JP2014176847A - Manufacturing method of foam hydrothermally-solidified body using incineration ash as main raw material and foam hydrothermally-solidified body - Google Patents

Manufacturing method of foam hydrothermally-solidified body using incineration ash as main raw material and foam hydrothermally-solidified body Download PDF

Info

Publication number
JP2014176847A
JP2014176847A JP2014088831A JP2014088831A JP2014176847A JP 2014176847 A JP2014176847 A JP 2014176847A JP 2014088831 A JP2014088831 A JP 2014088831A JP 2014088831 A JP2014088831 A JP 2014088831A JP 2014176847 A JP2014176847 A JP 2014176847A
Authority
JP
Japan
Prior art keywords
water
hydrothermal
solidified body
mass
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014088831A
Other languages
Japanese (ja)
Other versions
JP5843329B2 (en
Inventor
Norihisa Koyama
典久 小山
Akira Matsumoto
明 松本
Yasumasa Yamaura
康正 山浦
Takayoshi Tsumori
孝義 津森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIKYOGUMI KK
Original Assignee
DAIKYOGUMI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIKYOGUMI KK filed Critical DAIKYOGUMI KK
Priority to JP2014088831A priority Critical patent/JP5843329B2/en
Publication of JP2014176847A publication Critical patent/JP2014176847A/en
Application granted granted Critical
Publication of JP5843329B2 publication Critical patent/JP5843329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive manufacturing method of a foam hydrothermally-solidified body having even water permeability together with strength and aggregate performance, and also using incineration ash as a main raw material, and the foam hydrothermally-solidified body manufactured by the manufacturing method.SOLUTION: The manufacturing method of a foam hydrothermally-solidified body of the present invention, includes the following processes (a)-(c): (a) a mixing process of mixing by adding cement by 5-25 mass% to 100 mass% of incineration ash including amphoteric metal, (b) a kneading process of providing a kneaded object of a funicular state by hydrating calcium oxide included in the incineration ash and the cement by inputting kneading water into a mixture of the incineration ash and the cement and kneading the mixture after the mixing process, and (c) a curing process of providing the foam hydrothermally-solidified body by generating and foaming gas by reacting the amphoteric metal included in the incineration ash and alkaline water after transferring the kneaded object of the mixture of the incineration ash and the cement and the kneading water to a molding form and hydrothermally solidifying it while adding predetermined compressive force following the kneading process.

Description

本発明は、焼却灰を主原料とした発泡水熱固化体の製造方法及び発泡水熱固化体であって、一定の強度・骨材性能と共に透水性を備え、土木・建築用の資材として使用し得る発泡水熱固化体の製造方法及びその製造方法によって製造された発泡水熱固化体に関する。   The present invention is a foam hydrothermal solidified production method and foam hydrothermal solidified material mainly using incinerated ash, which has water permeability with a certain strength and aggregate performance, and is used as a material for civil engineering and construction. The present invention relates to a foamed hydrothermal solidified product that can be produced, and a foamed hydrothermal solidified product produced by the production method.

現在、紙や電気製品、加工食品などの工業製品が大量に生産されまた大量に消費される時代にあって、工場、商店、一般家庭などからは、日々、多種多様な大量の産業廃棄物や都市ごみなど(以下、これらを総称して「廃棄物」という)が排出されている。   Currently, in the era when industrial products such as paper, electrical products, processed foods are produced and consumed in large quantities, factories, shops, general households, etc. Municipal waste (hereinafter collectively referred to as “waste”) is discharged.

これらの廃棄物としては、例えば工場からの製紙スラッジ、プラスチックなどが含まれ、都市ごみとしては、商店からの紙くず、ダンボール、木くずなど及び一般家庭からの野菜くずなどの生ごみ、廃棄された新聞や雑誌等が含まれている。そして、これらの廃棄物が処理されて生じた各種の汚泥及び焼却灰なども多種多様なものとなっている。   These wastes include, for example, paper sludge from factories, plastics, etc., and municipal wastes include scraps from stores, cardboard, wood scraps, garbage such as vegetable scraps from general households, and discarded newspapers. And magazines are included. Various types of sludge and incinerated ash produced by processing these wastes are also diverse.

これらの廃棄物のうち、有害化学物質が溶出しないものは、そのままの状態或いは焼却して灰にした後に埋立て処分されている。また、例えば製紙スラッジをプラスチック固形化燃料、タイヤチップ、木材チップ、石炭などと共に焼却した焼却灰には、カドミウム、鉛、六価クロム、砒素、水銀、セレンなどの重金属の有害化学物質が含まれており、これらをそのまま地中に埋めると溶出する恐れがあるので、直接埋立て処分することができない。   Among these wastes, those that do not elute harmful chemical substances are disposed in landfills as they are or after being incinerated into ash. Also, for example, incineration ash obtained by incinerating paper sludge with plastic solid fuel, tire chips, wood chips, coal, etc. contains heavy metal hazardous chemicals such as cadmium, lead, hexavalent chromium, arsenic, mercury, and selenium. Since they can be dissolved if they are buried in the ground as they are, they cannot be directly landfilled.

そのために、これらの重金属の有害化学物質を含む焼却灰は、セメントの原料、或いは溶融固化、薬剤(キレート剤)処理や溶媒抽出等の処理を行った後に埋め立て処分されている。しかしながら、これらの処理方法のうち、薬剤処理方法は処理する焼却灰に対して高価なキレート剤が数%程度必要となり、また、溶融固化処理方法は設備費用が高額になると共に大量のエネルギーが必要となる。そのために、これらの処理方法では、廃棄物の処理費用が増大し、経済的に採算性が悪くなり、採用に当たっての課題となっている。   For this purpose, incinerated ash containing harmful chemical substances of these heavy metals is disposed of in landfills after processing such as cement raw materials, or melt solidification, chemical (chelating agent) processing, solvent extraction, and the like. However, among these treatment methods, the chemical treatment method requires several percent of expensive chelating agent for the incinerated ash to be treated, and the melt-solidification treatment method requires high equipment costs and a large amount of energy. It becomes. Therefore, in these treatment methods, waste disposal costs increase, the profitability becomes economically low, and this is a problem in adoption.

一方でまた、埋立て処分或いはセメント原料への使用にあっても、近年では困難な状況・環境にある。すなわち、埋立て処分には、その埋立て場所の確保が必須となるが、この埋立て場所の選定・確保が年々極めて難しくなって来ており、都市部にあっては既に限界状態にあり、地方にあっても見つけるのが厳しい状況になっている。   On the other hand, even in landfill disposal or use as a raw material for cement, in recent years it is in a difficult situation / environment. In other words, it is essential to secure the landfill site for landfill disposal, but the selection and securing of this landfill site has become extremely difficult year by year. Even in rural areas, it is difficult to find.

また、セメント原料への使用にあっても、近年の財政難などから公共事業が減少し、これに伴ってセメント需要も頭打ち状態になっており、今後も使用拡大が期待できない状況にある。しかしながら、このような状況・環境にあっても、毎日、多種多様の大量の廃棄物が排出されている。   Even in the use of cement raw materials, public works decreased due to recent financial difficulties, etc., and as a result, demand for cement has reached its peak, and it is not possible to expect further expansion of use in the future. However, even in such a situation / environment, a great variety of waste is discharged every day.

そのために、これらの廃棄物を埋立て以外で処分できる処理技術の開発、それも、これらの廃棄物には再資源化(リサイクル)して再利用可能なものも含まれていることから、これらの廃棄物の有効利用を図ることができる循環型社会の構築のために、再生技術の開発が進められている。この再生技術として、従来、水和固化反応(水熱固化反応)により、焼却灰からの有害化学物資の溶出を防止するとともに、例えば、路盤材、土地改良材などの資材に再生できる水熱固化技術が開発されている。   For this reason, development of processing technology that can dispose of these wastes other than landfill, and these wastes include those that can be recycled after being recycled (recycled). Recycling technology is being developed in order to build a recycling-oriented society that can make effective use of waste. As this regeneration technology, conventional hydration solidification reaction (hydrothermal solidification reaction) prevents elution of harmful chemicals from incineration ash, and hydrothermal solidification that can be regenerated into materials such as roadbed materials and land improvement materials. Technology has been developed.

例えば、下記特許文献1には、焼却飛灰から固化体を製造する際に膨張抑制を行うことにより、長期的に安定で強度低下や崩壊等のない高品質の固化体を得ることができる、廃棄物焼却飛灰固化体の製造方法を提供することを目的として、廃棄物を焼却処理した際に発生する焼却飛灰に、水及び温水の少なくともいずれかを加え、常温〜98℃で5〜120分間混練して、焼却飛灰中に含まれるアルミニウム等の両性金属の酸化及び膨張性の化合物の反応を行った後、アルカリ剤及びシリカやアルミナを含む物質の少なくともいずれかを添加剤として加えて混練し、水熱固化反応を利用して固化体を製造する方法の発明が記載されている。   For example, in Patent Document 1 below, by suppressing expansion when producing a solidified body from incinerated fly ash, a high-quality solidified body that is stable in the long term and has no strength reduction or collapse can be obtained. For the purpose of providing a method for producing a waste incineration fly ash solidified body, at least one of water and hot water is added to the incineration fly ash generated when the waste is incinerated. After kneading for 120 minutes, oxidation of amphoteric metals such as aluminum contained in incineration fly ash and reaction of expansive compounds, and then adding at least one of an alkali agent and a substance containing silica or alumina as an additive The invention of a method for producing a solidified body by using a hydrothermal solidification reaction is described.

また、下記特許文献2には、ペーパースラッジ焼却灰の本来の性状である細孔性・多孔性を損なうことなく、高強度で重金属類の有害成分の溶出を抑制した、吸湿性や保水性を有する土壌改良材・凍上抑制材に適した粒状の固化体の製造方法を提供することを目的として、ペーパースラッジを焼却処理した際に発生する焼却灰に、水及び/又は温水、生石灰並びに石炭灰を加え、常温から98℃までの温度で混合して粒状に造粒した成形体を養生した後、水熱固化反応を利用して固化体を製造することを特徴とする、細孔性・多孔性構造を有するペーパースラッジ焼却灰水熱固化体の製造方法の発明が記載されている。   In addition, Patent Document 2 listed below has high moisture absorption and water retention, which does not impair the porosity and porosity that are the original properties of paper sludge incineration ash, and suppresses the elution of harmful components of heavy metals. Water and / or hot water, quick lime, and coal ash for incineration ash generated when paper sludge is incinerated for the purpose of providing a method for producing a granular solidified material suitable for soil improvement materials and frost heave suppression materials And after curing the molded body granulated into a granule by mixing at a temperature from room temperature to 98 ° C., then, the solidified body is produced using a hydrothermal solidification reaction. The invention of the manufacturing method of the paper sludge incineration ash water heat solidification body which has a heat resistant structure is described.

一方、道路整備や宅地造成等の際には、土砂を盛り上げて高くし平坦な地表となす「盛土」が一般的に行われる。しかし、施工場所の地盤が含水量の高いいわゆる軟弱地盤である場合、盛土された盛土材や建造物の重みによって、徐々に地盤中に含まれていた間隙水が排水されて土の体積が減少する「圧密(現象)」が生じ、結果的に地盤が沈下していく。(以下、圧密によって排水される間隙水を「圧密水」といい、圧密によって生じる地盤沈下を「圧密沈下」という。)   On the other hand, during road maintenance, residential land development, etc., “banking” is generally performed in which earth and sand are raised and raised to form a flat surface. However, if the ground at the construction site is so-called soft ground with a high water content, the soil volume gradually decreases due to the drainage of the pore water contained in the ground due to the embankment material and the weight of the building. "Consolidation (phenomenon)" occurs, and as a result, the ground sinks. (Hereinafter, pore water drained by consolidation is called “consolidated water”, and ground subsidence caused by consolidation is called “consolidation subsidence.”)

