JP2014177875A - Exhaust temperature estimation device - Google Patents

Exhaust temperature estimation device Download PDF

Info

Publication number
JP2014177875A
JP2014177875A JP2013050814A JP2013050814A JP2014177875A JP 2014177875 A JP2014177875 A JP 2014177875A JP 2013050814 A JP2013050814 A JP 2013050814A JP 2013050814 A JP2013050814 A JP 2013050814A JP 2014177875 A JP2014177875 A JP 2014177875A
Authority
JP
Japan
Prior art keywords
exhaust
oxidation catalyst
temperature
exhaust gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013050814A
Other languages
Japanese (ja)
Other versions
JP6057787B2 (en
Inventor
Yukichi Hayashi
祐吉 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to JP2013050814A priority Critical patent/JP6057787B2/en
Publication of JP2014177875A publication Critical patent/JP2014177875A/en
Application granted granted Critical
Publication of JP6057787B2 publication Critical patent/JP6057787B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust temperature estimation device capable of achieving a low-cost and accurate estimation of an exhaust temperature in an exhaust passage under a wide range of conditions.SOLUTION: An exhaust temperature estimation device has an oxidation catalyst (5) and a DPF (6) in an exhaust passage (4) of an internal combustion engine (1) and estimates an exhaust temperature in the exhaust passage at one side either upstream or downstream of the oxidation catalyst on the basis of a detection value of an exhaust temperature sensor (11) installed at the other side. The exhaust temperature estimation device can execute an accurate exhaust temperature estimation by using a thermal balance model taking into account an oxidation combustion heating value Qon the basis of an additive amount of hydrocarbon and a heat exchange amount Qbetween the oxidation catalyst and exhaust.

Description

本発明は、内燃機関の排気通路に酸化触媒及びDPFが設けられ、該排気通路における排気温度を推定可能な排気温度推定装置の技術分野に関する。   The present invention relates to a technical field of an exhaust gas temperature estimating device in which an oxidation catalyst and a DPF are provided in an exhaust gas passage of an internal combustion engine, and an exhaust gas temperature in the exhaust gas passage can be estimated.

ディーゼルエンジンなどの内燃機関の排気に含まれる大気汚染物質の削減は、近年、大きな課題となっている。そこで排気通路には、排気中に含まれる酸素を利用して排気中の炭化水素(HC)を主とした未燃焼物質を酸化して水(H0)と二酸化炭素(CO)に分解する酸化触媒(DOC)や、排気中の未燃焼微細物質(PM)を捕集することによって浄化を行うディーゼルパティキュレートフィルタ(DPF)などからなる排気後処理装置が設けられている。この種の排気後処理装置では、DPFにおけるPMの蓄積量が増えると浄化能力が低下することから、所定タイミングで再生処理を実施することによって、蓄積したPMの燃焼処理を行う。 In recent years, the reduction of air pollutants contained in exhaust gas from internal combustion engines such as diesel engines has become a major issue. Therefore, in the exhaust passage, oxygen contained in the exhaust is used to oxidize unburned substances, mainly hydrocarbons (HC) in the exhaust, and decompose them into water (H 2 0) and carbon dioxide (CO 2 ). An exhaust aftertreatment device is provided that includes an oxidation catalyst (DOC) that performs the purification, a diesel particulate filter (DPF) that performs purification by collecting unburned fine substances (PM) in the exhaust gas, and the like. In this type of exhaust aftertreatment device, the purification capability decreases as the amount of PM accumulated in the DPF increases. Therefore, the regeneration processing is performed at a predetermined timing to perform the combustion treatment of the accumulated PM.

排気後処理装置では、その性能確保のために温度管理が重要である。特に酸化触媒では十分な浄化能力が発揮できるように活性温度以上に昇温する必要がある一方で、過昇温が生じると劣化や破損が生じるおそれがあるため、適切な温度範囲に管理する必要がある。そのため、排気通路に設けられた酸化触媒の前後には、排気温度センサがそれぞれ設置されている。しかしながらこの種の排気温度センサは比較的高価であるため、コスト削減の観点から設置箇所の低減が望まれている。   In the exhaust aftertreatment device, temperature management is important for ensuring its performance. In particular, oxidation catalysts need to be heated to an activation temperature or higher so that sufficient purification ability can be exhibited. On the other hand, excessive temperature rise may cause deterioration or damage. There is. For this reason, exhaust temperature sensors are respectively installed before and after the oxidation catalyst provided in the exhaust passage. However, since this type of exhaust temperature sensor is relatively expensive, it is desired to reduce the number of installation locations from the viewpoint of cost reduction.

このような排気温度センサの設置箇所低減のための一策として、所定箇所に設置した排気温度センサの検出値に基づいて、他の箇所における排気温度を推定することによって、センサ数の低減を図ることが考えられる。特許文献1及び2は排気温度センサ数の低減を目的とするものではないが、排気通路において酸化触媒の前後いずれか一方に設置した排気温度センサの検出値に基づいて、他方の排気温度を推定する技術が開示されている。   As a measure for reducing the installation location of such exhaust temperature sensors, the number of sensors is reduced by estimating the exhaust temperature at other locations based on the detection value of the exhaust temperature sensor installed at a predetermined location. It is possible. Although Patent Documents 1 and 2 do not aim to reduce the number of exhaust temperature sensors, the exhaust temperature of the other is estimated based on the detected value of the exhaust temperature sensor installed in either of the exhaust passages before or after the oxidation catalyst. Techniques to do this are disclosed.

特開2006−22730号公報JP 2006-22730 A 特許第4325367号Japanese Patent No. 4325367

特許文献1では、内燃機関の運転状態が所定の安定状態ある場合に限り、排気温度の推定が可能となっている。また特許文献2では、酸化触媒におけるHC酸化燃焼熱が無視できるような限られた運転条件が成立した場合に限って、排気温度の推定が可能である。このように、従来技術ではごく限られた条件が成立した場合にのみ排気温度の推定が可能であるため(例えばDPF再生中や過渡的な運転状態では推定できないため)、内燃機関の運転中に定常的に使用される排気後処理装置の監視用には適していない。そのため、上記技術をそのまま適用したのでは、排気温度センサの削減に至ることは難しい。   In Patent Document 1, the exhaust gas temperature can be estimated only when the operating state of the internal combustion engine is in a predetermined stable state. Further, in Patent Document 2, it is possible to estimate the exhaust temperature only when a limited operating condition that can ignore the HC oxidation combustion heat in the oxidation catalyst is satisfied. Thus, in the prior art, the exhaust temperature can be estimated only when a very limited condition is satisfied (for example, it cannot be estimated during DPF regeneration or in a transient operating state), so during the operation of the internal combustion engine. It is not suitable for monitoring exhaust aftertreatment devices that are used regularly. Therefore, if the above technique is applied as it is, it is difficult to reduce the exhaust temperature sensor.

また特許文献2では、排気温度を推定するために酸化触媒を含む一連の系をモデル化しているが、運転条件の変化に対する排気温度の遅れを単純な1次遅れフィルタ等の伝達関数で表しているため、良好な推定精度を得ることが難しい。   In Patent Document 2, a series of systems including an oxidation catalyst is modeled in order to estimate the exhaust temperature. The delay of the exhaust temperature with respect to changes in operating conditions is expressed by a simple transfer function such as a first-order lag filter. Therefore, it is difficult to obtain good estimation accuracy.

本発明は上述の問題点に鑑みなされたものであり、広い条件下において排気通路における排気温度の推定を、低コスト且つ高精度で実現可能な排気温度推定装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an exhaust temperature estimation device capable of realizing the estimation of the exhaust temperature in the exhaust passage under a wide range of conditions at low cost and with high accuracy.

本発明に係る排気温度推定装置は上記課題を解決するために、内燃機関の排気通路に酸化触媒及び該酸化触媒より下流側にDPFが設けられ、前記排気通路のうち前記酸化触媒の上流側、又は、前記酸化触媒及び前記DPF間のいずれか一方における排気温度を推定する排気温度推定装置であって、前記排気通路のうち前記酸化触媒の上流側、又は、前記酸化触媒及び前記DPF間の他方における第1排気温度を検出する排気温度検出手段と、前記酸化触媒へのHC添加量を検出するHC添加量検出手段と、前記HC添加量から前記酸化触媒における酸化燃焼熱量を算出する酸化燃焼熱量算出手段と、前記酸化触媒と該酸化触媒を流れる排気との間における熱交換量を算出する熱交換量算出手段と、前記検出された第1排気温度、前記酸化燃焼熱量及び熱交換量に基づいて、前記前記一方における第2排気温度を推定する排気温度推定手段とを備えたことを特徴とする。   In order to solve the above problems, an exhaust gas temperature estimation device according to the present invention is provided with an oxidation catalyst in an exhaust passage of an internal combustion engine and a DPF downstream of the oxidation catalyst, the upstream side of the oxidation catalyst in the exhaust passage, Or an exhaust gas temperature estimating device for estimating an exhaust gas temperature between one of the oxidation catalyst and the DPF, the upstream side of the oxidation catalyst in the exhaust passage, or the other between the oxidation catalyst and the DPF. Exhaust temperature detection means for detecting the first exhaust gas temperature, HC addition amount detection means for detecting the HC addition amount to the oxidation catalyst, and oxidation combustion heat quantity for calculating the oxidation combustion heat amount in the oxidation catalyst from the HC addition amount Calculating means, heat exchange amount calculating means for calculating a heat exchange amount between the oxidation catalyst and the exhaust gas flowing through the oxidation catalyst, the detected first exhaust temperature, and the oxidation fuel Based on the amount of heat and the heat exchange amount, characterized by comprising an exhaust temperature estimating means for estimating a second exhaust gas temperature in the said one.

本発明によれば、ポスト噴射等によるHC添加量から求められる酸化燃焼熱量や、酸化触媒と排気との間における熱交換量を算出することにより、酸化触媒における熱収支モデルを構築し、第1排気温度(酸化触媒の上流側、又は、酸化触媒及びDPF間のいずれか一方における排気温度の検出値)から第2排気温度(酸化触媒の上流側、又は、酸化触媒及びDPF間の他方における排気温度)を推定できる。このような排気温度の推定は、内燃機関の運転状態に関わらず広い条件下において実施可能であるため、酸化触媒の前後いずれか一方の排気温度検出手段を廃止して、コスト削減を図ることができる。
また、このような熱収支モデルは、従来技術のような1次遅れフィルタ等の伝達関数を用いた場合に比べて実体に近いため、良好な推定精度を得ることができる。
According to the present invention, the heat balance model in the oxidation catalyst is constructed by calculating the oxidation combustion heat amount obtained from the HC addition amount by post injection or the like, and the heat exchange amount between the oxidation catalyst and the exhaust, From the exhaust temperature (the upstream side of the oxidation catalyst or the detected value of the exhaust temperature between the oxidation catalyst and the DPF) to the second exhaust temperature (the exhaust side upstream of the oxidation catalyst or the other side between the oxidation catalyst and the DPF) Temperature). Such estimation of the exhaust temperature can be performed under a wide range of conditions regardless of the operating state of the internal combustion engine. Therefore, it is possible to reduce the cost by eliminating the exhaust temperature detection means before or after the oxidation catalyst. it can.
Moreover, since such a heat balance model is closer to the substance compared to a case where a transfer function such as a first-order lag filter as in the prior art is used, a good estimation accuracy can be obtained.

本発明の一態様では、外気温度を検出する外気温度検出手段と、前記外気と前記酸化触媒との温度差から、前記酸化触媒から外気への放熱量を算出する放熱量算出手段とを備え、前記熱交換量算出手段は、前記放熱量に基づいて前記熱交換量を算出する。
この態様によれば、熱収支モデルに酸化触媒から外気への放熱量を組み込むことによって、より高精度に排気温度を推定することができる。
In one aspect of the present invention, the apparatus includes an outside air temperature detecting unit that detects an outside air temperature, and a heat release amount calculating unit that calculates a heat release amount from the oxidation catalyst to the outside air from a temperature difference between the outside air and the oxidation catalyst. The heat exchange amount calculation means calculates the heat exchange amount based on the heat dissipation amount.
According to this aspect, the exhaust gas temperature can be estimated with higher accuracy by incorporating the heat release amount from the oxidation catalyst to the outside air in the heat balance model.

また他の態様では、前記酸化燃焼熱量算出手段では、前記酸化触媒温度をパラメータとするアレニウス則を用いて前記酸化触媒で反応可能なHC最大反応量を求め、前記HC添加量が前記HC最大反応量より大きい場合、前記HC最大反応量を前記HC添加量として酸化燃焼熱を算出する。
この態様によれば、ポスト噴射等によってHCが過剰に添加された場合に酸化触媒で反応することなく下流側へ流出する分を考慮し、HC最大反応量(酸化触媒で反応可能なHC量の最大値)に基づいて酸化燃焼熱を算出することで、より高精度に排気温度を推定することができる。
In another aspect, the oxidation combustion heat quantity calculating means obtains the maximum HC reaction amount that can be reacted with the oxidation catalyst using the Arrhenius rule with the oxidation catalyst temperature as a parameter, and the HC addition amount is the HC maximum reaction amount. When larger than the amount, the oxidation combustion heat is calculated with the HC maximum reaction amount as the HC addition amount.
According to this aspect, when an excessive amount of HC is added by post-injection or the like, the amount of HC maximum reaction amount (the amount of HC that can be reacted with the oxidation catalyst) is taken into consideration without flowing through the downstream side without reacting with the oxidation catalyst. By calculating the oxidation combustion heat based on the maximum value, the exhaust gas temperature can be estimated with higher accuracy.

また他の態様では、前記排気温度検出手段では、前記排気通路のうち前記酸化触媒及び前記DPF間における排気温度を前記第1排気温度として検出する。
この態様によれば、酸化触媒及びDPF間の排気温度を検出することによって、酸化触媒の上流側における排気温度を推定できる。このように酸化触媒及びDPF間における排気温度を第1排気温度として検出することで、酸化触媒を通過後の排気温度を実測値として監視できるので、酸化触媒の上流側の排気温度を第1排気温度として検出する場合に比べて、酸化触媒の実状態を確実に把握することができる。
In another aspect, the exhaust temperature detecting means detects an exhaust temperature between the oxidation catalyst and the DPF in the exhaust passage as the first exhaust temperature.
According to this aspect, the exhaust gas temperature upstream of the oxidation catalyst can be estimated by detecting the exhaust gas temperature between the oxidation catalyst and the DPF. By detecting the exhaust temperature between the oxidation catalyst and the DPF as the first exhaust temperature in this way, the exhaust temperature after passing through the oxidation catalyst can be monitored as an actual measurement value, so the exhaust temperature upstream of the oxidation catalyst is set to the first exhaust temperature. Compared to the case where the temperature is detected as a temperature, the actual state of the oxidation catalyst can be reliably grasped.

尚、前記排気温度検出手段で、前記排気通路のうち前記酸化触媒の上流側の排気温度を第1排気温度として検出した場合には、酸化触媒の上流側における排気温度を検出することで、酸化触媒及びDPF間の排気温度を推定できる。この場合、酸化触媒を通過する前の排気温度を検出することで、検出値にタイムラグが少なく、酸化触媒及びDPF間における排気温度を第1排気温度として検出する場合に比べて精度のよい排気温度推定ができる。   When the exhaust gas temperature detecting means detects the exhaust gas temperature upstream of the oxidation catalyst in the exhaust gas passage as the first exhaust gas temperature, the exhaust gas temperature is detected by detecting the exhaust gas temperature upstream of the oxidation catalyst. The exhaust temperature between the catalyst and the DPF can be estimated. In this case, by detecting the exhaust gas temperature before passing through the oxidation catalyst, the detected value has a small time lag, and the exhaust gas temperature is more accurate than when the exhaust gas temperature between the oxidation catalyst and the DPF is detected as the first exhaust gas temperature. Can be estimated.

また他の態様では、前記排気温度検出手段は前記排気通路のうち前記酸化触媒及び前記DPF間に設けられている。
この態様によれば、排気温度検出手段を酸化触媒及びDPF間に設けることによって、酸化触媒の上流側における排気温度を推定できる。このように酸化触媒及びDPF間における排気温度を第1排気温度として検出することで、酸化触媒を通過後の排気温度を実測値として監視できるので、酸化触媒の上流側の排気温度を第1排気温度として検出する場合に比べて、酸化触媒の実状態を確実に把握することができる。
In another aspect, the exhaust temperature detecting means is provided between the oxidation catalyst and the DPF in the exhaust passage.
According to this aspect, by providing the exhaust gas temperature detecting means between the oxidation catalyst and the DPF, the exhaust gas temperature upstream of the oxidation catalyst can be estimated. By detecting the exhaust temperature between the oxidation catalyst and the DPF as the first exhaust temperature in this way, the exhaust temperature after passing through the oxidation catalyst can be monitored as an actual measurement value, so the exhaust temperature upstream of the oxidation catalyst is set to the first exhaust temperature. Compared to the case where the temperature is detected as a temperature, the actual state of the oxidation catalyst can be reliably grasped.

尚、排気温度検出手段を酸化触媒の上流側に設けた場合には、酸化触媒及びDPF間の排気温度を推定できる。この場合、酸化触媒を通過する前の排気温度を検出することで、検出値にタイムラグが少なく、排気温度検出手段を酸化触媒及びDPF間に設けた場合に比べて精度のよい排気温度推定ができる。   When the exhaust temperature detecting means is provided on the upstream side of the oxidation catalyst, the exhaust temperature between the oxidation catalyst and the DPF can be estimated. In this case, by detecting the exhaust gas temperature before passing through the oxidation catalyst, the detected value has a small time lag, and the exhaust gas temperature can be estimated more accurately than when the exhaust gas temperature detection means is provided between the oxidation catalyst and the DPF. .

本発明によれば、ポスト噴射等によるHC添加量から求められる酸化燃焼熱量や、酸化触媒と排気との間における熱交換量を算出することにより、酸化触媒における熱収支モデルを構築し、第1排気温度(酸化触媒の上流側、又は、酸化触媒及びDPF間のいずれか一方における排気温度の検出値)から第2排気温度(酸化触媒の上流側、又は、酸化触媒及びDPF間の他方における排気温度)を推定できる。このような排気温度の推定は、内燃機関の運転状態に関わらず広い条件下において実施可能であるため、酸化触媒の前後いずれか一方の排気温度検出手段を廃止して、コスト削減を図ることができる。
また、このような熱収支モデルは、従来技術のような1次遅れフィルタ等の伝達関数を用いた場合に比べて実体に近いため、良好な推定精度を得ることができる。
According to the present invention, the heat balance model in the oxidation catalyst is constructed by calculating the oxidation combustion heat amount obtained from the HC addition amount by post injection or the like, and the heat exchange amount between the oxidation catalyst and the exhaust, From the exhaust temperature (the upstream side of the oxidation catalyst or the detected value of the exhaust temperature between the oxidation catalyst and the DPF) to the second exhaust temperature (the exhaust side upstream of the oxidation catalyst or the other side between the oxidation catalyst and the DPF) Temperature). Such estimation of the exhaust temperature can be performed under a wide range of conditions regardless of the operating state of the internal combustion engine. Therefore, it is possible to reduce the cost by eliminating the exhaust temperature detection means before or after the oxidation catalyst. it can.
Moreover, since such a heat balance model is closer to the substance compared to a case where a transfer function such as a first-order lag filter as in the prior art is used, a good estimation accuracy can be obtained.

本実施例に係る排気温度推定装置を搭載した車両の内部構造を示す構成図である。It is a block diagram which shows the internal structure of the vehicle carrying the exhaust temperature estimation apparatus which concerns on a present Example. 排気温度推定制御のフローチャートである。It is a flowchart of exhaust temperature estimation control. 排気温度推定制御の制御内容を概念的に示す図である。It is a figure which shows notionally the control content of exhaust temperature estimation control.

以下、図面に基づいて本発明の実施の形態を例示的に詳しく説明する。但し、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りはこの発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, embodiments of the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. This is just an example.

(全体構成)
図1は本実施例に係る排気温度推定装置を搭載した車両の内部構造を示す構成図である。
符号1はコモンレール式の燃料噴霧装置を備えた内燃機関であるディーゼルエンジン(以下、適宜「エンジン」と称する)であり、各気筒の燃焼室内には燃料噴射弁から燃料が直接噴射され、圧縮着火燃焼が行われる。燃料噴射弁の燃料噴射時期及び噴射量は電子制御ユニット(以下、適宜「ECU」と称する)10によって電気的に制御されている。
(overall structure)
FIG. 1 is a block diagram showing the internal structure of a vehicle equipped with an exhaust gas temperature estimating apparatus according to this embodiment.
Reference numeral 1 denotes a diesel engine (hereinafter referred to as “engine” where appropriate) that is an internal combustion engine equipped with a common rail fuel spray device. Fuel is directly injected into the combustion chamber of each cylinder from a fuel injection valve, and compression ignition is performed. Combustion takes place. The fuel injection timing and the injection amount of the fuel injection valve are electrically controlled by an electronic control unit (hereinafter referred to as “ECU” as appropriate) 10.

外部からエアクリーナ2を介して導入された吸気は吸気管3を介してエンジン1に取り込まれ、燃焼室にて圧縮着火燃焼によって発生した排気は排気管4に排出される。排気管4には上流側から順に酸化触媒(DOC)5及びディーゼルパティキュレートフィルタ(DPF)6を備えている。   Intake introduced from the outside through the air cleaner 2 is taken into the engine 1 through the intake pipe 3, and exhaust gas generated by compression ignition combustion in the combustion chamber is discharged to the exhaust pipe 4. The exhaust pipe 4 includes an oxidation catalyst (DOC) 5 and a diesel particulate filter (DPF) 6 in order from the upstream side.

DOC5では、排気中に含まれる酸素を利用して、排気中の炭化水素(HC)を主とした未燃焼物質を酸化して水(H0)と二酸化炭素(CO)に分解する。
DPF6では、排気中の未燃焼微細物質(PM)を捕集することによって浄化を行う。DPF6に捕集されたPMの蓄積量が増えると浄化能力が低下することから、所定のタイミングでDPF6の再生処理が実施される。再生処理時には、DOC5の上流側に設けられたHC添加装置7によって排気管4中に燃料(HC)を噴射し、DOC5で当該排気中に含まれる燃料を酸化させて排気を昇温し、高温になった排気をDPF6に送り込むことによって、蓄積したPMを燃焼処理する。
In DOC5, oxygen contained in exhaust gas is used to oxidize unburned substances mainly composed of hydrocarbons (HC) in exhaust gas and decompose them into water (H 2 0) and carbon dioxide (CO 2 ).
The DPF 6 performs purification by collecting unburned fine substances (PM) in the exhaust gas. As the accumulated amount of PM collected in the DPF 6 increases, the purification capability decreases, so that the regeneration process of the DPF 6 is performed at a predetermined timing. During the regeneration process, fuel (HC) is injected into the exhaust pipe 4 by the HC addition device 7 provided on the upstream side of the DOC 5, the fuel contained in the exhaust is oxidized by the DOC 5, and the temperature of the exhaust is increased. The accumulated exhaust gas is sent to the DPF 6 to burn the accumulated PM.

このようにDOC5及びDPF6で浄化された排気は、更に下流側に配置された不図示のNOx選択還元型触媒において排気中の窒素酸化物(NOx)を水(H0)と窒素(N)に分解浄化した後、外部に排出される。 The exhaust gas purified by the DOC 5 and the DPF 6 in this way is converted into nitrogen (NOx) in the exhaust water (H 2 0) and nitrogen (N 2 ) in a NOx selective reduction catalyst (not shown) arranged further downstream. ) And then discharged outside.

吸気管3には吸気流量Gair[kg/s]を検出するための吸気流量センサ8が設けられている。DOC5の上流側の排気管4にはDOC5の入口圧力Pinを検出するための圧力センサ9が設けられている。排気管4のうちDOC5及びDPF6間にはDOC5の下流側温度Tout[K]を検出するための排気温度センサ11が設けられている。また車両には外気温度Tamb[K]を検出するための外気温度センサ12、及び、車速Vvehicle[km/h]を検出するための車速センサ13が設けられている。
吸気流量センサ8の検出値Gair[kg/s]、入口圧力センサ9の検出値Pin[Pa]、排気温度センサ11の検出値Tout[K]、外気温度センサ12の検出値Tamb[K]、及び、車速センサ13の検出値Vvehicle[km/h]は、それぞれ演算装置であるECU10に送られ、後述の排気温度推定制御の演算に利用される。
The intake pipe 3 is provided with an intake flow rate sensor 8 for detecting an intake flow rate G air [kg / s]. The exhaust pipe 4 upstream of DOC5 pressure sensor 9 for detecting the inlet pressure P in the DOC5 is provided. An exhaust temperature sensor 11 for detecting a downstream temperature T out [K] of the DOC 5 is provided between the DOC 5 and the DPF 6 in the exhaust pipe 4. The vehicle is also provided with an outside air temperature sensor 12 for detecting the outside air temperature T amb [K] and a vehicle speed sensor 13 for detecting the vehicle speed V vehicle [km / h].
Detection value G air [kg / s] of the intake flow sensor 8, detection value P in [Pa] of the inlet pressure sensor 9, detection value T out [K] of the exhaust temperature sensor 11, detection value T amb of the outside air temperature sensor 12 [K], and the detected value V vehicle [km / h] of the vehicle speed sensor 13 is sent to ECU10 respectively computing device, is used for calculation of the exhaust gas temperature estimation control will be described later.

ECU10はエンジン1をはじめとする車両全体の制御を統括するコントロールユニットであり、一般的なエンジン制御に加えて、本実施例ではDOC5の下流側に配置された排気温度センサ11の検出値に基づいて、DOC5の入口温度Tin[K]を推定する排気温度推定方法を実施する排気温度推定装置として機能する。尚、当該推定方法の実施に必要な制御ロジックはECU10が備えるメモリ等の記憶部に予めプログラムとして記憶されており、演算装置によって適宜読みだされることによって実施可能に構成されている。
図1では特に、ECU10の内部構成として、該ECU10で実施される後述の排気温度算出方法の各ステップに対応する機能ブロックを示しており、HC添加装置7によるHC添加量を検出するHC添加検出手段15と、酸化燃焼熱量QHC[W]を算出する酸化燃焼熱量算出手段16と、放熱量Qrad[W]を算出する放熱量算出手段17と、熱交換量Qexh[W]を算出する熱交換量算出手段18と、排気温度の推定結果を求める排気温度推定手段19とを含んで構成されている。
尚、本実施例では、HC添加装置7を用いてHCを添加する場合を示しているが、これに代えてエンジン燃焼室内に設けられた燃料インジェクタによるポスト噴射を用いてHC添加を行ってもよい。
The ECU 10 is a control unit that controls the entire vehicle including the engine 1. In addition to general engine control, the ECU 10 is based on a detection value of an exhaust temperature sensor 11 disposed downstream of the DOC 5 in this embodiment. Thus, it functions as an exhaust gas temperature estimating device that implements an exhaust gas temperature estimating method for estimating the inlet temperature T in [K] of the DOC 5. Note that the control logic necessary for carrying out the estimation method is stored in advance in a storage unit such as a memory provided in the ECU 10 as a program, and is configured to be implemented by being appropriately read out by an arithmetic device.
In particular, FIG. 1 shows, as an internal configuration of the ECU 10, functional blocks corresponding to each step of an exhaust gas temperature calculation method described later performed by the ECU 10, and an HC addition detection that detects an HC addition amount by the HC addition device 7. Means 15, oxidation combustion heat quantity calculation means 16 for calculating oxidation combustion heat quantity Q HC [W], heat release quantity calculation means 17 for calculating heat release quantity Q rad [W], and heat exchange quantity Q exh [W] The heat exchange amount calculating means 18 for performing the exhaust temperature estimation and the exhaust gas temperature estimating means 19 for obtaining the estimation result of the exhaust gas temperature are included.
In this embodiment, the case where HC is added using the HC addition device 7 is shown, but instead of this, HC may be added using post injection by a fuel injector provided in the engine combustion chamber. Good.

続いてECU10において実施される排気温度推定方法の具体的内容について説明する。この排気温度推定方法では、DOC5における熱収支モデルを構築することによって、第1排気温度(DOC5の上流側、又は、DOC5及びDPF6間のいずれか一方における排気温度の検出値)から第2排気温度(DOC5の上流側、又は、DOC5及びDPF6間の他方における排気温度)を推定する。
本実施例では、第1排気温度としてDOC5及びDPF6間に配置された排気温度センサ11によって検出される排気温度値を用い、DOC5の上流側における排気温度Tin[K]を推定する場合について、以下詳述する。
尚、排気温度センサ11をDOC5の上流側に配置することにより、DOC5の上流側での排気温度検出値を第1排気温度として用いた場合も同様の技術的思想に基づいて、DOC5及びDPF6間における排気温度を推定することができる。
Next, specific contents of the exhaust gas temperature estimation method performed in the ECU 10 will be described. In this exhaust temperature estimation method, by constructing a heat balance model in DOC5, the second exhaust temperature is detected from the first exhaust temperature (the detected value of the exhaust temperature upstream of DOC5 or between DOC5 and DPF6). (Exhaust temperature on the upstream side of DOC5 or on the other side between DOC5 and DPF6) is estimated.
In this embodiment, the exhaust gas temperature value detected by the exhaust gas temperature sensor 11 disposed between the DOC 5 and the DPF 6 is used as the first exhaust gas temperature, and the exhaust gas temperature T in [K] on the upstream side of the DOC 5 is estimated. This will be described in detail below.
Incidentally, by arranging the exhaust temperature sensor 11 on the upstream side of the DOC 5, when the exhaust temperature detection value on the upstream side of the DOC 5 is used as the first exhaust temperature, the distance between the DOC 5 and the DPF 6 is based on the same technical idea. The exhaust temperature at can be estimated.

図2はECU10において実施される排気温度推定方法が採用するDOC5の熱収支モデルを概念的に示す図である。DOC5には上流側でHC添加装置7によって添加された燃料が酸化することによって酸化燃焼熱量QHC[W]が与えられる一方で、該DOC5を流れる排気との間に生じる温度差に基づいた熱交換量Qexh[W]が生じる。また酸化燃焼熱量QHC[W]や熱交換量Qexh[W]に比べて排気温度に与える影響は小さいものの、DOC5と外気との間の温度差に基づいて放熱量Qrad[W]が生じる。本実施例における排気温度推定方法では、これら3つの熱量の移動を考慮することによって、DOC5を熱収支モデル化して排気温度を推定することができる。 FIG. 2 is a diagram conceptually showing a heat balance model of the DOC 5 adopted by the exhaust gas temperature estimation method implemented in the ECU 10. The DOC 5 is given an oxidation combustion heat quantity Q HC [W] by oxidizing the fuel added by the HC addition device 7 on the upstream side, while heat based on a temperature difference generated between the DOC 5 and the exhaust gas flowing through the DOC 5. An exchange amount Q exh [W] is generated. Although the influence on the exhaust temperature is small compared to the oxidation combustion heat quantity Q HC [W] and the heat exchange quantity Q exh [W], the heat release quantity Q rad [W] is based on the temperature difference between the DOC 5 and the outside air. Arise. In the exhaust gas temperature estimation method in the present embodiment, the exhaust temperature can be estimated by modeling the DOC 5 as a heat balance by considering the movement of these three heat quantities.

図3は本実施例に係る排気温度推定方法の実施プロセスを示すフローチャートである。
まずECU10は各センサ類の検出値(吸気流量Gair[kg/s]、入口圧力Pin[Pa]、排気温度Tout[K]、外気温度Tamb[K]、車速Vvehicle[km/h])を取得する(ステップS101)。そして、取得した検出値を用いて、DOC5の上流側に設けられたHC添加装置7から添加された燃料が酸化されることによって与えられる酸化燃焼熱量QHC[W]を算出し(ステップS102)、DOC5から外気への放熱量Qrad[W]を算出し(ステップS103)、DOC5及び排気間の熱交換量Qexh[W]を算出する(ステップS104)。そして、最後にステップS102〜S104の算出結果に基づいて、DOC5の上流側における排気温度Tin[K]の推定が行われる(ステップS105)。
以下、ステップS102〜S105における具体的な算出方法について詳しく説明する。尚、図3ではステップS102〜S104を順に実施するように示しているが、これらのステップは同時に実施してもよい。
FIG. 3 is a flowchart showing an implementation process of the exhaust gas temperature estimation method according to the present embodiment.
First, the ECU 10 detects the detected values of each sensor (intake flow rate G air [kg / s], inlet pressure P in [Pa], exhaust temperature T out [K], outside air temperature T amb [K], vehicle speed V vehicle [km / h]) is acquired (step S101). Then, using the acquired detection value, an oxidation combustion heat quantity Q HC [W] given by oxidizing the fuel added from the HC addition device 7 provided on the upstream side of the DOC 5 is calculated (step S102). Then, a heat release amount Q rad [W] from the DOC 5 to the outside air is calculated (step S103), and a heat exchange amount Q exh [W] between the DOC 5 and the exhaust gas is calculated (step S104). Finally, the exhaust temperature T in [K] on the upstream side of the DOC 5 is estimated based on the calculation results of steps S102 to S104 (step S105).
Hereinafter, a specific calculation method in steps S102 to S105 will be described in detail. In FIG. 3, steps S102 to S104 are shown to be performed in order, but these steps may be performed simultaneously.

(酸化燃焼熱量QHCの算出方法)
ECU10の酸化燃焼熱量算出手段16において、酸化燃焼熱量はHC添加装置7によって排気中に添加されたHCがDOC5で酸化反応した際に発生する熱量であり、大まかにはHC添加量qHC[kg/s]と燃料の低位発熱量Hufuel[J/kg]とに基づいて次式
HC1=(qHC+qHC_exh)・Hufuel (1)
から求められる。ここでHC添加量qHC[kg/s]はECU10のHC添加装置7に対する指示値を用い(機能ブロック的に言えば、図1に示すようにHC添加量検出手段15によってHC添加装置7の添加量を取得する)、燃料の低位発熱量Hufuel[J/kg]は予めメモリ等の記憶部に記憶された代表値を読み出すことによって取得したものを用いるとよい。またqHCexh[kg/s]は、エンジンから排出された排気に含まれるHC含有量であり、不図示のエンジン回転数センサの検出値であるエンジン回転数Nengと、ECU10の指示値である燃料噴射量qfuel[kg/s]をパラメータとする任意関数により算出される。
(Calculation method of oxidation combustion heat quantity Q HC )
In the oxidation combustion heat quantity calculation means 16 of the ECU 10, the oxidation combustion heat quantity is a heat quantity generated when the HC added to the exhaust gas by the HC addition device 7 undergoes an oxidation reaction at the DOC 5, and roughly, the HC addition quantity q HC [kg / S] and the lower heating value Hu fuel [J / kg] of the fuel , the following formula Q HC 1 = (q HC + q HC_exh ) · Hu fuel (1)
It is requested from. Here, as the HC addition amount q HC [kg / s], an instruction value for the HC addition device 7 of the ECU 10 is used (in terms of a functional block, the HC addition amount detection means 15 causes the HC addition device 7 to detect the HC addition device 7 as shown in FIG. It is preferable to use a value obtained by reading a representative value stored in advance in a storage unit such as a memory as the lower heating value Hu fuel [J / kg] of the fuel . Further, q HCexh [kg / s] is the HC content contained in the exhaust discharged from the engine, and is an engine speed N eng that is a detection value of an engine speed sensor (not shown) and an instruction value of the ECU 10. It is calculated by an arbitrary function using the fuel injection amount q fuel [kg / s] as a parameter.

ところでHC添加装置7から過剰に燃料が添加された場合には、その一部が未反応のままDOC5の下流側に流出する。このような未燃分を加味することによって、より精度よく酸化燃焼熱量QHC[W]を求めることができる。DOC5で反応可能な添加燃料の最大反応値は、アレニウス則を用いて次式
HC2=A・NHC・NO2・exp(−E/(R・Tsub(i−1)) (2)
により得られる。ここでA及びEは適合係数であり、Rは気体定数である。また、NHC[mol/L]及びNO2[mol/L]はそれぞれ排気中の燃料濃度及び酸素濃度であり、吸気流量センサ8の検出値Gair[kg/s]、ECU10のHC添加装置7に対するHC添加量指示値qHC[kg/s]、エンジンから排出された排気に含まれるHC含有量qHCexh[kg/s]、ECU10の燃料噴射装置(図1において不図示)に対する燃料噴射量指示値qfuel[kg/s]、当該排気温度推定方法の前回実施時に求められたDOC5の温度推定値(触媒温度の前回推定値)Tsub(i−1)に基づいて算出することができる。
By the way, when the fuel is excessively added from the HC addition device 7, a part of the fuel flows out to the downstream side of the DOC 5 without being reacted. By adding such unburned components, the oxidation combustion heat quantity Q HC [W] can be obtained with higher accuracy. The maximum reaction value of the added fuel that can be reacted with DOC5 is expressed by the following equation using the Arrhenius rule: Q HC 2 = A · N HC · N O 2 · exp (−E / (R · T sub (i−1) ) (2 )
Is obtained. Here, A and E are fitness factors, and R is a gas constant. N HC [mol / L] and N O2 [mol / L] are the fuel concentration and the oxygen concentration in the exhaust gas, respectively, the detected value G air [kg / s] of the intake flow sensor 8, the HC addition device of the ECU 10 HC addition amount instruction value q HC [kg / s] for 7, HC content q HCexh [kg / s] contained in exhaust discharged from the engine, fuel injection to the fuel injection device (not shown in FIG. 1) of the ECU 10 It is calculated based on the quantity instruction value q fuel [kg / s] and the estimated temperature value of DOC5 (previous estimated value of the catalyst temperature) T sub (i-1) obtained when the exhaust gas temperature estimating method was performed last time. it can.

ECU10は、HC添加量に基づいた算出値QHC1[W]とDOC5で反応可能な添加燃料の最大反応値QHC2[W]とを比較し、より大きい方を酸化燃焼熱量QHC[W]として特定する。
HC=max(QHC1,QHC2) (3)
これにより、HC添加装置7から過剰に添加された場合にDOC5で反応せずに下流側へ流出する分を考慮し、精度よく酸化燃焼熱量を求めることができる。
The ECU 10 compares the calculated value Q HC 1 [W] based on the HC addition amount with the maximum reaction value Q HC 2 [W] of the added fuel that can react with the DOC 5, and the larger one is the oxidation combustion heat quantity Q HC [ W].
Q HC = max (Q HC 1, Q HC 2) (3)
As a result, the amount of oxidative combustion heat can be obtained with high accuracy in consideration of the amount that flows out downstream without reacting with the DOC 5 when excessively added from the HC addition device 7.

DOC5に与えられる酸化燃焼熱量QHC[W]は、所定の割合dHCsub(0≦dHCsub≦1)でDOC5及び該DOC5を流れる排気に分配される。DOC5及び排気に分配される熱量をそれぞれQHCsub[W]及びQHCexh[W]とすると、
HCsub=dHCsub・QHC (4)
HCexh=(1−dHCsub)・QHC (5)
となる。
The oxidation combustion heat quantity Q HC [W] given to the DOC 5 is distributed to the DOC 5 and the exhaust gas flowing through the DOC 5 at a predetermined ratio d HCsub (0 ≦ d HCsub ≦ 1). If the amount of heat distributed to DOC5 and exhaust is Q HCsub [W] and Q HCexh [W], respectively,
Q HCsub = d HCsub · Q HC (4)
Q HCexh = (1-d HCsub ) · Q HC (5)
It becomes.

ここで分配係数dHCsubは排気流量Gexh[kg/s]をパラメータとする任意の関数として次式
HCsub=f(Gexh) (6)
により得られる。
尚、排気流量Gexh[kg/s]は、吸気流量センサ8の検出値Gair[kg/s]及びエンジン制御パラメータであるエンジン燃料噴射量qfuel[kg/s]に基づいて次式
exh=Gair+qfuel (7)
により得られる。
Here, the distribution coefficient d HCsub is expressed as the following expression d HCsub = f (G exh ) (6) as an arbitrary function having the exhaust flow rate G exh [kg / s] as a parameter.
Is obtained.
The exhaust flow rate G exh [kg / s] is expressed by the following equation G based on the detected value G air [kg / s] of the intake flow rate sensor 8 and the engine fuel injection amount q fuel [kg / s] which is an engine control parameter. exh = G air + q fuel (7)
Is obtained.

(放熱量Qradの算出方法)
ECU10の放熱量算出手段17はDOC5と外気との温度差や、DOC5の周りの外気の流れを考慮することにより、放熱量Qrad[W]を算出する。
まずECU10は、外気の特性を規定するパラメータである動粘度νair[m/s]、比熱Cair[J/kg・K]、密度ρair[kg/m]、熱伝導率λair[W/m・K]、体積膨張係数βair[1/K]について、それぞれ外気温度センサ12の検出値Tamb[K]をパラメータとする任意関数を用いて、次式
νair=f(Tamb) (8)
air=f(Tamb) (9)
ρair=f(Tamb) (10)
λair=f(Tamb) (11)
βair=f(Tamb) (12)
により求める。
(Calculation method of heat dissipation Q rad )
The heat release amount calculation means 17 of the ECU 10 calculates the heat release amount Q rad [W] by considering the temperature difference between the DOC 5 and the outside air and the flow of the outside air around the DOC 5.
First, the ECU 10 has parameters such as kinematic viscosity ν air [m 2 / s], specific heat C air [J / kg · K], density ρ air [kg / m 3 ], and thermal conductivity λ air , which are parameters defining the characteristics of the outside air. With respect to [W / m · K] and the volume expansion coefficient β air [1 / K], using arbitrary functions having the detected value T amb [K] of the outside air temperature sensor 12 as a parameter, the following equation ν air = f ( T amb ) (8)
C air = f (T amb ) (9)
ρ air = f (T amb ) (10)
λ air = f (T amb ) (11)
β air = f (T amb ) (12)
Ask for.

続いて、DOC5の周りを流れる外気について、流体の熱伝達性を特徴付けるパラメータであるレイノルズ数Reamb、プラントル数Pramb、グラスホフ数Gramb、ヌッセルト数Nuambを算出する。
Reamb=vvehicle・Lsub/νair (13)
Pramb=Cair・ρair・νair/λair (14)
Gramb=Lsub ・g・βair・(Tsub(i−1)−Tamb)/νair (15)
Nuamb=c0・(Gramb・Pramb1/3 (vvehicle=0) (16−1)
Nuamb=c1・Reamb m1・Pramb n1 (vvehicle>0) (16−2)
ここでvvehicleは車速センサ13の検出値[km/h]であり、Lsubは酸化触媒の長さ[m]であり、gは重力加速度(≒9.80)[m/s]であり、Tsub(i−1)は当該排気温度推定方法で求めたDOC5の触媒温度Tsubの前回推定値[K]である。c0は任意の適合定数である。またc1、m1、n1はヌッセルト数Nuambの補関数であり任意関数fを用いて
c1=f(Reamb) (17)
m1=f(Reamb) (18)
n1=f(Reamb) (19)
により表わされる。
Subsequently, the Reynolds number Re amb , the Prandtl number Pr amb , the Grashof number Gr amb , and the Nusselt number Nu amb , which are parameters characterizing the heat transferability of the fluid, are calculated for the outside air flowing around the DOC 5.
Re amb = v vehicle · L sub / ν air (13)
Pr amb = C air · ρ air · ν air / λ air (14)
Gr amb = L sub 3 · g · β air · (T sub (i−1) −T amb ) / ν air 2 (15)
Nu amb = c0 · (Gr amb · Pr amb ) 1/3 (v vehicle = 0) (16-1)
Nu amb = c1 · Re amb m1 · Pr amb n1 (v vehicle > 0) (16-2)
Here, v vehicle is a detected value [km / h] of the vehicle speed sensor 13, L sub is a length [m] of the oxidation catalyst, and g is a gravitational acceleration (≈9.80) [m / s 2 ]. Yes, T sub (i−1) is the previous estimated value [K] of the catalyst temperature T sub of the DOC 5 obtained by the exhaust temperature estimating method. c0 is an arbitrary fitness constant. Further, c1, m1, and n1 are complementary functions of the Nusselt number Nu amb and c1 = f (Re amb ) (17) using an arbitrary function f.
m1 = f (Re amb ) (18)
n1 = f (Re amb ) (19)
Is represented by

上記計算結果を用いて、外気の熱伝達係数hamb[W/m・K]は次式
amb=Nuamb・λair/Lsub (20)
で表わされ、DOC5及び外気間の熱伝達係数kは、DOC5のカバー外径dcov[m]、DOC5の外径dsub[m]を用いて次式
k=1/(ln(dcov/dsub)/(2・λcov)+1/(hamb・dcov)) (21)
により表わされる。従って、DOC5から外気への放熱量Qrad[W]は
rad=k・π・Lsub・(Tsub(i−1)−Tamb) (22)
となる。
Using the above calculation results, the heat transfer coefficient h amb [W / m 2 · K] of the outside air is expressed by the following equation: h amb = Nu amb · λ air / L sub (20)
The heat transfer coefficient k between the DOC 5 and the outside air is expressed by the following equation k = 1 / (ln (d cov ) using the cover outer diameter d cov [m] of the DOC 5 and the outer diameter d sub [m] of the DOC 5. / D sub ) / (2 · λ cov ) + 1 / (h amb · d cov )) (21)
Is represented by Therefore, the heat radiation amount Q rad [W] from the DOC 5 to the outside air is Q rad = k · π · L sub · (T sub (i−1) −T amb ) (22)
It becomes.

(熱交換量Qexhの算出方法)
ECU10の熱交換量算出手段18は、DOC5と該DOC5を流れる排気との温度差を考慮することにより、熱交換量Qexh[W]を算出する。
まずECU10は、排気の特性を規定するパラメータである動粘度νexh[m/s]、比熱Cexh[J/kg・K]、密度ρexh[kg/m]、熱伝導率λexh[W/m・K]について、それぞれDOC5の入口温度の前回推定値Tin(i−1)をパラメータとする任意関数を用いて、次式
νexh=f(Tin(i−1)) (23)
exh=f(Tin(i−1)) (24)
ρexh=f(Tin(i−1)) (25)
λexh=f(Tin(i−1)) (26)
により求める。
(Calculation method of heat exchange amount Q exh )
The heat exchange amount calculation means 18 of the ECU 10 calculates the heat exchange amount Q exh [W] by considering the temperature difference between the DOC 5 and the exhaust gas flowing through the DOC 5.
First, the ECU 10 has parameters for defining exhaust characteristics such as kinematic viscosity ν exh [m 2 / s], specific heat C exh [J / kg · K], density ρ exh [kg / m 3 ], and thermal conductivity λ exh. For [W / m · K], using an arbitrary function whose parameter is the previous estimated value T in (i−1) of the inlet temperature of the DOC 5 , the following equation ν exh = f (T in (i−1) ) (23)
C exh = f (T in (i-1) ) (24)
ρ exh = f (T in (i−1) ) (25)
λ exh = f (T in ( i-1)) (26)
Ask for.

続いて、DOC5を流れる排気について、流体の熱伝達性を特徴付けるパラメータであるレイノルズ数Reexh、プラントル数Prexh、ヌッセルト数Nuexhを算出する。
Reexh=uexh・Lsub/νexh (27)
exh=Gexh・(R/Mexh)・Tin(i−1)/Pin (28)
exh=vexh/(nsub・psub ) (29)
Prexh=Cexh・ρexh・νexh/λexh (30)
Nuexh=c2・Reexh m2・Prexh n2 (31)
ここでc2、m2、n2はヌッセルト数Nuexhの補関数であり任意関数fを用いて
c2=f(Reexh) (32)
m2=f(Reexh) (33)
n2=f(Reexh) (34)
により表わされる。
Subsequently, the Reynolds number Re exh , the Prandtl number Pr exh , and the Nusselt number Nu exh , which are parameters characterizing the heat transferability of the fluid, are calculated for the exhaust gas flowing through the DOC 5.
Re exh = u exh · L sub / ν exh (27)
v exh = G exh · (R / M exh ) · T in (i−1) / P in (28)
u exh = v exh / (n sub · p sub 2 ) (29)
Pr exh = C exh · ρ exh · ν exh / λ exh (30)
Nu exh = c 2 · Re exh m 2 · Pr exh n2 (31)
Here, c2, m2, and n2 are complementary functions of the Nusselt number Nu exh , and c2 = f (Re exh ) (32) using an arbitrary function f.
m2 = f (Re exh ) (33)
n2 = f (Re exh ) (34)
Is represented by

上記計算結果を用いて、排気の熱伝達係数hamb[W/m・K]は次式
exh=Nuexh・λexh/Lsub (35)
で表わされ、DOC5から排気への熱交換量Qexh[W]は
exh=hexh・nsub・4・psub・Lsub・(Tsub(i−1)−Tin) (36)
となる。
尚、nsubはDOC5のセル数、psubはDOC5のセルピッチ[m]であり、予めメモリ等の記憶部に記憶された設計値を読み出すことによって取得するとよい。
Using the above calculation results, the heat transfer coefficient h amb [W / m 2 · K] of the exhaust gas is expressed by the following equation: h exh = Nu exh · λ exh / L sub (35)
The heat exchange amount Q exh [W] from the DOC 5 to the exhaust gas is expressed as Q exh = h exh · n sub · 4 · p sub · L sub · (T sub (i-1) -T in ) (36 )
It becomes.
Note that n sub is the number of DOC5 cells and p sub is the cell pitch [m] of DOC5, which may be obtained by reading design values stored in advance in a storage unit such as a memory.

(排気温度Tinの推定方法)
ECU10の排気温度推定手段19では、上述の演算により得られた酸化燃焼熱量QHC[W]、放熱量Qrad[W]及び熱交換量Qexh[W]を、図2に示す熱収支モデルに適用することにより、DOC5の上流側の排気温度Tin[K]は次式
in=Tout−(QHCexh+Qexh)/(Gexh・Cexh) (37)
により推定される。
またDOC5の触媒温度Tsub[K]もまた次式
sub=Tsub(i−1)+(QHCsub−Qrad−Qexh)/(msub・Csub) (38)
により推定される。尚、msubはDOC5の質量[kg]であり、CsubはDOC5の特性温度[J/kg・K]であり、予めメモリ等の記憶部に記憶された設計値を読み出すことによって取得するとよい。
(Method of estimating the exhaust gas temperature T in)
In the exhaust gas temperature estimating means 19 of the ECU 10, the oxidation combustion heat quantity Q HC [W], the heat radiation quantity Q rad [W] and the heat exchange quantity Q exh [W] obtained by the above calculation are used as the heat balance model shown in FIG. As a result, the exhaust temperature T in [K] on the upstream side of the DOC 5 is expressed by the following equation: T in = T out − (Q HCexh + Q exh ) / (G exh · C exh ) (37)
Is estimated by
Further, the catalyst temperature T sub [K] of DOC 5 is also expressed by the following formula: T sub = T sub (i−1) + (Q HCsub −Q rad −Q exh ) / (m sub · C sub ) (38)
Is estimated by Note that m sub is the mass [kg] of DOC5, and C sub is the characteristic temperature [J / kg · K] of DOC5, which may be obtained by reading a design value stored in advance in a storage unit such as a memory. .

以上説明したように、本実施例によれば、排気温度推定装置として機能するECU10において排気温度推定方法を実施することで、HC添加装置7からのHC添加量に基づいて求められる酸化燃焼熱量QHCや、DOC5と排気との間における熱交換量Qexh[W]を算出することにより、DOC5における熱収支モデルを構築し、第1排気温度(DOC5の上流側、又は、DOC5及びDPF6間のいずれか一方における排気温度の検出値)から第2排気温度(DOC5の上流側、又は、DOC5及びDPF6間の他方における排気温度)を推定できる。このような排気温度の推定は、エンジン1の運転状態に関わらず広い条件下において実施可能である。
特に、熱収支モデルにDOC5から外気への放熱量Qrad[W]を組み込むことによって、より高精度に排気温度を推定することができる。
また、このような熱収支モデルは、従来技術のような1次遅れフィルタ等の伝達関数を用いた場合に比べて実体に近いため、良好な推定精度を得ることができる。
As described above, according to the present embodiment, the oxidation combustion heat quantity Q obtained based on the HC addition amount from the HC addition device 7 by performing the exhaust temperature estimation method in the ECU 10 functioning as the exhaust temperature estimation device. By calculating the amount of heat exchange Q exh [W] between HC and DOC5 and exhaust, a heat balance model in DOC5 is constructed, and the first exhaust temperature (upstream of DOC5 or between DOC5 and DPF6) The second exhaust temperature (the exhaust temperature on the upstream side of the DOC 5 or the other between the DOC 5 and the DPF 6) can be estimated from the detected exhaust temperature of either one). Such estimation of the exhaust temperature can be performed under a wide range of conditions regardless of the operating state of the engine 1.
In particular, by incorporating the heat release amount Q rad [W] from the DOC 5 to the outside air into the heat balance model, the exhaust temperature can be estimated with higher accuracy.
Moreover, since such a heat balance model is closer to the substance compared to a case where a transfer function such as a first-order lag filter as in the prior art is used, a good estimation accuracy can be obtained.

このように排気通路4においてDOC5の前後いずれか一方に配置した排気温度センサ11によって他方側の排気温度を推定できるので、該他方側に排気温度センサを設ける必要がなくなり、センサ類の削減に貢献することで、コスト削減を図ることができる。   In this way, the exhaust temperature sensor 11 disposed on either side of the DOC 5 in the exhaust passage 4 can estimate the exhaust temperature on the other side, so there is no need to provide an exhaust temperature sensor on the other side, contributing to the reduction of sensors. By doing so, cost reduction can be achieved.

本発明は、内燃機関の排気通路に酸化触媒及びDPFが設けられ、該排気通路における排気温度を推定可能な排気温度推定装置に利用可能である。   The present invention is applicable to an exhaust gas temperature estimation device in which an oxidation catalyst and a DPF are provided in an exhaust gas passage of an internal combustion engine, and an exhaust gas temperature in the exhaust gas passage can be estimated.

1 エンジン
2 エアクリーナ
3 吸気管
4 排気管
5 酸化触媒(DOC)
6 ディーゼルパティキュレートフィルタ(DPF)
7 HC添加装置
8 吸気流量センサ
9 入口圧力センサ
10 ECU
11 排気温度センサ
12 外気温度センサ
13 車速センサ
15 HC添加量検出手段
16 酸化燃焼熱量算出手段
17 放熱量算出手段
18 熱交換量算出手段
19 排気温度推定手段
1 Engine 2 Air Cleaner 3 Intake Pipe 4 Exhaust Pipe 5 Oxidation Catalyst (DOC)
6 Diesel particulate filter (DPF)
7 HC addition device 8 Intake flow sensor 9 Inlet pressure sensor 10 ECU
DESCRIPTION OF SYMBOLS 11 Exhaust temperature sensor 12 Outside temperature sensor 13 Vehicle speed sensor 15 HC addition amount detection means 16 Oxidation combustion heat amount calculation means 17 Heat release amount calculation means 18 Heat exchange amount calculation means 19 Exhaust temperature estimation means

Claims (5)

内燃機関の排気通路に酸化触媒及び該酸化触媒より下流側にDPFが設けられ、前記排気通路のうち前記酸化触媒の上流側、又は、前記酸化触媒及び前記DPF間のいずれか一方における排気温度を推定する排気温度推定装置であって、
前記排気通路のうち前記酸化触媒の上流側、又は、前記酸化触媒及び前記DPF間の他方における第1排気温度を検出する排気温度検出手段と、
前記酸化触媒へのHC添加量を検出するHC添加量検出手段と、
前記HC添加量から前記酸化触媒における酸化燃焼熱量を算出する酸化燃焼熱量算出手段と、
前記酸化触媒と該酸化触媒を流れる排気との間における熱交換量を算出する熱交換量算出手段と、
前記検出された第1排気温度、前記酸化燃焼熱量及び熱交換量に基づいて、前記前記一方における第2排気温度を推定する排気温度推定手段と
を備えたことを特徴とする排気温度推定装置。
An oxidation catalyst is provided in the exhaust passage of the internal combustion engine, and a DPF is provided downstream of the oxidation catalyst, and an exhaust temperature in either the upstream side of the oxidation catalyst in the exhaust passage or between the oxidation catalyst and the DPF is set. An exhaust temperature estimating device for estimating,
Exhaust temperature detection means for detecting a first exhaust temperature on the upstream side of the oxidation catalyst in the exhaust passage or on the other side between the oxidation catalyst and the DPF;
HC addition amount detecting means for detecting the HC addition amount to the oxidation catalyst;
Oxidative combustion heat quantity calculating means for calculating oxidative combustion heat quantity in the oxidation catalyst from the HC addition amount;
Heat exchange amount calculating means for calculating a heat exchange amount between the oxidation catalyst and the exhaust gas flowing through the oxidation catalyst;
An exhaust gas temperature estimation device comprising exhaust gas temperature estimation means for estimating the second exhaust gas temperature in the one based on the detected first exhaust gas temperature, the oxidation combustion heat quantity and the heat exchange quantity.
外気温度を検出する外気温度検出手段と、
前記外気と前記酸化触媒との温度差から、前記酸化触媒から外気への放熱量を算出する放熱量算出手段と
を備え、
前記熱交換量算出手段は、前記放熱量に基づいて前記熱交換量を算出することを特徴とする請求項1に記載の排気温度推定装置。
Outside temperature detecting means for detecting outside temperature;
A heat release amount calculating means for calculating a heat release amount from the oxidation catalyst to the outside air from a temperature difference between the outside air and the oxidation catalyst;
The exhaust temperature estimation device according to claim 1, wherein the heat exchange amount calculation unit calculates the heat exchange amount based on the heat dissipation amount.
前記酸化燃焼熱量算出手段では、前記第1排気温度をパラメータとするアレニウス則を用いて前記酸化触媒で反応可能なHC最大反応量を求め、前記HC添加量が前記HC最大反応量より大きい場合、前記HC最大反応量を前記HC添加量として酸化燃焼熱を算出することを特徴とする請求項1又は2に記載の排気温度推定装置。   In the oxidation combustion heat quantity calculating means, the maximum reaction amount of HC that can be reacted with the oxidation catalyst is obtained using the Arrhenius rule with the first exhaust temperature as a parameter, and when the addition amount of HC is larger than the maximum reaction amount of HC, The exhaust temperature estimation device according to claim 1 or 2, wherein the oxidation combustion heat is calculated using the HC maximum reaction amount as the HC addition amount. 前記排気温度検出手段では、前記排気通路のうち前記酸化触媒及び前記DPF間における排気温度を前記第1排気温度として検出することを特徴とする請求項1から3のいずれか一項に記載の排気温度推定装置。   The exhaust gas according to any one of claims 1 to 3, wherein the exhaust gas temperature detecting means detects an exhaust gas temperature between the oxidation catalyst and the DPF in the exhaust gas passage as the first exhaust gas temperature. Temperature estimation device. 前記排気温度検出手段は前記排気通路のうち前記酸化触媒及び前記DPF間に設けられていることを特徴とする請求項1から4のいずれか一項に記載の排気温度推定装置。   5. The exhaust gas temperature estimation device according to claim 1, wherein the exhaust gas temperature detection means is provided between the oxidation catalyst and the DPF in the exhaust gas passage.
JP2013050814A 2013-03-13 2013-03-13 Exhaust temperature estimation device Expired - Fee Related JP6057787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013050814A JP6057787B2 (en) 2013-03-13 2013-03-13 Exhaust temperature estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013050814A JP6057787B2 (en) 2013-03-13 2013-03-13 Exhaust temperature estimation device

Publications (2)

Publication Number Publication Date
JP2014177875A true JP2014177875A (en) 2014-09-25
JP6057787B2 JP6057787B2 (en) 2017-01-11

Family

ID=51698071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013050814A Expired - Fee Related JP6057787B2 (en) 2013-03-13 2013-03-13 Exhaust temperature estimation device

Country Status (1)

Country Link
JP (1) JP6057787B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148251A (en) * 2015-02-10 2016-08-18 マツダ株式会社 Control device for engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232487A (en) * 2003-01-28 2004-08-19 Toyota Motor Corp Exhaust condition detecting device for internal combustion engine
JP2008518153A (en) * 2004-10-27 2008-05-29 ルノー・エス・アー・エス Method and apparatus for estimating temperature of exhaust gas flowing into an aftertreatment device disposed downstream of an exhaust gas treatment device
JP2009299597A (en) * 2008-06-13 2009-12-24 Toyota Motor Corp Exhaust emission control device for vehicular internal combustion engine
JP2012087628A (en) * 2010-10-15 2012-05-10 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232487A (en) * 2003-01-28 2004-08-19 Toyota Motor Corp Exhaust condition detecting device for internal combustion engine
JP2008518153A (en) * 2004-10-27 2008-05-29 ルノー・エス・アー・エス Method and apparatus for estimating temperature of exhaust gas flowing into an aftertreatment device disposed downstream of an exhaust gas treatment device
JP2009299597A (en) * 2008-06-13 2009-12-24 Toyota Motor Corp Exhaust emission control device for vehicular internal combustion engine
JP2012087628A (en) * 2010-10-15 2012-05-10 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148251A (en) * 2015-02-10 2016-08-18 マツダ株式会社 Control device for engine

Also Published As

Publication number Publication date
JP6057787B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
US9702293B2 (en) Diagnostic device
US10724417B2 (en) Dual-purpose heater and fluid flow measurement system
JP4530081B2 (en) Catalyst deterioration diagnosis apparatus and catalyst deterioration diagnosis method for internal combustion engine
US9695732B2 (en) Diagnostic device
JPWO2010079621A1 (en) Catalyst passage component determination device and exhaust purification device for internal combustion engine
US20190271274A1 (en) An inferential flow sensor
JP2005140111A (en) Pressure monitor for diesel particulate filter
JP6163996B2 (en) Diagnostic equipment
US9523974B2 (en) Method of controlling operation of an exhaust fluid treatment apparatus
US9885273B2 (en) Diagnostic device for an oxidation catalyst
JP6057787B2 (en) Exhaust temperature estimation device
JP5912494B2 (en) Diesel engine exhaust purification system
JP2014222021A (en) Abnormality diagnostic device for exhaust temperature sensor
WO2016103398A1 (en) Exhaust sensor management device and management method
JP5891734B2 (en) NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine
JP6191355B2 (en) Diagnostic equipment
JP2018178775A (en) Filter regeneration control device and filter regeneration control method
JP2015055167A (en) Exhaust emission control device
JP5915111B2 (en) NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and NOx emission concentration estimation method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6057787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees