WO2014050266A1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
WO2014050266A1
WO2014050266A1 PCT/JP2013/069547 JP2013069547W WO2014050266A1 WO 2014050266 A1 WO2014050266 A1 WO 2014050266A1 JP 2013069547 W JP2013069547 W JP 2013069547W WO 2014050266 A1 WO2014050266 A1 WO 2014050266A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
swirl
injection valve
chamber
fuel
Prior art date
Application number
PCT/JP2013/069547
Other languages
French (fr)
Japanese (ja)
Inventor
洋史 大野
小林 信章
貴博 齋藤
敦士 中井
岡本 良雄
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to IN1578DEN2015 priority Critical patent/IN2015DN01578A/en
Priority to CN201380037949.2A priority patent/CN104471235A/en
Priority to DE112013004715.2T priority patent/DE112013004715T5/en
Publication of WO2014050266A1 publication Critical patent/WO2014050266A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates

Definitions

  • the present invention relates to a fuel injection valve used for fuel injection of an engine.
  • Patent Document 1 discloses a fuel injection valve having a swirl chamber in which the corners of the bottom of the swirl chamber are formed in an edge shape.
  • the flow rate of the fuel flowing through the swirl chamber becomes slower as it approaches the wall of the swirl chamber, and in particular, the corner at the bottom of the swirl chamber is a place where it is difficult for the fuel to flow.
  • the fuel injection valve When the fuel injection valve is closed, it is desirable that the volume of fuel remaining (dead volume) is small, but the bottom corner of the swirl chamber is less likely to flow fuel, contributing to the promotion of fuel miniaturization when the valve is opened. Despite this small amount, there was a risk of increasing the dead volume.
  • the present invention has been made paying attention to the above problems, and an object of the present invention is to provide a fuel injection valve capable of reducing the dead volume.
  • the cross-sectional shape of the corner portion between the side portion and the bottom portion of the swirl application chamber and the communication passage is a curved shape.
  • the present invention it is possible to cut the volume of the portion where the fuel that contributes to the promotion of miniaturization is small, and to reduce the dead volume without affecting the fuel miniaturization.
  • FIG. 1 It is an axial sectional view of the fuel injection valve of Embodiment 1. It is an expanded sectional view near the nozzle plate of the fuel injection valve of Embodiment 1.
  • 2 is a perspective view of a nozzle plate according to Embodiment 1.
  • FIG. It is the top view and sectional view of the nozzle plate of Embodiment 1.
  • It is a schematic cross section of the communicating path of Embodiment 1, and a swirl grant chamber. It is the figure which described the flow of the fuel in the perspective view of the swirl chamber of Embodiment 1, and a fuel injection hole.
  • It is a perspective view of the nozzle plate of Embodiment 3.
  • FIG. 1 is an axial sectional view of the fuel injection valve 1.
  • the fuel injection valve 1 is a so-called low pressure fuel injection valve that is used in a gasoline engine for automobiles and injects fuel into an intake manifold.
  • the fuel injection valve 1 is formed integrally with a magnetic cylinder 2, a core cylinder 3 accommodated in the magnetic cylinder 2, a valve element 4 slidable in the axial direction, and the valve element 4.
  • the electromagnetic coil 9 slides the valve body 4 in the valve opening direction when energized, and the yoke 10 induces magnetic flux lines.
  • the magnetic cylinder 2 is made of a metal pipe made of a magnetic metal material such as electromagnetic stainless steel, for example, and is stepped as shown in FIG. 1 by using means such as deep drawing or press working or grinding. It is formed integrally with a cylinder.
  • the magnetic cylinder 2 has a large-diameter portion 11 formed on one end side and a small-diameter portion 12 having a smaller diameter than the large-diameter portion 11 and formed on the other end side.
  • the small diameter portion 12 is formed with a thin portion 13 that is partially thinned.
  • the small-diameter portion 12 includes a core tube housing portion 14 for housing the core tube body 3 on one end side from the thin wall portion 13 and a valve member 15 (the valve body 4, the valve shaft 5, the valve seat on the other end side from the thin wall portion 13. It is divided into a valve member accommodating portion 16 for accommodating the member 7).
  • the thin portion 13 is formed so as to surround a gap portion between the core cylinder 3 and the valve shaft 5 in a state where the core cylinder 3 and the valve shaft 5 described later are accommodated in the magnetic cylinder 2. .
  • the thin-walled portion 13 increases the magnetic resistance between the core tube housing portion 14 and the valve member housing portion 16 and magnetically blocks between the core tube housing portion 14 and the valve member housing portion 16.
  • the inner diameter of the large diameter portion 11 constitutes a fuel passage 17 that sends fuel to the valve member 15, and a fuel filter 18 that filters the fuel is provided at one end of the large diameter portion 11.
  • a pump 47 is connected to the fuel passage 17.
  • the pump 47 is controlled by a pump control device 54.
  • the core cylinder 3 is formed in a cylindrical shape having a hollow part 19 and is press-fitted into the core cylinder housing part 14 of the magnetic cylinder 2.
  • the hollow portion 19 accommodates a spring receiver 20 fixed by means such as press fitting.
  • a fuel passage 43 penetrating in the axial direction is formed at the center of the spring receiver 20.
  • the outer shape of the valve body 4 is formed in a substantially spherical shape, and has a fuel passage surface 21 cut in parallel with the axial direction of the fuel injection valve 1 on the circumference.
  • the valve shaft 5 has a large-diameter portion 22 and a small-diameter portion 23 whose outer shape is smaller than the large-diameter portion 22.
  • the valve body 4 is integrally fixed to the tip of the small diameter portion 23 by welding.
  • the black semicircle and black triangle in a figure have shown the welding location.
  • a spring insertion hole 24 is formed at the end of the large diameter portion 22.
  • a spring seat 25 having a smaller diameter than the spring insertion hole 24 is formed at the bottom of the spring insertion hole 24, and a stepped spring receiving portion 26 is formed.
  • a fuel passage hole 27 is formed at the end of the small diameter portion 23. The fuel passage hole 27 communicates with the spring insertion hole 24.
  • a fuel outflow hole 28 penetrating the outer periphery of the small diameter portion 23 and the fuel passage hole 27 is formed.
  • the valve seat member 7 includes a substantially conical valve seat 6, a valve body holding hole 30 formed on the one end side of the valve seat 6 so as to be substantially the same as the diameter of the valve body 4, and one end from the valve body holding hole 30.
  • An upstream opening 31 formed with a larger diameter toward the opening side and a downstream opening 48 opened to the other end side of the valve seat 6 are formed.
  • valve shaft 5 and the valve body 4 are accommodated in the magnetic cylinder 2 so as to be slidable in the axial direction.
  • a coil spring 29 is provided between the spring receiving portion 26 of the valve shaft 5 and the spring receiver 20 to urge the valve shaft 5 and the valve body 4 to the other end side.
  • the valve seat member 7 is inserted into the magnetic cylinder 2 and fixed to the magnetic cylinder 2 by welding.
  • the valve seat 6 is formed so that the diameter decreases from the valve body holding hole 30 toward the downstream opening 48 at an angle of about 45 °, and the valve body 4 is seated on the valve seat 6 when the valve is closed. Yes.
  • An electromagnetic coil 9 is inserted into the outer periphery of the core cylinder 3 of the magnetic cylinder 2.
  • the electromagnetic coil 9 is arranged on the outer periphery of the core cylinder 3.
  • the electromagnetic coil 9 includes a bobbin 32 formed of a resin material and a coil 33 wound around the bobbin 32.
  • the coil 33 is connected to the electromagnetic coil control device 55 via the connector pin 34.
  • the electromagnetic coil control device 55 energizes the coil 33 of the electromagnetic coil 9 in accordance with the timing of injecting fuel into the combustion chamber calculated based on the information from the crank angle sensor that detects the crank angle. Open the valve.
  • the yoke 10 has a hollow through-hole, and is formed with a large-diameter portion 35 formed on one end opening side, a medium-diameter portion 36 formed with a smaller diameter than the large-diameter portion 35, and a diameter smaller than the medium-diameter portion 36. It is comprised from the small diameter part 37 formed in the other end opening side. The small diameter portion 37 is fitted to the outer periphery of the valve member housing portion 16. An electromagnetic coil 9 is accommodated on the inner periphery of the medium diameter portion 36.
  • a connecting core 38 is disposed on the inner periphery of the large diameter portion 35.
  • the connecting core 38 is formed in a substantially C shape by a magnetic metal material or the like.
  • the yoke 10 is connected to the magnetic cylinder 2 at the large diameter portion 35 via the small diameter portion 37 and the connecting core 38, that is, magnetically connected to the magnetic cylinder 2 at both ends of the electromagnetic coil 9. It will be.
  • a protector 52 for holding the O-ring 40 for connecting the fuel injection valve 1 to the intake port of the engine and protecting the tip of the magnetic cylinder is attached to the tip of the yoke 10 on the other end side.
  • the front end portion of the connector pin 34 is formed by opening a resin cover 53 so that the connector of the control unit can be inserted.
  • An O-ring 39 is provided on the outer periphery of one end of the magnetic cylinder 2, and an O-ring 40 is provided on the outer periphery of the small diameter portion 37 of the yoke 10.
  • a nozzle plate 8 is welded to the other end side of the valve seat member 7.
  • the nozzle plate 8 is injected with a plurality of swirl chambers 41 that give a swirl (swirl flow) to the fuel, a central chamber 42 that distributes the fuel to each swirl chamber 41, and fuel that has been swirled in the swirl chamber 41.
  • a fuel injection hole 44 is formed.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the nozzle plate 8 of the fuel injection valve 1.
  • FIG. 3 is a perspective view of the nozzle plate 8.
  • FIG. 4 is a view (FIG. 4A) of the nozzle plate viewed from one end side in the axial direction (the side in contact with the valve seat member 7), and a cross-sectional view taken along the line AA (FIG. 4B).
  • 1 is a cross-sectional view taken along a line BB in FIG. 4A.
  • a swirl chamber 41 is formed on one side surface of the nozzle plate 8.
  • Four swirl chambers 41 are formed, each including a communication path 45 and a swirl application chamber 46. Each communication path 45 is connected near the center of the nozzle plate 8.
  • the communication path 45 is formed by a groove extending radially from the vicinity of the center of the nozzle plate 8. That is, the communication path 45 has a bottom portion 45a that becomes the bottom of the groove and a side surface portion 45b that stands up with respect to the bottom portion 45a.
  • a swirl application chamber 46 is formed at the tip of the communication passage 45.
  • the swirl application chamber 46 is formed in a bottomed concave shape. That is, the swirl imparting chamber 46 has a bottom portion 46a serving as a bottom and a side surface portion 46b erected on the bottom portion 46a.
  • a fuel injection hole 44 penetrating the other end side of the nozzle plate 8 is formed in the bottom 46 a of the swirl application chamber 46.
  • the side surface portion 46 b of the swirl application chamber 46 is formed in a spiral shape when viewed from one end side of the nozzle plate 8.
  • One side surface 45 b of the communication path 45 is connected to the side surface 46 b of the swirl application chamber 46 in the tangential direction.
  • FIG. 5 is a schematic cross-sectional view of the communication passage 45 and the swirl application chamber 46.
  • the radius of the corner 45d (corner portion 46d) between the side surface 8a on one end side of the nozzle plate 8 and the side surface portion 45b of the communication passage 45 (side surface portion 46b of the swirl application chamber 46) is r1, and the bottom portion 45a of the communication passage 45 is.
  • the size of the radius r2 of the corner 45c of the communication passage 45 (the corner 46c of the communication passage 45) is defined by the following equation. r1 ⁇ r2 ⁇ L / 2
  • the nozzle plate 8 is formed by cutting, pressing, etching, or the like, and the swirl chamber 41 and the fuel injection hole 44 are integrally formed on a single plate.
  • FIG. 6 is a perspective view of the swirl chamber 41 and the fuel injection hole 44 in which the fuel flow is described.
  • the space between the valve body 4 and the valve seat 6 is released, and fuel is supplied to the nozzle plate 8 side.
  • the fuel supplied to the nozzle plate 8 first enters the central chamber 42, collides with the bottom surface of the central chamber 42, thereby converting the axial flow into the radial flow and flows into each communication passage 45. Since the communication path 45 is connected in the tangential direction of the swirl application chamber 46, the fuel that has passed through the communication path 45 swirls along the inner surface of the swirl application chamber 46.
  • a swirl force (swirl force) is applied to the fuel in the swirl imparting chamber 46, and the fuel having the swirl force is injected while swirling along the side wall portion of the fuel injection hole 44.
  • the fuel injected from the fuel injection hole 44 is scattered in the tangential direction of the fuel injection hole 44.
  • the fuel spray immediately after being injected from the fuel injection hole 44 becomes a liquid film state in which the fuel is formed into a film shape on the spray surface of a substantially hollow cone shape by the edge portion of the opening of the fuel injection hole 44.
  • the fuel spray that has been in the form of a film gradually starts to split and enters a liquid yarn state. Further, the splitting further proceeds, and the fuel is in a droplet state split into particles.
  • the dead volume refers to a volume in which fuel remains in the downstream opening 48, the swirl chamber 41, and the fuel injection hole 44 when the fuel injection valve 1 is closed.
  • the inside of the intake manifold into which the fuel injection valve 1 injects fuel becomes negative pressure, the remaining fuel boils under reduced pressure, causing the flow rate to vary with respect to the target fuel flow rate.
  • the fluid generally has the highest flow velocity near the center of the flow channel, and the flow velocity is slower as it is closer to the wall of the flow channel.
  • the corner 45c of the communication passage 45 and the corner 46c of the swirl application chamber 46 are formed in an edge shape, the corners 45c and 46c are surrounded by walls, so that the fuel flow rate is particularly slow. That is, the fuel flowing in the vicinity of the corner portion 45c of the communication passage 45 and in the vicinity of the corner portion 46c of the swirl imparting chamber 46 has little contribution to the promotion of fuel miniaturization, but the vicinity of the corner portion 45c of the communication passage 45 and the swirl.
  • the vicinity of the corner 46c of the applying chamber 46 was a cause of an increase in dead volume.
  • the corner 45c between the bottom 45a and the side surface 45b of the communication passage 45 and the corner 46c between the bottom 46a and the side surface 46b of the swirl application chamber 46 are connected to the nozzle plate 8 with each other. It was formed to have an R shape (curved shape) in a cross section parallel to the axial direction. As a result, the volume of the portion of the communication passage 45 and the swirl imparting chamber 46 where the fuel that contributes to the miniaturization promotion is small can be reduced, and the dead volume can be reduced without affecting the fuel miniaturization. it can.
  • a valve body 4 provided so as to be capable of opening and closing, a valve seat 6 on which the valve body 4 sits when the valve is closed, and a valve seat member 7 having a downstream opening 48 on the downstream side, and a valve seat member 7, a nozzle plate 8 provided downstream of the nozzle plate 8, a swirl imparting chamber 46 that is formed in a concave shape on the valve seat member 7 side of the nozzle plate 8 and that imparts a swirling force by swirling fuel therein, and a swirl imparting chamber 46.
  • the cross-sectional shapes of the corner portion 46c of the swirl imparting chamber 46 and the corner portion 45c of the communication passage 45 are curved, the side surface of the valve seat member 7 of the nozzle plate 8, and the swirl imparting chamber.
  • the radius of the cross-sectional shape of the corner 45d is r1
  • the radius of the cross-section of the corner 46c of the swirling chamber 46 and the corner 45c of the communication passage 45 is r2
  • the width of the swirling chamber 46 and the communication passage 45 is W.
  • r2 ⁇ W / 2 The swirl imparting chamber 46 and the communication path 45 were formed so as to satisfy the following formula.
  • the depths of the swirl chamber 46 and the communication passage 45 are L
  • the swirl imparting chamber 46 and the communication path 45 were formed so as to satisfy the following formula. Therefore, the volume of the portion of the communication passage 45 and the swirl imparting chamber 46 where the fuel that contributes to the miniaturization promotion is small can be reduced, and the dead volume can be reduced without affecting the fuel miniaturization. .
  • FIG. 7 is a perspective view of the nozzle plate 8 used in the fuel injection valve of the second embodiment.
  • two swirl chambers 41 may be formed as shown in this figure.
  • FIG. 8 is a view showing the nozzle plate 8 provided for the fuel injection valve of the third embodiment.
  • six swirl chambers 41 may be formed as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The purpose of the invention is to provide a fuel injection valve capable of reducing dead volume. The cross-sectional shape of a corner between a side surface part (45b) and a bottom part (45a) of a swirl-creating chamber (46) and a communication passage (45) is formed into a bent shape; and with (r1) denoting the radius of the cross-sectional shape of a corner (45d) between a side surface (8a) of a valve seat member (7) of a nozzle plate (8) and the side surface part of the swirl-creating chamber and the communication passage, (r2) denoting the radius of the cross-sectional shape of a corner (45c) between the side surface part and the bottom part of the swirl-creating chamber and the communication passage, and (W) denoting the width of the swirl-creating chamber and the communication passage, the swirl-creating chamber and the communication passage are formed so as to fulfill the relationship r1 < r2 < W/2.

Description

燃料噴射弁Fuel injection valve
 本発明は、エンジンの燃料噴射に用いられる燃料噴射弁に関する。 The present invention relates to a fuel injection valve used for fuel injection of an engine.
 この種の燃料噴射弁としては、以下の特許文献1に記載されている。この特許文献1には、スワール室を有している燃料噴射弁において、スワール室の底部の角がエッジ状に形成されたものが開示されている。 This type of fuel injection valve is described in Patent Document 1 below. This patent document 1 discloses a fuel injection valve having a swirl chamber in which the corners of the bottom of the swirl chamber are formed in an edge shape.
米国特許第6783085号明細書US Pat. No. 6,783,855
 前記特許文献1に記載の技術では、スワール室を流れる燃料の流速はスワール室の壁に近いほど遅くなり、特に、スワール室の底部の角は燃料が流れにくい場所となる。
 燃料噴射弁が閉弁しているときには、燃料が残留する体積(デッドボリューム)が小さい方が望ましいが、スワール室の底部の角は燃料が流れにくく、開弁時に燃料の微細化促進への貢献が少ないにも関わらず、デッドボリュームの増大につながるおそれがあった。
 本発明は、前記問題に着目してなされたもので、その目的とするところは、デッドボリュームを小さくすることができる燃料噴射弁を提供することである。
In the technique described in Patent Document 1, the flow rate of the fuel flowing through the swirl chamber becomes slower as it approaches the wall of the swirl chamber, and in particular, the corner at the bottom of the swirl chamber is a place where it is difficult for the fuel to flow.
When the fuel injection valve is closed, it is desirable that the volume of fuel remaining (dead volume) is small, but the bottom corner of the swirl chamber is less likely to flow fuel, contributing to the promotion of fuel miniaturization when the valve is opened. Despite this small amount, there was a risk of increasing the dead volume.
The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a fuel injection valve capable of reducing the dead volume.
 前記目的を達成するため本願発明では、スワール付与室および連通路の側面部と底部との間の角部の断面形状を曲面形状とした。 In order to achieve the above object, in the present invention, the cross-sectional shape of the corner portion between the side portion and the bottom portion of the swirl application chamber and the communication passage is a curved shape.
 本発明によれば、微細化促進への貢献が小さい燃料が溜まる部分の体積を削ることができ、燃料微細化に影響を及ぼすことなくデッドボリュームを削減することができる。 According to the present invention, it is possible to cut the volume of the portion where the fuel that contributes to the promotion of miniaturization is small, and to reduce the dead volume without affecting the fuel miniaturization.
実施形態1の燃料噴射弁の軸方向断面図である。It is an axial sectional view of the fuel injection valve of Embodiment 1. 実施形態1の燃料噴射弁のノズルプレート付近の拡大断面図である。It is an expanded sectional view near the nozzle plate of the fuel injection valve of Embodiment 1. 実施形態1のノズルプレートの斜視図である。2 is a perspective view of a nozzle plate according to Embodiment 1. FIG. 実施形態1のノズルプレートの平面図および断面図である。It is the top view and sectional view of the nozzle plate of Embodiment 1. 実施形態1の連通路、スワール付与室の模式断面図である。It is a schematic cross section of the communicating path of Embodiment 1, and a swirl grant chamber. 実施形態1のスワール室および燃料噴射孔の斜視図に燃料の流れを記載した図である。It is the figure which described the flow of the fuel in the perspective view of the swirl chamber of Embodiment 1, and a fuel injection hole. 実施形態2のノズルプレートの斜視図である。It is a perspective view of the nozzle plate of Embodiment 2. 実施形態3のノズルプレートの斜視図である。It is a perspective view of the nozzle plate of Embodiment 3.
 〔実施形態1〕
 実施形態1の燃料噴射弁1について説明する。
 [燃料噴射弁の構成]
 図1は燃料噴射弁1の軸方向断面図である。この燃料噴射弁1は、自動車用ガソリンエンジンに用いられるものであって、インテークマニホールド内に向けて燃料を噴射する、いわゆる低圧用の燃料噴射弁である。
 燃料噴射弁1は、磁性筒体2と、この磁性筒体2内に収容されるコア筒体3と、軸方向に摺動可能な弁体4と、この弁体4と一体に形成された弁軸5と、閉弁時に前記弁体4により閉鎖される弁座6を有している弁座部材7と、開弁時に燃料が噴射される燃料噴射孔を有しているノズルプレート8と、通電時に前記弁体4を開弁方向に摺動させる電磁コイル9と、磁束線を誘導するヨーク10とを有している。
[Embodiment 1]
The fuel injection valve 1 of Embodiment 1 is demonstrated.
[Configuration of fuel injection valve]
FIG. 1 is an axial sectional view of the fuel injection valve 1. The fuel injection valve 1 is a so-called low pressure fuel injection valve that is used in a gasoline engine for automobiles and injects fuel into an intake manifold.
The fuel injection valve 1 is formed integrally with a magnetic cylinder 2, a core cylinder 3 accommodated in the magnetic cylinder 2, a valve element 4 slidable in the axial direction, and the valve element 4. A valve shaft 5; a valve seat member 7 having a valve seat 6 closed by the valve body 4 when the valve is closed; and a nozzle plate 8 having a fuel injection hole through which fuel is injected when the valve is opened. The electromagnetic coil 9 slides the valve body 4 in the valve opening direction when energized, and the yoke 10 induces magnetic flux lines.
 前記磁性筒体2は、例えば電磁ステンレス鋼等の磁性金属材料により形成された金属パイプ等からなり、深絞り等のプレス加工、研削加工等の手段を用いることにより、図1に示すように段付き筒状をなして一体に形成されている。また、磁性筒体2は、一端側に形成された大径部11と、大径部11よりも小径であって他端側に形成された小径部12とを有している。
 前記小径部12には、一部を薄肉化した薄肉部13が形成されている。前記小径部12は、薄肉部13より一端側にコア筒体3を収容するコア筒体収容部14と、薄肉部13より他端側に弁部材15(弁体4、弁軸5、弁座部材7)を収容する弁部材収容部16とに分けられている。前記薄肉部13は、後述するコア筒体3と弁軸5が磁性筒体2に収容された状態で、コア筒体3と弁軸5との間の隙間部分を取り囲むように形成されている。前記薄肉部13は、コア筒体収容部14と弁部材収容部16との間の磁気抵抗を増大させ、コア筒体収容部14と弁部材収容部16間を磁気的に遮断している。
The magnetic cylinder 2 is made of a metal pipe made of a magnetic metal material such as electromagnetic stainless steel, for example, and is stepped as shown in FIG. 1 by using means such as deep drawing or press working or grinding. It is formed integrally with a cylinder. The magnetic cylinder 2 has a large-diameter portion 11 formed on one end side and a small-diameter portion 12 having a smaller diameter than the large-diameter portion 11 and formed on the other end side.
The small diameter portion 12 is formed with a thin portion 13 that is partially thinned. The small-diameter portion 12 includes a core tube housing portion 14 for housing the core tube body 3 on one end side from the thin wall portion 13 and a valve member 15 (the valve body 4, the valve shaft 5, the valve seat on the other end side from the thin wall portion 13. It is divided into a valve member accommodating portion 16 for accommodating the member 7). The thin portion 13 is formed so as to surround a gap portion between the core cylinder 3 and the valve shaft 5 in a state where the core cylinder 3 and the valve shaft 5 described later are accommodated in the magnetic cylinder 2. . The thin-walled portion 13 increases the magnetic resistance between the core tube housing portion 14 and the valve member housing portion 16 and magnetically blocks between the core tube housing portion 14 and the valve member housing portion 16.
 前記大径部11の内径は、弁部材15に燃料を送る燃料通路17を構成しており、大径部11の一端部には燃料を濾過する燃料フィルタ18が設けられている。燃料通路17にはポンプ47が接続されている。このポンプ47は、ポンプ制御装置54により制御されている。
 前記コア筒体3は、中空部19を有している円筒形に形成されており、前記磁性筒体2のコア筒体収容部14に圧入されている。中空部19には、圧入等の手段により固定されたばね受け20が収容されている。このばね受け20の中心には軸方向に貫通した燃料通路43が形成されている。
 前記弁体4の外形はほぼ球体状に形成されており、周上に燃料噴射弁1の軸方向に対して並行に削られた燃料通路面21を有している。弁軸5は大径部22と、外形が大径部22より小径に形成された小径部23とを有している。
The inner diameter of the large diameter portion 11 constitutes a fuel passage 17 that sends fuel to the valve member 15, and a fuel filter 18 that filters the fuel is provided at one end of the large diameter portion 11. A pump 47 is connected to the fuel passage 17. The pump 47 is controlled by a pump control device 54.
The core cylinder 3 is formed in a cylindrical shape having a hollow part 19 and is press-fitted into the core cylinder housing part 14 of the magnetic cylinder 2. The hollow portion 19 accommodates a spring receiver 20 fixed by means such as press fitting. A fuel passage 43 penetrating in the axial direction is formed at the center of the spring receiver 20.