軟弱地盤に対して安易に盛土を実施すると、盛土された地盤の周囲の地盤を介して圧密水が徐々に排水されることになるため、整備中や整備後の道路の沈下、不等沈下による建造物の傾斜や、施工場所の周囲の土地の隆起等の悪影響に繋がる恐れがある。また、施工用の重機の重みによっても圧密が促進されてしまうため、軟弱地盤上では施工用の重機や輸送用トラックのトラフィカビリティに問題が生じる恐れもある。   If embankment is performed easily on soft ground, the compacted water will be drained gradually through the ground around the embankment, resulting in road subsidence or uneven settlement during or after maintenance. There is a risk of adverse effects such as the inclination of the building and the uplift of the land around the construction site. In addition, since the consolidation is also promoted by the weight of the heavy equipment for construction, there is a possibility that a problem may occur in the trafficability of the heavy equipment for construction and the transportation truck on the soft ground.

そのため、軟弱地盤に対して盛土を実施する際には、上記悪影響の抑制やトラフィカビリティ確保のために各種地盤改良工事が実施される。   For this reason, when embankment is performed on soft ground, various ground improvement works are carried out in order to suppress the above-described adverse effects and to ensure trafficability.

地盤改良工事の例としては、導水・排水機能を有するドレーン材を、盛土する土壌の上に敷き詰める「水平ドレーン工法」が知られており、中でも水平ドレーン材として砂を用いて基礎地盤の上に砂の層(サンドマット)を形成する工法は、「サンドマット(敷砂層)工法」と称される。   As an example of ground improvement work, the “horizontal drain method” is known, in which drain material with a water conveyance and drainage function is spread on the soil to be embanked. A construction method for forming a sand layer (sand mat) is referred to as a “sand mat (laying sand layer) construction method”.

水平ドレーン工法では、ドレーン材の導水・排水機能によって、圧密水がドレーン材下の基礎地盤からドレーン材に吸い上げられるため、圧密水を効率的に安定して排出することが可能となる。   In the horizontal drain construction method, the consolidated water is sucked up from the foundation ground under the drain material to the drain material by the water introduction / drainage function of the drain material, so that the consolidated water can be discharged efficiently and stably.

また、サンドマット工法では、基礎地盤の上に1メートル程度の厚みの砂の層(サンドマット)を形成する。砂は透水性が高いため、軟弱地盤上に形成されるサンドマットは圧密水を吸い上げることができ、水平ドレーンとして機能する。さらに、砂は支持力が高いため、作業を行う重機が転倒したり沈み込んだりすることを抑制することもできる。   In the sand mat method, a sand layer (sand mat) having a thickness of about 1 meter is formed on the foundation ground. Since sand has high water permeability, the sand mat formed on the soft ground can suck up the consolidated water and functions as a horizontal drain. Furthermore, since sand has a high supporting force, it is possible to prevent the heavy machinery that performs the work from falling or sinking.

従って、軟弱地盤の上にサンドマットを形成してから盛土することで、圧密水が効率よく安定した状態で排出されるため、上記悪影響を抑制することが可能となるとともに、砂自身が持つ高い支持力によって重機の転倒・沈下による事故を防ぐことが可能となる。   Therefore, by forming the sand mat on the soft ground and then embanking, the compacted water is discharged in a stable and efficient state, so that the adverse effects described above can be suppressed, and the sand itself has high Supporting force can prevent accidents caused by heavy machinery falling or sinking.

また、砂以外のドレーン材としては、下記特許文献3や下記特許文献4に記載されるような、植物の繊維を主体とするファイバードレーンが知られている。   Further, as a drain material other than sand, fiber drains mainly composed of plant fibers as described in Patent Document 3 and Patent Document 4 below are known.

このように、軟弱地盤上に盛土をする際には、圧密水を効率よく安定して排水するために、盛土の前に予め砂等の各種ドレーン材を基礎地盤上に積層しておく水平ドレーン工法が行われることが一般的であり、中でもサンドマット工法が多く採用されている。   In this way, when embankment on soft ground, in order to drain the consolidated water efficiently and stably, horizontal drains in which various drain materials such as sand are laminated on the foundation ground in advance before embankment The construction method is generally performed, and among them, the sand mat method is often adopted.

特開2000−308867号公報JP 2000-308867 A 特開2010−173912号公報JP 2010-173912 A 実公平 6− 34413号公報Actual fairness 6-34413 特開平11−172666号公報JP-A-11-172666

しかしながら、サンドマットとして使用し得るドレーン砂は、自然由来の砂であるため汎用されるほどに自然破壊につながるものであり、また、砂資源そのものが限られているため、高品位なドレーン砂のコスト上昇が問題となっている。   However, the drain sand that can be used as a sand mat is naturally derived sand, so that it can cause natural destruction to the extent that it is widely used.Since the sand resources themselves are limited, high-quality drain sand Cost increase is a problem.

また、ドレーン材として砂を利用しなくとも、ドレーン材そのものにコストがかかることには変わりが無い。加えて、水平ドレーン工法を採用する以上、ドレーン材を施工するという工程が必ず必要であり(引き抜きタイプのドレーン材の場合は、さらに、引き抜く工程を要する)、用いるドレーン材の排水能力に圧密の進行速度が依存することから、ドレーン材の排水性能によっては軟弱地盤の密度上昇に時間を要するため、工期が長くなってしまう虞がある。   Even if sand is not used as the drain material, the cost of the drain material itself remains unchanged. In addition, as long as the horizontal drain method is adopted, a process of constructing the drain material is absolutely necessary (in the case of a pull-out type drain material, an additional pulling process is required), and the drainage capacity of the drain material used is compact. Since the traveling speed depends, depending on the drainage performance of the drain material, it takes time to increase the density of the soft ground, which may result in a longer construction period.

本発明者等は、上記課題が地盤改良に際しドレーン材を使用するために生じていることから、盛土そのものに圧密水の排水機能を備えさせること、すなわち、ドレーン材としても機能し得る盛土材を開発することに思い至り、盛土材としての基本性能(一軸圧縮強度や、CBR値等の骨材性能)を備えると共に圧密水の排水機能をも備えた盛土材の要求性能について種々検討を重ねていた。   Since the above-mentioned problems occur because the above-mentioned problem is caused by using a drain material for ground improvement, the embankment itself is provided with a function of draining compacted water, that is, a fill material that can also function as a drain material. Based on the idea of developing, various studies were made on the required performance of the embankment material that has basic performance (uniaxial compressive strength, aggregate performance such as CBR value) as a embankment material and also has a drainage function of consolidated water. It was.

一方、本発明者等は盛土に関する検討と並行して、廃棄物の再利用を促進するため、水熱固化反応を利用した焼却灰の再利用方法について調査している中で、上記特許文献1に記載の廃棄物焼却飛灰固化体の製造方法の発明や、上記特許文献2に記載のペーパースラッジ焼却灰水熱固化体の製造方法の発明は、95℃前後の温度を維持しながら焼却灰を含む原料を混練しなければ目的とする水熱固化体を得られないため、実際に発明を実施するにはオートクレーブ等の高温を維持するための設備が必須であり、設備コストやエネルギー消費量が大きいという課題があること、加えて、上記特許文献2に記載のペーパースラッジ焼却灰水熱固化体の製造方法の発明においては、原料混練物を成形体にする造粒工程が必要であり、造粒工程用の設備が必要となるため、さらに設備コストを要するという課題があること、を知見した。   On the other hand, the present inventors are investigating a method for reusing incinerated ash using a hydrothermal solidification reaction in order to promote the reuse of waste in parallel with the study on embankment. The invention of the method for producing the waste incineration fly ash solidified body described in 1 and the invention of the method for producing the paper sludge incinerated ash hydrothermally solidified body described in Patent Document 2 are incinerated ash while maintaining a temperature of around 95 ° C. Since the target hydrothermal solidified product cannot be obtained without kneading the raw material containing the material, equipment for maintaining a high temperature such as an autoclave is indispensable for actually carrying out the invention, and the equipment cost and energy consumption In addition, in the invention of the method for producing a paper sludge incinerated ash hydrothermally solidified body described in Patent Document 2 described above, a granulation step for forming a raw material kneaded product into a molded body is necessary. Installation for granulation process Since it is necessary, that there is a problem that further requires equipment costs, and finding the.

そこで、本発明者等は、焼却灰の水熱固化体を得るための低コストな方法についても検討を重ねていたところ、焼却灰をオートクレーブ等の高価な設備を要しない特定の条件で水熱固化させることによって、表面気泡率及び比表面積が特定の範囲に収まる発泡水熱固化体が得られることを知見した。   Therefore, the present inventors have repeatedly studied a low-cost method for obtaining a hydrothermal solidified body of incinerated ash, and the incinerated ash is hydrothermally produced under specific conditions that do not require expensive equipment such as an autoclave. It was found that a foamed hydrothermal solidified body having a surface cell ratio and a specific surface area within a specific range can be obtained by solidification.

さらに本発明者等は、得られた発泡水熱固化体が透水性を備えており、発泡水熱固化体の表面気泡率及び比表面積を制御することで、一定の強度と共に透水性を要求される資材として好適に使用し得ることを見出し、本発明を完成させるに至った。   Furthermore, the present inventors are required to have a certain strength and water permeability by controlling the surface cell ratio and specific surface area of the foamed hydrothermal solidified body, since the obtained foamed hydrothermal solidified body has water permeability. The present invention has been found to be suitable for use as a material to be completed, and the present invention has been completed.

すなわち、本発明は、焼却灰の新しい再利用手段を提供するものであり、適用例として盛土材や雑草抑制用の資材として好適に使用することのできる、強度・骨材性能と共に透水性をも備え、尚且つ低コストな、焼却灰を主原料とした発泡水熱固化体の製造方法及びその製造方法によって製造された発泡水熱固化体を提供することを目的とする。   That is, the present invention provides a new means for reusing incinerated ash, and as an application example, it can be suitably used as embankment material or weed control material, and has water permeability as well as strength and aggregate performance. It is an object of the present invention to provide a foamed hydrothermal solidified body made of incinerated ash as a main raw material and a foamed hydrothermal solidified body manufactured by the manufacturing method.

上記課題を解決するために、本発明の発泡水熱固化体の製造方法は、以下の工程(a)〜(c)を含むことを特徴とする。
(a)両性金属を含有する焼却灰100質量%にセメントを5〜25質量%加えて混合する混合工程、
(b)前記混合工程の後、前記焼却灰及びセメントの混合物に混練水を投入して混練することで、前記焼却灰及びセメントに含まれる生石灰を水和させてファニキュラー状態の混練物を得る混練工程、
(c)前記混練工程の後、前記焼却灰及びセメントの混合物と混練水との混練物を成形型枠に移すと共に所定の圧縮力を加えながら水熱固化させ、前記焼却灰に含まれる両性金属とアルカリ水を反応させてガスを発生させて発泡させることにより発泡水熱固化体を得る養生工程。
In order to solve the above-mentioned subject, the manufacturing method of the foam hydrothermal solidification of the present invention is characterized by including the following processes (a)-(c).
(A) A mixing step of adding 5 to 25% by mass of cement to 100% by mass of incinerated ash containing an amphoteric metal, and mixing them;
(B) After the mixing step, kneaded water is added to the mixture of the incinerated ash and cement to knead to hydrate the quick lime contained in the incinerated ash and cement to obtain a kneaded product in a funicular state. Kneading process,
(C) After the kneading step, the kneaded product of the mixture of the incinerated ash and cement and the kneaded water is transferred to a mold and hydrothermally solidified while applying a predetermined compressive force, and the amphoteric metal contained in the incinerated ash A curing process to obtain a foamed hydrothermal solidified body by reacting with alkaline water to generate gas and foam.

