JP5891734B2 - NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine - Google Patents

NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine Download PDF

Info

Publication number
JP5891734B2
JP5891734B2 JP2011253271A JP2011253271A JP5891734B2 JP 5891734 B2 JP5891734 B2 JP 5891734B2 JP 2011253271 A JP2011253271 A JP 2011253271A JP 2011253271 A JP2011253271 A JP 2011253271A JP 5891734 B2 JP5891734 B2 JP 5891734B2
Authority
JP
Japan
Prior art keywords
nox
egr
air
cylinder
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011253271A
Other languages
Japanese (ja)
Other versions
JP2013108420A (en
Inventor
英和 藤江
英和 藤江
哲史 塙
哲史 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011253271A priority Critical patent/JP5891734B2/en
Priority to PCT/JP2012/079009 priority patent/WO2013073450A1/en
Publication of JP2013108420A publication Critical patent/JP2013108420A/en
Application granted granted Critical
Publication of JP5891734B2 publication Critical patent/JP5891734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、多大な実験工数を掛けることなく、また、連続してNOxセンサの異常を診断できるNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関に関する。   The present invention relates to an NOx sensor abnormality diagnosis method, a NOx sensor abnormality diagnosis system, and an internal combustion engine that can continuously diagnose abnormality of a NOx sensor without taking a large number of experimental steps.

トラックやバス等の車両においては、この車両に搭載された内燃機関から排出されるNOx(窒素酸化物)の量を減少するために排気ガス浄化処理装置を用いて窒素(N2)に還元して大気中に放出するようにしている。このNOx浄化を効率良く行うためには排気ガス中のNOx濃度及びNOx量を正確に測定する必要があり、そのために、NOxセンサが使用されている。 In vehicles such as trucks and buses, in order to reduce the amount of NOx (nitrogen oxides) discharged from the internal combustion engine mounted on the vehicle, it is reduced to nitrogen (N 2 ) using an exhaust gas purification treatment device. In the atmosphere. In order to perform this NOx purification efficiently, it is necessary to accurately measure the NOx concentration and the NOx amount in the exhaust gas. For this purpose, a NOx sensor is used.

このNOxセンサの検出値に基づいて、排気ガス中のNOxを還元するのに必要な尿素等の還元剤を供給しているため、このNOxセンサが正常状態であるか、故障等の異常状態であるかが重要となる。万一、NOxセンサが異常であると、還元剤の供給量を適正な量にすることができず、還元剤が不十分の場合には、排気ガス中のNOxの還元浄化が不十分になった大気中に基準以上のNOxが放出されてしまい、還元剤が過剰の場合には、NOxの還元で消費されなかった還元剤が大気中に放出され、還元剤が無駄に消費されることになる。   Since a reducing agent such as urea necessary for reducing NOx in the exhaust gas is supplied based on the detected value of the NOx sensor, the NOx sensor is in a normal state or in an abnormal state such as a failure. It is important whether there is. If the NOx sensor is abnormal, the amount of reducing agent supplied cannot be made appropriate, and if the reducing agent is insufficient, the reduction and purification of NOx in the exhaust gas becomes insufficient. If NOx above the standard is released into the atmosphere and the reducing agent is excessive, the reducing agent that was not consumed by the reduction of NOx is released into the atmosphere and the reducing agent is consumed wastefully. Become.

そのため、NOxセンサの異常診断が重要であり、例えば、排出NOx流量演算記憶手段と検出NOx濃度記憶手段を備えて、排出NOx流量の経時変化の基準としての基準パターンと、NOxセンサによって検出される検出NOx濃度の経時変化の基準としての追従パターンを規定して、内燃機関が通常運転モードにある場合に排出NOx流量が基準パターンに対して所定の関係をもって推移したときに、検出NOx濃度が追従パターンに対して所定の関係をもって推移したか否かを判別することによって、NOxセンサの応答性を判定する故障判定手段を備えたNOxセンサの故障診断装置が提案されている(例えば、特許文献1参照)。   For this reason, abnormality diagnosis of the NOx sensor is important. For example, the NOx sensor is provided with an exhaust NOx flow rate calculation storage means and a detected NOx concentration storage means, and is detected by the NOx sensor with a reference pattern as a reference for the temporal change of the exhaust NOx flow rate. A follow-up pattern is defined as a reference for the temporal change in the detected NOx concentration, and when the internal combustion engine is in the normal operation mode, the detected NOx concentration follows when the exhaust NOx flow changes with a predetermined relationship with respect to the reference pattern. There has been proposed a NOx sensor failure diagnosis device including failure determination means for determining the responsiveness of the NOx sensor by determining whether or not the pattern has changed with a predetermined relationship (for example, Patent Document 1). reference).

このNOxセンサの診断方法では、予め内燃機関から排出されるNOx流量の経時変化の基準としての基準パターンと、NOxセンサによって検出される検出NOx濃度の経時変化の基準としての追従パターンを予め設定する必要があるが、排出されるNOxの流量は内燃機関の運転状態等の環境条件により大きく変化するため、基準パターンを多数設定する必要があり、多大な工数がかかってしまうという問題がある。   In this NOx sensor diagnosis method, a reference pattern as a reference for the temporal change of the NOx flow rate discharged from the internal combustion engine and a follow-up pattern as a reference for the temporal change of the detected NOx concentration detected by the NOx sensor are set in advance. Although it is necessary, since the flow rate of exhausted NOx varies greatly depending on environmental conditions such as the operating state of the internal combustion engine, it is necessary to set a large number of reference patterns, and there is a problem that it takes a lot of man-hours.

一方、還元触媒の上流側でのNOx量を算出する上流側NOx量演算部とNOxセンサ値検出部と、上流側でのNOx量の推移に現れたピークに対してNOxセンサが応答しているか否かを判定することによりNOxセンサの合理性を判定する合理性判定部と、内燃機関から排出される排気ガス量を算出する排気ガス量演算部とを備え、合理性診断部は、排気ガス量に応じてピークの発生を認識してNOxセンサの合理性を判断するNOxセンサの合理性診断装置(例えば、特許文献2参照)や内燃機関が予め設定された基準稼働条件になったとき、NOxセンサの出力値と、前記基準稼働条件に応じて予め設定された基準出力値との偏差に基づき、NOxセンサの出力を補正する第1補正手段を備えたNOx補正システム(例えば、特許文献3参照)が提案されている。   On the other hand, whether the NOx sensor is responding to the peak appearing in the transition of the NOx amount on the upstream side, the upstream NOx amount calculating unit and the NOx sensor value detecting unit for calculating the NOx amount on the upstream side of the reduction catalyst A rationality determination unit that determines the rationality of the NOx sensor by determining whether or not, and an exhaust gas amount calculation unit that calculates the amount of exhaust gas discharged from the internal combustion engine. When the NOx sensor rationality diagnosis device (see, for example, Patent Document 2) that recognizes the occurrence of a peak in accordance with the amount and determines the rationality of the NOx sensor or the internal combustion engine reaches a preset reference operating condition, A NOx correction system comprising first correction means for correcting the output of the NOx sensor based on the deviation between the output value of the NOx sensor and a reference output value preset in accordance with the reference operating condition (for example, a patent document) 3 reference) has been proposed.

更に、NOxセンサに到達する排気ガス中のNOx濃度を強制的に変動させ、このときにNOxセンサが出力する出力値の変動が当該NOxセンサが正常であるときに取りうる変動からずれている場合に、NOxセンサに異常があると判定する故障判定手段を備えたNOxセンサの故障診断装置(例えば、特許文献4参照)や、内燃機関の所定の運転状態における異常判定モード時に、NOxセンサに到達する排気ガス中のNOx濃度を、一旦増大させて減少変化させる、NOx濃度増減変化手段と、NOx濃度が増減変化されたとき、NOxセンサの所定の第1出力値の出力状態から、NOxセンサが所定の第2の出力値を出力するまでの経過時間を計測する経過時間計測手段と、計測された経過時間と基準経過時間とに基づき、NOxセンサの正常又は異常を判定する判定手段を備えた、排気ガス浄化システムが提案されている(例えば、特許文献5参照)。   Further, the NOx concentration in the exhaust gas reaching the NOx sensor is forcibly changed, and the output value output from the NOx sensor at this time deviates from the change that can be taken when the NOx sensor is normal. In addition, a NOx sensor failure diagnosis device (see, for example, Patent Document 4) provided with a failure determination means that determines that the NOx sensor is abnormal or reaches the NOx sensor during an abnormality determination mode in a predetermined operating state of the internal combustion engine. NOx concentration increase / decrease changing means for once increasing and decreasing the NOx concentration in the exhaust gas to be emitted, and when the NOx concentration is increased / decreased, the NOx sensor detects from the output state of the predetermined first output value of the NOx sensor. Based on the elapsed time measuring means for measuring the elapsed time until the predetermined second output value is output, the measured elapsed time and the reference elapsed time, With a determination means for determining normality or abnormality of the support, the exhaust gas purification system has been proposed (e.g., see Patent Document 5).

