JP2014179426A - Vacuum impregnation apparatus - Google Patents

Vacuum impregnation apparatus Download PDF

Info

Publication number
JP2014179426A
JP2014179426A JP2013051902A JP2013051902A JP2014179426A JP 2014179426 A JP2014179426 A JP 2014179426A JP 2013051902 A JP2013051902 A JP 2013051902A JP 2013051902 A JP2013051902 A JP 2013051902A JP 2014179426 A JP2014179426 A JP 2014179426A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic solution
container
vacuum
impregnation apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013051902A
Other languages
Japanese (ja)
Inventor
Masahisa Azuma
正久 東
Eisaku Nakao
栄作 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2013051902A priority Critical patent/JP2014179426A/en
Publication of JP2014179426A publication Critical patent/JP2014179426A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum impregnation apparatus in which floating of an electrolyte container can be suppressed when injecting the electrolyte.SOLUTION: A vacuum impregnation apparatus for injecting electrolyte into the electrolyte container of an electrolytic capacitor by vacuum differential pressure method includes a vacuum chamber, an electrolyte vessel arranged in the vacuum chamber and housing the electrolyte, a vacuum pump for evacuating the vacuum chamber, a support mechanism for supporting an electrolyte container in the vacuum chamber so that a portion of the electrolyte container, including an inlet, is immersed in the electrolyte in the electrolyte container, at such a position that the corner periphery, where the inlet of the electrolyte container is arranged, becomes the lowermost point, and a gas introduction mechanism for introducing gas into the vacuum chamber under vacuum state, while immersing the inlet in the electrolyte.

Description

本発明は、電解コンデンサの電解液容器に電解液を注入する真空含浸装置に関する。   The present invention relates to a vacuum impregnation apparatus for injecting an electrolytic solution into an electrolytic solution container of an electrolytic capacitor.

真空差圧法を用いて容器内に液体を注入する手段が、一般的に用いられている。電解コンデンサの製造においても、電解液容器に電解液を注入するために真空差圧法が採用されている(例えば、特許文献1参照。)。   A means for injecting a liquid into a container using a vacuum differential pressure method is generally used. Also in the manufacture of an electrolytic capacitor, a vacuum differential pressure method is employed to inject an electrolytic solution into an electrolytic solution container (see, for example, Patent Document 1).

特開2003−217991号公報JP 2003-217991 A

しかしながら、通常の電解コンデンサの体積は小さいため、電解液容器を電解液に浸漬させた場合に発生する浮力により、電解液容器が浮き上がるという問題があった。電解液容器が浮き上がることにより、電解液容器に配置された注入口が電解液から離れ、電解液容器内に十分な量の電解液が注入されないことになる。   However, since the volume of a normal electrolytic capacitor is small, there has been a problem that the electrolytic solution container is lifted by buoyancy generated when the electrolytic solution container is immersed in the electrolytic solution. When the electrolytic solution container is lifted, the injection port arranged in the electrolytic solution container is separated from the electrolytic solution, and a sufficient amount of electrolytic solution is not injected into the electrolytic solution container.

上記問題点に鑑み、本発明は、電解液注入時の電解液容器の浮き上がりを抑制できる真空含浸装置を提供する。   In view of the above problems, the present invention provides a vacuum impregnation apparatus capable of suppressing the lifting of an electrolytic solution container during injection of electrolytic solution.

本願発明の一態様によれば、真空差圧法によって電解コンデンサの電解液容器に電解液を注入する真空含浸装置であって、(イ)真空チャンバーと、(ロ)真空チャンバー内に配置され、電解液を収納する電解液槽と、(ハ)真空チャンバー内を真空にする真空ポンプと、(ニ)電解液容器の注入口が配置された角部周辺が最下箇所になる姿勢で、且つ注入口を含む電解液容器の一部が電解液槽内の電解液に浸るように真空チャンバー内で電解液容器を支持する支持機構と、(ホ)電解液に注入口が浸された状態で、真空状態の真空チャンバー内にガスを導入するガス導入機構とを備える真空含浸装置が提供される。     According to one aspect of the present invention, there is provided a vacuum impregnation apparatus for injecting an electrolytic solution into an electrolytic solution container of an electrolytic capacitor by a vacuum differential pressure method, comprising: (a) a vacuum chamber; and (b) disposed in the vacuum chamber. (B) a vacuum pump that evacuates the inside of the vacuum chamber, and (d) a position in which the periphery of the corner where the inlet of the electrolyte container is disposed is the lowest position, and A support mechanism for supporting the electrolyte container in the vacuum chamber so that a part of the electrolyte container including the inlet is immersed in the electrolyte in the electrolyte tank, and (e) the inlet is immersed in the electrolyte, There is provided a vacuum impregnation apparatus including a gas introduction mechanism for introducing gas into a vacuum chamber in a vacuum state.

本発明によれば、電解液注入時の電解液容器の浮き上がりを抑制できる真空含浸装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum impregnation apparatus which can suppress the lift of the electrolyte solution container at the time of electrolyte solution injection | pouring can be provided.

本発明の実施形態に係る真空含浸装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the vacuum impregnation apparatus which concerns on embodiment of this invention. 電解コンデンサの構造例を示す模式的な断面図である。It is typical sectional drawing which shows the structural example of an electrolytic capacitor. 本発明の実施形態に係る真空含浸装置に使用される電解液容器の例を示す模式図である。It is a schematic diagram which shows the example of the electrolyte solution container used for the vacuum impregnation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る真空含浸装置に使用される電解液容器の他の例を示す模式図である。It is a schematic diagram which shows the other example of the electrolyte solution container used for the vacuum impregnation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る真空含浸装置に使用される電解液容器の更に他の例を示す模式図である。It is a schematic diagram which shows the further another example of the electrolyte solution container used for the vacuum impregnation apparatus which concerns on embodiment of this invention.

次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。又、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。   Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the structure, arrangement, etc. of the component parts described below. It is not something specific. The technical idea of the present invention can be variously modified within the scope of the claims.

本発明の実施形態に係る真空含浸装置1は、真空差圧法によって電解コンデンサの電解液容器20に電解液を注入する真空含浸装置である。図1に示すように、真空含浸装置1は、真空チャンバー11と、真空チャンバー11内に配置され、電解液100を収納する電解液槽12と、真空チャンバー11内を真空にする真空ポンプ13と、真空チャンバー11内で電解液容器20を支持する支持機構14と、真空状態の真空チャンバー11内にガスを導入するガス導入機構15とを備える。電解コンデンサは、例えば電気二重層コンデンサなどである。   A vacuum impregnation apparatus 1 according to an embodiment of the present invention is a vacuum impregnation apparatus that injects an electrolytic solution into an electrolytic solution container 20 of an electrolytic capacitor by a vacuum differential pressure method. As shown in FIG. 1, the vacuum impregnation apparatus 1 includes a vacuum chamber 11, an electrolytic solution tank 12 that is disposed in the vacuum chamber 11 and stores the electrolytic solution 100, and a vacuum pump 13 that evacuates the vacuum chamber 11. The support mechanism 14 that supports the electrolyte container 20 in the vacuum chamber 11 and the gas introduction mechanism 15 that introduces gas into the vacuum chamber 11 in a vacuum state are provided. The electrolytic capacitor is, for example, an electric double layer capacitor.

支持機構14は、電解液容器20の注入口200が配置された角部周辺が最下箇所になる姿勢で、且つ注入口200を含む電解液容器20の一部が電解液槽12内の電解液100に浸るように電解液容器を支持する。このとき、注入口200の上端部が電解液100の液面の直下に位置するように、電解液容器20が配置される。また、後述するように、ガス導入機構15は、電解液100に注入口200が浸された状態で、真空チャンバー11内に窒素ガスなどを導入する。上記のように、真空含浸装置1は、減圧を利用して電解液容器20の中に電解液100を注入させる装置である。   The support mechanism 14 has a posture in which the periphery of the corner portion where the injection port 200 of the electrolyte solution container 20 is disposed is the lowest position, and a part of the electrolyte solution container 20 including the injection port 200 is electrolyzed in the electrolyte solution tank 12. The electrolytic solution container is supported so as to be immersed in the liquid 100. At this time, the electrolytic solution container 20 is disposed so that the upper end portion of the injection port 200 is located immediately below the liquid surface of the electrolytic solution 100. As will be described later, the gas introduction mechanism 15 introduces nitrogen gas or the like into the vacuum chamber 11 in a state where the injection port 200 is immersed in the electrolytic solution 100. As described above, the vacuum impregnation apparatus 1 is an apparatus that injects the electrolytic solution 100 into the electrolytic solution container 20 using reduced pressure.

図1に示した真空含浸装置1では、昇降機構16によって電解液槽12を上下に移動させて、電解液容器20の注入口200が電解液槽12内の電解液100に浸るように電解液槽12の位置を調整する。なお、電解液槽12の位置を固定し、電解液容器20を上下に移動させてもよい。   In the vacuum impregnation apparatus 1 shown in FIG. 1, the electrolytic solution tank 12 is moved up and down by the elevating mechanism 16 so that the inlet 200 of the electrolytic solution container 20 is immersed in the electrolytic solution 100 in the electrolytic solution tank 12. The position of the tank 12 is adjusted. The position of the electrolytic solution tank 12 may be fixed and the electrolytic solution container 20 may be moved up and down.

図1に示した電解液容器20は直方体形状であり、注入口200が電解液容器20の角部の1つに隣接する面に形成されている。支持機構14は、注入口200が配置された角部周辺が最も下方になるように電解液容器20を支持する。このため、図1に示すように、電解液100の液面に対して電解液容器20の底面が一定の角度をなすように、電解液容器20は斜めの姿勢で支持される。そして、電解液容器20の一部が電解液100に浸漬される。電解液容器20に生じる浮力を小さくするためには、電解液100に浸漬される体積が小さいほどよい。このため、電解液100の液面と電解液容器20の底面とのなす角は、45度程度にすることが好ましい。   The electrolytic solution container 20 shown in FIG. 1 has a rectangular parallelepiped shape, and the injection port 200 is formed on a surface adjacent to one of the corners of the electrolytic solution container 20. The support mechanism 14 supports the electrolytic solution container 20 so that the periphery of the corner where the injection port 200 is disposed is at the lowest position. For this reason, as shown in FIG. 1, the electrolytic solution container 20 is supported in an oblique posture so that the bottom surface of the electrolytic solution container 20 forms a certain angle with respect to the liquid surface of the electrolytic solution 100. A part of the electrolytic solution container 20 is immersed in the electrolytic solution 100. In order to reduce the buoyancy generated in the electrolytic solution container 20, the smaller the volume immersed in the electrolytic solution 100, the better. For this reason, it is preferable that the angle formed between the liquid surface of the electrolytic solution 100 and the bottom surface of the electrolytic solution container 20 is about 45 degrees.

電解液容器20を斜めの姿勢で支持することにより、電解液容器20の底面が電解液100の液面と平行になるように電解液容器20を電解液100に浸漬する場合に比べて、電解液容器20に生じる浮力を小さくできる。更に、電解液容器20の一部のみを電解液100に浸漬させればよいため、電解液容器20全体を浸漬させる場合に比べて電解液容器20に生じる浮力が小さい。   By supporting the electrolytic solution container 20 in an oblique posture, the electrolytic solution container 20 is electrolyzed compared to the case where the electrolytic solution container 20 is immersed in the electrolytic solution 100 so that the bottom surface of the electrolytic solution container 20 is parallel to the liquid surface of the electrolytic solution 100. Buoyancy generated in the liquid container 20 can be reduced. Furthermore, since only a part of the electrolytic solution container 20 needs to be immersed in the electrolytic solution 100, the buoyancy generated in the electrolytic solution container 20 is smaller than when the entire electrolytic solution container 20 is immersed.

電解液容器20の構造例を図2に示す。電解液100が充填された電解液容器20の内部には、正極21と負極22が配置され、正極21と負極22の間はセパレータ23で隔てられている。正極21には正電極210が接続され、正電極210の一部は電解液容器20の外部に引き出されている。負極22には負電極220が接続され、負電極220の一部は電解液容器20の外部に引き出されている。正極21及び負極22は例えば活性炭からなり、正電極210及び負電極220はアルミニウム(Al)や銅(Cu)からなる。   An example of the structure of the electrolytic solution container 20 is shown in FIG. A positive electrode 21 and a negative electrode 22 are disposed inside the electrolytic solution container 20 filled with the electrolytic solution 100, and the positive electrode 21 and the negative electrode 22 are separated by a separator 23. A positive electrode 210 is connected to the positive electrode 21, and a part of the positive electrode 210 is drawn out of the electrolyte container 20. A negative electrode 220 is connected to the negative electrode 22, and a part of the negative electrode 220 is drawn out of the electrolyte container 20. The positive electrode 21 and the negative electrode 22 are made of, for example, activated carbon, and the positive electrode 210 and the negative electrode 220 are made of aluminum (Al) or copper (Cu).

正極21と負極22との間隔は、例えば数十μmであり、電解液容器20の体積は小さい。このように電解液容器20が小さく軽量であるため、電解液容器20を電解液100に浸漬させた場合に、電解液容器20が浮き上がり易い。   The interval between the positive electrode 21 and the negative electrode 22 is, for example, several tens of μm, and the volume of the electrolytic solution container 20 is small. Thus, since the electrolytic solution container 20 is small and light, when the electrolytic solution container 20 is immersed in the electrolytic solution 100, the electrolytic solution container 20 is likely to float.

注入口200は、例えば直径0.1mm以上且つ2mm以下の孔として配置される。注入口200の直径が小さすぎる場合には、電解液容器20内に電解液100が注入されにくい。一方、注入口200の直径が大きすぎる場合には、注入口200を塞ぐ蓋が電解コンデンサの製造工程の途中で外れるなどの問題が生じやすい。このため、注入口200の直径は、例えば1mm程度であることが好ましい。   The injection port 200 is arranged as a hole having a diameter of 0.1 mm or more and 2 mm or less, for example. When the diameter of the injection port 200 is too small, the electrolyte solution 100 is not easily injected into the electrolyte solution container 20. On the other hand, when the diameter of the injection port 200 is too large, problems such as the lid that closes the injection port 200 come off during the manufacturing process of the electrolytic capacitor are likely to occur. For this reason, it is preferable that the diameter of the inlet 200 is about 1 mm, for example.

以下に、図1に示した真空含浸装置1によって電解液容器20に電解液100を充填する方法の例を説明する。   Below, the example of the method of filling the electrolyte solution 100 into the electrolyte solution container 20 with the vacuum impregnation apparatus 1 shown in FIG. 1 is demonstrated.

先ず、注入口200が配置された角部周辺が最下箇所になる姿勢で、電解液容器20を真空チャンバー11内に格納する。次いで、真空ポンプ13による排気によって真空チャンバー11内を真空状態にする。真空チャンバー11内の圧力は例えば数パスカル程度である。その後、電解液槽12内の電解液100に注入口200が浸るように、昇降機構16によって電解液槽12を上昇させる。   First, the electrolytic solution container 20 is stored in the vacuum chamber 11 in a posture in which the periphery of the corner where the injection port 200 is disposed is the lowest position. Next, the vacuum chamber 11 is evacuated by evacuation by the vacuum pump 13. The pressure in the vacuum chamber 11 is about several Pascals, for example. Thereafter, the electrolyte tank 12 is raised by the elevating mechanism 16 so that the inlet 200 is immersed in the electrolyte 100 in the electrolyte tank 12.

電解液100に注入口が浸された状態で、ガス導入機構15によって真空状態の真空チャンバー11内にガスを導入する。導入されるガスは、窒素ガスなどである。例えば、真空チャンバー11内の圧力が大気圧又は大気圧以上になるように導入されるガスの流量が調整される。その結果、注入口200を介して電解液容器20内に電解液100が注入される。これにより、電解液容器20内に十分な量の電解液100が注入される。   A gas is introduced into the vacuum chamber 11 in a vacuum state by the gas introduction mechanism 15 while the inlet is immersed in the electrolytic solution 100. The introduced gas is nitrogen gas or the like. For example, the flow rate of the introduced gas is adjusted so that the pressure in the vacuum chamber 11 becomes atmospheric pressure or atmospheric pressure or higher. As a result, the electrolytic solution 100 is injected into the electrolytic solution container 20 through the injection port 200. Thereby, a sufficient amount of the electrolytic solution 100 is injected into the electrolytic solution container 20.

なお、電解液容器20内に注入される電解液100の量と注入時間との関係を予め調査しておくことにより、電解液容器20への電解液100の注入量を、注入時間により制御することができる。   In addition, by investigating the relationship between the amount of the electrolyte solution 100 injected into the electrolyte solution container 20 and the injection time in advance, the injection amount of the electrolyte solution 100 into the electrolyte solution container 20 is controlled by the injection time. be able to.

浮力をできるだけ小さくするためには、電解液100中の電解液容器20の体積ができるだけ小さいことが好ましい。また、既に述べたように、電解液容器20の注入口200の直径は0.1mm〜2mm程度である。このため、昇降機構16は、0.1mm程度の単位で電解液槽12の位置を調整することができる精度を有することが好ましい。例えば、図示を省略する撮影装置によって電解液槽12内の電解液100の液面をモニタすることで、電解液100の液面の位置が常に一定に保たれるように電解液槽12の位置が調整される。これにより、注入口200が電解液100にぎりぎりに浸るように電解液100の液面の位置が設定される。電解液容器20内に電解液100が注入されるに従い、電解液槽12内の電解液100の液面は低下する。このため、電解液容器20内が電解液100で完全に充填された状態になるまで注入口200が電解液100に浸っているように、電解液容器20の位置は設定される。なお、電解液槽12内の電解液100の液面の低下に合わせて電解液槽12を上昇させてもよい。   In order to make the buoyancy as small as possible, it is preferable that the volume of the electrolytic solution container 20 in the electrolytic solution 100 is as small as possible. Moreover, as already stated, the diameter of the inlet 200 of the electrolytic solution container 20 is about 0.1 mm to 2 mm. For this reason, it is preferable that the raising / lowering mechanism 16 has the precision which can adjust the position of the electrolyte tank 12 in a unit of about 0.1 mm. For example, the position of the electrolytic solution tank 12 is maintained so that the position of the electrolytic solution 100 is always kept constant by monitoring the liquid level of the electrolytic solution 100 in the electrolytic solution tank 12 by an imaging device (not shown). Is adjusted. Thereby, the position of the liquid surface of the electrolyte solution 100 is set so that the injection port 200 is immersed in the electrolyte solution 100. As the electrolytic solution 100 is injected into the electrolytic solution container 20, the liquid level of the electrolytic solution 100 in the electrolytic solution tank 12 decreases. For this reason, the position of the electrolytic solution container 20 is set such that the injection port 200 is immersed in the electrolytic solution 100 until the electrolytic solution container 20 is completely filled with the electrolytic solution 100. In addition, you may raise the electrolyte solution tank 12 according to the fall of the liquid level of the electrolyte solution 100 in the electrolyte solution tank 12. FIG.

以上に説明したように、本発明の実施形態に係る真空含浸装置1では、電解液容器20に働く浮力が小さい状態で、電解液容器20に電解液100が注入される。その結果、真空含浸装置1によれば、電解液注入時の浮力による電解液容器20の浮き上がりが抑制され、電解液容器20内に十分な量の電解液100を注入することができる。   As described above, in the vacuum impregnation apparatus 1 according to the embodiment of the present invention, the electrolytic solution 100 is injected into the electrolytic solution container 20 with a small buoyancy acting on the electrolytic solution container 20. As a result, according to the vacuum impregnation apparatus 1, lifting of the electrolyte container 20 due to buoyancy during injection of the electrolyte is suppressed, and a sufficient amount of the electrolyte 100 can be injected into the electrolyte container 20.

また、電解液容器20の浮上を防止するための機構を真空含浸装置1に付与する必要がないため、真空含浸装置1の構造の複雑化を回避できる。更に、電解液容器20の浮上を防止するための機構が必要ないため、電解コンデンサの製造ラインの自動化を容易にすることができる。   In addition, since it is not necessary to provide the vacuum impregnation apparatus 1 with a mechanism for preventing the electrolyte container 20 from rising, the structure of the vacuum impregnation apparatus 1 can be prevented from becoming complicated. Furthermore, since a mechanism for preventing the electrolytic solution container 20 from floating is not necessary, automation of the electrolytic capacitor production line can be facilitated.

なお、電解液容器20に働く浮力を小さくするために、電解液容器20の一部のみが電解液100に浸漬される。このため、電解液容器20の外側に付着する電解液100の量が少なく、電解液容器20の外側に付着した電解液100を拭き取る工程の所要時間が短縮される。また、拭き取る電解液100の量を少なくすることにより、高価な電解液100の消費量を抑制できる。   In order to reduce the buoyancy acting on the electrolytic solution container 20, only a part of the electrolytic solution container 20 is immersed in the electrolytic solution 100. For this reason, there is little quantity of the electrolyte solution 100 adhering to the outer side of the electrolyte solution container 20, and the time required for the process of wiping the electrolyte solution 100 adhering to the outer side of the electrolyte solution container 20 is shortened. Moreover, the consumption of the expensive electrolyte solution 100 can be suppressed by reducing the quantity of the electrolyte solution 100 to wipe off.

<変形例>
上記では、電解液容器20が直方体形状である場合を説明した。電解液容器20の形状が、直方体形状以外の、例えば円筒形状や円錐形状であってもよい。
<Modification>
The case where the electrolytic solution container 20 has a rectangular parallelepiped shape has been described above. The shape of the electrolytic solution container 20 may be other than a rectangular parallelepiped shape, for example, a cylindrical shape or a conical shape.

図3に、円筒形状の電解液容器20の例を示す。図3に示した電解液容器20は、注入口200が側面の底面近傍に配置されている例である。注入口200が電解液100に浸るように図3に示した電解液容器20を斜めに保持することによって、浮力による電解液容器20の浮き上がりが抑制される。このため、注入口200が電解液100から離れることがなく、電解液容器20内に十分な量の電解液100を注入することができる。   FIG. 3 shows an example of a cylindrical electrolyte container 20. The electrolyte container 20 shown in FIG. 3 is an example in which the injection port 200 is disposed near the bottom surface of the side surface. By holding the electrolyte container 20 shown in FIG. 3 obliquely so that the injection port 200 is immersed in the electrolyte 100, the electrolyte container 20 is prevented from being lifted by buoyancy. For this reason, the injection port 200 does not leave the electrolytic solution 100, and a sufficient amount of the electrolytic solution 100 can be injected into the electrolytic solution container 20.

図4に、切頭円錐形状の電解液容器20の例を示す。図4に示した電解液容器20は、切頭された面近傍の側面に注入口200が配置されている。図4に示したように注入口200が電解液100に浸るように電解液容器20を斜めに保持することにより浮力が抑制され、注入口200が電解液100から離れることはない。   FIG. 4 shows an example of a truncated conical electrolyte container 20. In the electrolytic solution container 20 shown in FIG. 4, the injection port 200 is arranged on the side surface near the truncated surface. As shown in FIG. 4, buoyancy is suppressed by holding the electrolytic solution container 20 obliquely so that the injection port 200 is immersed in the electrolytic solution 100, and the injection port 200 does not leave the electrolytic solution 100.

(その他の実施形態)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

既に述べた実施形態の説明においては、電解液容器20に設けられた注入口200が1つである例を示したが、電解液容器20に複数の注入口200を設けてもよい。例えば図5に示すように、直方体形状の電解液容器20の複数の面にそれぞれ注入口200を配置してもよい。   In the description of the embodiment described above, an example in which there is one injection port 200 provided in the electrolytic solution container 20 is shown, but a plurality of injection ports 200 may be provided in the electrolytic solution container 20. For example, as shown in FIG. 5, injection ports 200 may be arranged on a plurality of surfaces of a rectangular parallelepiped electrolyte container 20.

このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1…真空含浸装置
11…真空チャンバー
12…電解液槽
13…真空ポンプ
14…支持機構
15…ガス導入機構
16…昇降機構
20…電解液容器
21…正極
22…負極
23…セパレータ
100…電解液
200…注入口
210…正電極
220…負電極
DESCRIPTION OF SYMBOLS 1 ... Vacuum impregnation apparatus 11 ... Vacuum chamber 12 ... Electrolyte tank 13 ... Vacuum pump 14 ... Support mechanism 15 ... Gas introduction mechanism 16 ... Lifting mechanism 20 ... Electrolyte container 21 ... Positive electrode 22 ... Negative electrode 23 ... Separator 100 ... Electrolyte 200 ... Inlet 210 ... Positive electrode 220 ... Negative electrode

Claims (6)

真空差圧法によって電解コンデンサの電解液容器に電解液を注入する真空含浸装置であって、
真空チャンバーと、
前記真空チャンバー内に配置され、電解液を収納する電解液槽と、
前記真空チャンバー内を真空にする真空ポンプと、
前記電解液容器の注入口が配置された角部周辺が最下箇所になる姿勢で、且つ前記注入口を含む前記電解液容器の一部が前記電解液槽内の前記電解液に浸るように前記真空チャンバー内で前記電解液容器を支持する支持機構と、
前記電解液に前記注入口が浸された状態で、真空状態の前記真空チャンバー内にガスを導入するガス導入機構と
を備えることを特徴とする真空含浸装置。
A vacuum impregnation apparatus for injecting an electrolytic solution into an electrolytic solution container of an electrolytic capacitor by a vacuum differential pressure method,
A vacuum chamber;
An electrolyte bath disposed in the vacuum chamber and containing an electrolyte solution;
A vacuum pump for evacuating the vacuum chamber;
The position around the corner where the inlet of the electrolyte container is disposed is the lowest position, and a part of the electrolyte container including the inlet is immersed in the electrolyte in the electrolyte tank. A support mechanism for supporting the electrolyte solution container in the vacuum chamber;
A vacuum impregnation apparatus comprising: a gas introduction mechanism for introducing a gas into the vacuum chamber in a vacuum state in a state where the injection port is immersed in the electrolytic solution.
前記電解液容器が直方体形状であり、前記注入口が前記電解液容器の角部の1つに隣接する面に形成されていることを特徴とする請求項1に記載の真空含浸装置。   The vacuum impregnation apparatus according to claim 1, wherein the electrolyte container has a rectangular parallelepiped shape, and the injection port is formed on a surface adjacent to one of the corners of the electrolyte container. 前記電解液容器が円筒形状であり、前記電解液容器の側面の底面近傍に前記注入口が配置されていることを特徴とする請求項1に記載の真空含浸装置。   2. The vacuum impregnation apparatus according to claim 1, wherein the electrolytic solution container has a cylindrical shape, and the injection port is disposed near a bottom surface of a side surface of the electrolytic solution container. 前記電解液容器が切頭円錐形状であり、前記電解液容器の側面の切頭面近傍に前記注入口が配置されていることを特徴とする請求項1に記載の真空含浸装置。   The vacuum impregnation apparatus according to claim 1, wherein the electrolyte container has a truncated conical shape, and the injection port is disposed in the vicinity of a truncated surface on a side surface of the electrolyte container. 前記注入口が直径0.1mm以上且つ2mm以下の孔であることを特徴とする請求項1乃至4のいずれか1項に記載の真空含浸装置。   The vacuum impregnation apparatus according to any one of claims 1 to 4, wherein the injection port is a hole having a diameter of 0.1 mm or more and 2 mm or less. 前記電解液容器に前記注入口が複数形成されていることを特徴とする請求項1乃至5のいずれか1項に記載の真空含浸装置。   The vacuum impregnation apparatus according to claim 1, wherein a plurality of the inlets are formed in the electrolyte container.
JP2013051902A 2013-03-14 2013-03-14 Vacuum impregnation apparatus Pending JP2014179426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013051902A JP2014179426A (en) 2013-03-14 2013-03-14 Vacuum impregnation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013051902A JP2014179426A (en) 2013-03-14 2013-03-14 Vacuum impregnation apparatus

Publications (1)

Publication Number Publication Date
JP2014179426A true JP2014179426A (en) 2014-09-25

Family

ID=51699105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013051902A Pending JP2014179426A (en) 2013-03-14 2013-03-14 Vacuum impregnation apparatus

Country Status (1)

Country Link
JP (1) JP2014179426A (en)

Similar Documents

Publication Publication Date Title
JP2014179491A (en) Substrate processing apparatus
JP6285464B2 (en) Apparatus and method for filling a battery cell with electrolyte
JP2019515140A (en) Method for operating a device for supplying liquid metal to an evaporation device
JP2014179426A (en) Vacuum impregnation apparatus
CN211026894U (en) Graphite electrode dipping device
CN213476159U (en) Silicon carbide corrosion furnace body and silicon carbide corrosion furnace
JP2014013816A (en) Electrolyte impregnation apparatus and electrolyte injection method
KR101437763B1 (en) Porous metal shroud system for anode of electrolytic reduction apparatus
CN208949434U (en) A kind of coloring treatment device for metal pan manufacture
CN101498016B (en) Anode oxidation processing method for plasma processing container
JP2014175281A (en) Electrolyte injection apparatus and electrolyte injection method
JP2013258019A (en) Injection method of electrolyte
CN208412722U (en) A kind of vacuum storage tank
JP5897397B2 (en) Electrolytic reduction device
JP4797812B2 (en) Manufacturing method of aluminum electrolytic capacitor
JP3808762B2 (en) Plating equipment
JP2002274504A (en) Method and device for filling liquid filler in sealed case
CN216354670U (en) Battery cell fluid infusion device
CN217418205U (en) Device for carrying out antioxidant impregnation treatment on graphite material with micro-pore structure
CN215415397U (en) Rock core vacuum saturation device convenient to observe
CN211170968U (en) Improved temperature field for 180KG sapphire crystal growth
CN214778174U (en) Device for reducing liquid volatilization of large storage tank
CN203652808U (en) Auxiliary liquid draining device of bottom of soft container
CN202849550U (en) Electrocatalysis nitrogen generator for preventing cathode from being blocked
RU2013116200A (en) ELECTROCHEMICAL CELL FOR PRODUCING POROUS ANODE OXIDES OF METALS AND SEMICONDUCTORS