JP2014181610A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2014181610A
JP2014181610A JP2013056740A JP2013056740A JP2014181610A JP 2014181610 A JP2014181610 A JP 2014181610A JP 2013056740 A JP2013056740 A JP 2013056740A JP 2013056740 A JP2013056740 A JP 2013056740A JP 2014181610 A JP2014181610 A JP 2014181610A
Authority
JP
Japan
Prior art keywords
fuel
swirl
radius
valve
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013056740A
Other languages
Japanese (ja)
Other versions
JP5980706B2 (en
Inventor
Yoji Ono
洋史 大野
Nobuaki Kobayashi
信章 小林
Takahiro Saito
貴博 齋藤
Atsushi Nakai
敦士 中井
Yoshio Okamoto
良雄 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013056740A priority Critical patent/JP5980706B2/en
Priority to DE112014000267.4T priority patent/DE112014000267B4/en
Priority to CN201480001654.4A priority patent/CN105190019B/en
Priority to PCT/JP2014/054799 priority patent/WO2014148218A1/en
Publication of JP2014181610A publication Critical patent/JP2014181610A/en
Application granted granted Critical
Publication of JP5980706B2 publication Critical patent/JP5980706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection valve capable of uniforming a flow velocity of fuel in a passage, and capable of promoting atomization of injected fuel.SOLUTION: A communication passage is formed so that a radius r1 is larger than a radius r2 when a cross section shape of a corner part between a side surface part and a bottom part of the communication passage is a curved shape, a side surface part of the communication passage on the side where a swirl imparting chamber swells as seen from the axial direction is a first side surface part, a side surface part of the communication passage opposite from the side where the swirl imparting chamber swells is a second side surface part, and the radius of a cross section shape between the first side surface part and the bottom part is the radius r1, and the radius of a cross section shape between the second side surface part and the bottom part is the radius r2.

Description

本発明は、エンジンの燃料噴射に用いられる燃料噴射弁に関する。   The present invention relates to a fuel injection valve used for fuel injection of an engine.

この種の技術としては、下記の特許文献1に記載の技術が開示されている。この公報には、スワール室を有する燃料噴射弁において、スワール室の底部の角がエッジ状に形成されたものが開示されている。   As this type of technique, a technique described in Patent Document 1 below is disclosed. This publication discloses a fuel injection valve having a swirl chamber in which the corners of the bottom of the swirl chamber are formed in an edge shape.

米国特許第6783085号明細書U.S. Pat. No. 6,783,855

中央室とスワール室とを繋ぐ通路内を通過する燃料は、通路の側面部および底部付近で流速が低下する。上記特許文献1に記載の技術では、通路の側面部と底部との間はエッジとなっており、側面部と底部の面積が大きい。そのため、通路内の燃料の流速が不均一となり、噴射後の燃料の微粒化を阻害するおそれがあった。
本発明は上記問題に着目してなされたもので、その目的とするところは、通路内の燃料の流速を均一化させ、噴射後の燃料の微粒化を促進することができる燃料噴射弁を提供することである。
The fuel passing through the passage connecting the central chamber and the swirl chamber has a reduced flow velocity near the side and bottom of the passage. In the technique described in Patent Document 1, an edge is formed between the side surface portion and the bottom portion of the passage, and the area of the side surface portion and the bottom portion is large. For this reason, the flow rate of the fuel in the passage becomes non-uniform, and there is a possibility that the atomization of the fuel after injection is hindered.
The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a fuel injection valve that can equalize the flow rate of fuel in a passage and promote atomization of fuel after injection. It is to be.

上記目的を達成するため本願発明では、連通路の側面部と底部との間の角部の断面形状を曲面形状とし、スワール付与室を軸方向から見たときにスワール付与室が膨出する側の連通路の側面部を第一側面部とし、スワール付与室が膨出する側と反対側の連通路の側面部を第二側面部とし、第一側面部と底部との間の断面形状の半径をr1とし、第二側面部と底部との間の断面形状の半径をr2としたときに、半径r1は半径r2よりも大きくなるように連通路を形成した。   In order to achieve the above object, according to the present invention, the cross-sectional shape of the corner portion between the side surface portion and the bottom portion of the communication passage is a curved surface shape, and the swirl application chamber swells when the swirl application chamber is viewed from the axial direction. The side surface portion of the communication passage is the first side surface portion, the side surface portion of the communication passage opposite to the side where the swirl application chamber bulges is the second side surface portion, and the cross-sectional shape between the first side surface portion and the bottom portion is The communication path was formed such that the radius r1 was larger than the radius r2 when the radius was r1 and the radius of the cross-sectional shape between the second side surface portion and the bottom portion was r2.

本発明により、通路内の燃料の流速を均一化させ、噴射後の燃料の微粒化を促進することができる。   According to the present invention, the fuel flow rate in the passage can be made uniform, and atomization of the fuel after injection can be promoted.

実施例1の燃料噴射弁の軸方向断面図である。1 is an axial sectional view of a fuel injection valve of Example 1. FIG. 実施例1の燃料噴射弁のノズルプレート付近の拡大断面図である。2 is an enlarged cross-sectional view of the vicinity of a nozzle plate of a fuel injection valve of Example 1. FIG. 実施例1のノズルプレートの斜視図である。3 is a perspective view of a nozzle plate of Example 1. FIG. 実施例1のノズルプレートの平面図および断面図である。2 is a plan view and a cross-sectional view of a nozzle plate of Example 1. FIG. 実施例1の連通路、スワール付与室の模式断面図である。2 is a schematic cross-sectional view of a communication path and a swirl application chamber in Example 1. FIG. 実施例1のスワール室および燃料噴射孔の斜視図に燃料の流れを記載した図である。FIG. 3 is a diagram showing the flow of fuel in the perspective view of the swirl chamber and the fuel injection hole of the first embodiment. 実施例1の連通路内の燃料の流速のシミュレーション結果である。2 is a simulation result of the flow velocity of fuel in the communication path of Example 1. FIG. 実施例1の連通路内の燃料の流れとスワール付与室内の燃料の流れの模式図である。FIG. 3 is a schematic diagram of the flow of fuel in the communication path and the flow of fuel in the swirl chamber according to the first embodiment. 実施例1の連通路内の燃料の流れとスワール付与室内の燃料の流れのシミュレーション結果である。6 is a simulation result of the flow of fuel in the communication path and the flow of fuel in the swirl chamber in Example 1. FIG. 他の実施例のノズルプレートの斜視図である。It is a perspective view of the nozzle plate of another Example. 他の実施例のノズルプレートの斜視図である。It is a perspective view of the nozzle plate of another Example.