しかしながら、これらのNOxセンサの異常診断では、内燃機関の運転状態がNOx濃度のピーク発生時や、強制的にNOx濃度を変化させて作った特定の状態で行っているので、内燃機関の特別の条件下の状態の時にしか診断できず、連続的に異常診断を行うことができないという問題がある。   However, in the abnormality diagnosis of these NOx sensors, the operation state of the internal combustion engine is performed when the peak of the NOx concentration occurs or in a specific state created by forcibly changing the NOx concentration. There is a problem that diagnosis can be performed only under conditions under conditions, and abnormality diagnosis cannot be performed continuously.

特開2008−190383号公報JP 2008-190383 A 特開2010−265781号公報JP 2010-255781 A 特開2009−127552号公報JP 2009-127552 A 特開2003−120399号公報JP 2003-120399 A 特開2009−180150号公報JP 2009-180150 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、NOx濃度の計算値とNOxセンサの検出値を比較することで、NOxセンサの異常診断を連続的に行うことができるNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関を提供することにある。   The present invention has been made in view of the above-described situation, and an object of the present invention is to continuously perform abnormality diagnosis of the NOx sensor by comparing the calculated value of the NOx concentration with the detected value of the NOx sensor. An object of the present invention is to provide a NOx sensor abnormality diagnosis method, a NOx sensor abnormality diagnosis system, and an internal combustion engine.

上記のような目的を達成するための本発明のNOxセンサの異常診断方法は、内燃機関の排気通路に配置されるNOxセンサの異常診断方法であって、内部EGRガスの質量流量(m_in_egr)と外部EGRガスの質量流量(m_ex_egr)と吸入空気の質量流量(m_air)と内部EGRガス中の酸素濃度(O2_in_egr)と外部EGRガス中の酸素濃度(O2_ex_egr)と大気中の酸素濃度(O2_air)とから前記内燃機関のシリンダ内の酸素濃度(O2_cyl)を算出するステップと、該シリンダ内の酸素濃度(O2_cyl)から、前記シリンダから排出されるNOx濃度(NOx_cyl)を算出するステップと、該算出されたNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行うステップを含み、さらに、このNOx濃度(NOx_cyl)を算出するステップである演算ステップが、前記内燃機関の吸気通路に配置された吸気量センサで検出した吸入空気の質量流量(m_air)と、前記内燃機関の吸気マニホールドに配置された第1温度センサで検出した温度(Ti)と前記吸気マニホールドに配置された第1圧力センサで検出した圧力(Pi)と前記内燃機関の排気マニホールドに配置された第2温度センサで検出した温度(Te)と前記排気マニホールドに配置された第2圧力センサで検出した圧力(Pe)とから算出した外部EGRガスの質量流量(m_ex_egr)と、前記第2温度センサで検出した温度(Te)と前記第2圧力センサで検出した圧力(Pe)とから算出した内部EGRガスの質量流量(m_in_egr)から、(1)式によりシリンダ内の質量流量(m_cyl)を算出する第1演算ステップと、

Figure 0005891734
前記吸気量センサで検出した吸入空気の質量流量(m_air)と前記燃料噴射量(q)とから、(2)式により、内部EGR空気過剰率(λ_in_egr)を算出する第2演算ステップと、
Figure 0005891734
前記内部EGR空気過剰率(λ_in_egr)からEGRガスの時間遅れを考慮して算出した外部EGR空気過剰率(λ_ex_egr)と大気中の酸素濃度(O2_air)と理論空燃比(L_st)とから、(3)式により外部EGRガス中の酸素濃度(O2_ex_egr)を算出する第3演算ステップと、
Figure 0005891734
前記内部EGR空気過剰率(λ_in_egr)と大気中の酸素濃度(O2_air)と理論空燃比(L_st)とから、(3)式により内部EGRガス中の酸素濃度(O2_in_egr)を算出する第4演算ステップと、
Figure 0005891734
(5)式より、シリンダ内の酸素濃度(O2_cyl)を算出する第5演算ステップと、
Figure 0005891734
定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(6)式の、シリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出する第6演算ステップとを備え、
Figure 0005891734
前記NOxセンサが異常であるか否かの診断を行うステップが、前記(6)式から算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第7演算ステップであることを特徴とする方法である。 The NOx sensor abnormality diagnosis method of the present invention for achieving the above object is a NOx sensor abnormality diagnosis method arranged in an exhaust passage of an internal combustion engine, and includes a mass flow rate (m_in_egr) of internal EGR gas. External EGR gas mass flow rate (m_ex_egr), intake air mass flow rate (m_air), internal EGR gas oxygen concentration (O2_in_egr), external EGR gas oxygen concentration (O2_ex_egr), and atmospheric oxygen concentration (O2_air) Calculating the oxygen concentration (O2_cyl) in the cylinder of the internal combustion engine from the above, calculating the NOx concentration (NOx_cyl) discharged from the cylinder from the oxygen concentration (O2_cyl) in the cylinder, and NOx concentration (NOx_cyl) and the detected value of the NOx sensor (NOx m) and by comparing comprises the step of performing a diagnosis of whether the NOx sensor is abnormal, further calculation step is a step of calculating the NOx concentration (NOx_cyl) is an intake passage of the internal combustion engine The mass flow rate (m_air) of the intake air detected by the intake air amount sensor arranged at the position, the temperature (Ti) detected by the first temperature sensor arranged at the intake manifold of the internal combustion engine, and the first flow rate arranged at the intake manifold. Pressure (Pi) detected by one pressure sensor, temperature (Te) detected by a second temperature sensor arranged in the exhaust manifold of the internal combustion engine, and pressure (Pe) detected by a second pressure sensor arranged in the exhaust manifold ) Calculated from the mass flow rate (m_ex_egr) of the external EGR gas, the temperature (Te) detected by the second temperature sensor, and the second pressure From the mass flow rate of the internal EGR gas calculated from the pressure and (Pe) Detection (M_in_egr) sensor, a first calculation step of calculating a mass flow rate (M_cyl) in the cylinder by (1),
Figure 0005891734
A second calculation step of calculating an internal EGR excess air ratio (λ_in_egr) from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor and the fuel injection amount (q) by the equation (2);
Figure 0005891734
From the external EGR excess air ratio (λ_ex_egr) calculated from the internal EGR excess air ratio (λ_in_egr) in consideration of the time delay of EGR gas, the oxygen concentration (O2_air) in the atmosphere, and the theoretical air-fuel ratio (L_st), (3 And a third calculation step of calculating the oxygen concentration (O2_ex_egr) in the external EGR gas by the formula:
Figure 0005891734
Fourth calculation step of calculating the oxygen concentration (O2_in_egr) in the internal EGR gas from the internal EGR air excess ratio (λ_in_egr), the oxygen concentration (O2_air) in the atmosphere, and the theoretical air-fuel ratio (L_st) by the equation (3) When,
Figure 0005891734
A fifth calculation step for calculating the oxygen concentration (O2_cyl) in the cylinder from the equation (5);
Figure 0005891734
The oxygen concentration (O2_ref) in the cylinder in the formula (6) in which the oxygen concentration (O2_ref) in the cylinder at a constant time, the NOx concentration discharged from the cylinder at the normal time (NOx_ref), and the index i are set in advance. A NOx concentration (NOx_cyl) discharged from the cylinder, and a sixth calculation step for calculating the NOx concentration (NOx_cyl) discharged from the current cylinder,
Figure 0005891734
The step of diagnosing whether or not the NOx sensor is abnormal is based on the NOx concentration (NOx_cyl) discharged from the current cylinder calculated from the equation (6) and the detected value (NOx_m) of the NOx sensor. In comparison , the method is a seventh operation step for diagnosing whether or not the NOx sensor is abnormal .

この方法によれば、排気ガス中のNOx濃度を計算により求めることで、多大な実験工数を掛けることなくNOxセンサの異常診断を行うことができ、しかも、常時NOx濃度を計算しているので、NOxセンサの異常診断を行う時期を内燃機関の運転状態が特別な条件の時に限定する必要がなく、連続的に行うことができる。また、排気ガス中のNOx濃度を容易に計算できる。 According to this method, by determining the NOx concentration in the exhaust gas by calculation, the abnormality diagnosis of the NOx sensor can be performed without taking a lot of experiment man-hours, and the NOx concentration is always calculated. It is not necessary to limit the timing for performing abnormality diagnosis of the NOx sensor when the operating state of the internal combustion engine is in a special condition, and it can be performed continuously. Further, the NOx concentration in the exhaust gas can be easily calculated.

