JP6015295B2 - Heat treatment method for ERW welded pipe - Google Patents

Heat treatment method for ERW welded pipe Download PDF

Info

Publication number
JP6015295B2
JP6015295B2 JP2012211602A JP2012211602A JP6015295B2 JP 6015295 B2 JP6015295 B2 JP 6015295B2 JP 2012211602 A JP2012211602 A JP 2012211602A JP 2012211602 A JP2012211602 A JP 2012211602A JP 6015295 B2 JP6015295 B2 JP 6015295B2
Authority
JP
Japan
Prior art keywords
heat treatment
steel pipe
seam
erw
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012211602A
Other languages
Japanese (ja)
Other versions
JP2014065053A (en
Inventor
周一 佐藤
周一 佐藤
重人 坂下
重人 坂下
進 坪内
進 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012211602A priority Critical patent/JP6015295B2/en
Publication of JP2014065053A publication Critical patent/JP2014065053A/en
Application granted granted Critical
Publication of JP6015295B2 publication Critical patent/JP6015295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電縫溶接管の溶接部を熱処理する際、溶接部近傍の温度分布を利用して求めた溶接部の位置を倣って熱処理する電縫溶接管の熱処理方法に関する。   The present invention relates to a heat treatment method for an electric resistance welded pipe in which heat treatment is performed by following the position of a welded part obtained by using a temperature distribution in the vicinity of the welded part when heat-treating a welded part of the electric resistance welded pipe.

電縫鋼管の製造において、電縫溶接された溶接部(シーム部、シーム溶接部と記載する場合がある)の位置を検出する技術は、ビード切削の加工精度、溶接部の熱処理品質、および溶接部非破壊検査の精度に影響するため、非常に重要である。   In the production of ERW steel pipes, the technology for detecting the position of welded parts that may be ERW welded (sometimes referred to as seam and seam welded parts) is the precision of bead cutting, heat treatment quality of welds, and welding. This is very important because it affects the accuracy of non-destructive inspection.

特に、ラインパイプ規格において、溶接部性能を向上させることを目的に、内面までの焼きならしが義務付けられているため、溶接後の熱処理を行う際に、溶接部を精度良く検出することは重要である。   In particular, the line pipe standard requires normalization to the inner surface for the purpose of improving weld performance, so it is important to accurately detect the weld when performing heat treatment after welding. It is.

電縫鋼管の溶接部は、製造プロセス上、管表面に垂直な直線状となり、鋼管の外表面上の溶接部より、管厚方向における溶接部の位置を推定することは比較的容易である。   The welded portion of the ERW steel pipe is a straight line perpendicular to the pipe surface in the manufacturing process, and it is relatively easy to estimate the position of the welded part in the pipe thickness direction from the welded part on the outer surface of the steel pipe.

しかし、溶接後の熱処理を行う際に、鋼管の外表面において溶接部の位置を特定することは、溶接ビードが切削されており、溶接部が外観上、鋼管母材部と大きな差異がなく困難で、幾つかの方法が検討提案されている。   However, when performing heat treatment after welding, it is difficult to specify the position of the welded part on the outer surface of the steel pipe because the weld bead is cut and the appearance of the welded part is not significantly different from the steel pipe base part. Several methods have been studied and proposed.

特許文献1は、電縫管のシーム部検出方法に関し、電縫溶接直後の電縫管周上の温度分布を測定し、溶接による高温部を検出することでシーム部の位置検出を行う方法の場合、溶接後の熱処理工程後においては検出精度が低下することを解決するため、電縫溶接直後において、シーム部の位置検出を行い、その結果により、予め、マーキングを施し、マーキング部と非マーキング部との放射率の違いによりマーキング位置を検出して、当該マーキング位置を基に、熱処理時や熱処理後のシーム部検出を行うことが記載されている。   Patent Document 1 relates to a method for detecting a seam portion of an ERW pipe, which is a method of measuring the temperature distribution on the circumference of the ERW pipe immediately after ERW welding and detecting the position of the seam portion by detecting a high-temperature zone due to welding. In order to solve the decrease in detection accuracy after the heat treatment process after welding, the position of the seam part is detected immediately after ERW welding, and marking is performed in advance according to the result, and marking part and non-marking are not performed. It is described that a marking position is detected based on a difference in emissivity from a portion, and a seam portion is detected during heat treatment or after heat treatment based on the marking position.

特許文献2は、電縫管のシーム位置検出装置に関し、電縫溶接する際のシーム位置検出を、シーム部を光源により照射しながら、シーム部周辺の反射強度をイメージセンサ等により検出し、得られた反射強度分布を二値化処理して行う装置において、反射強度分布がシーム位置の特定が困難な異常波形とならないように、シーム位置を挟んで左右対称に配置される一対の光源を鋼管断面の水平方向に移動させてその間隔を変化させたり、鋼管に対する軸方向角度および鋼管断面の周方向角度を変えて移動させることが記載されている。   Patent Document 2 relates to a seam position detection device for an electric resistance welded pipe, and detects the seam position when performing electric resistance welding by detecting the reflection intensity around the seam with an image sensor or the like while irradiating the seam with a light source. In a device that performs binarization processing on the reflected intensity distribution, a pair of light sources arranged symmetrically across the seam position is used to prevent the reflected intensity distribution from becoming an abnormal waveform that makes it difficult to identify the seam position. It is described that the distance is changed by moving the cross section in the horizontal direction, or the axial direction angle with respect to the steel pipe and the circumferential direction angle of the steel pipe cross section are changed.

特開平03−264803号公報Japanese Patent Laid-Open No. 03-264803 特開平03−158706号公報Japanese Patent Laid-Open No. 03-158706

しかしながら、特許文献1記載のマーキングされたマークを基にシーム部を検出する方法では、シーム部検出装置により、溶接直後で高温となっているシーム部を検出し、その検出結果をもとにマーキング装置を用いてマーキングを行うため、シーム部検出装置とマーキング装置の両方が必要で設備的負荷が大きい。   However, in the method of detecting the seam portion based on the marked mark described in Patent Document 1, the seam portion detecting device detects the seam portion that is at a high temperature immediately after welding, and performs marking based on the detection result. Since marking is performed using a device, both a seam detection device and a marking device are necessary, and the equipment load is large.

また、特許文献2記載のビード切削部の反射強度を利用した方法では、ビードの片取りや切削不安定部で切削刃が上下に動いて切削幅が変動するうなりや、ビビリなどで乱されたビード形状に対応することが困難で、設備的負荷が小さく、ビード切削後のシーム部を高精度に検出する方法は確立されていない。   Moreover, in the method using the reflection intensity of the bead cutting part described in Patent Document 2, the cutting blade moved up and down in the bead cantilever and the unstable cutting part, and the cutting width fluctuated and disturbed by chatter, etc. It is difficult to cope with the bead shape, the equipment load is small, and a method for detecting the seam portion after bead cutting with high accuracy has not been established.

そのため、ビード切削後に溶接部を熱処理する際、熱処理装置を溶接部に高精度に倣わせることが困難で、ビード切削後のシーム部に熱処理を確実に施せるよう溶接部周辺を広く熱処理することより熱処理装置から溶接部への入熱量が大きくなり、熱処理コストが上昇していた。   Therefore, when heat-treating the welded part after bead cutting, it is difficult to make the heat-treatment device follow the welded part with high accuracy, and heat treatment is widely performed around the welded part so that heat treatment can be reliably applied to the seam part after bead cutting. The amount of heat input from the heat treatment apparatus to the welded portion increased, and the heat treatment cost increased.

そこで、本発明は、ビード切削後と熱処理後における溶接部近傍の鋼管外表面温度分布を用いて、熱処理装置を溶接部に高精度に倣わせ、熱処理コストを低減することが可能な電縫鋼管の熱処理方法を提供することを目的とする。   Therefore, the present invention provides an electric resistance welded steel pipe that can accurately reduce the heat treatment cost by causing the heat treatment apparatus to follow the welded portion with high accuracy by using the surface temperature distribution in the vicinity of the welded portion after bead cutting and heat treatment. An object of the present invention is to provide a heat treatment method.

本発明の課題は以下の手段で達成可能である。
1.電縫鋼管の熱処理方法であって、ビードトリマーの下流側に、複数の誘電子を備えた熱処理装置を配置した電縫鋼管製造ラインにおいて前記熱処理装置によりビード切削後の溶接部を熱処理する際、ビード切削後と、熱処理後における溶接部近傍の鋼管外表面温度分布を基に鋼管外表面における溶接部の位置を求め、前記熱処理装置の誘電子を前記溶接部を倣うように制御することを特徴とする電縫鋼管の熱処理方法。
The object of the present invention can be achieved by the following means.
1. A method for heat treatment of an electric resistance steel pipe, when heat-treating a welded portion after bead cutting by the heat treatment apparatus in an electric resistance steel pipe production line in which a heat treatment apparatus having a plurality of dielectrics is arranged on the downstream side of the bead trimmer, The position of the welded portion on the outer surface of the steel pipe is obtained based on the steel pipe outer surface temperature distribution in the vicinity of the welded portion after bead cutting and after the heat treatment, and the dielectric of the heat treatment apparatus is controlled to follow the welded portion. A heat treatment method for ERW steel pipes.

本発明によれば、電縫溶接管の溶接部を熱処理する際に必要となる溶接部の位置を、高精度で推定することが可能なため、熱処理装置から溶接部への入熱変動幅が±3mm程度の幅となって入熱能率が向上し、使用エネルギー、又は設備増強を最小限に抑えた厚肉材の工程生産が可能になり、産業上極めて有用である。   According to the present invention, since it is possible to estimate the position of the welded portion required when heat-treating the welded portion of the ERW pipe with high accuracy, the heat input fluctuation range from the heat treatment apparatus to the welded portion is reduced. With a width of about ± 3 mm, the heat input efficiency is improved, making it possible to produce thick-walled materials with minimal use of energy or equipment enhancement, which is extremely useful industrially.

本発明の原理を説明する図で、(a)は本発明を適用するライン構成を備えた電縫鋼管製造ラインの模式図、(b)は本発明の原理を説明する図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the principle of this invention, (a) is a schematic diagram of the ERW steel pipe manufacturing line provided with the line structure to which this invention is applied, (b) is a figure explaining the principle of this invention. 電縫鋼管製造ラインの溶接部熱処理装置前のセンサで計測したシーム溶接部近傍の外表面温度分布を模式的に示す図。The figure which shows typically the outer surface temperature distribution of the seam welding part vicinity measured with the sensor in front of the welding part heat processing apparatus of an ERW steel pipe manufacturing line. 電縫鋼管製造ラインの溶接部熱処理装置後のセンサで計測したシーム溶接部近傍の外表面温度分布を模式的に示す図。The figure which shows typically the outer surface temperature distribution of the seam welding part vicinity measured with the sensor after the welding part heat processing apparatus of an ERW steel pipe manufacturing line.

本発明は、電縫鋼管の溶接部を、ビード切削した後のシーム部周辺温度分布から求まる溶接部の位置情報より、熱処理後のシーム部周辺温度分布において求めることを特徴とする。以下、説明する。   The present invention is characterized in that the welded portion of the ERW steel pipe is obtained in the temperature distribution around the seam portion after heat treatment from the position information of the welded portion obtained from the temperature distribution around the seam portion after bead cutting. This will be described below.

図1は、本発明の原理を説明する図で、(a)は本発明を適用するライン構成を備えた電縫鋼管製造ラインの模式図、(b)は本発明の原理を説明する図を示す。   1A and 1B are diagrams for explaining the principle of the present invention. FIG. 1A is a schematic diagram of an ERW steel pipe production line having a line configuration to which the present invention is applied, and FIG. 1B is a diagram for explaining the principle of the present invention. Show.

図示した電縫鋼管製造ラインは、電縫溶接時の入熱を最大限に利用して熱処理を行うため、熱延鋼板1をシーム溶接するスクイズロール2、ビードトリマ3、及びビードトリマ3に可能な限り近接して配置する溶接部熱処理装置4で構成される。溶接部熱処理装置4は、複数の誘電子41、冷却装置42を備え、溶接部に焼鈍及びノルマ、焼入れ、焼戻し等の能動的冷却、加熱を行うもので、図は焼入れ焼戻しプロセスを行う場合を示す。以下の説明では、前記ラインにおける電縫溶接後の電縫鋼管の進行方向をZ軸、電縫鋼管の進行方向と鉛直方向をY軸、電縫鋼管の進行方向と水平直角方向をX軸とする固定座標系を用いる。   The illustrated ERW steel pipe production line performs heat treatment using the heat input at the time of ERW welding to the maximum, so that the squeeze roll 2, the bead trimmer 3 and the bead trimmer 3 for seam welding the hot-rolled steel sheet 1 are possible as much as possible. It is comprised by the welding part heat processing apparatus 4 arrange | positioned closely. The welded part heat treatment apparatus 4 includes a plurality of dielectrics 41 and a cooling device 42, and performs active cooling and heating such as annealing, normalization, quenching, and tempering on the welded part, and the figure shows a case where a quenching and tempering process is performed. Show. In the following description, the traveling direction of the ERW pipe after the ERW welding in the line is the Z axis, the traveling direction and the vertical direction of the ERW pipe are the Y axis, and the traveling direction of the ERW pipe and the horizontal right angle direction are the X axis. A fixed coordinate system is used.

溶接部熱処理装置4は管進行方向に誘導子41が複数設置されており、前記誘導子41は個別に管進行方向と、管進行方向に垂直な円周方向に移動が可能である。ビードトリマ3と溶接部熱処理装置4の間に、溶接部温度分布が計測可能な、例えば放射温度計である、センサ5を配置し、溶接部熱処理装置4の下流側にセンサ5と同じ機能のセンサ6を配置する。センサ5とセンサ6は前記ラインにおける固定座標系のZ軸上に設置する。   The welded part heat treatment apparatus 4 is provided with a plurality of inductors 41 in the tube traveling direction, and the inductors 41 can individually move in the tube traveling direction and in the circumferential direction perpendicular to the tube traveling direction. Between the bead trimmer 3 and the welded part heat treatment device 4, a sensor 5, for example a radiation thermometer, capable of measuring the weld temperature distribution is arranged, and a sensor having the same function as the sensor 5 on the downstream side of the welded part heat treatment device 4. 6 is placed. Sensors 5 and 6 are installed on the Z axis of the fixed coordinate system in the line.

本発明ではまず、シーム溶接後にビードトリマー3でビード切削した後のシーム溶接部近傍の外表面温度分布をセンサ5で計測する。図2にセンサ5で計測したシーム溶接部近傍の外表面温度分布を模式的に示す。   In the present invention, first, the sensor 5 measures the outer surface temperature distribution in the vicinity of the seam welded portion after bead cutting with the bead trimmer 3 after seam welding. FIG. 2 schematically shows the outer surface temperature distribution near the seam weld measured by the sensor 5.

図において横軸は図1の固定座標系のX軸上の距離(mm)で、前記ラインにおけるセンサー5のX軸上の位置を原点0とする。(+)の数値はセンサー5からセンサー6をみて、電縫鋼管の進行方向の左側におけるX軸上の距離を、(−)の数値は電縫鋼管の進行方向の右側におけるX軸上の距離を示す。   In the figure, the horizontal axis is the distance (mm) on the X axis of the fixed coordinate system of FIG. 1, and the position on the X axis of the sensor 5 in the line is the origin 0. The value (+) is the distance on the X axis on the left side of the direction of travel of the ERW steel pipe, and the value (-) is the distance on the X axis on the right side of the direction of travel of the ERW steel pipe. Indicates.

図2に示す外表面温度分布において、外面温度150〜50℃の中から選んだ閾値T(℃)と外表面温度分布曲線とが交わる交点A,Bの中点Pを求め、シーム推定位置Pとする。閾値Tは、温度変化が急激で溶接による加熱領域の端部を特定しやすい外面温度150〜50℃の範囲で、任意の温度に設定する。   In the outer surface temperature distribution shown in FIG. 2, the midpoint P of intersections A and B where the threshold T (° C.) selected from the outer surface temperatures of 150 to 50 ° C. and the outer surface temperature distribution curve intersect is obtained, and the seam estimated position P And The threshold value T is set to an arbitrary temperature within the range of the outer surface temperature of 150 to 50 ° C. in which the temperature change is rapid and the end of the heating region by welding can be easily specified.

シーム溶接部でビード切削を行うと高温となったシーム溶接部が削除されるので、外表面温度分布で、極大値C、DとなるX座標軸上の位置がビード切削跡の幅方向両端部の位置となる。   When bead cutting is performed at the seam welded portion, the seam welded portion having a high temperature is deleted. Therefore, the positions on the X coordinate axis where the maximum values C and D are at the outer surface temperature distribution are at the both ends in the width direction of the bead cutting trace. Position.

次に、ビード切削した後のシーム溶接部近傍を熱処理装置4で熱処理した後の外表面温度分布(以下、熱処理後の外表面温度分布)をセンサ6で計測する。図3にセンサ6で計測した熱処理後の外表面温度分布を模式的に示す。   Next, the sensor 6 measures the outer surface temperature distribution (hereinafter, the outer surface temperature distribution after the heat treatment) after heat treatment of the vicinity of the seam welded portion after bead cutting by the heat treatment apparatus 4. FIG. 3 schematically shows the outer surface temperature distribution after the heat treatment measured by the sensor 6.

図3に示す熱処理後の外表面温度分布の両側のそれぞれで最初の極大値をE、Fとし、X軸上に、線分E−F間で、|C−P|:|D−P|=|E−Q|:|F−Q|となるQを求め、シーム推定位置Qとする。極大値C、Dと同様に、極大値E、Fは、これらのX座標軸上の位置がビード切削跡の幅方向両端部の位置に相当する。   The initial maximum values on both sides of the outer surface temperature distribution after the heat treatment shown in FIG. 3 are E and F, and | C−P |: | D−P | = | EQ |: Q which becomes | FQ | is obtained and set as a seam estimated position Q. Similar to the maximum values C and D, the positions of the maximum values E and F on the X coordinate axis correspond to the positions at both ends in the width direction of the bead cutting trace.

本発明では、電縫鋼管製造ラインの、Z軸上のセンサ5の位置におけるX軸上のシーム推定位置Pと、Z軸上のセンサ6の位置におけるX軸上のシーム推定位置Qを結ぶ、XZ平面の線(図1(b)の線a)の上にシームがあるものとして、溶接部熱処理装置4の各誘導子41を当該線上に位置するように制御し、溶接部を倣わせる。   In the present invention, the seam estimation position P on the X axis at the position of the sensor 5 on the Z axis and the seam estimation position Q on the X axis at the position of the sensor 6 on the Z axis in the ERW steel pipe production line are connected. Assuming that there is a seam on the XZ plane line (line a in FIG. 1 (b)), each inductor 41 of the welded part heat treatment apparatus 4 is controlled to be positioned on the line, and the welded part is copied. .

Z軸上の位置N(図1に示す電縫鋼管製造ラインでは誘導子41が5台のため、N=1〜5)における誘導子の場合、ロール芯(Z軸)から線aまでのX方向距離b(N)は、図1(b)の幾何学的関係(スクイズロール位置をXYZ座標の原点0とする)より(1)式で求まる。
(L(N)−L(P))(Q−P)/(L(Q)−L(P))+P・・・(1)
式において、L(N)、L(P)、L(Q)は位置N,P,QのZ軸上の座標点、P、QはZ軸上の座標点P、QにおけるX方向長さとする。
In the case of the inductor at the position N on the Z axis (N = 1 to 5 because there are five inductors 41 in the ERW steel pipe production line shown in FIG. 1), X from the roll core (Z axis) to the line a The directional distance b (N) can be obtained by the equation (1) from the geometrical relationship in FIG. 1B (the squeeze roll position is the origin 0 of the XYZ coordinates).
(L (N) -L (P)) (QP) / (L (Q) -L (P)) + P (1)
In the equation, L (N), L (P), and L (Q) are the coordinate points on the Z axis of the positions N, P, and Q, and P and Q are the X-direction lengths at the coordinate points P and Q on the Z axis To do.

なお、点Qの導出に当っては、完全なトラッキングが行われる前提で絶対距離を用いても良いが、板の波うち起因によるビード切削端部位置の時間的変動が大きいこと、メジャリングのトラッキング誤差から、フィードバックが過度に鋭敏になることを防ぐため、切削部間距離の比を時間的に丸めたものとした。   In deriving the point Q, the absolute distance may be used on the premise that perfect tracking is performed, but the time variation of the bead cutting end position due to the wave out of the plate is large, In order to prevent feedback from becoming excessively sensitive from tracking errors, the ratio of the distance between the cutting parts was rounded in time.

このように、本発明によれば、溶接部の位置を、高精度で推定することが可能なため、熱処理装置から溶接部への入熱変動幅が±3mm程度以内となって入熱能率が向上する。電縫鋼管で最初に溶接された部分がZ軸上のセンサ5を通過してからセンサ6を通過するまでの部分(一般的な電縫鋼管製造ラインで約6mの長さ)は本発明法を適用することができないが、通常、捨て代とされている部分で、熱処理における溶接部の倣い精度は要求されない。   Thus, according to the present invention, since the position of the welded portion can be estimated with high accuracy, the heat input fluctuation range from the heat treatment apparatus to the welded portion is within about ± 3 mm, and the heat input efficiency is reduced. improves. A portion from the first welded portion of the ERW pipe through the sensor 5 on the Z-axis to the passage of the sensor 6 (length of about 6 m in a general ERW steel pipe production line) is the method of the present invention. However, in general, the precision of the welded portion in the heat treatment is not required at a portion where the allowance is discarded.

図1に示した電縫鋼管製造ラインを用いて、本発明法と従来法によるシーム部の検出を行って、外径と管厚の組み合わせが異なる複数の鋼管を製造した。従来法はセンサ6による熱処理後の外表面温度分布におけるシーム位置を極大値E,Fの中点とした。   Using the ERW steel pipe production line shown in FIG. 1, the seam portion was detected by the method of the present invention and the conventional method, and a plurality of steel pipes having different combinations of outer diameter and pipe thickness were produced. In the conventional method, the seam position in the outer surface temperature distribution after the heat treatment by the sensor 6 is set as the midpoint between the maximum values E and F.

検出精度の検証は、製造した鋼管の管断面におけるシーム位置左右のA1浸透幅の差を用いた。表1に試験結果を示す。本発明法によれば従来法と比較して、シーム位置左右のA1浸透幅の差が小さく、熱処理装置の誘電子のシーム追従精度が従来法と比較して良好であった。A1浸透幅は、熱処理後に溶接線直角方向に切り出したシーム部のマクロ断面におけるシーム中心から左右それぞれの熱影響部(Ac1変態点以上に加熱された領域でナイタール腐食により現出される)の幅とする。   For the verification of the detection accuracy, the difference in the A1 penetration width on the left and right of the seam position in the cross section of the manufactured steel pipe was used. Table 1 shows the test results. According to the method of the present invention, compared to the conventional method, the difference between the A1 penetration widths on the left and right of the seam position is small, and the seam tracking accuracy of the dielectric of the heat treatment apparatus is better than the conventional method. The A1 penetration width is the width of the heat affected zone (expressed by Nital corrosion in the region heated above the Ac1 transformation point) from the center of the seam in the macro section of the seam cut out in the direction perpendicular to the weld line after heat treatment. And

1 熱延鋼板
2 スクイズロール
3 ビードトリマ
4 溶接部熱処理装置
41 誘電子
42 冷却装置
5、6 センサ
a 線
b 距離
DESCRIPTION OF SYMBOLS 1 Hot-rolled steel plate 2 Squeeze roll 3 Bead trimmer 4 Welding part heat treatment apparatus 41 Dielectric element 42 Cooling apparatus 5, 6 Sensor a Line b Distance

Claims (2)

電縫鋼管の熱処理方法であって、ビードトリマーの下流側に、複数の誘電子を備えた熱処理装置を配置した電縫鋼管製造ラインにおいて前記熱処理装置によりビード切削後の溶接部を熱処理する際、ビード切削後における溶接部近傍の鋼管外表面温度分布を基にシーム推定位置Pを求めると共に、熱処理後における溶接部近傍の鋼管外表面温度分布を基にシーム推定位置Qを求め、求められたシーム推定位置Pおよびシーム推定位置Qを結ぶ線を用いて鋼管外表面における溶接部の位置を求め、前記熱処理装置の誘電子を前記溶接部を倣うように制御することを特徴とする電縫鋼管の熱処理方法。 A method for heat treatment of an electric resistance steel pipe, when heat-treating a welded portion after bead cutting by the heat treatment apparatus in an electric resistance steel pipe production line in which a heat treatment apparatus having a plurality of dielectrics is arranged on the downstream side of the bead trimmer, The seam estimation position P is obtained based on the steel pipe outer surface temperature distribution near the weld after bead cutting, and the seam estimation position Q is obtained based on the steel pipe outer surface temperature distribution near the weld after heat treatment. A position of a welded portion on the outer surface of the steel pipe is obtained using a line connecting the estimated position P and the estimated seam position Q, and a dielectric of the heat treatment apparatus is controlled to follow the welded portion. Heat treatment method. 前記電縫鋼管製造ラインにおける電縫溶接後の電縫鋼管の進行方向をZ軸、電縫鋼管の進行方向と鉛直方向をY軸、電縫鋼管の進行方向と水平直角方向をX軸とし、The traveling direction of the ERW steel pipe after the ERW welding in the ERW steel pipe production line is the Z axis, the advancing direction and the vertical direction of the ERW steel pipe are the Y axis, and the advancing direction of the ERW steel pipe is a horizontal perpendicular direction to the X axis,
前記熱処理装置によりビード切削後の溶接部を熱処理する際、When heat-treating the weld after bead cutting by the heat treatment device,
ビード切削後における溶接部近傍の鋼管外表面温度分布を基にシーム推定位置Pを求めると共に、熱処理後における溶接部近傍の鋼管外表面温度分布を基にシーム推定位置Qを求め、Obtaining the estimated seam position P based on the steel pipe outer surface temperature distribution near the weld after bead cutting, and obtaining the estimated seam position Q based on the steel pipe outer surface temperature distribution near the weld after heat treatment,
求められたシーム推定位置Pとシーム推定位置Qを結ぶ、XZ平面の線aの上にシームがあるものとして、前記熱処理装置の誘電子を線a上に位置するように制御することを特徴とする請求項1に記載する電縫鋼管の熱処理方法。Assuming that there is a seam on the line a on the XZ plane connecting the obtained seam estimated position P and seam estimated position Q, the dielectric of the heat treatment apparatus is controlled to be positioned on the line a. The heat-treating method for an ERW steel pipe according to claim 1.
JP2012211602A 2012-09-26 2012-09-26 Heat treatment method for ERW welded pipe Active JP6015295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012211602A JP6015295B2 (en) 2012-09-26 2012-09-26 Heat treatment method for ERW welded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012211602A JP6015295B2 (en) 2012-09-26 2012-09-26 Heat treatment method for ERW welded pipe

Publications (2)

Publication Number Publication Date
JP2014065053A JP2014065053A (en) 2014-04-17
JP6015295B2 true JP6015295B2 (en) 2016-10-26

Family

ID=50741958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012211602A Active JP6015295B2 (en) 2012-09-26 2012-09-26 Heat treatment method for ERW welded pipe

Country Status (1)

Country Link
JP (1) JP6015295B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060935B2 (en) * 2014-05-19 2017-01-18 Jfeスチール株式会社 Method and apparatus for detecting welded seam portion of ERW steel pipe
JP6206350B2 (en) * 2014-07-10 2017-10-04 Jfeスチール株式会社 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP6518956B2 (en) * 2016-08-18 2019-05-29 Jfeスチール株式会社 Heat treatment apparatus and seam heat treatment method for ERW steel pipe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161589A (en) * 1979-06-01 1980-12-16 Nippon Steel Corp Position control method of welded steel heat treatment equipment
JPS61231123A (en) * 1985-04-02 1986-10-15 Nippon Kokan Kk <Nkk> Post annealing method for electric welded pipe
JPS61231122A (en) * 1985-04-02 1986-10-15 Nippon Kokan Kk <Nkk> Method for post-annealing electric welded pipe
JPH04371523A (en) * 1991-06-18 1992-12-24 Sumitomo Metal Ind Ltd Heat treatment apparatus for welding part in electric resistance seam welded tube
JPH10140251A (en) * 1996-11-08 1998-05-26 Sumitomo Metal Ind Ltd Heat treatment equipment for seam in electric resistance welded tube

Also Published As

Publication number Publication date
JP2014065053A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP6015295B2 (en) Heat treatment method for ERW welded pipe
CN102791418A (en) Operation management device, operation management method, and operation management program for high-frequency resistance welding and induction welding
CN106001912B (en) A kind of welding equipment
JP6518956B2 (en) Heat treatment apparatus and seam heat treatment method for ERW steel pipe
JP2528530B2 (en) Method for detecting surface flaws in non-magnetic steel billets
JP2012236215A (en) Surface inspection method and surface inspection device for scarfed steel material
JP6142858B2 (en) Method and apparatus for measuring shape of forged steel pipe
JP6060935B2 (en) Method and apparatus for detecting welded seam portion of ERW steel pipe
Venkatraman et al. Thermography for online detection of incomplete penetration and penetration depth estimation
KR20170067193A (en) Apparatus for detecting defect
JP2008221335A (en) Method for manufacturing seam-welded steel pipe with good tenacity of weld
JP6561909B2 (en) ERW steel pipe manufacturing method
JP6083402B2 (en) ERW steel pipe manufacturing method
JP2008238269A (en) Method of manufacturing electric resistance welded steel pipe having good tenacity in welded portion
JP2020127947A (en) Method for steel strip joint and device therefor
JPH071167A (en) Seam profile control method for combined heat source welding
JP5615161B2 (en) Quenching range detection method and quenching range inspection method
JP4059239B2 (en) Method and apparatus for identifying the horizontal joint of a steel pipe during hot operation
Hasegawa et al. Development of a new optical monitoring system for HF-ERW welding processes
JP4474825B2 (en) Cutting device at both ends of steel strip width direction
JP2024063549A (en) Heat treatment equipment for welded steel pipes, manufacturing equipment for welded steel pipes, heat treatment method for welded steel pipes, and manufacturing method for welded steel pipes
Bauer et al. Analysis on coupled forming-welding process using FEM simulation and experimental verification
JP7300367B2 (en) METHOD AND DEVICE FOR DETECTING WELD SURFACE DIFFERENCE IN WELD OF ERW STEEL PIPE
JP2501869B2 (en) Steel material defect detection method
KR20160130030A (en) Pipe welding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250