The outer shape of the valve body 4 is formed in a substantially spherical shape, and has a fuel passage surface 21 cut in parallel with the axial direction of the fuel injection valve 1 on the circumference. The valve shaft 5 has a large-diameter portion 22 and a small-diameter portion 23 whose outer shape is smaller than the large-diameter portion 22.
 小径部23の先端には、弁体4が溶接により一体に固定されている。なお、図中の黒半円や黒三角は溶接箇所を示している。大径部22の端部には、ばね挿入孔24が穿設されている。このばね挿入孔24の底部は、ばね挿入孔24よりも小径に形成されたばね座り部25が形成されるとともに、段部のばね受部26が形成されている。小径部23の端部には燃料通路孔27が形成されている。この燃料通路孔27は、ばね挿入孔24と連通している。小径部23の外周と燃料通路孔27とは貫通した燃料流出孔28が形成されている。
 弁座部材7は、ほぼ円錐状の弁座6と、この弁座6より一端側に弁体4の径とほぼ同型に形成された弁体保持孔30と、この弁体保持孔30から一端開口側に向かうに連れて大径に形成された上流開口部31と、弁座6の他端側に開口する下流開口部48とが形成されている。
The valve body 4 is integrally fixed to the tip of the small diameter portion 23 by welding. In addition, the black semicircle and black triangle in a figure have shown the welding location. A spring insertion hole 24 is formed at the end of the large diameter portion 22. A spring seat 25 having a smaller diameter than the spring insertion hole 24 is formed at the bottom of the spring insertion hole 24, and a stepped spring receiving portion 26 is formed. A fuel passage hole 27 is formed at the end of the small diameter portion 23. The fuel passage hole 27 communicates with the spring insertion hole 24. A fuel outflow hole 28 penetrating the outer periphery of the small diameter portion 23 and the fuel passage hole 27 is formed.
The valve seat member 7 includes a substantially conical valve seat 6, a valve body holding hole 30 formed on the one end side of the valve seat 6 so as to be substantially the same as the diameter of the valve body 4, and one end from the valve body holding hole 30. An upstream opening 31 formed with a larger diameter toward the opening side and a downstream opening 48 opened to the other end side of the valve seat 6 are formed.
 前記弁軸5および弁体4は、磁性筒体2に軸方向摺動可能に収装されている。弁軸5のばね受部26とばね受け20との間にコイルばね29が設けられ、弁軸5および弁体4を他端側に付勢している。弁座部材7は、磁性筒体2に挿入され、溶接により磁性筒体2に固定されている。弁座6は、約45°の角度で弁体保持孔30から下流開口部48へ向かって径が小さくなるように形成され、閉弁時には弁体4が弁座6に着座するようになっている。
 磁性筒体2のコア筒体3の外周には電磁コイル9が挿嵌されている。すなわち、電磁コイル9は、コア筒体3の外周に配置されることとなる。電磁コイル9は、樹脂材料により形成されたボビン32と、このボビン32に巻回されたコイル33とから構成されている。コイル33は、コネクタピン34を介して電磁コイル制御装置55に接続されている。
 電磁コイル制御装置55は、クランク角を検出するクランク角センサからの情報に基づいて計算した燃焼室側に燃料を噴射するタイミングに応じて、電磁コイル9のコイル33に通電して燃料噴射弁1を開弁させる。
The valve shaft 5 and the valve body 4 are accommodated in the magnetic cylinder 2 so as to be slidable in the axial direction. A coil spring 29 is provided between the spring receiving portion 26 of the valve shaft 5 and the spring receiver 20 to urge the valve shaft 5 and the valve body 4 to the other end side. The valve seat member 7 is inserted into the magnetic cylinder 2 and fixed to the magnetic cylinder 2 by welding. The valve seat 6 is formed so that the diameter decreases from the valve body holding hole 30 toward the downstream opening 48 at an angle of about 45 °, and the valve body 4 is seated on the valve seat 6 when the valve is closed. Yes.
An electromagnetic coil 9 is inserted into the outer periphery of the core cylinder 3 of the magnetic cylinder 2. That is, the electromagnetic coil 9 is arranged on the outer periphery of the core cylinder 3. The electromagnetic coil 9 includes a bobbin 32 formed of a resin material and a coil 33 wound around the bobbin 32. The coil 33 is connected to the electromagnetic coil control device 55 via the connector pin 34.
The electromagnetic coil control device 55 energizes the coil 33 of the electromagnetic coil 9 in accordance with the timing of injecting fuel into the combustion chamber calculated based on the information from the crank angle sensor that detects the crank angle. Open the valve.
 ヨーク10は、中空の貫通孔を有し、一端開口側に形成された大径部35と、大径部35より小径に形成された中径部36と、中径部36より小径に形成され他端開口側に形成された小径部37から構成されている。小径部37は、弁部材収容部16の外周に嵌合されている。中径部36の内周には電磁コイル9が収装されている。大径部35の内周には連結コア38が配置されている。
 連結コア38は、磁性金属材料等によりほぼC字状に形成されている。ヨーク10は、小径部37および連結コア38を介して大径部35において磁性筒体2と接続しており、すなわち、電磁コイル9の両端部で磁性筒体2と磁気的に接続されていることとなる。ヨーク10の他端側先端には、燃料噴射弁1をエンジンの吸気ポートと接続するためのOリング40を保持し、かつ磁性筒体先端を保護するためのプロテクタ52が取り付けられている。
The yoke 10 has a hollow through-hole, and is formed with a large-diameter portion 35 formed on one end opening side, a medium-diameter portion 36 formed with a smaller diameter than the large-diameter portion 35, and a diameter smaller than the medium-diameter portion 36. It is comprised from the small diameter part 37 formed in the other end opening side. The small diameter portion 37 is fitted to the outer periphery of the valve member housing portion 16. An electromagnetic coil 9 is accommodated on the inner periphery of the medium diameter portion 36. A connecting core 38 is disposed on the inner periphery of the large diameter portion 35.
The connecting core 38 is formed in a substantially C shape by a magnetic metal material or the like. The yoke 10 is connected to the magnetic cylinder 2 at the large diameter portion 35 via the small diameter portion 37 and the connecting core 38, that is, magnetically connected to the magnetic cylinder 2 at both ends of the electromagnetic coil 9. It will be. A protector 52 for holding the O-ring 40 for connecting the fuel injection valve 1 to the intake port of the engine and protecting the tip of the magnetic cylinder is attached to the tip of the yoke 10 on the other end side.
 コネクタピン34を介して電磁コイル9に給電されると磁界が発生し、この磁界の磁力によって、弁体4および弁軸5をコイルばね29の付勢力に抗して開弁させる。
 燃料噴射弁1は、図1に示すように、大部分が樹脂カバー53により被覆されている。樹脂カバー53に被覆されている部分は、磁性筒体2の大径部11の一端部を除いた部分から小径部12の電磁コイル9設置位置まで、電磁コイル9とヨーク10の中径部36との間、連結コア38の外周と大径部35との間、大径部35の外周、中径部36の外周、およびコネクタピン34の外周である。コネクタピン34の先端部分は樹脂カバー53が開口して形成されており、コントロールユニットのコネクタが差し込まれるようになっている。
 磁性筒体2の一端部外周には、Oリング39が設けられ、ヨーク10の小径部37の外周にはOリング40が設けられている。
 弁座部材7の他端側には、ノズルプレート8が溶接されている。このノズルプレート8には、燃料にスワール(旋回流)を与える複数のスワール室41と、各スワール室41に燃料を分配する中央室42と、スワール室41においてスワールが与えられた燃料が噴射される燃料噴射孔44が形成されている。
When power is supplied to the electromagnetic coil 9 through the connector pin 34, a magnetic field is generated, and the valve body 4 and the valve shaft 5 are opened against the biasing force of the coil spring 29 by the magnetic force of the magnetic field.
As shown in FIG. 1, most of the fuel injection valve 1 is covered with a resin cover 53. The portion covered with the resin cover 53 is a portion of the magnetic cylindrical body 2 excluding one end portion of the large diameter portion 11 to the electromagnetic coil 9 installation position of the small diameter portion 12 and the medium diameter portion 36 of the electromagnetic coil 9 and the yoke 10. Between the outer periphery of the connecting core 38 and the large diameter portion 35, the outer periphery of the large diameter portion 35, the outer periphery of the medium diameter portion 36, and the outer periphery of the connector pin 34. The front end portion of the connector pin 34 is formed by opening a resin cover 53 so that the connector of the control unit can be inserted.
An O-ring 39 is provided on the outer periphery of one end of the magnetic cylinder 2, and an O-ring 40 is provided on the outer periphery of the small diameter portion 37 of the yoke 10.
A nozzle plate 8 is welded to the other end side of the valve seat member 7. The nozzle plate 8 is injected with a plurality of swirl chambers 41 that give a swirl (swirl flow) to the fuel, a central chamber 42 that distributes the fuel to each swirl chamber 41, and fuel that has been swirled in the swirl chamber 41. A fuel injection hole 44 is formed.
 [ノズルプレートの構成]
 図2は燃料噴射弁1のノズルプレート8付近の拡大断面図である。図3はノズルプレート8の斜視図である。図4はノズルプレートを軸方向一端側(弁座部材7と当接する側)から見た図(図4(a))、およびA-A断面図(図4(b))である。なお、図1の燃料噴射弁1の軸方向断面図は、図4(a)のB-Bに示す位置で切断した断面図である。
 ノズルプレート8の一端側側面にはスワール室41が形成されている。スワール室41は、4つ形成されており、それぞれ連通路45とスワール付与室46とから構成されている。各連通路45は、ノズルプレート8の中心付近で接続している。連通路45は、ノズルプレート8の中心付近から放射状に延びた溝によって形成されている。つまり、連通路45は溝の底となる底部45aと、底部45aに対して立設する側面部45bとを有している。連通路45の先にはスワール付与室46が形成されている。スワール付与室46は、有底凹状に形成されている。つまり、スワール付与室46は、底となる底部46aと底部46aに立設する側面部46bとを有している。スワール付与室46の底部46aには、ノズルプレート8の他端側に貫通する燃料噴射孔44が形成されている。
 スワール付与室46の側面部46bは、ノズルプレート8の一端側から見ると螺旋状に形成されている。連通路45の一方の側面部45bは、スワール付与室46の側面部46bと接線方向に接続している。
[Configuration of nozzle plate]
FIG. 2 is an enlarged cross-sectional view of the vicinity of the nozzle plate 8 of the fuel injection valve 1. FIG. 3 is a perspective view of the nozzle plate 8. FIG. 4 is a view (FIG. 4A) of the nozzle plate viewed from one end side in the axial direction (the side in contact with the valve seat member 7), and a cross-sectional view taken along the line AA (FIG. 4B). 1 is a cross-sectional view taken along a line BB in FIG. 4A.
A swirl chamber 41 is formed on one side surface of the nozzle plate 8. Four swirl chambers 41 are formed, each including a communication path 45 and a swirl application chamber 46. Each communication path 45 is connected near the center of the nozzle plate 8. The communication path 45 is formed by a groove extending radially from the vicinity of the center of the nozzle plate 8. That is, the communication path 45 has a bottom portion 45a that becomes the bottom of the groove and a side surface portion 45b that stands up with respect to the bottom portion 45a. A swirl application chamber 46 is formed at the tip of the communication passage 45. The swirl application chamber 46 is formed in a bottomed concave shape. That is, the swirl imparting chamber 46 has a bottom portion 46a serving as a bottom and a side surface portion 46b erected on the bottom portion 46a. A fuel injection hole 44 penetrating the other end side of the nozzle plate 8 is formed in the bottom 46 a of the swirl application chamber 46.
The side surface portion 46 b of the swirl application chamber 46 is formed in a spiral shape when viewed from one end side of the nozzle plate 8. One side surface 45 b of the communication path 45 is connected to the side surface 46 b of the swirl application chamber 46 in the tangential direction.
 連通路45の底部45aと側面部45bとの間の角部45c、およびスワール付与室46の底部46aと側面部46bとの間の角部46cは、ノズルプレート8の軸方向に平行な断面においてR形状(曲線形状)となるように形成されている。
 図5は連通路45、スワール付与室46の模式断面図である。ノズルプレート8の一端側の側面8aと連通路45の側面部45b(スワール付与室46の側面部46b)との間の角部45d(角部46d)の半径をr1、連通路45の底部45a(スワール付与室46の底部46b)までの深さをLとすると、連通路45の角部45c(連通路45の角部46c)の半径r2の大きさは次の式で定義される。
 r1 < r2 < L/2
 ノズルプレート8は、切削、プレス、エッチング等によって作成されており、スワール室41、燃料噴射孔44が一枚のプレートに一体に形成されている。
The corner 45c between the bottom 45a and the side surface 45b of the communication passage 45 and the corner 46c between the bottom 46a and the side surface 46b of the swirl application chamber 46 are in a cross section parallel to the axial direction of the nozzle plate 8. It is formed to have an R shape (curved shape).
FIG. 5 is a schematic cross-sectional view of the communication passage 45 and the swirl application chamber 46. The radius of the corner 45d (corner portion 46d) between the side surface 8a on one end side of the nozzle plate 8 and the side surface portion 45b of the communication passage 45 (side surface portion 46b of the swirl application chamber 46) is r1, and the bottom portion 45a of the communication passage 45 is. When the depth to (the bottom 46b of the swirl imparting chamber 46) is L, the size of the radius r2 of the corner 45c of the communication passage 45 (the corner 46c of the communication passage 45) is defined by the following equation.
r1 <r2 <L / 2
The nozzle plate 8 is formed by cutting, pressing, etching, or the like, and the swirl chamber 41 and the fuel injection hole 44 are integrally formed on a single plate.
 [作用]
 (閉弁時の燃料の流れ)
 電磁コイル9のコイル33に通電されていないときには、弁体4が弁座6に着座するようにコイルばね29により弁軸5を他端側に付勢している。そのため、弁体4と弁座6との間が閉鎖され、ノズルプレート8側には燃料は供給されないようになっている。
 (開弁時の燃料の流れ)
 図6はスワール室41および燃料噴射孔44の斜視図に燃料の流れを記載した図である。
 電磁コイル9のコイル33に通電されているときには、コイルばね29の付勢力に抗して電磁力により弁軸5が一端側に引き上げられる。そのため、弁体4と弁座6との間が解放され、燃料がノズルプレート8側に供給される。
 ノズルプレート8に供給された燃料は、まず中央室42に入り、この中央室42の底面と衝突することで軸方向の流れから径方向の流れに変換されて各連通路45に流れ込む。この連通路45は、スワール付与室46の接線方向に接続しているため、連通路45を通過した燃料はスワール付与室46の内側面に沿って旋回する。
 スワール付与室46において燃料に旋回力(スワール力)が付与されて、旋回力を持った燃料は燃料噴射孔44の側壁部分に沿うように旋回しながら噴射される。そのため、燃料噴射孔44から噴射された燃料は、燃料噴射孔44の接線方向に飛散する。燃料噴射孔44から噴射された直後の燃料噴霧は、燃料噴射孔44開口部のエッジ部分によってほぼ中空円錐状の噴霧表面で燃料が膜状となる液膜状態となる。その後、膜状であった燃料噴霧が次第に分裂し始めて液糸状態となる。そして更に分裂が進み、燃料が粒状に分裂した液滴状態となる。
[Action]
(Fuel flow when the valve is closed)
When the coil 33 of the electromagnetic coil 9 is not energized, the valve shaft 5 is biased to the other end side by the coil spring 29 so that the valve body 4 is seated on the valve seat 6. Therefore, the space between the valve body 4 and the valve seat 6 is closed, so that fuel is not supplied to the nozzle plate 8 side.
(Fuel flow when the valve opens)
FIG. 6 is a perspective view of the swirl chamber 41 and the fuel injection hole 44 in which the fuel flow is described.
When the coil 33 of the electromagnetic coil 9 is energized, the valve shaft 5 is pulled up to one end side by the electromagnetic force against the biasing force of the coil spring 29. Therefore, the space between the valve body 4 and the valve seat 6 is released, and fuel is supplied to the nozzle plate 8 side.
The fuel supplied to the nozzle plate 8 first enters the central chamber 42, collides with the bottom surface of the central chamber 42, thereby converting the axial flow into the radial flow and flows into each communication passage 45. Since the communication path 45 is connected in the tangential direction of the swirl application chamber 46, the fuel that has passed through the communication path 45 swirls along the inner surface of the swirl application chamber 46.
A swirl force (swirl force) is applied to the fuel in the swirl imparting chamber 46, and the fuel having the swirl force is injected while swirling along the side wall portion of the fuel injection hole 44. Therefore, the fuel injected from the fuel injection hole 44 is scattered in the tangential direction of the fuel injection hole 44. The fuel spray immediately after being injected from the fuel injection hole 44 becomes a liquid film state in which the fuel is formed into a film shape on the spray surface of a substantially hollow cone shape by the edge portion of the opening of the fuel injection hole 44. Thereafter, the fuel spray that has been in the form of a film gradually starts to split and enters a liquid yarn state. Further, the splitting further proceeds, and the fuel is in a droplet state split into particles.
 (デッドボリュームの削減)
 デッドボリュームとは、燃料噴射弁1の閉弁時に、下流開口部48、スワール室41、燃料噴射孔44に燃料が残留する体積のことを指す。燃料噴射弁1が燃料を噴射するインテークマニホールド内が負圧になると、残留した燃料が減圧沸騰し、目標燃料流量に対して流量がばらつく原因となる。なお、エンジンのシリンダ内に直接燃料を噴射する高圧用の燃料噴射弁の場合は、シリンダ内が負圧になることがないためデッドボリュームの影響は一般的には無い。
 ところで、流体は一般的に、流路の中心付近が最も流速が速く、流路の壁に近いほど流速が遅い。つまり、連通路45の角部45cやスワール付与室46の角部46cをエッジ状に形成すると、角部45c,46cは壁に囲まれているため燃料の流速が特に遅い。すなわち、連通路45の角部45c付近やスワール付与室46の角部46c付近を流れる燃料は、燃料の微細化促進への貢献が小さいにも関わらず、連通路45の角部45c付近やスワール付与室46の角部46c付近はデッドボリュームの増大の要因となっていた。
 そこで、本実施形態では、連通路45の底部45aと側面部45bとの間の角部45c、およびスワール付与室46の底部46aと側面部46bとの間の角部46cを、ノズルプレート8の軸方向に平行な断面においてR形状(曲線形状)となるように形成した。
 これにより、連通路45、スワール付与室46のうち、微細化促進への貢献が小さい燃料が溜まる部分の体積を削ることができ、燃料微細化に影響を及ぼすことなくデッドボリュームを削減することができる。
(Dead volume reduction)
The dead volume refers to a volume in which fuel remains in the downstream opening 48, the swirl chamber 41, and the fuel injection hole 44 when the fuel injection valve 1 is closed. When the inside of the intake manifold into which the fuel injection valve 1 injects fuel becomes negative pressure, the remaining fuel boils under reduced pressure, causing the flow rate to vary with respect to the target fuel flow rate. Note that in the case of a high-pressure fuel injection valve that directly injects fuel into the engine cylinder, there is no negative pressure in the cylinder because there is no negative pressure inside the cylinder.
By the way, the fluid generally has the highest flow velocity near the center of the flow channel, and the flow velocity is slower as it is closer to the wall of the flow channel. That is, when the corner 45c of the communication passage 45 and the corner 46c of the swirl application chamber 46 are formed in an edge shape, the corners 45c and 46c are surrounded by walls, so that the fuel flow rate is particularly slow. That is, the fuel flowing in the vicinity of the corner portion 45c of the communication passage 45 and in the vicinity of the corner portion 46c of the swirl imparting chamber 46 has little contribution to the promotion of fuel miniaturization, but the vicinity of the corner portion 45c of the communication passage 45 and the swirl. The vicinity of the corner 46c of the applying chamber 46 was a cause of an increase in dead volume.
Therefore, in the present embodiment, the corner 45c between the bottom 45a and the side surface 45b of the communication passage 45 and the corner 46c between the bottom 46a and the side surface 46b of the swirl application chamber 46 are connected to the nozzle plate 8 with each other. It was formed to have an R shape (curved shape) in a cross section parallel to the axial direction.
As a result, the volume of the portion of the communication passage 45 and the swirl imparting chamber 46 where the fuel that contributes to the miniaturization promotion is small can be reduced, and the dead volume can be reduced without affecting the fuel miniaturization. it can.
 [効果]
 以下、実施形態1の燃料噴射弁1の効果について説明する。
 開閉弁可能に設けられた弁体4と、閉弁時に弁体4が座る弁座6が形成されるとともに、下流側に下流開口部48を有している弁座部材7と、弁座部材7の下流も設けられたノズルプレート8と、ノズルプレート8の弁座部材7側に凹状に形成され、内部で燃料を旋回させて旋回力を付与するスワール付与室46と、スワール付与室46の底部に形成され外部に貫通する燃料噴射孔44と、ノズルプレート8の弁座部材7側に凹状に形成され、スワール付与室46と弁座部材7の下流開口部48とを連通する連通路45と、を備えた燃料噴射弁1において、スワール付与室46の角部46cおよび連通路45の角部45cの断面形状を曲面形状とし、ノズルプレート8の弁座部材7の側面と、スワール付与室46の角部46dおよび連通路45の角部45dの断面形状の半径をr1、スワール付与室46の角部46cおよび連通路45の角部45cの断面形状の半径をr2、スワール付与室46および連通路45の幅をWとしたときに
 r2 < W/2
の式を満たすようにスワール付与室46および連通路45を形成した。
また、別の例として、スワール付与室46および連通路45の深さをLとしたときに、
 r1 < r2 < L/2
 の式を満たすようにスワール付与室46および連通路45を形成した。
 よって、連通路45、スワール付与室46のうち、微細化促進への貢献が小さい燃料が溜まる部分の体積を削ることができ、燃料微細化に影響を及ぼすことなくデッドボリュームを削減することができる。
[effect]
Hereinafter, the effect of the fuel injection valve 1 of Embodiment 1 is demonstrated.
A valve body 4 provided so as to be capable of opening and closing, a valve seat 6 on which the valve body 4 sits when the valve is closed, and a valve seat member 7 having a downstream opening 48 on the downstream side, and a valve seat member 7, a nozzle plate 8 provided downstream of the nozzle plate 8, a swirl imparting chamber 46 that is formed in a concave shape on the valve seat member 7 side of the nozzle plate 8 and that imparts a swirling force by swirling fuel therein, and a swirl imparting chamber 46. A fuel injection hole 44 formed at the bottom and penetrating to the outside, and a communication passage 45 formed in a concave shape on the valve seat member 7 side of the nozzle plate 8 and communicating the swirl chamber 46 and the downstream opening 48 of the valve seat member 7. The cross-sectional shapes of the corner portion 46c of the swirl imparting chamber 46 and the corner portion 45c of the communication passage 45 are curved, the side surface of the valve seat member 7 of the nozzle plate 8, and the swirl imparting chamber. 46 corners 46d and communication passage 4 The radius of the cross-sectional shape of the corner 45d is r1, the radius of the cross-section of the corner 46c of the swirling chamber 46 and the corner 45c of the communication passage 45 is r2, and the width of the swirling chamber 46 and the communication passage 45 is W. Sometimes r2 <W / 2
The swirl imparting chamber 46 and the communication path 45 were formed so as to satisfy the following formula.
As another example, when the depths of the swirl chamber 46 and the communication passage 45 are L,
r1 <r2 <L / 2
The swirl imparting chamber 46 and the communication path 45 were formed so as to satisfy the following formula.
Therefore, the volume of the portion of the communication passage 45 and the swirl imparting chamber 46 where the fuel that contributes to the miniaturization promotion is small can be reduced, and the dead volume can be reduced without affecting the fuel miniaturization. .
 以上、本願発明を実施形態1に基づいて説明してきたが、各発明の具体的な構成は実施形態1に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。 As mentioned above, although this invention was demonstrated based on Embodiment 1, the concrete structure of each invention is not limited to Embodiment 1, Even if there is a design change etc. in the range which does not deviate from the summary of invention. Are included in the present invention.
 (スワール室の数の変更)
 実施形態1の燃料噴射弁1では、スワール室41を4つ形成したが、スワール室41の個数は燃料噴射量の設計に応じて適宜変更しても良い。
 〔実施形態2〕
 図7は実施形態2の燃料噴射弁に供されるノズルプレート8の斜視図である。例えば、この図に示すようにスワール室41を2つ形成するようにしても良い。
 〔実施形態3〕
 図8は実施形態3の燃料噴射弁に供されるノズルプレート8を示す図であり、例えば、この図に示すようにスワール室41を6つ形成するようにしても良い。
(Change in number of swirl rooms)
In the fuel injection valve 1 of the first embodiment, four swirl chambers 41 are formed. However, the number of the swirl chambers 41 may be appropriately changed according to the design of the fuel injection amount.
[Embodiment 2]
FIG. 7 is a perspective view of the nozzle plate 8 used in the fuel injection valve of the second embodiment. For example, two swirl chambers 41 may be formed as shown in this figure.
[Embodiment 3]
FIG. 8 is a view showing the nozzle plate 8 provided for the fuel injection valve of the third embodiment. For example, six swirl chambers 41 may be formed as shown in FIG.
1  燃料噴射弁
4  弁体
6  弁座
7  弁座部材
8  ノズルプレート
44  燃料噴射孔(噴射孔)
45  連通路
45a  底部
45b  側面部
45c  角部
45d  角部
46  スワール付与室
46b  側面部
46c  角部
46d  角部
48  下流開口部(開口部)
DESCRIPTION OF SYMBOLS 1 Fuel injection valve 4 Valve body 6 Valve seat 7 Valve seat member 8 Nozzle plate 44 Fuel injection hole (injection hole)
45 communication path 45a bottom 45b side 45c corner 45d corner 46 swirl application chamber 46b side 46c corner 46d corner 48 downstream opening (opening)

Claims (8)

  1.  開閉弁可能に設けられた弁体と、
     閉弁時に前記弁体が着座す弁座が形成されるとともに、下流側に開口部を有している弁座部材と、
     前記弁座部材の下流に設けられたノズルプレートと、
     前記ノズルプレートの前記弁座部材側に凹状に形成され、内部で燃料を旋回させて旋回力を付与するスワール付与室と、
     前記スワール付与室の底部に形成され外部に貫通する噴射孔と、
     前記ノズルプレートの前記弁座部材側に凹状に形成され、前記スワール付与室と前記弁座部材の前記開口部とを連通する連通路と、
     を備えた燃料噴射弁において、
     前記スワール付与室および前記連通路の側面部と底部との間の角部の断面形状を曲面形状に形成し、
     前記スワール付与室および前記連通路の前記側面部と前記底部との間の角部の断面形状の半径をr2、前記スワール付与室および前記連通路の幅をWとしたときに、
     r2 < W/2
    の式を満たすように前記スワール付与室および前記連通路を形成したことを特徴とする燃料噴射弁。
    A valve body provided to be capable of opening and closing; and
    A valve seat on which the valve body is seated when the valve is closed, and a valve seat member having an opening on the downstream side;
    A nozzle plate provided downstream of the valve seat member;
    A swirl imparting chamber that is formed in a concave shape on the valve seat member side of the nozzle plate and that swirls fuel inside to impart a swirling force;
    An injection hole formed at the bottom of the swirl application chamber and penetrating to the outside;
    A communication path formed in a concave shape on the valve seat member side of the nozzle plate, and communicating the swirl application chamber and the opening of the valve seat member;
    In a fuel injection valve equipped with
    Forming a cross-sectional shape of a corner portion between a side surface portion and a bottom portion of the swirl application chamber and the communication path into a curved surface shape;
    When the radius of the cross-sectional shape of the corner portion between the side surface portion and the bottom portion of the swirl application chamber and the communication path is r2, and the width of the swirl application chamber and the communication path is W,
    r2 <W / 2
    A fuel injection valve characterized in that the swirl application chamber and the communication passage are formed so as to satisfy the following formula.
  2.  請求項1に記載の燃料噴射弁において、
     前記ノズルプレートの前記弁座部材の側面と、前記スワール付与室および前記連通路の側面部との間の角部の断面形状の半径をr1、前記スワール付与室および前記連通路の幅をWとしたときに
     r1 <r2 <W/2
     の式を満たすように前記スワール付与室および前記連通路を形成したことを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 1, wherein
    The radius of the cross-sectional shape of the corner between the side surface of the valve seat member of the nozzle plate and the side portion of the swirl application chamber and the communication path is r1, and the width of the swirl application chamber and the communication path is W. When r1 <r2 <W / 2
    A fuel injection valve characterized in that the swirl application chamber and the communication passage are formed so as to satisfy the following formula.
  3.  請求項1に記載の燃料噴射弁において、
     前記スワール付与室及び前記連通路の加工方法は、切削またはプレスあるいはエッチングによって行うことを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 1, wherein
    The fuel injection valve according to claim 1, wherein the swirling chamber and the communication path are processed by cutting, pressing or etching.
  4.  請求項2に記載の燃料噴射弁において、
     前記スワール付与室及び前記連通路の加工方法は、切削またはプレスあるいはエッチングによって行うことを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 2,
    The fuel injection valve according to claim 1, wherein the swirling chamber and the communication path are processed by cutting, pressing or etching.
  5.  請求項1に記載の燃料噴射弁において、
     前記スワール付与室を2つ形成したことを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 1, wherein
    2. A fuel injection valve comprising two swirl application chambers.
  6.  請求項1に記載の燃料噴射弁において、
     前記スワール付与室を6つ形成したことを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 1, wherein
    6. A fuel injection valve comprising six swirl application chambers.
  7.  請求項2に記載の燃料噴射弁において、
     前記スワール付与室を2つ形成したことを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 2,
    2. A fuel injection valve comprising two swirl application chambers.
  8.  請求項2に記載の燃料噴射弁において、
     前記スワール付与室を6つ形成したことを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 2,
    6. A fuel injection valve comprising six swirl application chambers.
PCT/JP2013/069547 2012-09-26 2013-07-18 Fuel injection valve WO2014050266A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
IN1578DEN2015 IN2015DN01578A (en) 2012-09-26 2013-07-18
CN201380037949.2A CN104471235A (en) 2012-09-26 2013-07-18 Fuel injection valve
DE112013004715.2T DE112013004715T5 (en) 2012-09-26 2013-07-18 Fuel injection valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012211779A JP2014066175A (en) 2012-09-26 2012-09-26 Fuel injection valve
JP2012-211779 2012-09-26

Publications (1)

Publication Number Publication Date
WO2014050266A1 true WO2014050266A1 (en) 2014-04-03

Family

ID=50387680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069547 WO2014050266A1 (en) 2012-09-26 2013-07-18 Fuel injection valve

Country Status (5)

Country Link
JP (1) JP2014066175A (en)
CN (1) CN104471235A (en)
DE (1) DE112013004715T5 (en)
IN (1) IN2015DN01578A (en)
WO (1) WO2014050266A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279066A (en) * 2017-11-01 2020-06-12 三菱电机株式会社 Fuel injection valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6416564B2 (en) * 2014-09-18 2018-10-31 日立オートモティブシステムズ株式会社 Fuel injection valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305145A (en) * 1993-04-27 1994-11-01 Ricoh Co Ltd Thermal ink jet head
JP2002098028A (en) * 2000-09-06 2002-04-05 Visteon Global Technologies Inc Nozzle for fuel injector
JP2002250258A (en) * 2001-02-22 2002-09-06 Denso Corp Constant residual pressure valve for fuel injection device
JP2010167775A (en) * 2008-12-24 2010-08-05 Seiko Epson Corp Liquid container
JP2012154264A (en) * 2011-01-27 2012-08-16 Hitachi Automotive Systems Ltd Fuel injection valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435884A (en) * 1993-09-30 1995-07-25 Parker-Hannifin Corporation Spray nozzle and method of manufacturing same
CN201982196U (en) * 2010-12-31 2011-09-21 浙江新柴股份有限公司 Efficient and low-emission combustion apparatus of direct injection diesel engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305145A (en) * 1993-04-27 1994-11-01 Ricoh Co Ltd Thermal ink jet head
JP2002098028A (en) * 2000-09-06 2002-04-05 Visteon Global Technologies Inc Nozzle for fuel injector
JP2002250258A (en) * 2001-02-22 2002-09-06 Denso Corp Constant residual pressure valve for fuel injection device
JP2010167775A (en) * 2008-12-24 2010-08-05 Seiko Epson Corp Liquid container
JP2012154264A (en) * 2011-01-27 2012-08-16 Hitachi Automotive Systems Ltd Fuel injection valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279066A (en) * 2017-11-01 2020-06-12 三菱电机株式会社 Fuel injection valve
CN111279066B (en) * 2017-11-01 2022-03-01 三菱电机株式会社 Fuel injection valve

Also Published As

Publication number Publication date
DE112013004715T5 (en) 2015-07-16
IN2015DN01578A (en) 2015-07-03
JP2014066175A (en) 2014-04-17
CN104471235A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5200047B2 (en) Fuel injection valve
JP5492123B2 (en) Fuel injection valve
JP5852463B2 (en) Fuel injection valve
JP5253480B2 (en) Fuel injection valve
JP2012215135A (en) Fuel injection valve
JP5336451B2 (en) Fuel injection valve
JP5877768B2 (en) Fuel injection valve
JP2013194624A (en) Fuel injection valve
JP2013185522A (en) Fuel injection valve
JP5341046B2 (en) Fuel injection valve
JP5341045B2 (en) Fuel injection valve
JP2012211532A (en) Fuel injection valve
JP2012077664A (en) Fuel injection valve
JP5980706B2 (en) Fuel injection valve
JP2013194725A (en) Fuel injection valve
WO2014050266A1 (en) Fuel injection valve
JP5492131B2 (en) Fuel injection valve
JP2014181611A (en) Fuel injection valve
JP5318804B2 (en) Fuel injection valve
JP5492133B2 (en) Fuel injection valve
JP5579888B2 (en) Fuel injection valve
JP2014173515A (en) Fuel injection valve
JP5955181B2 (en) Fuel injection valve
JP2014031757A (en) Fuel injection valve
JP2014066186A (en) Fuel injection valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201501321

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 112013004715

Country of ref document: DE

Ref document number: 1120130047152

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841572

Country of ref document: EP

Kind code of ref document: A1