この外部EGRガスは、EGR通路を通り吸気通路に戻されるEGRガスであり、内部EGRガスは、前サイクルの燃焼後のガスが排気ポートに排気されずにシリンダ内(筒内)に残留したガスと、一度排気ポートに排気されるがバルブオーバーラップ時にシリンダ内に戻される排気ガスとからなる。   This external EGR gas is an EGR gas that returns to the intake passage through the EGR passage, and the internal EGR gas is a gas that remains in the cylinder (in-cylinder) without being exhausted by the exhaust gas from the previous cycle to the exhaust port. And exhaust gas once exhausted to the exhaust port but returned to the cylinder when the valve overlaps.

そして、上記の目的を達成するためのNOxセンサの異常診断システムは、内燃機関の排気通路に配置されるNOxセンサの異常診断を行う制御装置を備えたNOxセンサの異常診断システムであって、前記制御装置が、内部EGRガスの質量流量(m_in_egr)と外部EGRガスの質量流量(m_ex_egr)と吸入空気の質量流量(m_air)と内部EGRガス中の酸素濃度(O2_in_egr)と外部EGRガス中の酸素濃度(O2_ex_egr)と大気中の酸素濃度(O2_air)とから前記内燃機関のシリンダ内の酸素濃度(O2_cyl)を算出するとともに、該シリンダ内の酸素濃度(O2_cyl)から、前記シリンダから排出されるNOx濃度(NOx_cyl)を算出するNOx濃度算出手段と、該算出されたNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う比較診断手段を備えるとともに、前記NOx濃度算出手段が、前記内燃機関の吸気通路に配置された吸気量センサで検出した吸入空気の質量流量(m_air)と、前記内燃機関の吸気マニホールドに配置された第1温度センサで検出した温度(Ti)と前記吸気マニホールドに配置された第1圧力センサで検出した圧力(Pi)と前記内燃機関の排気マニホールドに配置された第2温度センサで検出した温度(Te)と前記排気マニホールドに配置された第2圧力センサで検出した圧力(Pe)とから算出した外部EGRガスの質量流量(m_ex_egr)と、前記第2温度センサで検出した温度(Te)と前記第2圧力センサで検出した圧力(Pe)とから算出した内部EGRガスの質量流量(m_in_egr)から、(1)式によりシリンダ内の質量流量(m_cyl)を算出する第1演算手段と、

Figure 0005891734
前記吸気量センサで検出した吸入空気の質量流量(m_air)と前記燃料噴射量(q)とから、(2)式により、内部EGR空気過剰率(λ_in_egr)を算出する第2演算手段と
Figure 0005891734
前記内部EGR空気過剰率(λ_in_egr)からEGRガスの時間遅れを考慮して算出した外部EGR空気過剰率(λ_ex_egr)と大気中の酸素濃度(O2_air)と理論空燃比(L_st)とから、(3)式により外部EGRガス中の酸素濃度(O2_ex_egr)を算出する第3演算手段と、
Figure 0005891734
前記内部EGR空気過剰率(λ_in_egr)から算出した内部EGR空気過剰率(λ_in_egr)と大気中の酸素濃度(O2_air)と理論空燃比(L_st)とから、(4)式により内部EGRガス中の酸素濃度(O2_in_egr)を算出する第4演算手段と、
Figure 0005891734
(5)式より、シリンダ内の酸素濃度(O2_cyl)を算出する第5演算手段と、
Figure 0005891734
定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(6)式のシリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出する第6演算手段とを備え、
Figure 0005891734
前記比較診断手段が、前記算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第7演算手段を備えて構成される。 A NOx sensor abnormality diagnosis system for achieving the above object is a NOx sensor abnormality diagnosis system comprising a control device for performing abnormality diagnosis of a NOx sensor disposed in an exhaust passage of an internal combustion engine, The control device is configured to control the mass flow rate of the internal EGR gas (m_in_egr), the mass flow rate of the external EGR gas (m_ex_egr), the mass flow rate of the intake air (m_air), the oxygen concentration in the internal EGR gas (O2_in_egr), and the oxygen in the external EGR gas. The oxygen concentration (O2_cyl) in the cylinder of the internal combustion engine is calculated from the concentration (O2_ex_egr) and the oxygen concentration (O2_air) in the atmosphere, and NOx discharged from the cylinder from the oxygen concentration (O2_cyl) in the cylinder. NOx concentration calculating means for calculating the concentration (NOx_cyl); The NOx concentration calculating means comprises a comparison diagnostic means for comparing the detected NOx concentration (NOx_cyl) with the detected value (NOx_m) of the NOx sensor and diagnosing whether or not the NOx sensor is abnormal. The mass flow rate (m_air) of the intake air detected by the intake air amount sensor arranged in the intake passage of the internal combustion engine, the temperature (Ti) detected by the first temperature sensor arranged in the intake manifold of the internal combustion engine, and the The pressure (Pi) detected by the first pressure sensor arranged in the intake manifold, the temperature (Te) detected by the second temperature sensor arranged in the exhaust manifold of the internal combustion engine, and the second pressure arranged in the exhaust manifold The mass flow rate (m_ex_egr) of the external EGR gas calculated from the pressure (Pe) detected by the sensor and the second temperature sensor The mass flow rate (m_cyl) in the cylinder is calculated from equation (1) from the mass flow rate (m_in_egr) of the internal EGR gas calculated from the measured temperature (Te) and the pressure (Pe) detected by the second pressure sensor. One computing means;
Figure 0005891734
Second calculating means for calculating an internal EGR excess air ratio (λ_in_egr) from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor and the fuel injection amount (q) according to the equation (2) ;
Figure 0005891734
From the external EGR excess air ratio (λ_ex_egr) calculated from the internal EGR excess air ratio (λ_in_egr) in consideration of the time delay of EGR gas, the oxygen concentration (O2_air) in the atmosphere, and the theoretical air-fuel ratio (L_st), (3 ) The third computing means for calculating the oxygen concentration (O2_ex_egr) in the external EGR gas by the equation;
Figure 0005891734
From the internal EGR excess air ratio (λ_in_egr) calculated from the internal EGR excess air ratio (λ_in_egr), the oxygen concentration in the atmosphere (O2_air), and the stoichiometric air-fuel ratio (L_st), the oxygen in the internal EGR gas is expressed by the equation (4). A fourth calculation means for calculating a concentration (O2_in_egr);
Figure 0005891734
A fifth operation means for calculating the oxygen concentration (O2_cyl) in the cylinder from the equation (5);
Figure 0005891734
The oxygen concentration (O2_ref) in the cylinder in the equation (6) in which the oxygen concentration (O2_ref) in the cylinder at a constant time, the NOx concentration discharged from the cylinder at the steady state (NOx_ref), and the index i are set in advance. Sixth calculating means for calculating the NOx concentration (NOx_cyl) discharged from the current cylinder from the relationship of the NOx concentration (NOx_cyl) discharged from the cylinder;
Figure 0005891734
The comparison diagnosis means compares the calculated NOx concentration (NOx_cyl) discharged from the current cylinder with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. It is comprised including the 7th calculating means which performs .

この構成によれば、排気ガス中のNOx濃度を計算により求めることで、多大な実験工数を掛けることなくNOxセンサの異常診断を行うことができ、しかも、常時NOx濃度を計算しているので、NOxセンサの異常診断を行う時期を内燃機関の運転状態が特別な条件の時に限定する必要がなく、連続的に行うことができる。また、排気ガス中のNOx濃度を容易に計算できる。 According to this configuration, by calculating the NOx concentration in the exhaust gas by calculation, the abnormality diagnosis of the NOx sensor can be performed without taking a lot of experiment man-hours, and the NOx concentration is always calculated. It is not necessary to limit the timing for performing abnormality diagnosis of the NOx sensor when the operating state of the internal combustion engine is in a special condition, and it can be performed continuously. Further, the NOx concentration in the exhaust gas can be easily calculated.

そして、上記の目的を達成するための内燃機関は、上記のNOxセンサの異常診断システムを備えて構成され、上記のNOxセンサの異常診断システムと同様の効果を奏することができる。   An internal combustion engine for achieving the above object includes the above NOx sensor abnormality diagnosis system, and can achieve the same effects as the above NOx sensor abnormality diagnosis system.

本発明に係るNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関によれば、排気ガス中のNOx濃度を計算により求め、この計算されたNOx濃度とNOxセンサで検出されたNOx濃度とを比較することで、多大な実験工数をかけることなくNOxセンサの異常診断ができる。また、内燃機関の運転状態が特別な条件下にある状態ではなく、常にNOx濃度の値を計算して比較できるので、NOxセンサの異常診断を連続的に行うことができる。   According to the NOx sensor abnormality diagnosis method, the NOx sensor abnormality diagnosis system, and the internal combustion engine according to the present invention, the NOx concentration in the exhaust gas is obtained by calculation, and the calculated NOx concentration and the NOx detected by the NOx sensor are calculated. By comparing the concentration, the abnormality diagnosis of the NOx sensor can be performed without taking a lot of experiment man-hours. In addition, since the operating state of the internal combustion engine is not in a special condition and the value of the NOx concentration can always be calculated and compared, the abnormality diagnosis of the NOx sensor can be performed continuously.

更に、EGRガスに関して、外部EGRガスのみならず、内部EGRガスも考慮しているので、より精度よくNOxセンサの異常診断を行うことができる。   Further, regarding the EGR gas, not only the external EGR gas but also the internal EGR gas is taken into consideration, so that the abnormality diagnosis of the NOx sensor can be performed with higher accuracy.

本発明の実施の形態のNOxセンサの異常診断システム及び内燃機関の構成を示す図である。It is a figure which shows the structure of the abnormality diagnosis system of the NOx sensor of embodiment of this invention, and an internal combustion engine. 本発明の実施の形態のNOxセンサの異常診断システムの制御装置の構成を示す図である。It is a figure which shows the structure of the control apparatus of the abnormality diagnosis system of the NOx sensor of embodiment of this invention.

以下、本発明に係る実施の形態のNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関について、図面を参照しながら説明する。図1に示すように、この内燃機関10は、エンジン本体11と、吸気マニホールド11aに接続する吸気通路12と、排気マニホールド11bに接続する排気通路18を有して構成される。   Hereinafter, an NOx sensor abnormality diagnosis method, a NOx sensor abnormality diagnosis system, and an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the internal combustion engine 10 includes an engine body 11, an intake passage 12 connected to the intake manifold 11a, and an exhaust passage 18 connected to the exhaust manifold 11b.

この吸気通路12には、上流側から順にエアクリーナー13、ターボチャージャー(ターボ式過給機)14のコンプレッサー14a、インタークーラー15、吸気スロットル(吸気弁)16が設けられている。また、排気通路18には、ターボチャージャー14のタービン14b、排気ガス浄化装置19が設けられている。   The intake passage 12 is provided with an air cleaner 13, a compressor 14 a of a turbocharger (turbo turbocharger) 14, an intercooler 15, and an intake throttle (intake valve) 16 in order from the upstream side. The exhaust passage 18 is provided with a turbine 14b of the turbocharger 14 and an exhaust gas purification device 19.

なお、図1の構成では、排気ガス浄化装置19は上流側のDPF(ディーゼルパティキュレートフィルタ)19aと下流側のSCR触媒(選択的還元型触媒)19bを備えている。このSCR触媒19bの上流側には、NOxの還元剤となる尿素水等のアンモニア系溶液(アンモニアを発生する溶液、又はアンモニア水)を排気通路18中に噴霧する還元剤噴射装置(図示しない)が設けられている。   In the configuration of FIG. 1, the exhaust gas purification device 19 includes an upstream DPF (diesel particulate filter) 19a and a downstream SCR catalyst (selective reduction catalyst) 19b. On the upstream side of the SCR catalyst 19b, a reducing agent injection device (not shown) that sprays an ammonia-based solution (a solution that generates ammonia or ammonia water) such as urea water serving as a NOx reducing agent into the exhaust passage 18. Is provided.

更に、EGR(排気再循環)のために、排気通路18と吸気通路12とを連通するEGR通路20が設けられ、このEGR通路20には、EGRクーラー21とEGR弁22が配設されている。また、EGRガスGeのEGRクーラー21による過冷却を防止するために、流量調整弁24を備えた排気戻し通路23がEGRクーラー21の出口と排気通路18とを接続して設けられている。   Further, for EGR (exhaust gas recirculation), an EGR passage 20 that connects the exhaust passage 18 and the intake passage 12 is provided, and an EGR cooler 21 and an EGR valve 22 are provided in the EGR passage 20. . Further, in order to prevent overcooling of the EGR gas Ge by the EGR cooler 21, an exhaust return passage 23 provided with a flow rate adjusting valve 24 is provided connecting the outlet of the EGR cooler 21 and the exhaust passage 18.

そして、空気Aは、吸気通路12のエアクリーナー13で埃等を除去され、コンプレッサー14aにより過給されて圧力と温度が上昇した状態となり、インタークーラー15で冷却された後、吸気スロットル16で流量を制御され、必要に応じてEGRガスGeと混合されて吸気マニホールド11aからエンジン本体11の各シリンダ(気筒)17内に入る。なお、EGRガスGeは、排気通路18からEGR通路20や排気戻り通路23に分岐され、適度にEGRクーラー21で冷却され、また、EGR弁22や流量調整弁24により流量を調整されて吸気通路12に供給される。 The air A is dust removed by the air cleaner 13 in the intake passage 12, is supercharged by the compressor 14 a, rises in pressure and temperature, is cooled by the intercooler 15, and is then flowed by the intake throttle 16. It is controlled and mixed with EGR gas Ge as necessary, and enters each cylinder (cylinder) 17 of the engine body 11 from the intake manifold 11a. The EGR gas Ge is branched from the exhaust passage 18 to the EGR passage 20 and the exhaust return passage 23, and is appropriately cooled by the EGR cooler 21, and the flow rate is adjusted by the EGR valve 22 and the flow rate adjusting valve 24, and the intake passage. 12 is supplied.

シリンダ17内では、燃料噴射弁(図示しない)から噴射された燃料と空気Aが混合して燃焼して排気ガスGを発生する。発生した排気ガスGは排気マニホールド11bから排気通路18に排出され、タービン14bを駆動した後、DPF19aでPM(粒子状物質)等を除去されたのち、排気通路18に供給された還元剤によりSCR触媒19bでNOxが窒素に還元され、その後、サイレンサー(図示しない)等を通過して大気中に放出される。なお、排気ガスGの一部はEGR通路20に分岐され、EGRガスGeとして再循環される。 In the cylinder 17, the fuel injected from a fuel injection valve (not shown) and air A are mixed and burned to generate exhaust gas G. The generated exhaust gas G is discharged from the exhaust manifold 11 b to the exhaust passage 18, and after driving the turbine 14 b , PM (particulate matter) and the like are removed by the DPF 19 a, and then the SCR is supplied by the reducing agent supplied to the exhaust passage 18. NOx is reduced to nitrogen by the catalyst 19b, and then released into the atmosphere through a silencer (not shown) or the like. A part of the exhaust gas G is branched into the EGR passage 20 and recirculated as the EGR gas Ge.

そして、この内燃機関10の運転制御やDPF19aの再生制御や、SCR触媒19bにおけるNOx浄化のための還元剤供給制御等を行うために、吸気系では、エアクリーナー13とコンプレッサー14aとの間に吸気量m_airを計測するためのエアフローセンサ(吸気量センサ)31が、吸気マニホールド11aに吸気温度Tiを計測するための第1温度センサ(インテークマニホールド温度センサ)32と吸気圧Piを計測するための第1圧力センサ(吸気圧センサ:ブースト圧センサ)33が配設される。   In order to perform the operation control of the internal combustion engine 10, the regeneration control of the DPF 19a, the reducing agent supply control for NOx purification in the SCR catalyst 19b, etc., in the intake system, the intake air is interposed between the air cleaner 13 and the compressor 14a. An air flow sensor (intake amount sensor) 31 for measuring the amount m_air has a first temperature sensor (intake manifold temperature sensor) 32 for measuring the intake air temperature Ti in the intake manifold 11a and a first air pressure sensor for measuring the intake pressure Pi. 1 pressure sensor (intake pressure sensor: boost pressure sensor) 33 is provided.

また、排気系では、排気マニホールド11bに排気温度Teを計測するための第2温度センサ(エキゾーストマニホールド温度センサ)34と排気圧Peを計測するための第2圧力センサ(排気圧センサ)35が配設される。また、DPF19aとSCR触媒19bとの間にNOx濃度NOx_m1を計測するNOxセンサ36が配設される。   In the exhaust system, a second temperature sensor (exhaust manifold temperature sensor) 34 for measuring the exhaust temperature Te and a second pressure sensor (exhaust pressure sensor) 35 for measuring the exhaust pressure Pe are arranged in the exhaust manifold 11b. Established. Further, a NOx sensor 36 that measures the NOx concentration NOx_m1 is disposed between the DPF 19a and the SCR catalyst 19b.

これらのセンサ31〜36の検出値を入力して、内燃機関10の運転制御、DPF19aの再生制御、SCR触媒19bにおけるNOx浄化のための還元剤供給制御等を行うECU(エンジンコントロールユニット)と呼ばれる制御装置(ECU)30が設けられる。   It is called an ECU (engine control unit) that inputs the detection values of these sensors 31 to 36 and performs operation control of the internal combustion engine 10, regeneration control of the DPF 19a, reductant supply control for NOx purification in the SCR catalyst 19b, and the like. A control device (ECU) 30 is provided.

そして、この内燃機関10の排気通路18に配置されるNOxセンサ36の異常診断のために、内燃機関10にNOxセンサの異常診断システムが備えられ、このNOxセンサの異常診断システムの制御装置40が制御装置(ECU)30に組み込まれて構成される。   For the abnormality diagnosis of the NOx sensor 36 disposed in the exhaust passage 18 of the internal combustion engine 10, the internal combustion engine 10 is provided with a NOx sensor abnormality diagnosis system, and a control device 40 of this NOx sensor abnormality diagnosis system is provided. A control unit (ECU) 30 is built in and configured.

この制御装置40は、内部EGRガスの質量流量m_in_egrと外部EGRガスの質量流量m_ex_egrと吸入空気の質量流量m_airと内部EGRガス中の酸素濃度O2_in_egrと外部EGRガス中の酸素濃度O2_ex_egrと大気中の酸素濃度O2_airとから内燃機関10のシリンダ17内の酸素濃度O2_cylを算出するとともに、このシリンダ17内の酸素濃度O2_cylから、シリンダ17から排出されるNOx濃度NOx_cylを算出するNOx濃度算出手段41と、この算出されたNOx濃度NOx_cylとNOxセンサ36の検出値NOx_m(=NOx_ml、又は、NOx_m2)とを比較して、NOxセンサ36が異常であるか否かの診断を行う比較診断手段42を備えて構成される。 The control device 40 includes an internal EGR gas mass flow rate m_in_egr, an external EGR gas mass flow rate m_ex_egr, an intake air mass flow rate m_air, an internal EGR gas oxygen concentration O2_in_egr, an external EGR gas oxygen concentration O2_ex_egr, and an atmospheric EGR gas flow rate. NOx concentration calculating means 41 for calculating the oxygen concentration O2_cyl in the cylinder 17 of the internal combustion engine 10 from the oxygen concentration O2_air, and calculating the NOx concentration NOx_cyl discharged from the cylinder 17 from the oxygen concentration O2_cyl in the cylinder 17 ; Comparison diagnosis means 42 is provided for comparing the calculated NOx concentration NOx_cyl and the detected value NOx_m (= NOx_ml or NOx_m2) of the NOx sensor 36 to diagnose whether or not the NOx sensor 36 is abnormal. Composed .

このNOx濃度算出手段41は、図2に示すように、第1〜第6演算手段41a〜41fを備え、第1演算ステップで、第1演算手段41aにより、第1演算ステップで、吸気量センサ31で検出した吸入空気Aの質量流量(新規空気流量)m_airと外部EGRガスGeの質量流量m_ex_egrと内部EGRガスGeの質量流量m_in_egrとから、(1)式によりシリンダ17内の質量流量m_cylを算出する。つまり、「(シリンダ内の質量流量m_cyl)=(吸入空気の質量流量:m_air)+(外部EGRガスの質量流量:m_ex_egr)+(内部EGRガスの質量流量:m_in_egr)」となる。 As shown in FIG. 2, the NOx concentration calculating means 41 includes first to sixth calculating means 41a to 41f . In the first calculating step, the first calculating means 41a sets the intake air amount sensor to the first calculating step. From the mass flow rate (new air flow rate) m_air of the intake air A detected at 31, the mass flow rate m_ex_egr of the external EGR gas Ge, and the mass flow rate m_in_egr of the internal EGR gas Ge, the mass flow rate m_cyl in the cylinder 17 is calculated by the equation (1). calculate. That is, “(mass flow rate in the cylinder m_cyl) = (mass flow rate of intake air: m_air) + (mass flow rate of external EGR gas: m_ex_egr) + (mass flow rate of internal EGR gas: m_in_egr)”.

この外部EGRガスは、EGR通路20を通り吸気通路12に戻されるEGRガスGeであり、内部EGRガスは、前サイクルの燃焼後のガスが排気ポートに排気されずにシリンダ17内(筒内)に残留したガスと、一度排気ポートに排気されるがバルブオーバーラップ時にシリンダ17内に戻される排気ガスとからなる。   This external EGR gas is an EGR gas Ge that passes through the EGR passage 20 and returns to the intake passage 12, and the internal EGR gas is not exhausted into the exhaust port from the combustion gas in the previous cycle, but in the cylinder 17 (in-cylinder). And the exhaust gas once exhausted to the exhaust port but returned to the cylinder 17 when the valve overlaps.

なお、外部EGRガスGeの質量流量m_ex_egrは、第1温度センサ32で検出した温度Tiと第1圧力センサ33で検出した圧力Piと第2温度センサ34で検出した温度Teと第2圧力センサ35で検出した圧力Peとから算出し、内部EGRガスの質量流量m_in_egrは、第2温度センサ34で検出した温度Teと第2圧力センサ35で検出した圧力Peとから算出する。

Figure 0005891734
The mass flow rate m_ex_egr of the external EGR gas Ge includes the temperature Ti detected by the first temperature sensor 32, the pressure Pi detected by the first pressure sensor 33, the temperature Te detected by the second temperature sensor 34, and the second pressure sensor 35. in calculating from the detected pressure Pe, the mass flow rate m_in_egr internal EGR gas is calculated from the temperature Te and the pressure Pe detected by the second pressure sensor 35 detected by the second temperature sensor 34.
Figure 0005891734

ここで、EGRガスが通過するバルブ有効面積をAとし、ガス定数をRとし、比熱比をκとし、シリンダ容積をVcylとし、圧縮比をεとすると、外部EGR流量m_ex_egrは(8)式で算出され、内部EGR流量m_in_egrは(9)式で算出される。

Figure 0005891734
Here, when the effective valve area through which EGR gas passes is A, the gas constant is R, the specific heat ratio is κ, the cylinder volume is Vcyl, and the compression ratio is ε, the external EGR flow rate m_ex_egr is expressed by equation (8). The internal EGR flow rate m_in_egr is calculated by the equation (9).
Figure 0005891734

また、第2演算ステップで、第2演算手段41bにより、吸気量センサ31で検出した吸入空気の質量流量m_airと燃料噴射量qとから、(2)式により、内部EGR空気過剰率λ_in_egrを算出する。なお、理論空燃比L_stは、燃料によって多少変化するが、ディーゼルエンジンに使用される軽油の場合には、14.6となり、ガソリンエンジンに使用されるガソリンの場合には、14.5〜14.7となる。

Figure 0005891734
Also, in the second calculation step, the internal EGR excess air ratio λ_in_egr is calculated by the second calculation means 41b from the intake air mass flow rate m_air detected by the intake air amount sensor 31 and the fuel injection amount q by the equation (2). To do. The theoretical air-fuel ratio L_st varies slightly depending on the fuel, but is 14.6 in the case of light oil used in a diesel engine, and 14.5 to 14 in the case of gasoline used in a gasoline engine. 7
Figure 0005891734

次に、第3演算ステップで、第3演算手段41cにより、外部EGRガスG_ex_egrの酸素濃度O2_ex_egrを計算する。大気中の酸素濃度O2_airと外部EGR空気過剰率λ_ex_egrと理論空燃比L_stとから、(3)式により、外部EGRガスGe中の酸素濃度O2_ex_egrを算出する。この外部EGR空気過剰率λ_ex_egrには、内部EGR空気過剰率λ_in_egrからEGRガスGeの時間遅れを考慮した値を用いる。

Figure 0005891734
Next, in the third calculation step, the third calculation means 41c calculates the oxygen concentration O2_ex_egr of the external EGR gas G_ex_egr. From the oxygen concentration O2_air in the atmosphere, the external EGR air excess ratio λ_ex_egr, and the theoretical air-fuel ratio L_st, the oxygen concentration O2_ex_egr in the external EGR gas Ge is calculated by the equation (3). As the external EGR excess air ratio λ_ex_egr , a value taking into account the time delay of the EGR gas Ge from the internal EGR excess air ratio λ_in_egr is used.
Figure 0005891734

次に、第4演算ステップで、第4演算手段41dにより、内部EGRガスG_in_egrの酸素濃度O2_in_egrを計算する。大気中の酸素濃度O2_airと内部EGR空気過剰率λ_in_egrと理論空燃比L_stとから、(4)式により、内部EGRガス中の酸素濃度O2_in_egrを算出する。

Figure 0005891734
Next, in the fourth calculation step, the fourth calculation means 41d calculates the oxygen concentration O2_in_egr of the internal EGR gas G_in_egr. From the oxygen concentration O2_air in the atmosphere, the internal EGR air excess ratio λ_in_egr, and the theoretical air-fuel ratio L_st, the oxygen concentration O2_in_egr in the internal EGR gas is calculated by the equation (4) .
Figure 0005891734

また、第5演算ステップで、第5演算手段41eにより、(5)式より、シリンダ17内の酸素濃度O2_cylを算出する。

Figure 0005891734
Further, in the fifth calculation step, the oxygen concentration O2_cyl in the cylinder 17 is calculated from the expression (5) by the fifth calculation means 41e.
Figure 0005891734

また、第6演算ステップで、第6演算手段41fにより、シリンダ17内の酸素濃度O2_cylを変換して、シリンダ17内のNOx濃度NOx_cylを算出する。ここでは、定常時のシリンダ17内の酸素濃度O2_refと定常時のシリンダ17から排出されるNOx濃度NOx_refと、指数iとが予め設定されている(6)式及び(7)式のシリンダ17内の酸素濃度O2_cylとシリンダ17から排出されるNOx濃度NOx_cylの関係から、現在のシリンダ17から排出されるNOx濃度NOx_cylを算出する。   In the sixth calculation step, the sixth calculation means 41f converts the oxygen concentration O2_cyl in the cylinder 17 to calculate the NOx concentration NOx_cyl in the cylinder 17. Here, the oxygen concentration O2_ref in the cylinder 17 at the normal time, the NOx concentration NOx_ref discharged from the cylinder 17 at the normal time, and the index i are set in advance in the cylinder 17 of the equations (6) and (7). The NOx concentration NOx_cyl discharged from the current cylinder 17 is calculated from the relationship between the oxygen concentration O2_cyl of NO2 and the NOx concentration NOx_cyl discharged from the cylinder 17.

これらの酸素濃度O2_refとNOx濃度NOx_refと指数iは予め定常時のエンジンの実験で求めておき、設定しておく。

Figure 0005891734
Figure 0005891734
The oxygen concentration O2_ref, the NOx concentration NOx_ref, and the index i are previously determined and set in advance through steady-state engine experiments.
Figure 0005891734
Figure 0005891734

そして、比較診断手段42には、算出された現在のシリンダ17から排出されるNOx濃度NOx_cylとNOxセンサ36の検出値NOx_mとを比較して、NOxセンサ36が異常であるか否かの診断を行う第7演算手段42aを備える。   Then, the comparison diagnosis means 42 compares the calculated NOx concentration NOx_cyl discharged from the current cylinder 17 with the detected value NOx_m of the NOx sensor 36 to diagnose whether the NOx sensor 36 is abnormal. Seventh calculating means 42a is provided.

第7演算ステップでは、この第7演算手段42aにより、NOxセンサ36が異常であるか否かの診断を行うが、このNOxセンサ36が異常であるか否かの診断では、NOxセンサ36が正常な状態であれば、算出されたNOx濃度NOx_cylとNOxセンサ36の検出値NOx_mと差の絶対値が適正な値に設定された判定値NOx_jud以下となるはずであり、逆にNOxセンサ36が異常な状態であれば、その差の絶対値が判定値NOx_judを超えるはずである。従って、その差の絶対値が判定値NOx_judを超えた場合にNOxセンサ36は異常であると判定する。つまり、|NOx_cyl−NOx_m|≦NOx_judで正常、|NOx_cyl−NOx_m|>NOx_judで異常と判定する。これにより、計算されたNOx濃度NOx_cylとNOxセンサ36の検出値NOx_mを比較することで、NOxセンサ36の異常診断を行うことができる。 In the seventh calculation step, the seventh calculation means 42a diagnoses whether or not the NOx sensor 36 is abnormal. In the diagnosis of whether or not the NOx sensor 36 is abnormal, the NOx sensor 36 is normal. If this is the case, the absolute value of the difference between the calculated NOx concentration NOx_cyl and the detected value NOx_m of the NOx sensor 36 should be equal to or less than the determination value NOx_jud set to an appropriate value. Conversely, the NOx sensor 36 is abnormal. In such a state, the absolute value of the difference should exceed the determination value NOx_jud. Accordingly, when the absolute value of the difference exceeds the determination value NOx_jud, it is determined that the NOx sensor 36 is abnormal. That is, it is determined that | NOx_cyl-NOx_m | ≦ NOx_jud is normal and | NOx_cyl-NOx_m |> NOx_jud is abnormal. Thus, the NOx sensor 36 can be diagnosed for abnormality by comparing the calculated NOx concentration NOx_cyl with the detected value NOx_m of the NOx sensor 36.

上記のNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関10によれば、排気ガスG中のNOx濃度NOx_cylを計算により求めることで、多大な実験工数を掛けることなくNOxセンサ36の異常診断を行うことができ、しかも、常時NOx濃度NOx_cylを計算しているので、NOxセンサ36の異常診断を行う時期を内燃機関10の運転状態が特別な条件の時に限定する必要がなく、連続的に行うことができる。   According to the NOx sensor abnormality diagnosis method, the NOx sensor abnormality diagnosis system, and the internal combustion engine 10 described above, the NOx concentration in the exhaust gas G is determined by calculation, so that the NOx sensor 36 does not require much experimentation. In addition, since the NOx concentration NOx_cyl is constantly calculated, it is not necessary to limit the timing for performing the abnormality diagnosis of the NOx sensor 36 when the operating state of the internal combustion engine 10 is in a special condition. Can be done continuously.

更に、EGRガスに関して、外部EGRガスのみならず、内部EGRガスも考慮しているので、より精度よくNOxセンサの異常診断を行うことができる。   Further, regarding the EGR gas, not only the external EGR gas but also the internal EGR gas is taken into consideration, so that the abnormality diagnosis of the NOx sensor can be performed with higher accuracy.

本発明のNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関によれば、NOx濃度の計算値とNOxセンサの検出値を比較することで、NOxセンサの異常診断を連続的に行うことができるので、車両に搭載するような多くの内燃機関に利用できる。   According to the NOx sensor abnormality diagnosis method, the NOx sensor abnormality diagnosis system, and the internal combustion engine of the present invention, the NOx sensor abnormality diagnosis is continuously performed by comparing the calculated value of the NOx concentration with the detected value of the NOx sensor. This can be used for many internal combustion engines that are mounted on vehicles.

10 内燃機関
11 エンジン本体
11a 吸気マニホールド
12 吸気通路
17 シリンダ(気筒)
18 排気通路
19 排気ガス浄化装置
19a DPF
19b SCR触媒(選択的還元型触媒)
20 EGR通路
30 制御装置(ECU)
31 吸気量センサ(エアフローセンサ)
32 第1温度センサ(インテークマニホールド温度センサ)
33 第1圧力センサ(吸気圧センサ:ブースト圧センサ)
34 第2温度センサ(エキゾーストマニホールド温度センサ)
35 第2圧力センサ(排気圧センサ)
36 NOxセンサ
40 制御装置(NOxセンサの異常診断システムの制御装置)
41 NOx濃度算出手段
41a 第1演算手段
41b 第2演算手段
41c 第3演算手段
41d 第4演算手段
41e 第5演算手段
41f 第6演算手段
42 比較診断手段
42a 第7演算手段
A 空気
G 排気ガス
Ge 外部EGRガス
L_st 理論空燃比
NOx_cyl NOx濃度の算出値
NOx_jud 判定値
NOx_m NOx濃度の計測値
m_air 吸気量センサの検出値
m_cyl シリンダ内の質量流量
m_ex_egr 外部EGRガスの質量流量
m_in_egr 内部EGRガスの質量流量
O2_air 大気中の酸素濃度
O2_ex_egr 外部EGRガス中の酸素濃度
O2_in_egr 内部EGRガス中の酸素濃度
Pe 排気圧
Pi 吸気圧
Te 排気温度
Ti 吸気温度
λ 排気空気過剰率
λ_ex_egr 外部EGRガスの空気過剰率
λ_in_egr 内部EGRガスの空気過剰率
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 11 Engine main body 11a Intake manifold 12 Intake passage 17 Cylinder
18 Exhaust passage 19 Exhaust gas purification device 19a DPF
19b SCR catalyst (selective reduction catalyst)
20 EGR passage 30 control unit (ECU)
31 Intake air volume sensor (air flow sensor)
32 First temperature sensor (Intake manifold temperature sensor)
33 First pressure sensor (intake pressure sensor: boost pressure sensor)
34 Second temperature sensor (exhaust manifold temperature sensor)
35 Second pressure sensor (exhaust pressure sensor)
36 NOx sensor 40 control device (control device of NOx sensor abnormality diagnosis system)
41 NOx concentration calculating means 41a 1st calculating means 41b 2nd calculating means 41c 3rd calculating means 41d 4th calculating means 41e 5th calculating means 41f 6th calculating means 42 Comparative diagnostic means 42a 7th calculating means A Air G Exhaust gas Ge External EGR gas L_st Theoretical air-fuel ratio NOx_cyl Calculated value of NOx concentration NOx_jud Judgment value NOx_m Measured value of NOx concentration m_air Detected value of intake air sensor m_cyl Mass flow rate in cylinder m_ex_egr Mass flow rate of external EGR gas m_in_egr Mass flow rate of internal EGR gas Oxygen concentration in the atmosphere O2_ex_egr Oxygen concentration in the external EGR gas O2_in_egr Oxygen concentration in the internal EGR gas Pe Exhaust pressure Pi Intake pressure Ti Exhaust temperature Ti Intake temperature λ Exhaust air excess ratio λ_ex_egr Excess air in the external EGR gas Surplus ratio λ_in_egr Excess air ratio of internal EGR gas

Claims (3)

内燃機関の排気通路に配置されるNOxセンサの異常診断方法であって、
内部EGRガスの質量流量(m_in_egr)と外部EGRガスの質量流量(m_ex_egr)と吸入空気の質量流量(m_air)と内部EGRガス中の酸素濃度(O2_in_egr)と外部EGRガス中の酸素濃度(O2_ex_egr)と大気中の酸素濃度(O2_air)とから前記内燃機関のシリンダ内の酸素濃度(O2_cyl)を算出するステップと、
該シリンダ内の酸素濃度(O2_cyl)から、前記シリンダから排出されるNOx濃度(NOx_cyl)を算出するステップと、
該算出されたNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行うステップを含み、
さらに、このNOx濃度(NOx_cyl)を算出するステップである演算ステップが、
前記内燃機関の吸気通路に配置された吸気量センサで検出した吸入空気の質量流量(m_air)と、前記内燃機関の吸気マニホールドに配置された第1温度センサで検出した温度(Ti)と前記吸気マニホールドに配置された第1圧力センサで検出した圧力(Pi)と前記内燃機関の排気マニホールドに配置された第2温度センサで検出した温度(Te)と前記排気マニホールドに配置された第2圧力センサで検出した圧力(Pe)とから算出した外部EGRガスの質量流量(m_ex_egr)と、前記第2温度センサで検出した温度(Te)と前記第2圧力センサで検出した圧力(Pe)とから算出した内部EGRガスの質量流量(m_in_egr)から、(1)式によりシリンダ内の質量流量(m_cyl)を算出する第1演算ステップと、
Figure 0005891734
前記吸気量センサで検出した吸入空気の質量流量(m_air)と前記燃料噴射量(q)とから、(2)式により、内部EGR空気過剰率(λ_in_egr)を算出する第2演算ステップと、
Figure 0005891734
前記内部EGR空気過剰率(λ_in_egr)からEGRガスの時間遅れを考慮して算出した外部EGR空気過剰率(λ_ex_egr)と大気中の酸素濃度(O2_air)と理論空燃比(L_st)とから、(3)式により外部EGRガス中の酸素濃度(O2_ex_egr)を算出する第3演算ステップと、
Figure 0005891734
前記内部EGR空気過剰率(λ_in_egr)と大気中の酸素濃度(O2_air)と理論空燃比(L_st)とから、(4)式により内部EGRガス中の酸素濃度(O2_in_egr)を算出する第4演算ステップと、
Figure 0005891734
(5)式より、シリンダ内の酸素濃度(O2_cyl)を算出する第5演算ステップと、
Figure 0005891734
定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(6)式の、シリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出する第6演算ステップとを備え、
Figure 0005891734
前記NOxセンサが異常であるか否かの診断を行うステップが、
前記(6)式から算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第7演算ステップであることを特徴とするNOxセンサの異常診断方法。
An abnormality diagnosis method for a NOx sensor disposed in an exhaust passage of an internal combustion engine,
Internal EGR gas mass flow rate (m_in_egr), external EGR gas mass flow rate (m_ex_egr), intake air mass flow rate (m_air), internal EGR gas oxygen concentration (O2_in_egr), and external EGR gas oxygen concentration (O2_ex_egr) Calculating the oxygen concentration (O2_cyl) in the cylinder of the internal combustion engine from the oxygen concentration in the atmosphere (O2_air);
Calculating a NOx concentration (NOx_cyl) discharged from the cylinder from an oxygen concentration (O2_cyl) in the cylinder;
Comparing the calculated NOx concentration (NOx_cyl) with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal ,
Further, a calculation step which is a step of calculating the NOx concentration (NOx_cyl)
The mass flow rate (m_air) of the intake air detected by the intake air amount sensor arranged in the intake passage of the internal combustion engine, the temperature (Ti) detected by the first temperature sensor arranged in the intake manifold of the internal combustion engine, and the intake air A pressure (Pi) detected by a first pressure sensor arranged on the manifold, a temperature (Te) detected by a second temperature sensor arranged on the exhaust manifold of the internal combustion engine, and a second pressure sensor arranged on the exhaust manifold Calculated from the mass flow rate (m_ex_egr) of the external EGR gas calculated from the pressure (Pe) detected in Step 2, the temperature (Te) detected by the second temperature sensor, and the pressure (Pe) detected by the second pressure sensor The first calculation step for calculating the mass flow rate (m_cyl) in the cylinder from the mass flow rate (m_in_egr) of the internal EGR gas performed by the equation (1). And-up,
Figure 0005891734
A second calculation step of calculating an internal EGR excess air ratio (λ_in_egr) from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor and the fuel injection amount (q) by the equation (2);
Figure 0005891734
From the external EGR excess air ratio (λ_ex_egr) calculated from the internal EGR excess air ratio (λ_in_egr) in consideration of the time delay of EGR gas, the oxygen concentration (O2_air) in the atmosphere, and the theoretical air-fuel ratio (L_st), (3 And a third calculation step of calculating the oxygen concentration (O2_ex_egr) in the external EGR gas by the formula:
Figure 0005891734
Fourth calculation step of calculating the oxygen concentration (O2_in_egr) in the internal EGR gas from the internal EGR air excess ratio (λ_in_egr), the oxygen concentration (O2_air) in the atmosphere, and the theoretical air-fuel ratio (L_st) by the equation (4) When,
Figure 0005891734
A fifth calculation step for calculating the oxygen concentration (O2_cyl) in the cylinder from the equation (5);
Figure 0005891734
The oxygen concentration (O2_ref) in the cylinder in the formula (6) in which the oxygen concentration (O2_ref) in the cylinder at a constant time, the NOx concentration discharged from the cylinder at the normal time (NOx_ref), and the index i are set in advance. A NOx concentration (NOx_cyl) discharged from the cylinder, and a sixth calculation step for calculating the NOx concentration (NOx_cyl) discharged from the current cylinder,
Figure 0005891734
Diagnosing whether the NOx sensor is abnormal,
The NOx concentration (NOx_cyl) discharged from the current cylinder calculated from the equation (6) is compared with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. An NOx sensor abnormality diagnosis method , comprising: a seventh calculation step to be performed .
内燃機関の排気通路に配置されるNOxセンサの異常診断を行う制御装置を備えたNOxセンサの異常診断システムであって、
前記制御装置が、
内部EGRガスの質量流量(m_in_egr)と外部EGRガスの質量流量(m_ex_egr)と吸入空気の質量流量(m_air)と内部EGRガス中の酸素濃度(O2_in_egr)と外部EGRガス中の酸素濃度(O2_ex_egr)と大気中の酸素濃度(O2_air)とから前記内燃機関のシリンダ内の酸素濃度(O2_cyl)を算出するとともに、該シリンダ内の酸素濃度(O2_cyl)から、前記シリンダから排出されるNOx濃度(NOx_cyl)を算出するNOx濃度算出手段と、
該算出されたNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う比較診断手段を備えるとともに、
前記NOx濃度算出手段が、
前記内燃機関の吸気通路に配置された吸気量センサで検出した吸入空気の質量流量(m_air)と、前記内燃機関の吸気マニホールドに配置された第1温度センサで検出した温度(Ti)と前記吸気マニホールドに配置された第1圧力センサで検出した圧力(Pi)と前記内燃機関の排気マニホールドに配置された第2温度センサで検出した温度(Te)と前記排気マニホールドに配置された第2圧力センサで検出した圧力(Pe)とから算出した外部EGRガスの質量流量(m_ex_egr)と、前記第2温度センサで検出した温度(Te)と前記第2圧力センサで検出した圧力(Pe)とから算出した内部EGRガスの質量流量(m_in_egr)から、(1)式によりシリンダ内の質量流量(m_cyl)を算出する第1演算手段と、
Figure 0005891734
前記吸気量センサで検出した吸入空気の質量流量(m_air)と前記燃料噴射量(q)とから、(2)式により、内部EGR空気過剰率(λ_in_egr)を算出する第2演算手段と
Figure 0005891734
前記内部EGR空気過剰率(λ_in_egr)からEGRガスの時間遅れを考慮して算出した外部EGR空気過剰率(λ_ex_egr)と大気中の酸素濃度(O2_air)と理論空燃比(L_st)とから、(3)式により外部EGRガス中の酸素濃度(O2_ex_egr)を算出する第3演算手段と、
Figure 0005891734
前記内部EGR空気過剰率(λ_in_egr)から算出した内部EGR空気過剰率(λ_in_egr)と大気中の酸素濃度(O2_air)と理論空燃比(L_st)とから、(4)式により内部EGRガス中の酸素濃度(O2_in_egr)を算出する第4演算手段と、
Figure 0005891734
(5)式より、シリンダ内の酸素濃度(O2_cyl)を算出する第5演算手段と、
Figure 0005891734
定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(6)式のシリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出する第6演算手段とを備え、
Figure 0005891734
前記比較診断手段が、前記算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第7演算手段を備えていることを特徴とするNOxセンサの異常診断システム
A NOx sensor abnormality diagnosis system comprising a control device for performing abnormality diagnosis of a NOx sensor disposed in an exhaust passage of an internal combustion engine,
The control device is
Internal EGR gas mass flow rate (m_in_egr), external EGR gas mass flow rate (m_ex_egr), intake air mass flow rate (m_air), internal EGR gas oxygen concentration (O2_in_egr), and external EGR gas oxygen concentration (O2_ex_egr) The oxygen concentration (O2_cyl) in the cylinder of the internal combustion engine is calculated from the oxygen concentration (O2_air) in the atmosphere and the NOx concentration (NOx_cyl) discharged from the cylinder from the oxygen concentration (O2_cyl) in the cylinder. NOx concentration calculating means for calculating
Comparing the calculated NOx concentration (NOx_cyl) with the detected value (NOx_m) of the NOx sensor, a comparison diagnosis means for diagnosing whether or not the NOx sensor is abnormal is provided.
The NOx concentration calculating means
The mass flow rate (m_air) of the intake air detected by the intake air amount sensor arranged in the intake passage of the internal combustion engine, the temperature (Ti) detected by the first temperature sensor arranged in the intake manifold of the internal combustion engine, and the intake air A pressure (Pi) detected by a first pressure sensor arranged on the manifold, a temperature (Te) detected by a second temperature sensor arranged on the exhaust manifold of the internal combustion engine, and a second pressure sensor arranged on the exhaust manifold Calculated from the mass flow rate (m_ex_egr) of the external EGR gas calculated from the pressure (Pe) detected in Step 2, the temperature (Te) detected by the second temperature sensor, and the pressure (Pe) detected by the second pressure sensor The first calculation unit that calculates the mass flow rate (m_cyl) in the cylinder from the mass flow rate (m_in_egr) of the internal EGR gas that has been performed using the equation (1) And,
Figure 0005891734
Second calculating means for calculating an internal EGR excess air ratio (λ_in_egr) from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor and the fuel injection amount (q) according to the equation (2) ;
Figure 0005891734
From the external EGR excess air ratio (λ_ex_egr) calculated from the internal EGR excess air ratio (λ_in_egr) in consideration of the time delay of EGR gas, the oxygen concentration (O2_air) in the atmosphere, and the theoretical air-fuel ratio (L_st), (3 ) The third computing means for calculating the oxygen concentration (O2_ex_egr) in the external EGR gas by the equation;
Figure 0005891734
From the internal EGR excess air ratio (λ_in_egr) calculated from the internal EGR excess air ratio (λ_in_egr), the oxygen concentration in the atmosphere (O2_air), and the stoichiometric air-fuel ratio (L_st), the oxygen in the internal EGR gas is expressed by the equation (4). A fourth calculation means for calculating a concentration (O2_in_egr);
Figure 0005891734
A fifth operation means for calculating the oxygen concentration (O2_cyl) in the cylinder from the equation (5);
Figure 0005891734
The oxygen concentration (O2_ref) in the cylinder in the equation (6) in which the oxygen concentration (O2_ref) in the cylinder at a constant time, the NOx concentration discharged from the cylinder at the steady state (NOx_ref), and the index i are set in advance. Sixth calculating means for calculating the NOx concentration (NOx_cyl) discharged from the current cylinder from the relationship of the NOx concentration (NOx_cyl) discharged from the cylinder;
Figure 0005891734
The comparison diagnosis means compares the calculated NOx concentration (NOx_cyl) discharged from the current cylinder with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. A NOx sensor abnormality diagnosis system comprising: a seventh calculation means for performing
請求項2に記載のNOxセンサの異常診断システムを備えた内燃機関 An internal combustion engine comprising the NOx sensor abnormality diagnosis system according to claim 2 .
JP2011253271A 2011-11-18 2011-11-18 NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine Expired - Fee Related JP5891734B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011253271A JP5891734B2 (en) 2011-11-18 2011-11-18 NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine
PCT/JP2012/079009 WO2013073450A1 (en) 2011-11-18 2012-11-08 Method for diagnosing fault in nox sensor, system for diagnosing fault in nox sensor, and internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253271A JP5891734B2 (en) 2011-11-18 2011-11-18 NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013108420A JP2013108420A (en) 2013-06-06
JP5891734B2 true JP5891734B2 (en) 2016-03-23