本発明の発泡水熱固化体の製造方法によれば、表面気泡率が0〜22%、BET比表面積が75〜110m2/g、吸水率が40〜63%、かつ、1軸圧縮率が5〜18N/mm2である発泡水熱固化体を、特殊な機械装置を使用せず、低コストで容易に得ることが可能となる。このようにして製造された発泡水熱固化体は、放湿性、透水性及び強度が要求される各種資材として用いることが可能となる。 According to the method for producing a foamed hydrothermal solidified body of the present invention, the surface bubble ratio is 0 to 22%, the BET specific surface area is 75 to 110 m 2 / g, the water absorption is 40 to 63%, and the uniaxial compression ratio is A foamed hydrothermal solidified body of 5 to 18 N / mm 2 can be easily obtained at low cost without using a special mechanical device. The foamed hydrothermal solidified product thus produced can be used as various materials that require moisture-releasing properties, water permeability and strength.

例えば、CBR値3%以下の軟弱地盤に本発明の製造方法により製造された発泡水熱固化体(以下、単に「本発明の発泡水熱固化体」ということがある。)を盛土材として利用すると、本発明の発泡水熱固化体は設計CBR値が70%以上であるため、盛土材に求められる品質基準、設計CBR値20%以上を充分満たしており、盛土材として使用することが充分可能である。   For example, a foamed hydrothermal solidified body (hereinafter, simply referred to as “foamed hydrothermal solidified body of the present invention”) produced by the production method of the present invention on soft ground having a CBR value of 3% or less is used as a fill material. Then, since the foam hydrothermal solidified body of the present invention has a design CBR value of 70% or more, it sufficiently satisfies the quality standard required for the embankment material and the design CBR value of 20% or more, and is sufficiently used as the embankment material. Is possible.

加えて、本発明の発泡水熱固化体を盛土材として利用すると、発泡水熱固化体が備える透水性によって基礎地盤からの圧密水を効率的に吸収し排水することが可能となるため、軟弱地盤に盛土する場合において従来使用されていた水平ドレーン材が不要になるとともに、ドレーン材施工工程が不要となり、ドレーン材コストの削減だけでなく工期を短縮することも可能となる。   In addition, when the foamed hydrothermal solidified body of the present invention is used as a banking material, the water permeability of the foamed hydrothermally solidified body can efficiently absorb and drain the compacted water from the foundation ground. In the case of embankment on the ground, the conventionally used horizontal drain material becomes unnecessary, and the drain material construction process becomes unnecessary, so that not only the drain material cost but also the construction period can be shortened.

すなわち、本発明の発泡水熱固化体を盛土材として利用することで、軟弱地盤に盛土する際においても水平ドレーン材が不要になるという画期的な工法を実現することが可能となる。なお、本発明の発泡水熱固化体は、上述のとおり排水能を備えるため、ドレーン材として利用することも当然可能である。   That is, by utilizing the foamed hydrothermal solidified material of the present invention as a banking material, it is possible to realize an epoch-making method in which a horizontal drain material is unnecessary even when banking on soft ground. In addition, since the foaming hydrothermal solidification body of this invention is equipped with a drainage capability as above-mentioned, it can also be utilized as a drain material naturally.

また、本発明の発泡水熱固化体は雑草抑制用の資材としても利用することができる。すなわち、本発明の発泡水熱固化体は、放湿性が高いため吸水した水分を速やかに放出するため、乾燥した状態が保たれやすい。そのため、本発明の発泡水熱固化体を地面に敷均すことで、植物の植生に適さない環境を構築することが可能となる。   The foamed hydrothermal solidified body of the present invention can also be used as a material for controlling weeds. That is, since the foamed hydrothermal solidified body of the present invention has a high moisture-releasing property, it quickly releases the absorbed water, so that it is easy to maintain a dry state. Therefore, it is possible to construct an environment that is not suitable for plant vegetation by spreading the foamed hydrothermal solidified body of the present invention on the ground.

なお、本発明の水熱固化体における表面気泡率とは、固化体の任意の断面における目視可能な気泡(空隙)の面積が占め割合を意味し、対象となる固化体の任意の断面(10mm×10mmの正方形)において、目視可能な大きさの気泡の面積をプラニメータで計測して表面気泡面積(mm2)とし、下記の計算式によって算定されたものとする。
表面気泡率(%) = (表面気泡面積(mm2)/100(mm2))×100
The surface bubble ratio in the hydrothermal solidified body of the present invention means a ratio occupied by the area of visible bubbles (voids) in an arbitrary cross section of the solidified body, and an arbitrary cross section (10 mm) of the target solidified body. X10 mm square), the area of bubbles with a visible size is measured with a planimeter to obtain the surface bubble area (mm 2 ), and is calculated by the following formula.
Surface bubble rate (%) = (surface bubble area (mm 2 ) / 100 (mm 2 )) × 100

また、本発明の発泡水熱固化体における吸水率とは、表面乾燥飽水状態の固化体に含まれている全水量の、絶対乾燥状態の固化体に対する百分率を意味し、絶対乾燥状態の質量(絶乾質量)と、表面乾燥飽水状態の質量(飽水質量)とを測定して、下記の計算式によって算定されたものとする。
吸水率(%) = ((飽水質量−絶乾質量)/絶乾質量)×100
Further, the water absorption rate in the foam hydrothermal solidified body of the present invention means the percentage of the total amount of water contained in the surface-dried saturated solidified body with respect to the absolute dried solidified body, and the mass in the absolutely dry state It is assumed that (absolute dry mass) and the surface dry saturated water mass (saturated water mass) are measured and calculated by the following formula.
Water absorption rate (%) = ((saturated water mass−absolute mass) / absolute mass) × 100

本発明の発泡水熱固化体においては、強度と透水性のバランスが重要である。すなわち、透水性を向上させるためには表面気泡率を上げることになるが、表面気泡率を高くすると強度が低下するため、表面気泡率は22%以下にすることが好ましい。本発明においては表面気泡率22%以下であれば1軸圧縮強度5N/mm2以上を達成することが可能である。 In the foamed hydrothermal solidified body of the present invention, the balance between strength and water permeability is important. That is, in order to improve water permeability, the surface bubble rate is increased. However, if the surface bubble rate is increased, the strength is lowered. Therefore, the surface bubble rate is preferably 22% or less. In the present invention, a uniaxial compressive strength of 5 N / mm 2 or more can be achieved if the surface bubble ratio is 22% or less.

また、本発明の発泡水熱固化体においては、表面気泡率が0%であっても、気泡が目視できない程度の大きさで、実際には多孔質構造を有しているため、気泡同士が連結することにより透水性を備えたものとなる。しかしながら、気泡の大きさが小さ過ぎると、気泡同士の連結が減少するなどにより、吸水性及び透水性が低下するため、比表面積は75〜110m2/g以下とすることが好ましい。比表面積が110m2/g以下であれば、表面気泡率が0%であっても、吸水率40%以上を達成することが可能である。 Moreover, in the foam hydrothermal solidified body of the present invention, even if the surface bubble rate is 0%, the bubbles are of such a size that the bubbles are not visible, and actually have a porous structure. It becomes what has water permeability by connecting. However, if the size of the bubbles is too small, the water absorption and water permeability are reduced due to a decrease in the connection between the bubbles, and therefore, the specific surface area is preferably 75 to 110 m 2 / g or less. If the specific surface area is 110 m 2 / g or less, it is possible to achieve a water absorption of 40% or more even if the surface bubble rate is 0%.

本発明の発泡水熱固化体の製造方法によれば、上述の効果を備えた表面気泡率が0〜22%であり、BET比表面積が75〜110m2/gであり、かつ、1軸圧縮率が5〜18N/mm2である発泡水熱固化体を、特殊な機械装置を使用せず、低コストで容易に得ることが可能となる。 According to the method for producing a foamed hydrothermal solidified body of the present invention, the surface bubble ratio having the above-described effects is 0 to 22%, the BET specific surface area is 75 to 110 m 2 / g, and uniaxial compression is performed. A foamed hydrothermal solidified body having a rate of 5 to 18 N / mm 2 can be easily obtained at low cost without using a special mechanical device.

本発明の発泡水熱固化体の製造方法においては、前記焼却灰として、都市ごみ、木材チップ・タイヤチップ、製紙スラッジ、下水汚泥、バイオマスなどの廃棄物焼却灰、或いは、石炭、ゴミ固形化燃料、紙・プラスチック固形化燃料等の焼却灰のいずれか又はこれらの混合物を用いることが可能である。   In the method for producing a foamed hydrothermal solidified body of the present invention, as the incineration ash, waste incineration ash such as municipal waste, wood chips / tire chips, paper sludge, sewage sludge, biomass, or coal, solid waste fuel Any of incineration ash such as paper / plastic solidified fuel or a mixture thereof can be used.

また、本発明の発泡水熱固化体の製造方法においては、前記(a)の混合工程において、前記混合物に対して石灰を添加混合すると、焼却灰中の生石灰(CaO)成分の含有量が極端に少ない場合においても、生石灰を追加混入することによって、消化反応の熱の発生をより活発化することができる。   Moreover, in the manufacturing method of the foaming hydrothermal solidification body of this invention, when lime is added and mixed with respect to the said mixture in the mixing process of said (a), content of quick lime (CaO) component in incineration ash is extreme. Even in the case of a small amount, the heat generation of the digestion reaction can be further activated by additionally mixing quicklime.

その場合、石灰の添加割合が高過ぎると、発泡水熱固化体のアルカリ性が強くなるため、石灰の添加割合は40質量%を上限とすることが好ましい。   In that case, if the addition ratio of lime is too high, the alkalinity of the foamed hydrothermal solidified product becomes strong, so the addition ratio of lime is preferably 40% by mass.

また、本発明においては、前記混合物の10質量%程度であれば、前記混合物に対してさらに無機汚泥を含有していても良い。   Moreover, in this invention, if it is about 10 mass% of the said mixture, you may contain the inorganic sludge further with respect to the said mixture.

また、本発明の発泡水熱固化体の製造方法においては、(a)の混合工程において一定量の水を混合用水として混合物に対して添加すると、混合時の粉塵発生低減と、早めに生石灰の消化反応を開始し、多少湿らせることにより次の混練工程における混練がスムーズになるため好ましい。   In the method for producing a foamed hydrothermally solidified product of the present invention, when a certain amount of water is added to the mixture as mixing water in the mixing step (a), dust generation during mixing is reduced, and quick lime It is preferable to start the digestion reaction and moisten it somewhat so that the kneading in the next kneading step becomes smooth.

その場合の添加量としては、粉塵の発生を充分抑制するためには、前記混合物100質量部に対して15質量部以上とすることが好ましい。また、混合用水が多過ぎると粒状化する可能性があり、セメントとの混合に悪影響が生じる虞があるため、加える混合用水の量は25質量部程度を上限とすることが好ましい。   In this case, the addition amount is preferably 15 parts by mass or more with respect to 100 parts by mass of the mixture in order to sufficiently suppress the generation of dust. Moreover, since there exists a possibility that it may granulate when there is too much water for mixing and there exists a possibility that a bad influence may be produced in mixing with cement, it is preferable to make the amount of the water for mixing to add about 25 mass parts an upper limit.

また、(a)の混合工程における混合用水及び(b)の混練工程における混練水として加水される水分の総量については、少な過ぎると混練物の粘度が大きくなりすぎて混練し難くなる、加水量が増えるほど混練物の粘度が小さくなるので混練し易くなるが、多過ぎると、過剰な水分を蒸発させるために時間を要することになる。   The total amount of water to be added as mixing water in the mixing step (a) and water to be kneaded in the kneading step (b) is too small. As the viscosity increases, the viscosity of the kneaded material becomes smaller, so that the kneading becomes easier. However, if too much, it takes time to evaporate excess water.

従って、混合用水及び混練水として添加される水分の総量は、固形成分100質量部に対して35質量部〜55質量部の範囲にすることが好ましい。なお、加水する水の温度には特に制限はなく、98℃程度の温水であっても問題ない。   Therefore, the total amount of water added as mixing water and kneading water is preferably in the range of 35 to 55 parts by mass with respect to 100 parts by mass of the solid component. In addition, there is no restriction | limiting in particular in the temperature of the water to add, There is no problem even if it is about 98 degreeC warm water.

また、本発明の発泡水熱固化体の製造方法においては、混練物が水熱固化する際に、焼却灰に含まれる金属アルミ二ウム等の両性金属にアルカリ水が反応してガスが発生して発泡・膨張する。仮に、成形型枠が存在しない状態で前記混練物を固化させると大きく膨張してしまい、得られる発泡水熱固化体は、表面気泡率が22%を超え、1軸圧縮強度が5N/mm2を下回るものとなる。そのため、表面気泡率を22%以下に抑えて固化体の強度を確保するため、前記混練物は圧縮力を加えて膨張を一定の範囲に収められるように成形型枠の中において固化させる必要がある。 Further, in the method for producing a foamed hydrothermal solidified product of the present invention, when the kneaded product is hydrothermally solidified, gas is generated by reacting alkaline water with amphoteric metals such as metallic aluminum contained in the incinerated ash. Foam and expand. If the kneaded product is solidified in the absence of a molding mold, it will expand greatly, and the resulting foam hydrothermal solid will have a surface foam ratio of over 22% and a uniaxial compressive strength of 5 N / mm 2. Less than Therefore, in order to suppress the surface bubble ratio to 22% or less and ensure the strength of the solidified body, the kneaded material needs to be solidified in the molding frame so that the expansion can be kept within a certain range by applying a compressive force. is there.

なお、膨張を一定の範囲に収めるために加える圧縮力としては、50kg/cm2程度が目安となるが、表面気泡率が22%以下となるように適宜調整すれば良い。
また、成形型枠としては、混練物の固化の際の膨張方向の力に抗する程度の強度を有するものであれば制限はない。例えば、地面に掘った竪穴や、地表面から所定の高さに積み上げた土又は石壁等を型枠として利用することができる。
The compression force applied to keep the expansion within a certain range is about 50 kg / cm 2, but may be appropriately adjusted so that the surface bubble ratio is 22% or less.
The molding mold is not limited as long as it has a strength that resists the force in the expansion direction when the kneaded product is solidified. For example, potholes dug in the ground, earth or stone walls piled up to a predetermined height from the ground surface can be used as the mold.

地面に掘った竪穴を成形型枠として利用した場合、地面を掘るだけの作業で型枠が得られるため、コストが掛らず、その結果、製品のコスト低減に貢献でき、また、任意の大きさ及び形状の型枠が容易に得られる。   When the pit hole dug in the ground is used as a mold, the mold can be obtained by simply digging the ground, so there is no cost, and as a result, it can contribute to the cost reduction of the product. A mold having a shape and shape can be easily obtained.

また、焼却灰中の金属アルミ二ウム等の両性金属の含有量が少なすぎると、発泡に充分なだけの水素ガスが生じない虞がある、一方、両性金属自体は水熱固化反応とは無関係であるため、焼却灰中の両性金属の含有量は、0.5質量%〜10質量%とすることが好ましい。   Also, if the content of amphoteric metal such as metallic aluminum in incineration ash is too small, there is a risk that hydrogen gas sufficient for foaming may not be generated, while amphoteric metal itself is unrelated to hydrothermal solidification reaction. Therefore, the content of the amphoteric metal in the incineration ash is preferably 0.5% by mass to 10% by mass.

また、本発明の発泡水熱固化体の製造方法によれば、養生工程において、石灰成分の水和熱によって成形型枠中の混練物の温度が上昇して水熱固化反応が進み、約3時間〜8時間で固化が完了する。なお、この水和熱は混練物の量に依存する一方、混練物からの排熱は表面積に比例するため、成形型枠中の混練物の温度を一定以上に保つ観点からは大きな型枠を利用することにメリットが生じる。小さい型枠の場合、排熱を押さえるため型枠の保温性などについて考慮する必要が出てくる虞がある。   In addition, according to the method for producing a foamed hydrothermal solidified product of the present invention, in the curing process, the temperature of the kneaded product in the molding mold rises due to the heat of hydration of the lime component, and the hydrothermal solidification reaction proceeds. Solidification is completed within 8 hours. The heat of hydration depends on the amount of the kneaded product, while the exhaust heat from the kneaded product is proportional to the surface area. Therefore, from the viewpoint of keeping the temperature of the kneaded product in the molding mold above a certain level, There are advantages to using it. In the case of a small formwork, it may be necessary to consider the heat retaining property of the formwork in order to suppress exhaust heat.

なお、本発明の発泡水熱固化体の製造方法において、より強度の高い発泡水熱固化体を得たい場合は、(b)の混練工程で得られる混練物の水分をある程度蒸発させる解し工程を設け、その後(c)の養生工程へ移行しても良い。解し工程においては、混練物がファニキュラー状態(スランプ値で5〜7程度)から、ペンジュラー状態(スランプ値で0)程度になるまで水分を蒸発させても良い。解し工程に要する時間は概ね10〜50分程度である。   In addition, in the method for producing a foamed hydrothermal solidified body of the present invention, when it is desired to obtain a foamed hydrothermal solidified body having a higher strength, an unraveling step of evaporating water of the kneaded material obtained in the kneading step (b) to some extent. Then, the process may proceed to the curing step (c). In the unraveling step, the water may be evaporated until the kneaded product is in the pendular state (slump value 0) from the funicular state (slump value about 5-7). The time required for the unraveling process is approximately 10 to 50 minutes.

スランプ値が0になるまで水分を蒸発させた混練物を用いた場合、得られる発泡水熱固化体は気泡が目視可能な大きさよりも小さくなり、表面気泡率が0%となるが、吸水率40%、1軸圧縮強度12〜18N/mm2程度となる。一方、解し工程を経ずに、スランプ値5〜7の混練物を用いて養生させた場合は、得られる発泡水熱固化体の表面気泡率は5〜30%となり、吸水率が50%以上、かつ、1軸圧縮強度が5N/mm2以上を満たすものとなる。 When a kneaded product obtained by evaporating water until the slump value becomes 0 is obtained, the foamed hydrothermally solidified product has a bubble size smaller than the visible size and the surface bubble rate becomes 0%. 40%, and the uniaxial compressive strength is about 12 to 18 N / mm 2 . On the other hand, when cured using a kneaded material having a slump value of 5 to 7 without passing through the unraveling step, the surface foam ratio of the foamed hydrothermal solidified body is 5 to 30%, and the water absorption is 50%. As described above, the uniaxial compressive strength satisfies 5 N / mm 2 or more.

実施例1の表面気泡率の測定方法を示す発泡水熱固化体の断面図である。2 is a cross-sectional view of a foamed hydrothermal solidified body showing a method for measuring the surface cell ratio of Example 1. FIG. 実施例2の表面気泡率の測定方法を示す発泡水熱固化体の断面図である。It is sectional drawing of the foaming hydrothermal solidification body which shows the measuring method of the surface bubble rate of Example 2. FIG.

以下、本発明にかかる発泡水熱固化体の製造方法の実施例について説明する。但し、以下に示す実施例は、本発明の技術思想を具体化するための焼却灰を原料とした発泡水熱固化体の製造方法を例示するものであって、本発明をこの実施例に限定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Examples of the method for producing a foamed hydrothermal solid according to the present invention will be described below. However, the following examples illustrate a method for producing a foamed hydrothermal solidified body using incinerated ash as a raw material for embodying the technical idea of the present invention, and the present invention is limited to this example. However, the present invention can be equally applied to various modifications without departing from the technical concept shown in the claims.

例えば、以下に示す実施例においては、一部工程が重機等を用いて混練物などを移送したものとなっているが、これらの工程を移送装置などの機械・装置を設置して自動化した場合に対しても適用可能である。   For example, in the examples shown below, some processes are made by transferring kneaded materials using heavy machinery, etc., but when these processes are automated by installing machines and devices such as transfer devices It is applicable to.

[実施例1]
[焼却灰及びセメント]
焼却灰としては、ここではプラスチック固形化燃料及びタイヤチップの混合物を50質量%、木材チップを20質量%、石炭を20質量%、製紙スラッジ10質量%を混合し、燃焼した焼却灰を使用し、セメントとしては高炉セメントを使用した。焼却灰には約8質量%の金属アルミニウムが含まれていた。
[Example 1]
[Incineration ash and cement]
The incinerated ash used here is a mixture of plastic solid fuel and tire chips, 50% by mass, wood chips 20% by mass, coal 20% by mass, and paper sludge 10% by mass. Blast furnace cement was used as the cement. The incinerated ash contained about 8% by mass of metallic aluminum.

なお、製紙スラッジは、一般に古紙を再生するときに生じるものであるが、ここではパルプ製造工程、製紙製造工程や古紙処理工程から発生するものも含んでいる。
[混合工程]
上記焼却灰100質量部に対して、セメントを20質量部加え5分間混合した後、固形成分(焼却灰とセメントの総量)に対して20質量部の水を混合用水として加えて、焼却灰とセメントとが均一に分散するよう5分間混合した。
Papermaking sludge is generally generated when recycled used paper, but here, it also includes what is generated from a pulp manufacturing process, a papermaking manufacturing process, and a used paper processing process.
[Mixing process]
After adding 20 parts by mass of cement to 100 parts by mass of the incineration ash and mixing for 5 minutes, add 20 parts by mass of water as mixing water to the solid component (total amount of incineration ash and cement), The mixture was mixed for 5 minutes so that the cement was uniformly dispersed.

[混練工程]
上記のようにして得られた混合物の固形成分100質量部に対して、25質量部の水を混練水として加え、混練機に入れて混練することで混練物を得た。この混練は混練物のスランプ値が5となるまで、30分程度行った。なお、混練機としては1度に混練できる混練能力量が4m3程度の混練機を用い、4m3×10回分の混練物を得た。
[Kneading process]
To 100 parts by mass of the solid component of the mixture obtained as described above, 25 parts by mass of water was added as kneaded water, and the mixture was kneaded and kneaded to obtain a kneaded product. This kneading was performed for about 30 minutes until the slump value of the kneaded product reached 5. As the kneader, a kneader having a kneading capacity of about 4 m 3 that can be kneaded at a time was used, and 4 k 3 × 10 kneaded products were obtained.

[養生工程]
養生工程においては、予め地面を掘って造っておいた40m3の容積の竪穴を成形型枠として、上記のようにして得られた混練物を成形型枠に順次移送・集積した後、重機を用いて50kg/cm2程度の加圧力となるように加圧した状態で3時間水熱固化させ、その後重機による加圧を除いて5時間養生することで、実施例1にかかる発泡水熱固化体を得た。
[Curing process]
In the curing process, the kneaded material obtained as described above was sequentially transferred and accumulated in the molding mold using a 40 m 3 capacity pothole previously dug into the molding mold, and then the heavy machinery was Hydrothermal solidification for 3 hours in a state where the applied pressure is about 50 kg / cm 2 , and then curing for 5 hours, excluding pressurization by heavy machinery, and then hydrothermal solidification for foaming according to Example 1 Got the body.

[実施例2]
上記実施例1の混練工程においてスランプ値が7となるまで混練したこと以外は、実施例1と同様にして、実施例2にかかる発泡水熱固化体を得た。
[Example 2]
A foamed hydrothermal solidified body according to Example 2 was obtained in the same manner as in Example 1 except that the kneading step in Example 1 was carried out until the slump value was 7.

[実施例3]
上記実施例1の混練工程において得られた混練物を、予め地面を掘って造っておいた4m3の容積の竪穴(以下、「解し型枠」という)10個にそれぞれ移送して、解し工程として50分間放置し、スランプ値が0になるまで水分を蒸発させてから、重機を用いて混練物を解し型枠から成形型枠に移送・集積したこと以外は、実施例1と同様にして実施例3にかかる発泡水熱固化体を得た。
[Example 3]
The kneaded material obtained in the kneading step of Example 1 was transferred to 10 4m 3 potholes (hereinafter referred to as “unraveling formwork”) previously dug out of the ground, respectively. As in Example 1, except that the process was left for 50 minutes to evaporate water until the slump value became 0, and then the kneaded material was unwound using a heavy machine and transferred and accumulated from the mold to the mold. Similarly, a foamed hydrothermal solidified product according to Example 3 was obtained.

[比較例1]
上記実施例1の混練工程で得られた混練物を、成形型枠に入れず平板上に放置させて水熱固化させることで、比較例1にかかる発泡水熱固化体を得た。
[Comparative Example 1]
The kneaded product obtained in the kneading step of Example 1 was allowed to stand on a flat plate without being placed in a molding frame and solidified hydrothermally to obtain a foamed hydrothermal solidified product according to Comparative Example 1.

[特性評価] [Characteristic evaluation]

上記のようにして得られた、実施例1〜3及び比較例にかかる発泡水熱固化体の特性について、表1に纏めて示した。なお、比較例1については、容易く微粉化してしまうこと、及び、気泡が大き過ぎることから、1軸圧縮強度以外については有効に測定できなかった。   The characteristics of the foamed hydrothermal solid bodies according to Examples 1 to 3 and Comparative Example obtained as described above are summarized in Table 1. Note that Comparative Example 1 could not be effectively measured except for uniaxial compressive strength because it was easily pulverized and the bubbles were too large.

表面気泡率は、カッターで平らな切断面を形成し、10mm×10mmの正方形の領域において、目視可能な大きさの気泡の面積をプラニメータで計測して表面気泡面積(mm2)とし、下記の計算式によって算定した。(図1及び2参照)
表面気泡率(%) = (表面気泡面積(mm2)/100(mm2))×100
なお、実施例3においては、目視可能な程度よりも気泡が小さいため、表面気泡率を0とした。
The surface bubble rate was determined by forming a flat cut surface with a cutter and measuring the area of bubbles with a visible size in a square area of 10 mm × 10 mm with a planimeter to obtain the surface bubble area (mm 2 ) It was calculated by the calculation formula. (See Figures 1 and 2)
Surface bubble rate (%) = (surface bubble area (mm 2 ) / 100 (mm 2 )) × 100
In Example 3, since the bubbles were smaller than the visible level, the surface bubble rate was set to zero.

また、吸水率は、それぞれ1辺が5cm程度の礫となるように破砕したそれぞれの発泡水熱固化体について、表面乾燥飽水状態の固化体に含まれている全水量の、絶対乾燥状態の固化体に対する百分率として、絶対乾燥状態の質量(絶乾質量)と、表面乾燥飽水状態の質量(飽水質量)とを測定して、下記の計算式によって算定した。
吸水率(%) = ((飽水質量−絶乾質量)/絶乾質量)×100
In addition, the water absorption is the absolute dry state of the total water amount contained in the solid body in the surface dry saturated state for each foam hydrothermal solidified body that is crushed so that each side becomes a gravel of about 5 cm. As a percentage with respect to the solidified body, the mass in an absolute dry state (absolute dry mass) and the mass in a surface dry saturated water state (saturated water mass) were measured and calculated by the following calculation formula.
Water absorption rate (%) = ((saturated water mass−absolute mass) / absolute mass) × 100

また、放湿性については、表面乾燥飽水状態から、25℃湿度65%の環境下において24時間放置した後の、発泡水熱固化体の含水状態での質量である24時間後含水質量と、飽水質量との差から、24時間放置によって放湿された水分の質量(24時間放湿量)を求め、吸水量(=飽水質量−絶乾質量)に対する百分率として以下の算定式によって求めた。
放湿性(%) = (24時間放湿量/吸水量)×100
In addition, for moisture release, the moisture content after 24 hours, which is the mass of the foamed hydrothermally solidified body after being left for 24 hours in an environment of 25 ° C. and 65% humidity, from the surface dry saturated water state, From the difference from the saturated water mass, the mass of the moisture released by being left for 24 hours (24 hour moisture release amount) is obtained, and obtained as a percentage of the water absorption amount (= saturated water mass-absolute dry mass) by the following calculation formula. It was.
Moisture release (%) = (24 hour moisture release / water absorption) x 100

また、比表面積は独立行政法人「鳥取県産業技術センター」において、株式会社島津製作所製 自動比表面積測定装置「ジェミニ2375」を用いて測定したBET比表面積を用
いた。
Further, the BET specific surface area measured using the automatic specific surface area measuring device “Gemini 2375” manufactured by Shimadzu Corporation at the Tottori Prefectural Industrial Technology Center was used as the specific surface area.

表1より、実施例1〜3の発泡水熱固化体は、いずれも1軸圧縮強度5N/mm2以上18N/mm2以下であり、一定の強度が確保されていることがわかる。 From Table 1, foamed hydrothermal solidification of Examples 1 to 3 are both in the uniaxial compression strength 5N / mm 2 or more 18N / mm 2 or less, it can be seen that certain strength is ensured.

また、実施例1〜3ではいずれも、吸水率40%以上と1軸圧縮強度5N/mm2以上とを兼ね備えているが、実施例1〜3の比較により、表面気泡率が大きくなり比表面積が小さくなるほど、吸水率が向上する一方、1軸圧縮強度が低下することが示されており、比較例1のように表面気泡率が大き過ぎると、強度と透水性の両立ができないことがわかる。 In Examples 1 to 3, both have a water absorption rate of 40% or more and a uniaxial compressive strength of 5 N / mm 2 or more. It has been shown that the smaller the value is, the higher the water absorption rate is, while the uniaxial compressive strength is reduced. If the surface cell ratio is too large as in Comparative Example 1, it can be seen that both strength and water permeability cannot be achieved. .

この表面気泡率の上限については、実施例2の結果から、22%以下であれば盛土等に用いるのに必要な程度の強度を備えて、強度と透水性が両立された発泡水熱固化体が得られるものと考えられる。   With respect to the upper limit of the surface bubble ratio, from the results of Example 2, if it is 22% or less, the foamed hydrothermal solidified body has sufficient strength to be used for embankment and the like and has both strength and water permeability. Is considered to be obtained.

また、表面気泡率が小さくなり比表面積が大きくなるほど、吸水率が低下する一方、1軸圧縮強度が向上することが示されているが、表面気泡率が0%の場合であっても、実施例3の結果に示されるように、比表面積が一定の値以下であれば、吸水性が確保されることがわかる。   Further, it has been shown that the smaller the surface bubble ratio and the larger the specific surface area, the lower the water absorption rate, while improving the uniaxial compressive strength. As shown in the results of Example 3, it can be seen that if the specific surface area is equal to or less than a certain value, water absorption is ensured.

すなわち、表面気泡率が0%、かつ、比表面積が110m2/gである実施例3において吸水率40%が達成されていることから、実施例3の結果から、表面気泡率が0%の場合でも、比表面積が110m2/g以下であれば、強度と透水性が両立された発泡水熱固化体が得られるものと考えられる。 That is, in Example 3 where the surface bubble rate is 0% and the specific surface area is 110 m 2 / g, a water absorption rate of 40% is achieved. From the results of Example 3, the surface bubble rate is 0%. Even in this case, if the specific surface area is 110 m 2 / g or less, it is considered that a foamed hydrothermal solidified body having both strength and water permeability can be obtained.

一方、比較例1として得られた発泡水熱固化体は、容易く微粉化してしまうものであり、表1において1軸圧縮強度が2N/mm2以下であることからも示されるように、土木資材としての強度が低く、一定の強度が必要とされる盛土等に用いるには適さないものであった。 On the other hand, the foamed hydrothermal solidified body obtained as Comparative Example 1 is easily pulverized, and as shown in Table 1, the uniaxial compressive strength is 2 N / mm 2 or less. Therefore, it is not suitable for use in embankments where a certain level of strength is required.

従って、本発明においては、表面気泡率を22%以下に収め、表面気泡率が0%の場合は、さらに比表面積を110m2/g以下となるように制御することで、強度と透水性を兼ね備えた発泡水熱固化体が得られることがわかる。 Therefore, in the present invention, the strength and water permeability are controlled by controlling the specific surface area to be 110 m 2 / g or less when the surface bubble ratio is 22% or less and the surface bubble ratio is 0%. It can be seen that a foamed hydrothermal solidified body is obtained.

[実験例:軟弱地盤への盛土]
上記のようにして得られた実施例1の発泡水熱固化体を用いて、軟弱地盤への盛土を行い、盛土材としての骨材性能について評価した。
[Experimental example: embankment on soft ground]
Using the foamed hydrothermal solidified body of Example 1 obtained as described above, embankment was performed on soft ground, and the aggregate performance as an embankment material was evaluated.

盛土対象地盤
現場CBR:2.1%
コーン指数:192.7kN/m2
含水比 :11.6%
深さ :30cm
Soil target ground CBR: 2.1%
Cone index: 192.7 kN / m 2
Water content: 11.6%
Depth: 30cm

上記の軟弱地盤に対して、実施例1の発泡水熱固化体、もしくは、比較例2として山土を盛土材として盛土した。盛土はそれぞれの盛土材を、10cmずつ敷均す度に1tローラーで転圧して行った。   The above-mentioned soft ground was embanked with a foam hydrothermal solidified body of Example 1 or, as Comparative Example 2, mountain soil as a banking material. The embankment was performed by rolling each embankment material with a 1-ton roller every time 10 cm is spread.

トラフィカビリティについて
表2に、2回の盛土処理後(すなわち、盛土層は20cm)のコーン指数の測定結果を示す。
About Trafficability Table 2 shows the measurement results of the cone index after two embankment treatments (that is, the embankment layer is 20 cm).

表2に示したとおり、比較例2では2回の盛土を行っても、一般ブルドーザ21t級が走行可能とされるコーン指数700kN/m2を下回り、677kN/m2であった。なお、比較例2においては4回の盛土を行っても967kN/m2と低いコーン指数であった。 As shown in Table 2, in Comparative Example 2, the cone index of 700 kN / m 2, which allows the general bulldozer 21t class to run, was 677 kN / m 2 even when the banking was performed twice. In Comparative Example 2, the cone index was as low as 967 kN / m 2 even after four embankments.

一方、実施例1では、2回の盛土で1212kN/m2と、ダンプトラックの走行に必要とされる1200kN/m2をも上回るものとなり、軟弱地盤への盛土材として、トラフィカビリティの確保にすぐれた盛土材であることが示された。 On the other hand, in Example 1, and 1212kN / m 2 twice embankment, becomes shall exceed 1200kN / m 2 that is required for the travel of the dump truck, the embankment material to soft ground, to ensure Torafika Stability It was shown to be an excellent embankment material.

