装置を用いてオンラインで測定するのにあたり、金属管と同じ材料の厚さ10、8、6mmの校正用試験片を用意し、プローブと校正用試験片の表面の隙間を0.5mm以内に設定してこの隙間に水を流しながら校正を行い、オンライン測定時の金属管の温度を考慮して管厚を薄めに表示するように設定した。
又、測定予定の金属管と同一曲げ半径の曲げ管のサンプルを用いて、プローブと金属管の表面の隙間gを0.5mm以内に設定した。
In order to measure on-line using a device that measures the tube thickness, prepare test specimens of the same material as the metal tube with a thickness of 10, 8, or 6 mm, and the gap between the surface of the probe and the test specimen for calibration. Was set to within 0.5 mm, calibration was performed while water was flowing through the gap, and the tube thickness was set to be displayed thinly in consideration of the temperature of the metal tube during online measurement.
Further, using a sample of a bending tube having the same bending radius as that of the metal tube to be measured, the gap g between the surface of the probe and the metal tube was set within 0.5 mm.

実施例1
実際の曲げ加工に適用した時の実施例について述べる。
図3に示す装置構成で、鉄鋼材料のSTPG38、寸法は、外径165.2mm、管厚9.3mm、曲げ半径Rは800mm、曲げ角度90°、曲げ部の加熱温度は950℃で曲げ加工したときの金属管背面の管厚は、管厚を測定する装置100を用いてオンラインで測定した場合と、検査員が手動で超音波厚さ計を用いて測定した場合を比較すると下記の通りであった。
尚、曲げ加工中の金属管の管厚の測定は、この曲げにより金属管の背面の管厚が約10%減肉すると予想されたので、金属管の背面の管厚は8.5mm程度になるものと推定し、8mmの校正用試験片を用いて校正した後に、曲げ始めの直管と曲管の境界部から10°、25°、45°、65°、80°の5箇所の背面管厚を、金属管の管厚を測定する装置100を用いてオンラインで測定した。
加工後の金属管の管厚の測定は、検査定盤上でオンライン測定と同じく、曲げ始めの直管と曲管の境界部から10°、25°、45°、65°、80°の5箇所の背面管厚を検査員が手動で超音波厚さ計を用いて測定した。
比較データを表1に示す。
Example 1
An embodiment when applied to actual bending will be described.
In the apparatus configuration shown in FIG. 3, the steel material STPG 38 has dimensions of an outer diameter of 165.2 mm, a tube thickness of 9.3 mm, a bending radius R of 800 mm, a bending angle of 90 °, and a bending portion heating temperature of 950 ° C. The tube thickness on the back surface of the metal tube is as follows when measured on-line using the apparatus 100 for measuring the tube thickness and when measured by an inspector manually using an ultrasonic thickness meter: Met.
The measurement of the thickness of the metal tube during bending was expected to reduce the thickness of the back surface of the metal tube by about 10% due to this bending, so the thickness of the back surface of the metal tube was about 8.5 mm. After calibrating using an 8 mm calibration test piece, the back of 5 locations at 10 °, 25 °, 45 °, 65 °, and 80 ° from the boundary between the straight tube and the bent tube at the beginning of bending. The tube thickness was measured online using an apparatus 100 for measuring the tube thickness of metal tubes.
The thickness of the metal tube after processing is measured on the inspection platen in the same way as on-line measurement, 5 ° from the boundary between the straight pipe and the bent pipe at the beginning of bending, 10 °, 25 °, 45 °, 65 °, 80 °. The inspector manually measured the thickness of the back tube at the location using an ultrasonic thickness gauge.
Comparative data is shown in Table 1.

Figure 2014182048
Figure 2014182048

結果
以上の結果より、管厚を測定する装置100を用いてオンラインで測定した場合と、検査員が手動で超音波厚さ計を用いて測定した場合では、オンラインで測定した方が薄く表示されてはいるが、大差ないことを確認することが出来た。
Results From the above results, when measured online using the apparatus 100 for measuring tube thickness and when measured manually using an ultrasonic thickness gauge, the one measured online is displayed lighter. However, it was confirmed that there was not much difference.

実施例2
実施例1と同じ金属管で異なる曲げ半径に適用した時の実施例について述べる。
図3に示す装置構成で、鉄鋼材料のSTPG38、寸法は、外径165.2mm、管厚9.3mm、曲げ半径Rは400mm、曲げ角度90°、曲げ部の加熱温度は950℃で曲げ加工したときの金属管背面の管厚は管厚を測定する装置100を用いてオンラインで測定した場合と、検査員が手動で超音波厚さ計を用いて測定した場合を比較すると下記の通りであった。
尚、曲げ加工中の金属管の管厚の測定は、この曲げにより金属管の背面の管厚が約15%減肉すると予想されたので、金属管の背面の管厚は8mm程度になるものと推定し、8mmの校正用試験片を用いて校正した後に、曲げ始めの直管と曲管の境界部から10°、25°、45°、65°、80°の5箇所の背面管厚を、金属管の管厚を測定する装置100を用いてオンラインで測定した。
加工後の金属管の管厚の測定は、検査定盤上でオンライン測定と同じく、曲げ始めの直管と曲管の境界部から10°、25°、45°、65°、80°の5箇所の背面管厚を検査員が手動で超音波厚さ計を用いて測定した。
比較データを表2に示す。
Example 2
An embodiment in which the same metal tube as in Embodiment 1 is applied to different bending radii will be described.
In the apparatus configuration shown in FIG. 3, STPG 38 of steel material, dimensions are outer diameter 165.2 mm, tube thickness 9.3 mm, bending radius R is 400 mm, bending angle 90 °, and bending temperature is 950 ° C. The tube thickness on the back surface of the metal tube is as follows when the case where the thickness is measured online using the apparatus 100 for measuring the tube thickness and the case where the inspector manually measures using the ultrasonic thickness meter is as follows. there were.
In addition, the measurement of the thickness of the metal pipe during the bending process was expected to reduce the thickness of the back of the metal pipe by about 15% due to this bending, so the thickness of the back of the metal pipe would be about 8 mm. After calibrating using an 8 mm calibration test piece, the back tube thicknesses at five locations of 10 °, 25 °, 45 °, 65 °, and 80 ° from the boundary between the straight pipe at the beginning of bending and the bent pipe Was measured online using an apparatus 100 for measuring the thickness of a metal tube.
The thickness of the metal tube after processing is measured on the inspection platen in the same way as on-line measurement, 5 ° from the boundary between the straight pipe and the bent pipe at the beginning of bending, 10 °, 25 °, 45 °, 65 °, 80 °. The inspector manually measured the thickness of the back tube at the location using an ultrasonic thickness gauge.
Comparative data is shown in Table 2.

Figure 2014182048
Figure 2014182048

結果
以上の結果より、管厚を測定する装置100を用いてオンラインで測定した場合と、検査員が手動で超音波厚さ計を用いて測定した場合では、オンラインで測定した方が薄く表示されてはいるが、大差ないことを確認することが出来た。
Results From the above results, when measured online using the apparatus 100 for measuring tube thickness and when measured manually using an ultrasonic thickness gauge, the one measured online is displayed lighter. However, it was confirmed that there was not much difference.

実施例3
実際の曲げ加工で異なる金属管の外径及び曲げ半径に適用した時の実施例について述べる。
図3に示す装置構成で、鉄鋼材料のSTPG38、寸法は、外径139.8mm、管厚7.1mm、曲げ半径Rは600mm、曲げ角度90°、曲げ部の加熱温度は950℃で曲げ加工したときの金属管背面の管厚は管厚を測定する装置100を用いてオンラインで測定した場合と、検査員が手動で超音波厚さ計を用いて測定した場合を比較すると下記の通りであった。
尚、曲げ加工中の金属管の管厚の測定は、この曲げにより金属管の背面の管厚が約10%減肉すると予想されたので、金属管の背面の管厚は6.5mm程度になるものと推定し、6mmの校正用試験片を用いて校正した後に、曲げ始めの直管と曲管の境界部から10°、25°、45°、65°、80°の5箇所の背面管厚を金属管の管厚を、測定する装置100を用いてオンラインで測定した。
加工後の金属管の管厚の測定は、検査定盤上でオンライン測定と同じく、曲げ始めの直管と曲管の境界部から10°、25°、45°、65°、80°の5箇所の背面管厚を検査員が手動で超音波厚さ計を用いて測定した。
比較データを表3に示す。
Example 3
An embodiment when applied to different outer diameters and bending radii of metal pipes in actual bending will be described.
In the apparatus configuration shown in FIG. 3, STPG 38 of steel material, dimensions are outer diameter 139.8 mm, tube thickness 7.1 mm, bending radius R is 600 mm, bending angle 90 °, and bending temperature is 950 ° C. The tube thickness on the back surface of the metal tube is as follows when the case where the thickness is measured online using the apparatus 100 for measuring the tube thickness and the case where the inspector manually measures using the ultrasonic thickness meter is as follows. there were.
The measurement of the thickness of the metal pipe during bending was expected to reduce the thickness of the back of the metal pipe by about 10% due to this bending, so the thickness of the back of the metal pipe was about 6.5 mm. After calibrating using a 6 mm calibration test piece, the back of the five straight sections at 10 °, 25 °, 45 °, 65 °, and 80 ° from the boundary between the straight tube and the bent tube at the beginning of bending. The tube thickness was measured online using a device 100 that measures the tube thickness of a metal tube.
The thickness of the metal tube after processing is measured on the inspection platen in the same way as on-line measurement, 5 ° from the boundary between the straight pipe and the bent pipe at the beginning of bending, 10 °, 25 °, 45 °, 65 °, 80 °. The inspector manually measured the thickness of the back tube at the location using an ultrasonic thickness gauge.
Comparative data is shown in Table 3.

Figure 2014182048
Figure 2014182048

結果
以上の結果より、管厚を測定する装置100を用いてオンラインで測定した場合と、検査員が手動で超音波厚さ計を用いて測定した場合では、オンラインで測定した方が薄く表示されてはいるが、大差ないことを確認することが出来た。
Results From the above results, when measured online using the apparatus 100 for measuring tube thickness and when measured manually using an ultrasonic thickness gauge, the one measured online is displayed lighter. However, it was confirmed that there was not much difference.

実施例4
実施例3と同じ金属管で異なる曲げ半径に適用した時の実施例について述べる。
図3に示す装置構成で、鉄鋼材料のSTPG38、寸法は、外径139.8mm、管厚7.1mm、曲げ半径Rは300mm、曲げ角度90°、曲げ部の加熱温度は950℃で曲げ加工したときの金属管背面の管厚は管厚を測定する装置100を用いてオンラインで測定した場合と、検査員が手動で超音波厚さ計を用いて測定した場合を比較すると下記の通りであった。
尚、曲げ加工中の金属管の管厚の測定は、この曲げにより金属管の背面の管厚が約20%減肉すると予想されたので、金属管の背面の管厚は6mm程度になるものと推定し、6mmの校正用試験片を用いて校正した後に、曲げ始めの直管と曲管の境界部から10°、25°、45°、65°、80°の5箇所の背面管厚を、金属管の管厚を測定する装置100を用いてオンラインで測定した。
加工後の金属管の管厚の測定は、検査定盤上でオンライン測定と同じく、曲げ始めの直管と曲管の境界部から10°、25°、45°、65°、80°の5箇所の背面管厚を検査員が手動で超音波厚さ計を用いて測定した。
比較データを表4に示す。
Example 4
An embodiment in which the same metal tube as that in Embodiment 3 is applied to different bending radii will be described.
In the apparatus configuration shown in FIG. 3, STPG 38 of steel material, dimensions are outer diameter 139.8 mm, tube thickness 7.1 mm, bending radius R is 300 mm, bending angle 90 °, and bending temperature is 950 ° C. The tube thickness on the back surface of the metal tube is as follows when the case where the thickness is measured online using the apparatus 100 for measuring the tube thickness and the case where the inspector manually measures using the ultrasonic thickness meter is as follows. there were.
In addition, the measurement of the thickness of the metal tube during bending was expected to reduce the thickness of the back surface of the metal tube by about 20% due to this bending, so the thickness of the back surface of the metal tube would be about 6 mm. After calibrating using a 6 mm calibration specimen, the back tube thicknesses at five locations of 10 °, 25 °, 45 °, 65 °, and 80 ° from the boundary between the straight pipe at the beginning of bending and the bent pipe Was measured online using an apparatus 100 for measuring the thickness of a metal tube.
The thickness of the metal tube after processing is measured on the inspection platen in the same way as on-line measurement, 5 ° from the boundary between the straight pipe and the bent pipe at the beginning of bending, 10 °, 25 °, 45 °, 65 °, 80 °. The inspector manually measured the thickness of the back tube at the location using an ultrasonic thickness gauge.
Table 4 shows the comparison data.

Figure 2014182048
Figure 2014182048

結果
以上の結果より、管厚を測定する装置100を用いてオンラインで測定した場合と、検査員が手動で超音波厚さ計を用いて測定した場合では、オンラインで測定した方が薄く表示されてはいるが、大差ないことを確認することが出来た。
Results From the above results, when measured online using the apparatus 100 for measuring tube thickness and when measured manually using an ultrasonic thickness gauge, the one measured online is displayed lighter. However, it was confirmed that there was not much difference.

1 金属管
2 金属管の曲げられた部分
3 曲げアーム
4 旋回軸
5 旋回角度検出器
6 厚さ変換器
7 加熱冷却コイル
8 冷却水
9 記録計
100 金属管の管厚を測定する装置
101 プローブ
102 エアーシリンダー
103 ケース
104 ローラ
105 セットボルト
V 金属管の進行方向
R 曲げ半径
o 曲げ中心
t 厚さ信号
θ 角度信号
g 金属管表面とプローブとの隙間
DESCRIPTION OF SYMBOLS 1 Metal tube 2 Bent part 3 Metal tube Bending arm 4 Rotating shaft 5 Rotating angle detector 6 Thickness converter 7 Heating / cooling coil 8 Cooling water 9 Recorder 100 Device 101 for measuring the thickness of the metal tube 101 Probe 102 Air cylinder 103 Case 104 Roller 105 Set bolt V Metal tube travel direction R Bending radius o Bending center t Thickness signal θ Angle signal g Clearance between metal tube surface and probe

Claims (2)

曲げようとする金属管を、長手方向の狭幅領域を加熱冷却する加熱冷却装置に通して、加工先端側を回転可能な曲げアームにクランプし、該金属管を該加熱冷却装置で加熱しながら、長手方向に推進することにより加熱部に曲げモーメントを作用させて変形させ、その直後の部分を冷却する金属管の曲げ加工方法に於いて、該冷却部分の冷却水と該金属管の接触点である水冷線の近傍に、金属管の管厚を測定する装置の超音波厚さ計のプローブを収納したケースを、該金属管の曲げ中心に垂直方向に移動できるように配設し、該ケースを必要に応じて、駆動装置を駆動して該金属管の背面に押し付け、該プローブと該金属管の表面との間に予め設定した隙間を形成して、該隙間を該冷却水が通過できるようにして、該冷却水を接触媒質として利用して該金属管の管厚を測定することを特徴とする曲げ加工中の金属管の管厚を測定する方法。   The metal tube to be bent is passed through a heating / cooling device that heats and cools the narrow region in the longitudinal direction, the processing tip side is clamped to a rotatable bending arm, and the metal tube is heated by the heating / cooling device. In the bending method of the metal tube, which is deformed by applying a bending moment to the heated portion by propelling in the longitudinal direction and cooling the portion immediately thereafter, the contact point between the cooling water of the cooling portion and the metal tube A case containing an ultrasonic thickness gauge probe of a device for measuring the thickness of a metal tube is disposed in the vicinity of the water cooling line, so that the case can be moved vertically to the bending center of the metal tube, If necessary, the case is driven and driven against the back surface of the metal tube to form a predetermined gap between the probe and the surface of the metal tube, and the cooling water passes through the gap. The cooling water can be used as a contact medium Method for measuring the tube thickness of the metal tube during bending and measuring the tube thickness of the metal pipe by use. 曲げ加工中の金属管の水冷線の近傍の管厚を測定するためのプローブと、該プローブを収納したケースと、該プローブと該金属管との隙間を調整した後ロックするセットボルトと、該プローブと該金属管との該隙間を一定に確保するため該ケースに取付けたローラと、該ケースと該金属管との距離を駆動して可変する駆動装置を備えてなることを特徴とする曲げ加工中の金属管の管厚を測定する装置。
A probe for measuring the thickness of the metal tube in the vicinity of the water-cooled wire being bent, a case housing the probe, a set bolt that locks after adjusting the gap between the probe and the metal tube, and A bending comprising: a roller attached to the case for ensuring a constant gap between the probe and the metal tube; and a driving device that drives and varies the distance between the case and the metal tube. A device that measures the thickness of metal pipes during processing.
JP2013057588A 2013-03-21 2013-03-21 Method and apparatus for measuring the thickness of a metal tube during bending Active JP6091275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013057588A JP6091275B2 (en) 2013-03-21 2013-03-21 Method and apparatus for measuring the thickness of a metal tube during bending

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013057588A JP6091275B2 (en) 2013-03-21 2013-03-21 Method and apparatus for measuring the thickness of a metal tube during bending

Publications (2)

Publication Number Publication Date
JP2014182048A true JP2014182048A (en) 2014-09-29
JP6091275B2 JP6091275B2 (en) 2017-03-08

Family

ID=51700893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013057588A Active JP6091275B2 (en) 2013-03-21 2013-03-21 Method and apparatus for measuring the thickness of a metal tube during bending

Country Status (1)

Country Link
JP (1) JP6091275B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104858264A (en) * 2015-05-28 2015-08-26 成都宏明双新科技股份有限公司 Detection structure for small dense holes
CN109357645A (en) * 2018-12-12 2019-02-19 四川沐迪圣科技有限公司 A kind of packaged type ultrasonic wave bend pipe measuring thickness device
CN109396227A (en) * 2018-12-18 2019-03-01 沧州隆泰迪管道科技有限公司 A kind of induction heating syphon manufacturing method
CN113188500A (en) * 2021-05-18 2021-07-30 蚌埠凯盛工程技术有限公司 Online glass thickness measuring device
CN116116960A (en) * 2023-04-17 2023-05-16 河北启帆教学设备制造有限公司 Pipe bending machine for basketball stand machining

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148964U (en) * 1975-05-22 1976-11-29
JPS51158251U (en) * 1975-06-09 1976-12-16
JPS61219810A (en) * 1985-03-27 1986-09-30 Hitachi Ltd Method for ultrasonic measurement of wall thickness
JP2007212406A (en) * 2006-02-13 2007-08-23 Tokyo Electric Power Co Inc:The Nondestructive inspection jig and ultrasonic nondestructive inspection apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148964U (en) * 1975-05-22 1976-11-29
JPS51158251U (en) * 1975-06-09 1976-12-16
JPS61219810A (en) * 1985-03-27 1986-09-30 Hitachi Ltd Method for ultrasonic measurement of wall thickness
JP2007212406A (en) * 2006-02-13 2007-08-23 Tokyo Electric Power Co Inc:The Nondestructive inspection jig and ultrasonic nondestructive inspection apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104858264A (en) * 2015-05-28 2015-08-26 成都宏明双新科技股份有限公司 Detection structure for small dense holes
CN109357645A (en) * 2018-12-12 2019-02-19 四川沐迪圣科技有限公司 A kind of packaged type ultrasonic wave bend pipe measuring thickness device
CN109396227A (en) * 2018-12-18 2019-03-01 沧州隆泰迪管道科技有限公司 A kind of induction heating syphon manufacturing method
CN113188500A (en) * 2021-05-18 2021-07-30 蚌埠凯盛工程技术有限公司 Online glass thickness measuring device
CN113188500B (en) * 2021-05-18 2022-04-08 蚌埠凯盛工程技术有限公司 Online glass thickness measuring device
CN116116960A (en) * 2023-04-17 2023-05-16 河北启帆教学设备制造有限公司 Pipe bending machine for basketball stand machining
CN116116960B (en) * 2023-04-17 2023-08-08 河北启帆教学设备制造有限公司 Pipe bending machine for basketball stand machining

Also Published As

Publication number Publication date
JP6091275B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6091275B2 (en) Method and apparatus for measuring the thickness of a metal tube during bending
CA2994764C (en) Device and method for homogeneously welding two-dimensionally bent structures by friction stir welding
JP2016515192A5 (en)
JPS6390383A (en) Method and device for continuously manufacturing tubular body through laser longitudinal seam welding
CN104132887A (en) Device for measuring pipe/die friction coefficient during pipe bending forming
JP2013174531A (en) Ultrasonic inspection device and inspection method therefor
JP6221753B2 (en) Marking apparatus and marking method
CN105196002B (en) A kind of preparation method of Magnetic testing with coat ARTIFICIAL CRACK defect test block
CN104297341A (en) Scanning device applied to ultrasonic detection of pipeline-flange angle welding seams
KR20170040501A (en) A detection device for welding flaw region inside of pipe having overlay welding
JP4730123B2 (en) Nondestructive inspection jig and ultrasonic nondestructive inspection equipment
JP2010044016A (en) Method for manufacturing spiral steel pipe and apparatus for measuring shape
JP6015295B2 (en) Heat treatment method for ERW welded pipe
CN104569155A (en) Electromagnetic ultrasonic detection method for surface defects
CN109187746A (en) A kind of coiled tubing banjo fixing butt jointing nondestructive detector of strength and method
JP2015219124A (en) Method and device for detecting weld seam part of electroseamed steel pipe
JPH0658750A (en) Measuring machine for pipe wall thickness and outer diameter
CN110646461B (en) Method for measuring continuous cooling phase transition temperature of ultrathin gauge thickness steel plate
JP2011145146A (en) Roller outside crack diagnostic device and diagnostic method
JP2009236762A (en) Eddy current magnetic field change detection device and gear strength evaluation method
CN103460030A (en) Steel type assessment method for steel material
JP2019219344A (en) Ultrasonic inspection method for pipe weld zone
JP2020139745A (en) Non-magnetic metal wall thickness measuring method and wall thickness measuring device
JP2005164438A (en) Nondestructive inspection apparatus using teleguidance type alternate potential
JP2010197213A (en) Device for cutting and inspecting round bar material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170207

R150 Certificate of patent or registration of utility model

Ref document number: 6091275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250