〔実施例1〕
実施例1の燃料噴射弁1について説明する。
[燃料噴射弁の構成]
図1は燃料噴射弁1の軸方向断面図である。この燃料噴射弁1は、自動車用ガソリンエンジンに用いられるものであって、インテークマニホールド内に向けて燃料を噴射する、所謂低圧用の燃料噴射弁である。
燃料噴射弁1は、磁性筒体2と、磁性筒体2内に収容されるコア筒体3と、軸方向に摺動可能な弁体4と、弁体4と一体に形成された弁軸5と、閉弁時に弁体4により閉鎖される弁座6を有する弁座部材7と、開弁時に燃料が噴射される燃料噴射孔を有するノズルプレート8と、通電時に弁体4を開弁方向に摺動させる電磁コイル9と、磁束線を誘導するヨーク10とを有している。
Example 1
The fuel injection valve 1 according to the first embodiment will be described.
[Configuration of fuel injection valve]
FIG. 1 is an axial sectional view of the fuel injection valve 1. This fuel injection valve 1 is a so-called low-pressure fuel injection valve that is used in a gasoline engine for automobiles and injects fuel into an intake manifold.
The fuel injection valve 1 includes a magnetic cylinder 2, a core cylinder 3 accommodated in the magnetic cylinder 2, a valve element 4 slidable in the axial direction, and a valve shaft formed integrally with the valve element 4. 5, a valve seat member 7 having a valve seat 6 that is closed by the valve body 4 when the valve is closed, a nozzle plate 8 having a fuel injection hole through which fuel is injected when the valve is opened, and the valve body 4 is opened when energized It has an electromagnetic coil 9 that slides in the direction and a yoke 10 that induces magnetic flux lines.

磁性筒体2は、例えば電磁ステンレス鋼等の磁性金属材料により形成された金属パイプ等からなり、深絞り等のプレス加工、研削加工等の手段を用いることにより、図1に示すように段付き筒状をなして一体に形成されている。磁性筒体2は、一端側に形成された大径部11と、大径部11よりも小径であって他端側に形成された小径部12とを有している。
小径部12には、一部を薄肉化した薄肉部13が形成されている。小径部12は、薄肉部13より一端側にコア筒体3を収容するコア筒体収容部14と、薄肉部13より他端側に弁部材15(弁体4、弁軸5、弁座部材7)を収容する弁部材収容部16とに分けられている。薄肉部13は、後述するコア筒体3と弁軸5が磁性筒体2に収容された状態で、コア筒体3と弁軸5との間の隙間部分を取り囲むように形成されている。薄肉部13は、コア筒体収容部14と弁部材収容部16との間の磁気抵抗を増大させ、コア筒体収容部14と弁部材収容部16間を磁気的に遮断している。
The magnetic cylinder 2 is made of a metal pipe formed of a magnetic metal material such as electromagnetic stainless steel, for example, and is stepped as shown in FIG. 1 by using means such as deep drawing or pressing or grinding. It is integrally formed in a cylindrical shape. The magnetic cylinder 2 has a large-diameter portion 11 formed on one end side and a small-diameter portion 12 having a smaller diameter than the large-diameter portion 11 and formed on the other end side.
The small diameter portion 12 is formed with a thin portion 13 that is partially thinned. The small-diameter portion 12 includes a core tube housing portion 14 that houses the core tube body 3 on one end side from the thin wall portion 13, and a valve member 15 (valve 4, valve shaft 5, valve seat member on the other end side from the thin wall portion 13. 7) and is divided into a valve member accommodating portion 16 for accommodating. The thin portion 13 is formed so as to surround a gap portion between the core cylinder 3 and the valve shaft 5 in a state where the core cylinder 3 and the valve shaft 5 described later are accommodated in the magnetic cylinder 2. The thin wall portion 13 increases the magnetic resistance between the core tube housing portion 14 and the valve member housing portion 16, and magnetically blocks between the core tube housing portion 14 and the valve member housing portion 16.

大径部11の内径は弁部材15に燃料を送る燃料通路17を構成しており、大径部11の一端部には燃料を濾過する燃料フィルタ18が設けられている。燃料通路17にはポンプ47が接続されている。このポンプ47は、ポンプ制御装置54により制御されている。
コア筒体3は中空部19を有する円筒形に形成されており、磁性筒体2のコア筒体収容部14に圧入されている。中空部19には、圧入等の手段により固定されたばね受20が収容されている。このばね受20の中心には軸方向に貫通した燃料通路43が形成されている。
弁体4の外形は略球体状に形成されており、周上に燃料噴射弁1の軸方向に対して並行に削られた燃料通路面21を有している。弁軸5は大径部22と、外形が大径部22より小径に形成された小径部23とを有している。
The inner diameter of the large-diameter portion 11 constitutes a fuel passage 17 for sending fuel to the valve member 15, and a fuel filter 18 for filtering the fuel is provided at one end of the large-diameter portion 11. A pump 47 is connected to the fuel passage 17. The pump 47 is controlled by a pump control device 54.
The core cylinder 3 is formed in a cylindrical shape having a hollow portion 19 and is press-fitted into the core cylinder housing portion 14 of the magnetic cylinder 2. The hollow portion 19 accommodates a spring receiver 20 fixed by means such as press fitting. A fuel passage 43 penetrating in the axial direction is formed at the center of the spring receiver 20.
The outer shape of the valve body 4 is formed in a substantially spherical shape, and has a fuel passage surface 21 cut in parallel with the axial direction of the fuel injection valve 1 on the circumference. The valve shaft 5 has a large-diameter portion 22 and a small-diameter portion 23 whose outer shape is smaller than the large-diameter portion 22.

小径部23の先端には弁体4が溶接により一体に固定されている。なお図中の黒半円や黒三角は溶接箇所を示している。大径部22の端部にはばね挿入孔24が穿設されている。このばね挿入孔24の底部は、ばね挿入孔24よりも小径に形成されたばね座り部25が形成されるとともに、段部のばね受部26が形成されている。小径部23の端部には燃料通路孔27が形成されている。この燃料通路孔27はばね挿入孔24と連通している。小径部23の外周と燃料通路孔27とは貫通した燃料流出孔28が形成されている。
弁座部材7は、略円錐状の弁座6と、弁座6より一端側に弁体4の径とほぼ同型に形成された弁体保持孔30と、弁体保持孔30から一端開口側に向かうにつれて大径に形成された上流開口部31と、弁座6の他端側に開口する下流開口部48とが形成されている。
The valve body 4 is integrally fixed to the tip of the small diameter portion 23 by welding. In addition, the black semicircle and black triangle in a figure have shown the welding location. A spring insertion hole 24 is formed at the end of the large diameter portion 22. A spring seat 25 having a smaller diameter than the spring insertion hole 24 is formed at the bottom of the spring insertion hole 24, and a stepped spring receiving portion 26 is formed. A fuel passage hole 27 is formed at the end of the small diameter portion 23. The fuel passage hole 27 communicates with the spring insertion hole 24. A fuel outflow hole 28 penetrating the outer periphery of the small diameter portion 23 and the fuel passage hole 27 is formed.
The valve seat member 7 includes a substantially conical valve seat 6, a valve body holding hole 30 formed on the one end side from the valve seat 6 so as to be substantially the same as the diameter of the valve body 4, and one end opening side from the valve body holding hole 30. An upstream opening 31 having a larger diameter and a downstream opening 48 that opens to the other end of the valve seat 6 are formed.

弁軸5および弁体4は、磁性筒体2に軸方向摺動可能に収装されている。弁軸5のばね受部26とばね受20との間にコイルバネ29が設けられ、弁軸5および弁体4を他端側に付勢している。弁座部材7は磁性筒体2に挿入され、溶接により磁性筒体2に固定されている。弁座6は、約角度45°で弁体保持孔30から下流開口部48へ向かって径が小さくなるように形成され、閉弁時には弁体4が弁座6に座るようになっている。
磁性筒体2のコア筒体3の外周には電磁コイル9が挿嵌されている。すなわち、電磁コイル9はコア筒体3の外周に配置されることとなる。電磁コイル9は、樹脂材料により形成されたボビン32と、このボビン32に巻回されたコイル33とから構成されている。コイル33は、コネクタピン34を介して電磁コイル制御装置55に接続されている。
電磁コイル制御装置55は、クランク角を検出するクランク角センサからの情報に基づいて計算した燃焼室側に燃料を噴射するタイミングに応じて、電磁コイル9のコイル33に通電して燃料噴射弁1を開弁させる。
The valve shaft 5 and the valve body 4 are accommodated in the magnetic cylinder 2 so as to be slidable in the axial direction. A coil spring 29 is provided between the spring receiver 26 and the spring receiver 20 of the valve shaft 5 to urge the valve shaft 5 and the valve body 4 to the other end side. The valve seat member 7 is inserted into the magnetic cylinder 2 and fixed to the magnetic cylinder 2 by welding. The valve seat 6 is formed so that the diameter decreases from the valve body holding hole 30 toward the downstream opening 48 at an angle of about 45 °, and the valve body 4 is seated on the valve seat 6 when the valve is closed.
An electromagnetic coil 9 is inserted into the outer periphery of the core cylinder 3 of the magnetic cylinder 2. That is, the electromagnetic coil 9 is disposed on the outer periphery of the core cylinder 3. The electromagnetic coil 9 includes a bobbin 32 formed of a resin material and a coil 33 wound around the bobbin 32. The coil 33 is connected to the electromagnetic coil control device 55 via the connector pin 34.
The electromagnetic coil control device 55 energizes the coil 33 of the electromagnetic coil 9 to energize the fuel injection valve 1 in accordance with the timing of injecting fuel into the combustion chamber calculated based on the information from the crank angle sensor that detects the crank angle. Open the valve.

ヨーク10は中空の貫通孔を有し、一端開口側に形成された大径部35と、大径部35より小径に形成された中径部36と、中径部36より小径に形成され他端開口側に形成された小径部37から構成されている。小径部37は、弁部材収容部16の外周に嵌合されている。中径部36の内周には電磁コイル9が収装されている。大径部35の内周には連結コア38が配置されている。
連結コア38は磁性金属材料等により略C字状に形成されている。ヨーク10は、小径部37および連結コア38を介して大径部35において磁性筒体2と接続しており、すなわち電磁コイル9の両端部で磁性筒体2と磁気的に接続されていることとなる。ヨーク10の他端側先端には、燃料噴射弁1をエンジンの吸気ポートと接続するためのOリング40を保持し、かつ磁性筒体先端を保護するためのプロテクタ52が取り付けられている。
The yoke 10 has a hollow through-hole, and has a large-diameter portion 35 formed on one end opening side, a medium-diameter portion 36 formed with a smaller diameter than the large-diameter portion 35, and a diameter smaller than the medium-diameter portion 36. It is composed of a small diameter portion 37 formed on the end opening side. The small diameter portion 37 is fitted on the outer periphery of the valve member housing portion 16. An electromagnetic coil 9 is accommodated on the inner periphery of the medium diameter portion 36. A connecting core 38 is disposed on the inner periphery of the large diameter portion 35.
The connecting core 38 is formed in a substantially C shape by a magnetic metal material or the like. The yoke 10 is connected to the magnetic cylinder 2 at the large-diameter portion 35 via the small-diameter portion 37 and the connecting core 38, that is, magnetically connected to the magnetic cylinder 2 at both ends of the electromagnetic coil 9. It becomes. A protector 52 for holding the O-ring 40 for connecting the fuel injection valve 1 to the intake port of the engine and protecting the tip of the magnetic cylinder is attached to the tip of the yoke 10 on the other end side.

コネクタピン34を介して電磁コイル9に給電されると磁界が発生し、この磁界の磁力によって、弁体4および弁軸5をコイルばね29の付勢力に抗して開弁させる。
燃料噴射弁1の図1に示すように、大部分が樹脂カバー53により被覆されている。樹脂カバー53に被覆されている部分は、磁性筒体2の大径部11の一端部を除いた部分から小径部12の電磁コイル9設置位置まで、電磁コイル9とヨーク10の中径部36との間、連結コア38の外周と大径部35との間、大径部35の外周、中径部36の外周、およびコネクタピン34の外周である。コネクタピン34の先端部分は樹脂カバー53が開口して形成されており、コントロールユニットのコネクタが差し込まれるようになっている。
磁性筒体2の一端部外周にはOリング39が、ヨーク10の小径部37の外周にはOリング40が設けられている。
弁座部材7の他端側にはノズルプレート8が溶接されている。このノズルプレート8には、燃料にスワール(旋回流)を与える複数のスワール室41と、各スワール室41に燃料を分配する中央室42と、スワール室41においてスワールが与えられた燃料が噴射される燃料噴射孔44が形成されている。
When power is supplied to the electromagnetic coil 9 through the connector pin 34, a magnetic field is generated, and the valve body 4 and the valve shaft 5 are opened against the biasing force of the coil spring 29 by the magnetic force of the magnetic field.
As shown in FIG. 1 of the fuel injection valve 1, most of the fuel injection valve 1 is covered with a resin cover 53. The portion covered with the resin cover 53 is from the portion excluding one end portion of the large-diameter portion 11 of the magnetic cylindrical body 2 to the electromagnetic coil 9 installation position of the small-diameter portion 12 to the medium-diameter portion 36 of the electromagnetic coil 9 and the yoke 10. Between the outer periphery of the connecting core 38 and the large-diameter portion 35, the outer periphery of the large-diameter portion 35, the outer periphery of the medium-diameter portion 36, and the outer periphery of the connector pin 34. The tip of the connector pin 34 is formed by opening a resin cover 53 so that the connector of the control unit can be inserted.
An O-ring 39 is provided on the outer periphery of one end of the magnetic cylinder 2, and an O-ring 40 is provided on the outer periphery of the small diameter portion 37 of the yoke 10.
A nozzle plate 8 is welded to the other end side of the valve seat member 7. The nozzle plate 8 is injected with a plurality of swirl chambers 41 that give a swirl (swirl flow) to the fuel, a central chamber 42 that distributes the fuel to each swirl chamber 41, and a fuel that has been swirled in the swirl chamber 41. A fuel injection hole 44 is formed.

[ノズルプレートの構成]
図2は燃料噴射弁1のノズルプレート8付近の拡大断面図である。図3はノズルプレート8の斜視図である。図4はノズルプレートを軸方向一端側(弁座部材7と当接する側)から見た図(図4(a))、およびA-A断面図(図4(b))である。なお、図1の燃料噴射弁1の軸方向断面図は、図4(a)のB-Bに示す位置で切断した断面図である。
ノズルプレート8の一端側側面にはスワール室41が形成されている。スワール室41は4つ形成されており、それぞれ連通路45とスワール付与室46とから構成されている。各連通路45はノズルプレート8の中心付近で接続している。連通路45はノズルプレート8の中心付近から放射状に延びた溝によって形成されている。つまり、連通路45は溝の底となる底部45aと、底部45aに対して立設する側面部45b,45cとを有する。連通路45の先にはスワール付与室46が形成されている。スワール付与室46は有底凹状に形成されている。つまり、スワール付与室46は底となる底部46aと底部46aに立設する側面部46bとを有する。スワール付与室46の底部46aには、ノズルプレート8の他端側に貫通する燃料噴射孔44が形成されている。スワール付与室46の側面部46bは、ノズルプレート8の一端側から見ると螺旋状に形成されている。
スワール付与室46を軸方向から見たときにスワール付与室46が膨出する側の連通路45の側面部を第一側面部45b、スワール付与室46が膨出する側と反対側の連通路45の側面部を第二側面部45cとする。第二側面部45cは、スワール付与室46の側面部46bと接線方向に接続している。
[Configuration of nozzle plate]
FIG. 2 is an enlarged cross-sectional view of the vicinity of the nozzle plate 8 of the fuel injection valve 1. FIG. 3 is a perspective view of the nozzle plate 8. FIG. 4 is a view (FIG. 4A) of the nozzle plate viewed from one end side in the axial direction (the side in contact with the valve seat member 7), and a cross-sectional view taken along the line AA (FIG. 4B). 1 is a cross-sectional view taken along a position indicated by BB in FIG. 4A.
A swirl chamber 41 is formed on one side surface of the nozzle plate 8. Four swirl chambers 41 are formed, each including a communication path 45 and a swirl imparting chamber 46. Each communication path 45 is connected near the center of the nozzle plate 8. The communication path 45 is formed by a groove extending radially from the vicinity of the center of the nozzle plate 8. That is, the communication path 45 has a bottom portion 45a serving as the bottom of the groove, and side surface portions 45b and 45c erected with respect to the bottom portion 45a. A swirling chamber 46 is formed at the tip of the communication path 45. The swirl imparting chamber 46 is formed in a bottomed concave shape. That is, the swirl imparting chamber 46 has a bottom 46a serving as a bottom and a side surface 46b standing on the bottom 46a. A fuel injection hole 44 penetrating the other end of the nozzle plate 8 is formed in the bottom 46a of the swirl imparting chamber 46. The side surface portion 46b of the swirl application chamber 46 is formed in a spiral shape when viewed from one end side of the nozzle plate 8.
When the swirl imparting chamber 46 is viewed from the axial direction, the side surface portion of the communication passage 45 on the side where the swirl imparting chamber 46 swells is the first side surface portion 45b, and the communication passage on the opposite side to the side on which the swirl imparting chamber 46 swells. The side surface portion 45 is referred to as a second side surface portion 45c. The second side surface portion 45c is connected to the side surface portion 46b of the swirl application chamber 46 in the tangential direction.

連通路45の底部45aと第一側面部45bとの間、底部45aと第二側面部45cとの間、スワール付与室46と底部46aと側面部46bとの間は、ノズルプレート8の軸方向に平行な断面においてR形状(曲線形状)となるように形成されている。図5は連通路45の模式断面図である。底部46と第一側面部45bとの間の断面形状の半径をr1、底部46と第二側面部45cとの間の断面形状の半径をr2とする。このとき、半径r1が半径r2よりも大きくなるように形成されている。なお、スワール付与室46の底部46aと側面部46bとの間の断面形状の半径はr2となるように形成されている。
ノズルプレート8は切削、プレス、エッチング等によって作成されており、スワール室41、燃料噴射孔44が一枚のプレートに一体に形成されている。
Between the bottom 45a and the first side surface 45b of the communication passage 45, between the bottom 45a and the second side surface 45c, and between the swirl application chamber 46, the bottom 46a and the side surface 46b, the axial direction of the nozzle plate 8 Is formed in an R shape (curved shape) in a cross section parallel to the shape. FIG. 5 is a schematic cross-sectional view of the communication path 45. The radius of the cross-sectional shape between the bottom portion 46 and the first side surface portion 45b is r1, and the radius of the cross-sectional shape between the bottom portion 46 and the second side surface portion 45c is r2. At this time, the radius r1 is formed to be larger than the radius r2. The radius of the cross-sectional shape between the bottom portion 46a and the side surface portion 46b of the swirl application chamber 46 is formed to be r2.
The nozzle plate 8 is formed by cutting, pressing, etching, or the like, and the swirl chamber 41 and the fuel injection hole 44 are integrally formed on a single plate.

[作用]
(閉弁時の燃料の流れ)
電磁コイル9のコイル33に通電されていないときには、弁体4が弁座6に座るようにコイルバネ29により弁軸5を他端側に付勢している。そのため弁体4と弁座6との間が閉鎖され、ノズルプレート8側には燃料は供給されないようになっている。
(開弁時の燃料の流れ)
図6はスワール室41および燃料噴射孔44の斜視図に燃料の流れを記載した図である。
電磁コイル9のコイル33に通電されているときには、コイルバネ29の付勢力に抗して電磁力により弁軸5が一端側に引き上げられる。そのため、弁体4と弁座6との間が解放され、燃料がノズルプレート8側に供給される。
ノズルプレート8に供給された燃料はまず中央室42に入り、中央室42の底部と衝突することで軸方向の流れから径方向の流れに変換されて各連通路45に流れ込む。連通路45はスワール付与室46の接線方向に接続しているため、連通路45を通過した燃料はスワール付与室46の内側面に沿って旋回する。
スワール付与室46において燃料に旋回力(スワール力)が付与されて、旋回力を持った燃料は燃料噴射孔44の側壁部分に沿うように旋回しながら噴射される。そのため、燃料噴射孔44から噴射された燃料は、燃料噴射孔44の接線方向に飛散する。燃料噴射孔44から噴射された直後の燃料噴霧は、燃料噴射孔44開口部のエッジ部分によって略中空円錐状の噴霧表面で燃料が膜状となる液膜状態となる。その後、膜状であった燃料噴霧が次第に分裂し始めて液糸状態となる。そして更に分裂が進み、燃料が粒状に分裂した液滴状態となる。
[Action]
(Fuel flow when the valve is closed)
When the coil 33 of the electromagnetic coil 9 is not energized, the valve shaft 5 is biased to the other end side by the coil spring 29 so that the valve body 4 is seated on the valve seat 6. For this reason, the space between the valve body 4 and the valve seat 6 is closed, so that fuel is not supplied to the nozzle plate 8 side.
(Fuel flow when the valve opens)
FIG. 6 is a perspective view of the swirl chamber 41 and the fuel injection hole 44 with the fuel flow described.
When the coil 33 of the electromagnetic coil 9 is energized, the valve shaft 5 is pulled up to one end side by the electromagnetic force against the urging force of the coil spring 29. Therefore, the space between the valve body 4 and the valve seat 6 is released, and fuel is supplied to the nozzle plate 8 side.
The fuel supplied to the nozzle plate 8 first enters the central chamber 42, collides with the bottom of the central chamber 42, is converted from an axial flow to a radial flow, and flows into each communication passage 45. Since the communication passage 45 is connected in the tangential direction of the swirl application chamber 46, the fuel that has passed through the communication passage 45 swirls along the inner surface of the swirl application chamber 46.
A swirl force (swirl force) is imparted to the fuel in the swirl imparting chamber 46, and the fuel having the swirl force is injected while swirling along the side wall portion of the fuel injection hole 44. Therefore, the fuel injected from the fuel injection hole 44 is scattered in the tangential direction of the fuel injection hole 44. The fuel spray immediately after being injected from the fuel injection hole 44 is in a liquid film state in which the fuel forms a film on the substantially hollow conical spray surface by the edge portion of the opening of the fuel injection hole 44. Thereafter, the fuel spray that has been in the form of a film gradually starts to split and enters a liquid yarn state. Further, the splitting further proceeds, and the fuel is in a droplet state split into particles.

(連通路内の流速の均一化)
図7は連通路45内の燃料の流速のシミュレーション結果である。図7(a)は底部と側面部との間の断面形状をR状としてものの結果、図7(b)は底部と側面部との間の断面形状をエッジ状としたものの結果を示す。
図7に示すように、連通路45の底部と側面部との間の断面形状をR形状とすることで、流速が速い領域が広がり、連通路45内の流れがスムーズになっていることが分かる。これは、断面形状がエッジ状である場合に比べてR状である場合には、燃料が底部または側面部と接する面積を小さくすることができ、圧力抵抗が減少するためである。
(Uniform flow velocity in the communication path)
FIG. 7 shows a simulation result of the flow rate of the fuel in the communication path 45. FIG. 7 (a) shows the result when the cross-sectional shape between the bottom portion and the side surface portion is an R shape, and FIG. 7 (b) shows the result when the cross-sectional shape between the bottom portion and the side surface portion is an edge shape.
As shown in FIG. 7, by making the cross-sectional shape between the bottom portion and the side surface portion of the communication path 45 into an R shape, a region where the flow velocity is fast is widened, and the flow in the communication path 45 is smooth. I understand. This is because when the cross-sectional shape is R-shaped compared to the edge-shaped, the area where the fuel contacts the bottom or side surface can be reduced, and the pressure resistance is reduced.

(スワール付与室内への流れ込み改善)
図8は連通路45内の燃料の流れとスワール付与室46内の燃料の流れの模式図である。図8(a)は連通路45の第一側面部45b側の半径r1を、連通路45の第二側面45c側の半径r2よりも大きくしたときの燃料の流れ、図8(b)は連通路45の第一側面部45b側の半径r1と、連通路45の第二側面部45c側の半径のr2とを等しくしたときの燃料の流れを示す。
燃料の主な流れは、第一側面45b側の半径を大きくすることで、第一側面45bから離れた位置を流れることとなる。これにより、スワール付与室46内の旋回流に対して、連通孔45からスワール付与室46に流入する燃料が干渉する位置を遠くすることができ(距離L1>距離L2)、連通路45からスワール付与室46への燃料の流れをスムーズにすることができる。
(Improved flow into the swirl chamber)
FIG. 8 is a schematic view of the flow of fuel in the communication passage 45 and the flow of fuel in the swirl imparting chamber 46. FIG. 8 (a) shows the fuel flow when the radius r1 on the first side face 45b side of the communication path 45 is larger than the radius r2 on the second side face 45c side of the communication path 45, and FIG. The fuel flow is shown when the radius r1 on the first side face 45b side of the passage 45 is equal to the radius r2 on the second side face 45c side of the communication passage 45.
The main flow of the fuel is to flow away from the first side face 45b by increasing the radius on the first side face 45b side. As a result, the position where the fuel flowing into the swirl application chamber 46 from the communication hole 45 interferes with the swirling flow in the swirl application chamber 46 can be increased (distance L1> distance L2). The flow of fuel to the application chamber 46 can be made smooth.

図9は連通路45内の燃料の流れとスワール付与室46内の燃料の流れのシミュレーション結果である。図9(a)は連通路45の第一側面部45b側の半径r1を、連通路45の第二側面45c側の半径r2よりも大きくしたときの結果、図9(b)は連通路45の第一側面部45b側の半径r1と、連通路45の第二側面部45c側の半径のr2とを等しくしたものの結果を示す。
図9(b)に比べて図9(a)では、連通路45からスワール付与室46にかけて、流速の早い領域が広がっていることが分かる。連通孔45からスワール付与室46に流入する燃料が干渉する位置を遠くすることで、連通路45からスワール付与室46への燃料の流れをスムーズにすることができる。
FIG. 9 is a simulation result of the fuel flow in the communication path 45 and the fuel flow in the swirl imparting chamber 46. FIG. 9 (a) shows a result when the radius r1 on the first side face 45b side of the communication path 45 is larger than the radius r2 on the second side face 45c side of the communication path 45, and FIG. The result of making the radius r1 on the side of the first side face 45b and the radius r2 on the side of the second side face 45c of the communication path 45 equal is shown.
Compared to FIG. 9 (b), it can be seen that in FIG. 9 (a), a region having a high flow velocity spreads from the communication path 45 to the swirl chamber 46. By moving away the position where the fuel flowing into the swirl application chamber 46 from the communication hole 45 interferes, the flow of fuel from the communication path 45 to the swirl application chamber 46 can be made smooth.

(デッドボリュームの削減)
デッドボリュームとは、燃料噴射弁1の閉弁時に、下流開口部48、スワール室41、燃料噴射孔44に燃料が残留する体積のことを指す。燃料噴射弁1が燃料を噴射するインテークマニホールド内が負圧になると、残留した燃料が減圧沸騰し、目標燃料流量に対して、流量がばらつく原因となる。なおエンジンのシリンダ内に直接燃料を噴射する高圧用の燃料噴射弁の場合は、シリンダ内が負圧になることがないためデッドボリュームの影響は一般的には無い。
ところで流体は一般的に、流路の中心付近が最も流速が速く、流路の壁に近いほど流速が遅い。つまり、連通路45の底部45aと側面部45b,45cとの間の角部やスワール付与室46の底部46aと側面部46bとの間の角部をエッジ状に形成すると、角部は壁に囲まれているため燃料の流速が特に遅い。すなわち、角部付近を流れる燃料は、燃料の微細化促進への貢献が小さいにも関わらず、デッドボリュームの増大の要因となっていた。
実施例1では、連通路45の底部45aと側面部45b,45cとの間、およびスワール付与室46の底部46aと側面部46bとの間の断面形状をR形状とすることにより、連通路45、スワール付与室46のうち、微細化促進への貢献が小さい燃料が溜まる部分の体積を削ることができ、燃料微細化に影響を及ぼすことなくデッドボリュームを削減することができる。
(Dead volume reduction)
The dead volume refers to a volume in which fuel remains in the downstream opening 48, the swirl chamber 41, and the fuel injection hole 44 when the fuel injection valve 1 is closed. When the inside of the intake manifold into which the fuel injection valve 1 injects fuel becomes negative pressure, the remaining fuel boils under reduced pressure, causing the flow rate to vary with respect to the target fuel flow rate. In the case of a high-pressure fuel injection valve that directly injects fuel into the engine cylinder, there is generally no negative volume effect because there is no negative pressure inside the cylinder.
By the way, the fluid generally has the highest flow velocity near the center of the flow path, and the flow speed is slower as it is closer to the wall of the flow path. That is, if the corner between the bottom 45a of the communication passage 45 and the side portions 45b, 45c and the corner between the bottom 46a and the side portion 46b of the swirl imparting chamber 46 are formed in an edge shape, the corner is formed on the wall. The flow rate of the fuel is particularly slow because it is surrounded. That is, the fuel flowing in the vicinity of the corner portion has been a cause of an increase in dead volume, although the contribution to the promotion of fuel miniaturization is small.
In the first embodiment, the cross-sectional shape between the bottom portion 45a of the communication passage 45 and the side surface portions 45b and 45c and between the bottom portion 46a and the side surface portion 46b of the swirl application chamber 46 is formed into an R shape, thereby In the swirl imparting chamber 46, the volume of the portion where the fuel that contributes to the miniaturization promotion is small can be cut, and the dead volume can be reduced without affecting the fuel miniaturization.

[効果]
実施例1の燃料噴射弁1の効果について説明する。
開閉弁可能に設けられた弁体4と、閉弁時に弁体4が座る弁座6が形成されるとともに、下流側に下流開口部48を有する弁座部材7と、弁座部材7の下流も設けられたノズルプレート8と、ノズルプレート8の弁座部材7側に凹状に形成され、内部で燃料を旋回させて旋回力を付与するスワール付与室46と、スワール付与室46の底部に形成され外部に貫通する燃料噴射孔44と、ノズルプレート8の弁座部材7側に凹状に形成され、スワール付与室46と弁座部材7の下流開口部48とを連通する連通路45と、を備えた燃料噴射弁1において、
連通路45の底部45aと側面部45b,45cとの間の角部の断面形状を曲面形状とし、スワール付与室46を軸方向から見たときにスワール付与室46が膨出する側の連通路45の側面部を第一側面部45bとし、スワール付与室46が膨出する側と反対側の連通路45の側面部を第二側面部45cとし、底部45aと第一側面部45bとの間の断面形状の半径をr1とし、底部45aと第二側面部45cとの間の断面形状の半径をr2としたときに、半径r1は半径r2よりも大きくなるように連通路45を形成した。
よって、連通路45内で流速が速い領域が広がり、連通路45内の流れをスムーズにすることができる。また、第一側面部45bから離れた位置を燃料が流れることとなり、スワール付与室46内の旋回流に対して連通路45からスワール付与室46に流入する燃料が干渉する位置を遠くすることができ、連通路45からスワール付与室46への燃料の流れをスムーズにすることができる。
[effect]
The effect of the fuel injection valve 1 of the first embodiment will be described.
A valve body 4 provided to be able to open and close, a valve seat 6 on which the valve body 4 sits when the valve is closed, a valve seat member 7 having a downstream opening 48 on the downstream side, and a downstream of the valve seat member 7 The nozzle plate 8 is also provided, and is formed in a concave shape on the valve seat member 7 side of the nozzle plate 8, and is formed at the bottom of the swirl imparting chamber 46, which swirls fuel inside to impart a swirling force. A fuel injection hole 44 penetrating to the outside and a communication passage 45 formed in a concave shape on the valve seat member 7 side of the nozzle plate 8 and communicating the swirl chamber 46 and the downstream opening 48 of the valve seat member 7; In the fuel injection valve 1 provided,
The cross-sectional shape of the corner between the bottom 45a of the communication passage 45 and the side portions 45b, 45c is a curved shape, and the communication passage on the side where the swirl application chamber 46 swells when the swirl application chamber 46 is viewed from the axial direction. The side surface portion of 45 is a first side surface portion 45b, the side surface portion of the communication passage 45 opposite to the side where the swirl imparting chamber 46 bulges is a second side surface portion 45c, and between the bottom portion 45a and the first side surface portion 45b. The communication path 45 is formed so that the radius r1 is larger than the radius r2, where r1 is the radius of the cross-sectional shape and r2 is the radius of the cross-sectional shape between the bottom portion 45a and the second side surface portion 45c.
Therefore, a region where the flow velocity is high in the communication path 45 is widened, and the flow in the communication path 45 can be made smooth. Further, the fuel flows in a position away from the first side surface portion 45b, and the position where the fuel flowing into the swirl application chamber 46 from the communication passage 45 interferes with the swirling flow in the swirl application chamber 46 may be increased. The flow of fuel from the communication path 45 to the swirl chamber 46 can be made smooth.

〔他の実施例〕
以上、本願発明を実施例1に基づいて説明してきたが、各発明の具体的な構成は実施例1に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
[Other Examples]
As described above, the present invention has been described based on the first embodiment, but the specific configuration of each invention is not limited to the first embodiment, and even if there is a design change or the like without departing from the gist of the present invention. Are included in the present invention.

(スワール室の数の変更)
実施例1の燃料噴射弁1では、スワール室41を4つ形成したが、スワール室41の個数は燃料噴射量の設計に応じて適宜変更しても良い。
図10はノズルプレート8の斜視図である。例えば、図10に示すようにスワール室41を2つ形成するようにしても良い。
図11はノズルプレート8を示す図であり、例えば、図11に示すようにスワール室41を6つ形成するようにしても良い。
(Change in number of swirl rooms)
In the fuel injection valve 1 of the first embodiment, four swirl chambers 41 are formed. However, the number of the swirl chambers 41 may be appropriately changed according to the design of the fuel injection amount.
FIG. 10 is a perspective view of the nozzle plate 8. For example, two swirl chambers 41 may be formed as shown in FIG.
FIG. 11 shows the nozzle plate 8. For example, six swirl chambers 41 may be formed as shown in FIG.

1 燃料噴射弁
4 弁体
6 弁座
7 弁座部材
8 ノズルプレート
44 燃料噴射孔(噴射孔)
45 連通路
45a 底部
45b 第一側面部
45c 第二側面部
46 スワール付与室
48 下流開口部(開口部)
1 Fuel injection valve
4 Disc
6 Valve seat
7 Valve seat member
8 Nozzle plate
44 Fuel injection holes
45 passage
45a bottom
45b First side
45c Second side
46 Swirl grant room
48 Downstream opening (opening)

Claims (1)

弁体と、
閉弁時に前記弁体が座る弁座が形成された弁座部材と、
前記弁座部材の他端側に形成され、燃料に旋回力を付与する複数のスワール付与室と、
各スワール付与室に連通して前記旋回力が付与された燃料を噴射する燃料噴射孔を形成したノズルプレートと、
前記ノズルプレートの前記弁座部材側に凹状に形成され、前記スワール付与室と前記弁座部材の前記開口部とを連通する連通路と、
を設け、
前記連通路の側面部と底部との間の角部の断面形状を曲面形状とし、
前記スワール付与室を軸方向から見たときに前記スワール付与室が膨出する側の前記連通路の側面部を第一側面部とし、前記スワール付与室が膨出する側と反対側の前記連通路の側面部を第二側面部とし、
前記第一側面部と前記底部との間の断面形状の半径をr1とし、前記第二側面部と前記底部との間の断面形状の半径をr2としたときに、
前記半径r1は前記半径r2よりも大きくなるように前記連通路を形成したことを特徴とする燃料噴射弁。
The disc,
A valve seat member formed with a valve seat on which the valve body sits when the valve is closed;
A plurality of swirl imparting chambers formed on the other end side of the valve seat member for imparting a turning force to the fuel;
A nozzle plate formed with fuel injection holes for injecting fuel to which the swirl force is applied in communication with each swirl application chamber;
A communication path formed in a concave shape on the valve seat member side of the nozzle plate, and communicating the swirl application chamber and the opening of the valve seat member;
Provided,
The cross-sectional shape of the corner portion between the side surface portion and the bottom portion of the communication path is a curved surface shape,
When the swirl imparting chamber is viewed from the axial direction, the side surface portion of the communication passage on the side where the swirl imparting chamber swells is defined as a first side surface portion, and the side on the opposite side to the side on which the swirl imparting chamber swells is defined. The side part of the passage is the second side part,
When the radius of the cross-sectional shape between the first side surface portion and the bottom portion is r1, and the radius of the cross-sectional shape between the second side surface portion and the bottom portion is r2,
The fuel injection valve, wherein the communication path is formed so that the radius r1 is larger than the radius r2.
JP2013056740A 2013-03-19 2013-03-19 Fuel injection valve Active JP5980706B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013056740A JP5980706B2 (en) 2013-03-19 2013-03-19 Fuel injection valve
DE112014000267.4T DE112014000267B4 (en) 2013-03-19 2014-02-27 Fuel injector
CN201480001654.4A CN105190019B (en) 2013-03-19 2014-02-27 Fuelinjection nozzle
PCT/JP2014/054799 WO2014148218A1 (en) 2013-03-19 2014-02-27 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056740A JP5980706B2 (en) 2013-03-19 2013-03-19 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2014181610A true JP2014181610A (en) 2014-09-29
JP5980706B2 JP5980706B2 (en) 2016-08-31

Family

ID=51579909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056740A Active JP5980706B2 (en) 2013-03-19 2013-03-19 Fuel injection valve

Country Status (4)

Country Link
JP (1) JP5980706B2 (en)
CN (1) CN105190019B (en)
DE (1) DE112014000267B4 (en)
WO (1) WO2014148218A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060945A1 (en) * 2015-10-05 2017-04-13 三菱電機株式会社 Fuel injection valve
JP2018105140A (en) * 2016-12-22 2018-07-05 株式会社ケーヒン Electromagnetic fuel injection valve
WO2019087325A1 (en) * 2017-11-01 2019-05-09 三菱電機株式会社 Fuel injection valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503159A (en) * 1993-09-30 1997-03-31 パーカー−ハニフイン・コーポレーシヨン Spray nozzle and manufacturing method thereof
JP2003336561A (en) * 2002-05-17 2003-11-28 Keihin Corp Fuel injection valve
JP2004510915A (en) * 2000-10-04 2004-04-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve
JP2012154264A (en) * 2011-01-27 2012-08-16 Hitachi Automotive Systems Ltd Fuel injection valve
JP2012193713A (en) * 2011-03-17 2012-10-11 Hitachi Automotive Systems Ltd Fuel injection valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783085B2 (en) * 2002-01-31 2004-08-31 Visteon Global Technologies, Inc. Fuel injector swirl nozzle assembly
JP5537512B2 (en) * 2011-07-25 2014-07-02 日立オートモティブシステムズ株式会社 Fuel injection valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503159A (en) * 1993-09-30 1997-03-31 パーカー−ハニフイン・コーポレーシヨン Spray nozzle and manufacturing method thereof
JP2004510915A (en) * 2000-10-04 2004-04-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve
JP2003336561A (en) * 2002-05-17 2003-11-28 Keihin Corp Fuel injection valve
JP2012154264A (en) * 2011-01-27 2012-08-16 Hitachi Automotive Systems Ltd Fuel injection valve
JP2012193713A (en) * 2011-03-17 2012-10-11 Hitachi Automotive Systems Ltd Fuel injection valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060945A1 (en) * 2015-10-05 2017-04-13 三菱電機株式会社 Fuel injection valve
JPWO2017060945A1 (en) * 2015-10-05 2018-01-25 三菱電機株式会社 Fuel injection valve and injection hole plate
JP2018105140A (en) * 2016-12-22 2018-07-05 株式会社ケーヒン Electromagnetic fuel injection valve
WO2019087325A1 (en) * 2017-11-01 2019-05-09 三菱電機株式会社 Fuel injection valve
CN111279066A (en) * 2017-11-01 2020-06-12 三菱电机株式会社 Fuel injection valve
CN111279066B (en) * 2017-11-01 2022-03-01 三菱电机株式会社 Fuel injection valve

Also Published As

Publication number Publication date
DE112014000267B4 (en) 2018-02-01
DE112014000267T5 (en) 2015-10-15
CN105190019B (en) 2017-11-21
CN105190019A (en) 2015-12-23
WO2014148218A1 (en) 2014-09-25
JP5980706B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5200047B2 (en) Fuel injection valve
JP5492123B2 (en) Fuel injection valve
JP5852463B2 (en) Fuel injection valve
JP5253480B2 (en) Fuel injection valve
JP2012215135A (en) Fuel injection valve
JP5877768B2 (en) Fuel injection valve
JP2013194624A (en) Fuel injection valve
JP5336451B2 (en) Fuel injection valve
US20200400112A1 (en) Fuel Injection Valve
JP5166500B2 (en) Fuel injection valve
JP2013185522A (en) Fuel injection valve
JP5980706B2 (en) Fuel injection valve
JP2012211532A (en) Fuel injection valve
JP2013194725A (en) Fuel injection valve
JP5341045B2 (en) Fuel injection valve
JP5341046B2 (en) Fuel injection valve
JP5492131B2 (en) Fuel injection valve
JP2014181611A (en) Fuel injection valve
WO2014050266A1 (en) Fuel injection valve
JP2014173515A (en) Fuel injection valve
JP5492133B2 (en) Fuel injection valve
JP2005325800A (en) Fluid injection valve
JP2014066186A (en) Fuel injection valve
JP5579888B2 (en) Fuel injection valve
JP5955181B2 (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R150 Certificate of patent or registration of utility model

Ref document number: 5980706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250