現場CBR値について
比較例2では4回の盛土を行っても、現場CBR値は12.2%であり、盛土基準値(CBR値20.0%)を上回ることができなかったが、実施例1では3回の盛土によって、現場CBR値が21.9%と盛土基準値を上回った。
このように、本発明にかかる発泡水熱固化体は、特に軟弱地盤に対する地盤改良(地盤補強)効果に優れておりドレーン材が不要となる。従って、少ない工程数で路床盛土の強度が確保できることから、本発明にかかる発泡水熱固化体を盛土として利用することで、コスト削減・工期短縮を図ることが可能となる。
On-site CBR value In Comparative Example 2, even if four embankments were performed, the on-site CBR value was 12.2%, which could not exceed the embankment reference value (CBR value 20.0%). In No. 1, the on-site CBR value was 21.9% and exceeded the embankment reference value after three embankments.
Thus, the foamed hydrothermal solidified body according to the present invention is particularly excellent in the effect of ground improvement (ground reinforcement) for soft ground and does not require a drain material. Therefore, since the strength of the roadbed embankment can be secured with a small number of processes, it is possible to reduce costs and shorten the construction period by using the foamed hydrothermal solidified body according to the present invention as embankment.

上述のような、本発明にかかる発泡水熱固化体が備える盛土材としての優れた効果は、本発明にかかる発泡水熱固化体が、強度とともに、高い吸水性と放湿性によって実現される高い透水性・排水能を有していることによって、軟弱地盤における圧密水が吸い上げられ、排水されることにより達成されるものと考えられる。   As described above, the excellent effect as the embankment material included in the foam hydrothermal solidified body according to the present invention is realized by the foam hydrothermal solidified body according to the present invention, which is realized by high water absorption and moisture release properties as well as strength. By having water permeability and drainage capacity, it is considered that the compacted water in the soft ground is sucked up and drained.

また、本発明にかかる発泡水熱固化体は雑草抑制のための土木資材として利用することができる。これは、本発明にかかる発泡水熱固化体が養分のない無機質であり、かつ、強度とともに透水性及び放湿性も備えていることによる。例えば、地面上に敷均すことで、花壇や中央分離帯等、所望の土地における雑草の生育を抑制することが可能である。以下、本発明にかかる発泡水熱固化体を利用した「防草・緑化工法」について述べる。   Moreover, the foaming hydrothermal solidification body concerning this invention can be utilized as a civil engineering material for weed control. This is because the foamed hydrothermal solidified product according to the present invention is an inorganic material with no nutrients, and also has water permeability and moisture release properties as well as strength. For example, by spreading on the ground, it is possible to suppress the growth of weeds in a desired land such as a flower bed or a median strip. Hereinafter, the “weedproofing / greening method” using the foamed hydrothermal solidified product according to the present invention will be described.

[雑草抑制基盤層の形成]
まず、本発明にかかる発泡水熱固化体を粒子径が20mm程度以下になるように粒度調整する。次いで、粒度調製された発泡水熱固化体を雑草抑制対象地面に敷均し、その後所定の硬度となるよう締め固めることで、所望の形・広さの土地に雑草抑制基盤層を構築することができる。
[Formation of weed control base layer]
First, the particle size of the hydrothermal foam body for foaming according to the present invention is adjusted so that the particle diameter is about 20 mm or less. Next, construct the weed suppression base layer on the land of the desired shape and size by spreading the hydrostatic solidified foamed foam on the ground to be weed suppression target and then compacting it to a predetermined hardness Can do.

雑草抑制基盤層は、強度が5N/mm2以上の発泡水熱固化体を締め固めることで形成された緊密層であるため、雑草抑制基盤層上において仮に種子が発根したとしても根の活着が防止され、雑草抑制基盤層下において仮に種子が発芽したとしても雑草抑制基盤を超えて成長することが防止される。 Since the weed suppression base layer is a close layer formed by compacting a foam hydrothermal solidified body having a strength of 5 N / mm 2 or more, even if seeds are rooted on the weed suppression base layer, root establishment Even if seeds germinate under the weed suppression base layer, it is prevented from growing beyond the weed suppression base.

また、本発明にかかる発泡水熱固化体は養分のない無機質であり、且つ、透水性と放湿性が高いため、雑草抑制基盤層上は水分が貯留しにくく乾燥しやすい。加えて、本発明にかかる発泡水熱固化体は、焼却灰をセメント固化した資材であるのでアルカリ性を示す。従って、雑草抑制基盤層が構築された土地は植物の生育には適さない環境となる。   Moreover, since the foamed hydrothermal solidified material according to the present invention is an inorganic substance without nutrients and has high water permeability and moisture release properties, moisture is not easily stored on the weed suppression base layer and is easily dried. In addition, the foamed hydrothermal solidified body according to the present invention is alkaline because it is a material obtained by cementing incinerated ash into cement. Therefore, the land on which the weed control base layer is constructed becomes an environment unsuitable for plant growth.

従来、景観を良好にし、観覧者の心を和ませることを目的として、道路整備の際に花壇や中央分離帯の植栽帯等が一般的に設けられる。これらの花壇や植栽帯は、植樹・整備された時点では景観も良好であるが、経時的に雑草が繁茂し場合によってはゴミ等の投棄場所にもなってしまうため、雑草が極力繁茂しないことが望まれる。しかしながら、雑草防除には手間・費用がかかるため、景観維持のための除草費用が不足する場合には対応することができない。   Conventionally, for the purpose of improving the scenery and softening the hearts of visitors, a flower bed, a planting zone of a median, etc. are generally provided during road maintenance. These flower beds and planting zones have good scenery at the time of planting and maintenance, but weeds will grow over time and in some cases will become a dumping place for garbage, so weeds will not grow as much as possible. Is desired. However, since weed control takes time and money, it cannot cope with the lack of weeding costs for landscape maintenance.

そこで、花壇や中央分離帯の植栽帯を整備する際に、本発明にかかる発泡水熱固化体を用いて雑草抑制基盤層を形成しておくことで、上記の課題を解決することができる。   Then, when preparing the flower bed and the planting zone of the center separation zone, the above-mentioned problem can be solved by forming the weed suppression base layer using the foamed hydrothermal solidified body according to the present invention.

従来からある雑草抑制の方法としては、例えば、実用新案登録第3029692号公報には、防草効果を備えると共に省力的に地被植物を植栽することのできる地被植物植栽シートの発明が記載されている。しかしながら、上記の地被植物植栽シートであっても、(1)シート下の土壌に活着した植物は徐々に成長してしまうため、特にシート周辺部の隙間からの雑草が繁茂し易く、また、シート周辺部でなくとも、緑化用に形成された穴等を通してシートを突き抜けて成長する雑草がしばしば見られ、一度突き抜けてしまった雑草にはもはや防草効果は期待できない。また、(2)シートであるためシート押さえが不良となった場合に風等で捲くれてしまう虞があり、(3)シート下に虫や小動物が住み付きやすい、(4)シートの透水性が不足した場合、表土の流出によってシートが浮いてしまう等の課題があり、改善の余地があった。   As a conventional method for controlling weeds, for example, Utility Model Registration No. 3029692 discloses an invention of a ground cover planting sheet that has a herbicidal effect and can plant ground cover plants in a labor-saving manner. Have been described. However, even in the above-mentioned ground cover planting sheet, (1) plants settled on the soil under the sheet gradually grow, so that weeds from the gaps around the sheet are particularly prone to grow, Even if it is not the periphery of the sheet, weeds that grow through the sheet through holes formed for greening are often seen, and weeds that have already penetrated once can no longer be expected to have a herbicidal effect. In addition, (2) because of the sheet, there is a risk that the sheet will be blown by wind or the like when the sheet pressing is poor, (3) insects and small animals are liable to live under the sheet, (4) water permeability of the sheet When there was a shortage, there was a problem that the sheet floated due to the outflow of topsoil, and there was room for improvement.

一方、本発明に発泡水熱固化体を用いた雑草抑制の方法であれば、上記の地被植物植栽シートが抱える課題はクリアされる。   On the other hand, if it is the method of weed control using a foaming hydrothermal solidification body for this invention, the subject which said ground cover planting sheet | seat will be cleared.

また、特開2011−92098号公報には、施工が容易で、雑草排除作用に優れ、土壌への悪影響もなく、自然景観との調和も図ることができる防草工法、土質材、セメント系固化剤、団粒化剤及び水を混ぜ合わせる混練工程と、前記混練工程で形成された混練物を地盤上に打設して植栽層を形成する造成工程と、前記造成工程で形成された植栽層の表面に植栽穴を形成する造穴工程と、前記造穴工程で形成された植栽穴に地被植物の苗を植え込む定植工程と、を備えた防草工法の発明が開示されている。   Japanese Patent Application Laid-Open No. 2011-92098 discloses a herbicidal method, a soil material, and cement-based solidification that is easy to construct, has an excellent weed eliminating effect, has no adverse effects on the soil, and can be harmonized with the natural landscape. A kneading step in which an agent, an aggregating agent and water are mixed, a creation step in which the kneaded product formed in the kneading step is placed on the ground to form a planting layer, and a planting formed in the creation step An invention of a herbicidal construction method comprising a hole making step of forming a planting hole on the surface of a planting layer and a planting step of planting a seedling of a ground cover plant into the planting hole formed in the hole making step is disclosed. ing.

しかしながら、上記特開2011−92098号公報に記載の防草工法においては、土質材とセメント系固化剤の粒子とが立体的な団粒構造を形成するために、団粒化剤を用いる必要がある。また、混練工程において団粒化するためには、ミキサーのように大掛かりな設備が必要になり、例えば道路の中央分離帯のように施工場所の作業スペース等に制約がある場合には、さらに施工コストが高くなってしまう。   However, in the herbicidal construction method described in JP 2011-92098 A, it is necessary to use an aggregating agent in order for the soil material and the cement solidifying agent particles to form a three-dimensional aggregated structure. is there. In addition, in order to aggregate in the kneading process, a large facility such as a mixer is required. For example, if there is a restriction on the work space of the construction site such as the central separation zone of the road, further construction is required. Cost becomes high.

一方、本発明にかかる発泡水熱固化体は、雑草抑制したい地面に敷均すだけで上記植栽層に相当する雑草抑制基盤層を形成することが可能であり、団粒化剤が不要で混練のための設備も不要である。   On the other hand, the foamed hydrothermal solidified body according to the present invention can form a weed suppression base layer corresponding to the planting layer just by spreading on the ground where weed control is desired, and no aggregating agent is required. No equipment for kneading is required.

また、上記の実用新案登録第3029692号公報に記載の地被植物植栽シートや特開2011−92098号公報に記載の防草工法等を用いて、花壇や植栽帯が雑草抑制処理されていても、雑草抑制処理がされた領域とブロックなどで形成された外枠との境界に僅かな隙間が残り、この隙間に雑草が活着してしまうことがしばしば見られる。   In addition, using a ground cover planting sheet described in the above-mentioned utility model registration No. 3029692 and a herbicidal construction method described in Japanese Patent Application Laid-Open No. 2011-92098, etc., the flower bed and the planting band are subjected to weed control treatment. However, it is often seen that a slight gap remains at the boundary between the area subjected to the weed suppression treatment and the outer frame formed of blocks or the like, and the weeds settle in this gap.

このような隙間雑草を抑制するために、本発明にかかる発泡水熱固化体を以下のように活用することができる。   In order to suppress such gap weeds, the foamed hydrothermal solidified product according to the present invention can be utilized as follows.

[隙間雑草抑制処理]
すなわち、発泡水熱固化体を粒子径が5mm以下になるように粒度調整した後、セメント系固化剤と両性金属成分(金属アルミ等)を含んだ材料を添加して水を加えて混合・混練することで得られる混練物を、隙間雑草抑制材として雑草抑制基盤層と外枠との間の隙間に充填することで、隙間雑草の生育も効果的に抑制することができる。
[Gap weed suppression treatment]
Specifically, after adjusting the particle size of the foamed hydrothermal solidified body so that the particle diameter is 5 mm or less, a material containing a cement-based solidifying agent and an amphoteric metal component (metal aluminum, etc.) is added, and water is added to mix and knead By filling the kneaded material obtained in this way into the gap between the weed suppression base layer and the outer frame as a gap weed suppression material, it is possible to effectively suppress the growth of gap weeds.

上記隙間抑制材は膨張性を有しているため、隙間抑制材が充填後固化することで、雑草抑制基盤層と外枠との間の隙間は完全に埋められる。なお、上記混練物については、膨張反応の促進と、隙間の状態に応じて充填しやすいようスラリー状にすることが好ましく、所望の流動性となるよう水の量を適宜調整することが可能である。   Since the said clearance gap suppression material has expansibility, the clearance gap between a weed suppression base layer and an outer frame is completely filled up, when a clearance gap suppression material solidifies after filling. The kneaded product is preferably made into a slurry so that it can be easily filled according to the promotion of the expansion reaction and the state of the gap, and the amount of water can be appropriately adjusted so as to obtain a desired fluidity. is there.

上述した本発明にかかる発泡水熱固化体を利用した雑草抑制方法を、芝や花類などの植物と組み合わせることにより、雑草が排除されるとともに緑化がなされた景観の良い緑化帯「ノングラス・ガーデン」を省力的に構築することができる。   By combining the weed control method using the foamed hydrothermal solidified body according to the present invention described above with plants such as turf and flowers, weeds are eliminated and greening zones with a good landscape are obtained. Can be constructed in a labor-saving manner.

例えば、センチピードグラスなどの匍匐性の芝は、芝生として定着することで雑草を抑制して除草作業を軽減する芝として知られているが、芝生として定着するまでは、他の植物の繁茂を抑えるための管理が当然のことながら必要となる。   For example, dwarf turf such as centipede grass is known as turf that suppresses weeds by fixing as lawn and reduces weeding work, but it suppresses the growth of other plants until it settles as lawn Management is necessary for this.

そこで、本発明にかかる発泡水熱固化体を用いることで、センチピードグラスが定着するまでの間の管理負荷の軽減を実現することが可能となる。以下、本発明にかかる発泡水熱固化体と匍匐性の芝とを組み合わせた「防草・緑化工法」の具体例について説明する。   Thus, by using the foamed hydrothermal solidified body according to the present invention, it is possible to realize a reduction in management load until the centipede glass is fixed. Hereinafter, a specific example of the “weed prevention / greening method” in which the foamed hydrothermal solidified body according to the present invention is combined with the dwarf turf will be described.

[1.施工準備工程]
植栽帯の地面の上部を、約5〜30cmの任意の深さを剥ぎ取り、剥ぎ取った地面の残根等を全て除去する。又、周辺部の構造物(ブロック等)の側面や既存の樹木等の根元に付着した土や根を、丁寧にブラシ等で剥ぎ取る。既存地盤は平らに均す。なお、既存の樹木などは残しても良い。
[1. Construction preparation process]
The upper part of the ground of the planting zone is peeled off at an arbitrary depth of about 5 to 30 cm, and all the remaining roots and the like of the ground off are removed. Also, carefully remove the soil and roots attached to the side surfaces of the surrounding structures (blocks, etc.) and the roots of existing trees with a brush or the like. The existing ground is leveled. Existing trees may be left behind.

[2.雑草抑制基盤層形成工程]
準備が出来た植栽帯の地面に、粒度調整した本発明にかかる発泡水熱固化体を雑草抑制材として、地盤上に約5〜30cm程度敷き均し、コンパクタ等の締固め機で所定の硬度に締固める。土壌硬度は、山中式土壌硬度計による「ち密度」としては20mm以上、より好ましくは25mm以上が良い。
[2. Weed control base layer formation process]
On the ground of the prepared planting zone, the foamed hydrothermal solidified product according to the present invention whose particle size has been adjusted is used as a weed control material, and about 5 to 30 cm is spread on the ground, and a predetermined hardness is obtained by a compactor such as a compactor. Consolidate. The soil hardness is 20 mm or more, and more preferably 25 mm or more as the “density” according to the Yamanaka type soil hardness meter.

[3.隙間雑草抑制処理工程]
次いで、周辺部は1〜5cm程度隙間を空け、隙間雑草抑制剤を流し込み周辺部のコンクリートの外枠等と敷均した雑草抑制材の間に隙間が開かないようにする。隙間雑草抑制剤は硬化が比較的早いので、ある程度固化したら表面をコテ等で均す。なお、隙間下部は既存地盤まで達するように空けることが好ましい。
[3. Crevice weed suppression treatment process]
Next, a gap of about 1 to 5 cm is formed in the peripheral portion, and a gap weed inhibitor is poured to prevent a gap from being opened between the concrete outer frame or the like in the peripheral portion and the weed control material spread. Since the crevice weed inhibitor cures relatively quickly, the surface is leveled with a trowel or the like after solidifying to some extent. In addition, it is preferable that the gap lower part is vacated so as to reach the existing ground.

[4.根伸材投入孔の開削工程]
施工した雑草抑制基盤層に振動ドリル等を用いて、植栽する芝に見合った根が伸びる穴を開けることで、根伸材投入孔を設ける。穴は雑草抑制材を施設した下部地面に食い込むまで開削する。食い込む深さは、根伸孔の直径程度か、又、それ以上の深さにする。この根伸孔の開削は、他の方法もありこの限りではない。
[4. Cutting process for rooting material input hole]
Using a vibration drill or the like in the weed control base layer that has been constructed, a hole for extending the roots corresponding to the turf to be planted is made, thereby providing a root stretcher material injection hole. The hole is cut until weed control material is cut into the lower ground. The depth of biting is about the diameter of the root extension hole, or more. There are other methods for excavation of the root extension hole, and this is not restrictive.

なお、上記2.雑草抑制基盤層形成工程において発泡水熱固化体を敷均す際に、既存地盤上に筒状や箱状等所定形状の型枠をあらかじめ置いてから、発泡水熱固化体を敷均し、転圧後に型枠を引き抜くようにして根伸材投入孔としても良い。その際、型枠として自然分解する素材のものを用いれば、型枠の引き抜きは不要となる。   The above 2. When spreading the foam hydrothermal solidified body in the weed suppression base layer forming step, place a form of a predetermined shape such as a cylinder or box in advance on the existing ground, then spread the foam hydrothermal solidified body, It is good also as a root elongation material injection hole by pulling out a formwork after rolling. At that time, if a material that naturally decomposes is used as the mold, it is not necessary to pull out the mold.

[5.根伸材の投入工程]
根伸材は、定植された苗等の根が、既存の地中に向かって、根伸孔を下りやすい材料を用いる。材料は、砂嬢土・植嬢土などの土質材や肥料、その他任意の材料を調合して投入する。型枠を用いて根伸材投入孔を形成する場合、この根伸材は型枠の中にあらかじめ入れておくこともできる。この根伸材充填定植方法を用いれば、雑草抑制基盤層が厚くても根の長さの短い任意の植物でも定植することができる。
[5. Root elongation material input process]
The root stretch material is made of a material that allows roots such as planted seedlings to easily descend the root stretch hole toward the existing ground. As materials, we mix and introduce soil materials such as sand and soil, fertilizer, and other optional materials. In the case of forming the root material input hole using a mold, this root extender can be put in the mold in advance. If this root stretcher filling planting method is used, it is possible to plant any plant with a short root length even if the weed suppression base layer is thick.

[6.植栽・播種工程]
根伸材を投入した上部に芝の苗を定植もしくは播種する。苗は市販のポット苗を用いれば良いが、センチピードグラス等の匍匐茎を約10〜20cmに切断し、その切断した匍匐茎を十字状や格子状又、渦巻き状、又は、その他の形に成形し、任意の育苗箱で発根育成した十字形状やレンガ・円盤形状のマットを上部に植え付けてもよい。以降、芝が生育し芝生化すれば、雑草が排除された緑化帯「ノングラス・ガーデン」ができあがる。
[6. Planting and sowing process]
A seedling of turf is planted or sown in the upper part where the root-growing material is added. The seedlings may be commercially available pot seedlings, but the stalks such as centipede glass are cut into about 10 to 20 cm, and the cut shoots are formed into a cross shape, a lattice shape, a spiral shape, or other shapes, A cross-shaped or brick / disk-shaped mat rooted and grown in an arbitrary seedling box may be planted at the top. After that, if the turf grows and turns into a lawn, the greening zone “Non-Glass Garden”, where weeds have been eliminated, is completed.

尚、この匍匐茎の育成マットの育苗箱を加湿状態で約30℃に保てば、匍匐茎(ランナー)の側芽から直ぐに発根し始める。伸びる長さは17.8mm/日であった。この方法を用いれば季節に関係なく施工現場に即した育苗管理を行える。そして発根したこのマット苗を植付けることで、単純に播種したりポット苗を植えつけたりした場合と比べて、短期間で匍匐茎(ランナー)が伸長し緑化が早くできるメリットがある。   In addition, if the nursery box of this stalk growth mat is kept at about 30 ° C. in a humidified state, it will start rooting immediately from the side bud of the stalk (runner). The length of extension was 17.8 mm / day. By using this method, it is possible to manage the seedlings in line with the construction site regardless of the season. By planting this rooted mat seedling, there is a merit that the stems (runners) can be extended and greening can be accelerated in a short period of time compared to the case of simply sowing or planting a pot seedling.

上記のようにして整備された緑化帯「ノングラス・ガーデン」は、以下のような利点を有したものとなる。
すなわち、センチピードグラスについては、他の植物の生育を妨げるアレロパシー効果の存在が指摘されており、このアレロパシー効果による雑草抑制作用が期待される。なお、アレロパシー効果を発揮させるためには、センチピードグラスの匍匐茎を他の雑草よりいかに早く成長させることが大事であり、センチピードグラスがある程度の芝生として地面を覆うようになるまでは、他の雑草を抑制する手段が必要とされる。
The greening zone “Non-Glass Garden” prepared as described above has the following advantages.
In other words, it has been pointed out that centipede grass has an allelopathic effect that hinders the growth of other plants, and a weed-suppressing effect due to the allelopathic effect is expected. In order to exert the allelopathic effect, it is important to grow the centipede grass stems faster than other weeds, and until the centipede grass covers the ground as some lawn, Means to suppress are needed.

一方、緑化帯「ノングラス・ガーデン」は、根伸材投入孔以外は、本発明にかかる発泡水熱固化体を用いて形成されている雑草抑制基盤層であり、また隙間雑草抑制処理も施されているため、他の雑草を抑制するための管理の手間が不要である。また、上記の匍匐茎を任意の形状で発根育苗したマット苗は生長が早いことが知られており、芝生化がより早く達成できるため好ましい。   On the other hand, the greening zone “Non-Glass Garden” is a weed suppression base layer formed by using the foam hydrothermal solidified material according to the present invention, except for the root elongation material input hole, and is also subjected to crevice weed suppression treatment. Therefore, there is no need for management to control other weeds. Further, mat seedlings obtained by rooting and raising roots of the above-mentioned stems in an arbitrary shape are known to grow quickly, and are preferred because lawnization can be achieved earlier.

なお、上記「防草・緑化工法」の変形例として、雑草抑制基盤層を上下二層に分けて、その間に根伸育成層を設けても良い。
根伸材投入孔を通して、既存地盤からの雑草の芽が伸びてくる恐れのある場合には、上記変形例のように施工することで、これを防止できる。
「根伸育成層」の材料は、根伸材と同じか、既存土を用いるか又は、混合しても良いが、当然、雑草の種子や根が混入していないことが好ましい。
As a modified example of the “weed prevention / greening method”, the weed suppression base layer may be divided into two upper and lower layers, and a root growth layer may be provided between them.
If there is a possibility that weed sprouts from the existing ground may extend through the root-growing material insertion hole, this can be prevented by constructing as in the above-described modification.
The material of the “root extension growing layer” may be the same as the root extension material, or existing soil may be used or mixed, but naturally it is preferable that seeds and roots of weeds are not mixed.

Claims (10)

以下の工程(a)〜(c)を含むことを特徴とする発泡水熱固化体の製造方法。
(a)両性金属を含有する焼却灰100質量%にセメントを5〜25質量%加えて混合する混合工程、
(b)前記混合工程の後、前記焼却灰及びセメントの混合物に混練水を投入して混練することで、前記焼却灰及びセメントに含まれる生石灰を水和させてファニキュラー状態の混練物を得る混練工程、
(c)前記混練工程の後、前記焼却灰及びセメントの混合物と混練水との混練物を成形型枠に移すと共に所定の圧縮力を加えながら水熱固化させ、前記焼却灰に含まれる両性金属とアルカリ水を反応させてガスを発生させて発泡させることにより発泡水熱固化体を得る養生工程。
The manufacturing method of the foaming hydrothermal solidification body characterized by including the following processes (a)-(c).
(A) A mixing step of adding 5 to 25% by mass of cement to 100% by mass of incinerated ash containing an amphoteric metal, and mixing them;
(B) After the mixing step, kneaded water is added to the mixture of the incinerated ash and cement to knead to hydrate the quick lime contained in the incinerated ash and cement to obtain a kneaded product in a funicular state. Kneading process,
(C) After the kneading step, the kneaded product of the mixture of the incinerated ash and cement and the kneaded water is transferred to a mold and hydrothermally solidified while applying a predetermined compressive force, and the amphoteric metal contained in the incinerated ash A curing process to obtain a foamed hydrothermal solidified body by reacting with alkaline water to generate gas and foam.
前記焼却灰は、都市ごみ、木材チップ・タイヤチップ、製紙スラッジ、下水汚泥、バイオマスなどの廃棄物焼却灰、或いは、石炭、ゴミ固形化燃料、紙・プラスチック固形化燃料等の焼却灰のいずれか又はこれらの混合物であることを特徴とする、請求項1に記載の発泡水熱固化体の製造方法。   The incineration ash is any one of incineration ash such as municipal waste, wood chips / tire chips, paper sludge, sewage sludge, biomass, or incineration ash such as coal, garbage solidified fuel, paper / plastic solidified fuel, etc. Or it is a mixture thereof, The manufacturing method of the foaming hydrothermal solidification body of Claim 1 characterized by the above-mentioned. 前記焼却灰中の両性金属の含有量が、0.5〜10質量%であることを特徴とする、請求項1に記載の発泡水熱固化体の製造方法。   The method for producing a foamed hydrothermal solidified body according to claim 1, wherein the content of the amphoteric metal in the incinerated ash is 0.5 to 10% by mass. 前記(a)の混合工程において、前記混合物に対して石灰を添加混合し、その割合を全混合物の30〜40質量%にしたことを特徴とする請求項1に記載の発泡水熱固化体の製造方法。   In the mixing step of (a), lime is added to and mixed with the mixture, and the ratio thereof is 30 to 40% by mass of the total mixture. Production method. 前記(b)の混練工程において、前記混合物100質量部に対して35〜55質量部の水を加えて混練することを特徴とする請求項1に記載の発泡水熱固化体の製造方法。   2. The method for producing a foamed hydrothermal solidified body according to claim 1, wherein in the kneading step (b), 35 to 55 parts by mass of water is added and kneaded with respect to 100 parts by mass of the mixture. 前記(a)の混合工程おいて、前記混合物100質量部に対して、水を15〜25質量部混合し、前記(b)の混練工程で前記混練水として20〜30質量部の水を投入して所定量を順次連続して混練することを特徴とする請求項1に記載の発泡水熱固化体の製造方法。   In the mixing step (a), 15 to 25 parts by mass of water is mixed with 100 parts by mass of the mixture, and 20 to 30 parts by mass of water is added as the kneading water in the kneading step (b). The method for producing a foamed hydrothermal solidified body according to claim 1, wherein a predetermined amount is kneaded continuously successively. 前記成形型枠は、地面に掘った竪穴又は地表面から所定の高さに積み上げた土又は石壁で囲まれた型枠で形成したものであることを特徴とする、請求項1に記載の発泡水熱固化体の製造方法。   2. The foam according to claim 1, wherein the mold is formed by a mold surrounded by a pothole dug in the ground or soil or a stone wall piled up to a predetermined height from the ground surface. A method for producing a hydrothermal solidified body. 表面気泡率が0〜22%、BET比表面積が75〜110m2/g、吸水率が40〜63%、かつ、1軸圧縮率が5〜18N/mm2である、請求項1〜7の何れかに記載の製造方法で製造された発泡水熱固化体。 The surface bubble ratio is 0 to 22%, the BET specific surface area is 75 to 110 m 2 / g, the water absorption is 40 to 63%, and the uniaxial compressibility is 5 to 18 N / mm 2 . A foamed hydrothermal solidified product produced by any one of the production methods. 請求項8に記載の発泡水熱固化体を盛土材として用いる盛土工法。   The embankment method using the foam hydrothermal solidification body of Claim 8 as a embankment material. 請求項8に記載の発泡水熱固化体を用いた防草・緑化工法。   A herbicidal / greening method using the foamed hydrothermal solidified product according to claim 8.
JP2014088831A 2014-04-23 2014-04-23 Method for producing foamed hydrothermal solidified product using incinerated ash as the main raw material Active JP5843329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088831A JP5843329B2 (en) 2014-04-23 2014-04-23 Method for producing foamed hydrothermal solidified product using incinerated ash as the main raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088831A JP5843329B2 (en) 2014-04-23 2014-04-23 Method for producing foamed hydrothermal solidified product using incinerated ash as the main raw material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011274777A Division JP2013123691A (en) 2011-12-15 2011-12-15 Hydrothermally solidified foam made mainly of incineration ash, and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015084680A Division JP5902337B2 (en) 2015-04-17 2015-04-17 Method for producing foamed hydrothermal solidified product using incinerated ash as the main raw material

Publications (2)

Publication Number Publication Date
JP2014176847A true JP2014176847A (en) 2014-09-25
JP5843329B2 JP5843329B2 (en) 2016-01-13

Family

ID=51697367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088831A Active JP5843329B2 (en) 2014-04-23 2014-04-23 Method for producing foamed hydrothermal solidified product using incinerated ash as the main raw material

Country Status (1)

Country Link
JP (1) JP5843329B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108285305A (en) * 2017-12-03 2018-07-17 新疆阜丰生物科技有限公司 A method of preparing construction material using microbial sludge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851970A (en) * 1981-09-25 1983-03-26 Onoda Cement Co Ltd Treatment for caking inflatable dust
JPH08113777A (en) * 1994-10-18 1996-05-07 Taisei Corp Method for utilizing solidified coal ash
EP0767150A1 (en) * 1995-10-04 1997-04-09 Sumikin Kashima Kohka Co., Ltd. Method for treating incinerated or molten fly ash
JPH09314097A (en) * 1996-05-28 1997-12-09 Techno Japan:Kk Stabilized incineration ash based solidifying material
JP2005313032A (en) * 2004-04-27 2005-11-10 Nippon Paper Industries Co Ltd Manufacturing method for hydrothermally solidified material of paper sludge incineration ash
JP2006122726A (en) * 2004-10-26 2006-05-18 Kawasaki Heavy Ind Ltd Particulate using paper manufacture sludge incineration ash as raw material, its manufacturing method and its manufacturing apparatus
JP2008133706A (en) * 2006-10-25 2008-06-12 Hatsukari Kogyo Kk Weedkilling structure and weedkilling construction method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851970A (en) * 1981-09-25 1983-03-26 Onoda Cement Co Ltd Treatment for caking inflatable dust
JPH08113777A (en) * 1994-10-18 1996-05-07 Taisei Corp Method for utilizing solidified coal ash
EP0767150A1 (en) * 1995-10-04 1997-04-09 Sumikin Kashima Kohka Co., Ltd. Method for treating incinerated or molten fly ash
JPH09314097A (en) * 1996-05-28 1997-12-09 Techno Japan:Kk Stabilized incineration ash based solidifying material
JP2005313032A (en) * 2004-04-27 2005-11-10 Nippon Paper Industries Co Ltd Manufacturing method for hydrothermally solidified material of paper sludge incineration ash
JP2006122726A (en) * 2004-10-26 2006-05-18 Kawasaki Heavy Ind Ltd Particulate using paper manufacture sludge incineration ash as raw material, its manufacturing method and its manufacturing apparatus
JP2008133706A (en) * 2006-10-25 2008-06-12 Hatsukari Kogyo Kk Weedkilling structure and weedkilling construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108285305A (en) * 2017-12-03 2018-07-17 新疆阜丰生物科技有限公司 A method of preparing construction material using microbial sludge

Also Published As

Publication number Publication date
JP5843329B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
CN102010155A (en) High-strength plant growing type porous concrete and preparation method thereof
JP2013123691A (en) Hydrothermally solidified foam made mainly of incineration ash, and method for producing the same
JP2003052241A (en) Base material for vegetation culture medium, vegetation culture medium mold, method for producing the mold, and greening method using block of vegetation culture medium mold
CN111424689A (en) Protection method for improving soil slope resistance to rainwater erosion by adopting phosphogypsum and microorganisms
CN109005722B (en) Comprehensive reclamation method for land reclamation of iron ore waste stone yard
CN104148377A (en) Method for producing greened structure soil from silt
JP5902337B2 (en) Method for producing foamed hydrothermal solidified product using incinerated ash as the main raw material
JP5843329B2 (en) Method for producing foamed hydrothermal solidified product using incinerated ash as the main raw material
JP2001115454A (en) Wall and method for protecting natural vegetation introduced slope
CN107129208A (en) A kind of bioactivity, porous gap coarse aggregate ecological revetment matrix engineering material
CN207749380U (en) Vegetation type eco-concrete
CN111484278A (en) Ecological concrete, ecological protection slope and construction method of ecological protection slope
AU2021104437A4 (en) Construction method for slope ecologically restoration using phosphogypsum and microbial mineralization technology
CN109555135A (en) A kind of non-sintered haydite concrete of dredging silt plants raw building block and roadbed slope ecological protection construction method
JP2011177129A (en) Method for constructing weed-preventing material by using steelmaking slag
JP2009121173A (en) Ground coating work and ground coating construction method
CN108301281A (en) Prefabricated plant growth pervious concrete road pavement brick and preparation method thereof
CN107409523A (en) A kind of microbe soil improvement and environmentally friendly planting technology
CN106522164A (en) Shrub planting type ecological concrete component and preparing method thereof
CN209082522U (en) A kind of rubble high polymer stephanoporate Ecological Road slope protection
CN101899826B (en) Method for improving urban degraded soil in coastal regions by constructing artificial section
JP3939305B2 (en) Slope greening method
JP5270748B2 (en) Planting base structure
CN107142897B (en) Biological slope protection method for fish scale pits
KR102230040B1 (en) Method for improving low quality farmland with high quality farmland using the waste resources

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151112

R150 Certificate of patent or registration of utility model

Ref document number: 5843329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250