Family

ID=48429512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253271A Expired - Fee Related JP5891734B2 (en) 2011-11-18 2011-11-18 NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine

Country Status (2)

Country Link
JP (1) JP5891734B2 (en)
WO (1) WO2013073450A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2580411B (en) * 2019-01-11 2021-09-15 Perkins Engines Co Ltd Method and system for determining an amount of a substance in exhaust gas of an internal combustion engine
CN112648089A (en) * 2020-12-14 2021-04-13 潍柴动力股份有限公司 Method, equipment and storage medium for improving consistency of engine exhaust emission

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6651432B1 (en) * 2002-08-08 2003-11-25 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Controlled temperature combustion engine
JP3904076B2 (en) * 2002-08-12 2007-04-11 トヨタ自動車株式会社 EGR control device for internal combustion engine
JP4420212B2 (en) * 2004-06-24 2010-02-24 三菱自動車工業株式会社 2-point ignition internal combustion engine
JP2006274905A (en) * 2005-03-29 2006-10-12 Mitsubishi Fuso Truck & Bus Corp NOx GENERATION AMOUNT ESTIMATION DEVICE FOR INTERNAL COMBUSTION ENGINE
JP4591403B2 (en) * 2006-04-28 2010-12-01 トヨタ自動車株式会社 Control device for internal combustion engine
JP4830912B2 (en) * 2007-03-05 2011-12-07 トヨタ自動車株式会社 Control device for internal combustion engine
JP2009013849A (en) * 2007-07-03 2009-01-22 Toyota Motor Corp Control device for diesel engine

Also Published As

Publication number Publication date
WO2013073450A1 (en) 2013-05-23
JP2013108420A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
KR101777986B1 (en) Method for diagnosing an exhaust gas catalytic converter, and motor vehicle
WO2010133276A1 (en) Method for calculating an efficiency index of a diesel oxidation catalyst
KR101231325B1 (en) Low pressure EGR system and the Method for determination of intake air leakage therefor
EP2940280B1 (en) Fuel-cetane-number estimation method and apparatus
WO2011096099A1 (en) Device for computing exhaust pressure loss in an engine
JP5913619B2 (en) Diesel engine control device
JP5404600B2 (en) Method and apparatus for controlling the operating state of a catalytic converter in an exhaust pipe of an internal combustion engine
JP2017003298A (en) OUTPUT CORRECTION DEVICE OF NOx SENSOR
JP2013104416A (en) Device for estimating pm accumulation quantity in dpf
JP5891734B2 (en) NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine
JP5831162B2 (en) NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine
US20210348572A1 (en) Control device, engine, and control method of engine
WO2015041290A1 (en) Diagnostic device
JP5915111B2 (en) NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and NOx emission concentration estimation method for internal combustion engine
JP5874342B2 (en) NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and NOx emission concentration estimation method for internal combustion engine
JP6071636B2 (en) Control device and control method for internal combustion engine
JP6958130B2 (en) Internal combustion engine diagnostic device
JP2008231951A (en) Engine exhaust emission temperature estimation device and engine exhaust emission control device
JP2016200111A (en) Exhaust emission control system
JP2019116876A (en) Sensor diagnostic system
JP2013213473A (en) Temperature estimating device and temperature sensor failure diagnostic device
JP7302541B2 (en) exhaust treatment system
JP7159584B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7106923B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7147214B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5891734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees