JP2014176136A - Automatic power factor control system and automatic power factor control method - Google Patents

Automatic power factor control system and automatic power factor control method Download PDF

Info

Publication number
JP2014176136A
JP2014176136A JP2013044341A JP2013044341A JP2014176136A JP 2014176136 A JP2014176136 A JP 2014176136A JP 2013044341 A JP2013044341 A JP 2013044341A JP 2013044341 A JP2013044341 A JP 2013044341A JP 2014176136 A JP2014176136 A JP 2014176136A
Authority
JP
Japan
Prior art keywords
power
reactive power
generator
generators
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013044341A
Other languages
Japanese (ja)
Other versions
JP5846141B2 (en
Inventor
Noriaki Hiromitsu
則昭 廣光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013044341A priority Critical patent/JP5846141B2/en
Publication of JP2014176136A publication Critical patent/JP2014176136A/en
Application granted granted Critical
Publication of JP5846141B2 publication Critical patent/JP5846141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a power factor at a power-receiving point while minimizing a total loss in a plurality of power generators installed in the premises of a customer.SOLUTION: A automatic power factor control system comprises: a reactive power detector 4 for detecting reactive power at a power-receiving point 2; active power detectors 5-5for detecting active power generated by power generators 3-3; a power factor arithmetic unit 6 for calculating, on the basis of the reactive power at the power-receiving point 2 and the active power generated by the power generators 3-3, an optimum value of the reactive power of the power generators 3-3for minimizing a sum total of loss costs of the power generators 3-3; and automatic power factor regulators 7-7for controlling, on the basis of the reactive power to be generated by the power generators 3-3as calculated by the power factor arithmetic unit 6, the field current of each of the power generators.

Description

本発明は、発電機の自動力率制御システムおよび自動力率制御方法に関する。   The present invention relates to an automatic power factor control system and an automatic power factor control method for a generator.

一般に、需要家の構内に設置する発電機が発電する電力は、有効電力と無効電力とを含む皮相電力である。有効電力とは、負荷で実際に消費される電力であり、無効電力とは、負荷と電源とで往復するだけで消費されない電力である。しかも、無効電力は、負荷で消費されないにも拘らず、電力損失を発生させてしまう。したがって、無効電力を発電する必要性はないようにも思えるが、電力を消費する負荷となる電気機器の多くが内部にコイル成分を有し、発電機が無効電力を発電することは不可避である。   In general, power generated by a generator installed on a customer's premises is apparent power including active power and reactive power. The active power is the power that is actually consumed by the load, and the reactive power is the power that is not consumed only by reciprocating between the load and the power source. In addition, reactive power causes power loss even though it is not consumed by the load. Therefore, although it seems that there is no need to generate reactive power, it is inevitable that many electric devices that are loads that consume power have a coil component inside, and the generator generates reactive power. .

一方、電力会社が需要家へ送電する電力も有効電力と無効電力とを含む皮相電力である。したがって、電力会社は、実際は需要家にて消費されない無効電力を含んだ皮相電力を需要家へ送電している。その結果、電力会社は、無効電力とを含む皮相電力を許容する容量の発電機、変圧器、およびその他の送電設備を備え、さらに無効電力の送電に伴う電力損失の発生を負担しているという現実がある。   On the other hand, the power transmitted by the power company to the customer is apparent power including active power and reactive power. Accordingly, the electric power company transmits apparent power including reactive power that is not actually consumed by the customer to the customer. As a result, the power company is equipped with generators, transformers, and other transmission facilities with capacities that allow for apparent power, including reactive power, and bears the generation of power loss associated with reactive power transmission. There is reality.

ところで、需要家の受電点における力率(皮相電力に対する有効電力の割合)を改善することができれば、電力会社から需要家への間の送電設備などのコストおよび電力損失の発生を抑えることができる。そして、需要家の受電点における力率を改善する方法の一つが、需要家の構内に設置される発電機により積極的に無効電力を発電することである。つまり、この力率の改善方法は、需要家の構内における負荷が必要とする無効電力を、自構内の発電機により賄うことにより、電力会社から需要家への送電される無効電力を削減するという方法である。   By the way, if the power factor (ratio of active power to apparent power) at the power receiving point of the consumer can be improved, the cost of power transmission equipment and the like from the power company to the consumer and the occurrence of power loss can be suppressed. . And one of the methods of improving the power factor in a consumer's power receiving point is generating a reactive power positively with the generator installed in a customer's premises. In other words, this power factor improvement method reduces the reactive power transmitted from the power company to the customer by covering the reactive power required by the load on the customer's premises with the generator on the premises. Is the method.

以上の観点から、需要家の自構内に設置された発電機において無効電力を最大化させ、受電点における力率を改善する技術が幾つか知られている。例えば、特許文献1には、ガスタービンの吸気温度に応じて発電機が発電する電力の力率を制御する方法が記載されている。特許文献2には、受電電源からの有効電力ならびに無効電力および並列運転を行う他の発電機からの有効電力ならびに無効電力を検出して、発電機が発電する電力の力率を制御する方法が記載されている。   From the above viewpoint, several techniques are known for maximizing reactive power in a generator installed in a customer's own premises and improving the power factor at a power receiving point. For example, Patent Document 1 describes a method for controlling the power factor of electric power generated by a generator according to the intake temperature of a gas turbine. Patent Document 2 discloses a method for controlling the power factor of power generated by a generator by detecting active power and reactive power from a power receiving power source and reactive power and reactive power from other generators that perform parallel operation. Have been described.

特開昭64−16300号公報Japanese Unexamined Patent Publication No. 64-16300 特開平6−14466号公報JP-A-6-14466

しかしながら、特許文献1に記載された方法は、ガスタービン発電機に特有の現象を利用したものであり、ボイラ発電機などには適用することができない。また、特許文献2に記載された方法は、受電電源および並列運転を行う他の発電機からの有効電力ならびに無効電力を検出するが、無効電力出力を増加させると発電機の界磁電流が増加して発電機の損失が増加するため、発電機単体の無効電力を最大化させることが最も経済的であるとは限らない。   However, the method described in Patent Document 1 uses a phenomenon peculiar to a gas turbine generator and cannot be applied to a boiler generator or the like. In addition, the method described in Patent Document 2 detects active power and reactive power from the power receiving power source and other generators that perform parallel operation. When the reactive power output is increased, the field current of the generator increases. Since the loss of the generator increases, maximizing the reactive power of the generator alone is not always the most economical.

本発明は、上記に鑑みてなされたものであって、その目的は、需要家の構内に設置された複数の発電機における総損失を最小化しながらも受電点における力率を改善することができる自動力率制御システムおよび自動力率制御方法を提供することにある。   The present invention has been made in view of the above, and an object thereof is to improve the power factor at the power receiving point while minimizing the total loss in a plurality of generators installed in the customer premises. An object is to provide an automatic power factor control system and an automatic power factor control method.

上述した課題を解決し、目的を達成するために、本発明にかかる自動力率制御システムは、受電点における無効電力を検出する無効電力検出手段と、各発電機が発電する有効電力を検出する有効電力検出手段と、前記受電点における無効電力と前記各発電機が発電する有効電力とに基づいて、前記各発電機の損失コストの総和が最小になる前記各発電機の無効電力の最適値を算出する力率演算手段と、前記力率演算手段が算出した前記各発電機が発電すべき無効電力に基づき、前記各発電機の界磁電流を制御する力率調整手段とを備えることを特徴とする。   In order to solve the above-described problems and achieve the object, an automatic power factor control system according to the present invention detects reactive power detecting means for detecting reactive power at a power receiving point and active power generated by each generator. Based on the active power detection means, the reactive power at the power receiving point, and the active power generated by each generator, the optimum value of the reactive power of each generator that minimizes the total loss cost of each generator Power factor calculating means for calculating the power factor, and power factor adjusting means for controlling the field current of each generator based on the reactive power to be generated by each of the generators calculated by the power factor calculating means. Features.

上述した課題を解決し、目的を達成するために、本発明にかかる自動力率制御方法は、受電点における無効電力を検出する無効電力検出ステップと、各発電機が発電する有効電力を検出する有効電力検出ステップと、前記受電点における無効電力と前記各発電機が発電する有効電力とに基づいて、前記各発電機の損失コストの総和が最小になる前記各発電機の無効電力の最適値を算出する力率演算ステップと、前記力率演算手段が算出した前記各発電機が発電すべき無効電力に基づき、前記各発電機の界磁電流を制御する力率調整ステップとを含むことを特徴とする。   In order to solve the above-described problems and achieve the object, an automatic power factor control method according to the present invention detects a reactive power detecting step for detecting reactive power at a power receiving point, and detects active power generated by each generator. Based on the active power detection step, the reactive power at the power receiving point, and the active power generated by each generator, the optimum value of the reactive power of each generator that minimizes the total loss cost of each generator And a power factor adjustment step of controlling the field current of each generator based on the reactive power that each of the generators calculated by the power factor calculation means should generate. Features.

本発明にかかる自動力率制御装置および自動力率制御方法は、需要家の構内に設置された複数の発電機における総損失を最小化しながらも受電点における力率を改善することができるという効果を奏する。   The automatic power factor control apparatus and the automatic power factor control method according to the present invention can improve the power factor at the power receiving point while minimizing the total loss in the plurality of generators installed in the customer premises. Play.

図1は、本発明の実施形態にかかる自動力率制御システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an automatic power factor control system according to an embodiment of the present invention. 図2は、力率演算装置の機能を概略的に示した機能ブロックである。FIG. 2 is a functional block schematically showing the function of the power factor calculation device. 図3は、可能出力曲線の例を示すグラフである。FIG. 3 is a graph showing an example of a possible output curve. 図4は、本発明の実施形態にかかる自動力率制御方法を示すフローチャートである。FIG. 4 is a flowchart showing an automatic power factor control method according to the embodiment of the present invention.

以下に、本発明の実施形態にかかる自動力率制御装置および自動力率制御方法を図面に基づいて詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。   Hereinafter, an automatic power factor control apparatus and an automatic power factor control method according to embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments described below.

〔自動力率制御システム〕
図1は、本発明の実施形態にかかる自動力率制御システムの概略構成を示すブロック図である。図1に示されるように、本発明の実施形態にかかる自動力率制御システム1は、上位電力系統から需要家の構内への電力供給を受ける受電点2と、需要家の構内で発電をするN個の並列された発電機3〜3とを備える電力システムに用いるためのものである。
[Automatic power factor control system]
FIG. 1 is a block diagram showing a schematic configuration of an automatic power factor control system according to an embodiment of the present invention. As shown in FIG. 1, an automatic power factor control system 1 according to an embodiment of the present invention generates power at a power receiving point 2 that receives power supply from a higher power system to a customer premises, and at the customer premises. It is for use in a power system comprising N parallel generators 3 1 to 3 N.

本発明の実施形態にかかる自動力率制御システム1は、受電点2における無効電力を検出する無効電力検出器4と、各発電機3〜3が発電する電力のうち有効電力を検出する有効電力検出器5〜5と、受電点2における無効電力と各発電機3〜3が発電する有効電力とに基づいて、各発電機3〜3が発電すべき無効電力を算出する力率演算装置6と、力率演算装置6が算出した各発電機3〜3が発電すべき無効電力に基づき、各発電機3〜3の界磁電流を自動電圧調整器(AVR)8〜8を介して制御する自動力率調整器(APFR)7〜7とを備えている。 The automatic power factor control system 1 according to the embodiment of the present invention detects reactive power among reactive power detector 4 that detects reactive power at a power receiving point 2 and power generated by each of the generators 3 1 to 3 N. enable the power detector 5 1 to 5 N, based on the reactive power at the receiving point 2 and the active power each generator 3 1 to 3 N is power, reactive power to be power generation each generator 3 1 to 3 N The power factor calculation device 6 for calculating the power factor, and the field current of each of the generators 3 1 to 3 N based on the reactive power to be generated by the generators 3 1 to 3 N calculated by the power factor calculation device 6 are automatically Automatic power factor regulators (APFR) 7 1 to 7 N that are controlled via regulators (AVR) 8 1 to 8 N are provided.

無効電力検出器4は、受電点2における皮相電力のうち、無効電力を検出する。例えば、無効電力検出器4は、変流器と変圧器とを組合わせて受電点2における交流電圧と交流電流を測定することにより、受電点2における無効電力を測定する。この受電点2における無効電力の大きさをQとする。 The reactive power detector 4 detects reactive power among the apparent power at the power receiving point 2. For example, the reactive power detector 4 measures the reactive power at the power receiving point 2 by measuring an AC voltage and an AC current at the power receiving point 2 by combining a current transformer and a transformer. The magnitude of the reactive power in the receiving point 2 and Q L.

各発電機3〜3に設けられた有効電力検出器5〜5は、受電点2における交流電圧と交流電流を測定することにより、各発電機3〜3が発電する電力のうち有効電力を検出する。この各有効電力の大きさをそれぞれP〜Pとする。 The active power detectors 5 1 to 5 N provided in the generators 3 1 to 3 N measure the AC voltage and the AC current at the power receiving point 2, thereby generating electric power generated by the generators 3 1 to 3 N. The active power is detected. The magnitudes of these active powers are defined as P 1 to P N , respectively.

力率演算装置6は、上記のように取得された受電点2における無効電力の大きさQと各有効電力の大きさP〜Pとを入力値として、各発電機3〜3が発電すべき無効電力を算出する。力率演算装置6が行う演算は、後に詳述する。なお、各発電機3〜3が発電すべき無効電力の大きさをそれぞれQ〜Qとする。 Power factor calculation device 6, the magnitude P 1 to P N of size Q L and respective active power of the reactive power in the power receiving point 2 obtained as described above as an input value, each generator 3 1 to 3 N calculates reactive power to be generated. The calculation performed by the power factor calculation device 6 will be described in detail later. Each generator 3 1 to 3 N is the size of each Q 1 to Q N of the reactive power to be power.

自動力率調整器7〜7は、各発電機3〜3が力率演算装置6により算出された無効電力の大きさQ〜Qで発電するように、各発電機3〜3の力率を調節するための装置である。自動電圧調整器8〜8は、各発電機3〜3の界磁電圧を可変することにより各発電機3〜3の力率を可変させる装置である。自動力率調整器7〜7と自動電圧調整器8〜8とは、協働して各発電機3〜3の力率を調節する。 The automatic power factor adjusters 7 1 to 7 N are arranged so that each of the generators 3 1 to 3 N generates power with the magnitudes Q 1 to Q N of reactive power calculated by the power factor calculation device 6. a device for adjusting the power factor of 1 to 3 N. Automatic voltage regulator 8 1 to 8 N is a device for varying the power factor of the generator 3 1 to 3 N by varying the field voltage of the generator 3 1 to 3 N. The automatic power factor regulators 7 1 to 7 N and the automatic voltage regulators 8 1 to 8 N cooperate to adjust the power factor of each of the generators 3 1 to 3 N.

なお、各発電機3〜3は、界磁の作る磁界を電機子巻線が横切る回転速度に同期した電力を発電する一般的な発電機であり、界磁を励起する界磁電流の制御により、発電電力の力率を制御することができる発電機である。したがって、各発電機3〜3は、自動力率調整器7〜7および自動電圧調整器8〜8を介して、力率演算装置6が算出した無効電力の大きさで発電をすることが可能である。 Each of the generators 3 1 to 3 N is a general generator that generates electric power synchronized with the rotation speed at which the armature winding traverses the magnetic field generated by the field, and has a field current that excites the field. It is a generator that can control the power factor of generated power by control. Accordingly, each of the generators 3 1 to 3 N has a reactive power calculated by the power factor calculation device 6 through the automatic power factor adjusters 7 1 to 7 N and the automatic voltage adjusters 8 1 to 8 N. It is possible to generate electricity.

〔力率演算装置〕
以下、力率演算装置6の機能の詳細について説明する。
[Power factor calculation device]
Details of the function of the power factor calculation device 6 will be described below.

図2は、力率演算装置6の機能を概略的に示した機能ブロックである。図2に示されるように、力率演算装置6は、力率演算手段6aと演算条件記憶手段6bとを備えている。   FIG. 2 is a functional block schematically showing the function of the power factor calculation device 6. As shown in FIG. 2, the power factor calculation device 6 includes power factor calculation means 6a and calculation condition storage means 6b.

力率演算手段6aは、演算条件記憶手段6bに記憶された制約条件を参照し、無効電力の大きさQと各有効電力の大きさP〜Pとを入力値として、各発電機3〜3が発電すべき無効電力の大きさQ〜Qを算出する。 The power factor calculation means 6a refers to the constraint condition stored in the calculation condition storage means 6b, and uses the reactive power magnitude Q L and the active power magnitudes P 1 to P N as input values to each generator. The magnitudes of reactive power Q 1 to Q N to be generated by 3 1 to 3 N are calculated.

演算条件記憶手段6bには、各発電機3〜3の可能出力曲線に関するデータが記憶されている。可能出力曲線とは、各発電機3〜3に定められた運転の制約条件を表すものである。図3は、可能出力曲線の例を示すグラフである。各発電機3〜3は、図3に示されるような可能出力曲線内の有効電力と無効電力との組み合わせでのみ発電することが可能である。 The calculation condition storage unit 6b, the data relating to power chart of the generator 3 1 to 3 N is stored. The possible output curve represents a constraint condition for operation determined for each of the generators 3 1 to 3 N. FIG. 3 is a graph showing an example of a possible output curve. Each of the generators 3 1 to 3 N can generate power only by a combination of active power and reactive power within the possible output curve as shown in FIG.

したがって、入力値である各有効電力の大きさP〜Pに対して、各発電機3〜3が許容し得る無効電力の大きさQ〜Qが定まり、力率演算手段6aは、演算条件記憶手段6bに記憶された制約条件を参照することにより、各発電機3〜3が許容し得る無効電力の大きさQ〜Qを取得する。これが第1の制約条件である。 Accordingly, the reactive power magnitudes Q 1 to Q N that the generators 3 1 to 3 N can tolerate are determined for the magnitudes P 1 to P N of the active powers that are input values, and the power factor calculation means 6a refers to the stored in the calculation condition storage unit 6b constraints to obtain the magnitude Q 1 to Q N of reactive power each generator 3 1 to 3 N is acceptable. This is the first constraint condition.

第1の制約条件として、各発電機3〜3の出力可能な無効電力の範囲は下式(1)のように表される。ただし、下式(1)において、Qは、第i番目の発電機3の無効電力の大きさであり、Qimaxは、可能出力曲線から定まる最大の無効電力の大きさである。 As a first constraint condition, the range of reactive power that can be output from each of the generators 3 1 to 3 N is expressed by the following equation (1). However, in the following formula (1), Q i is the magnitude of reactive power of the i-th generator 3 i , and Q imax is the maximum reactive power magnitude determined from the possible output curve.

Figure 2014176136
Figure 2014176136

上記式(1)を力率設定値で表すと、下式(2)のように表される。ただし、下式(2)において、Pは、第i番目の発電機3の有効電力の大きさであり、fは、可能出力曲線を表す関数である。 When the above formula (1) is represented by a power factor setting value, it is represented as the following formula (2). However, in the following formula (2), P i is the magnitude of the active power of the i-th generator 3 i , and f i is a function representing a possible output curve.

Figure 2014176136
Figure 2014176136

一方、各発電機3〜3の無効電力の大きさQ〜Qの総和は、上位電力系統から供給される無効電力の大きさQと等しくならなければいけない。これが第2の制約条件であり、下式(3)のように表される。 On the other hand, the total sum of the reactive power magnitudes Q 1 to Q N of the generators 3 1 to 3 N must be equal to the reactive power magnitude Q L supplied from the upper power system. This is the second constraint condition and is expressed as the following expression (3).

Figure 2014176136
Figure 2014176136

次に、力率演算手段6aが行う無効電力の最適値の演算について説明する。   Next, calculation of the optimum value of reactive power performed by the power factor calculation means 6a will be described.

各発電機3〜3には、それぞれ無効電力の大きさQ〜Qに対する損失コストが定まっている。この損失コストは、各発電機3〜3に対して固有の損失コストであり、各発電機3〜3の損失コストも演算条件記憶手段6bに記憶されている。以下、無効電力の大きさQ〜Qに対する損失コストの大きさをF(Q)〜F(Q)とする。 In each of the generators 3 1 to 3 N , loss costs for the magnitudes of reactive power Q 1 to Q N are determined. This loss cost is a loss cost specific to each of the generators 3 1 to 3 N , and the loss cost of each of the generators 3 1 to 3 N is also stored in the calculation condition storage unit 6 b. Hereinafter, the magnitude of the loss cost with respect to the magnitudes Q 1 to Q N of reactive power is assumed to be F (Q 1 ) to F (Q N ).

ここでは、損失コストの総和を最小とする無効電力の組の算出方法として、ラグランジュ未定乗数法を用いて説明する。   Here, a Lagrange undetermined multiplier method will be described as a method for calculating a reactive power set that minimizes the sum of loss costs.

ラグランジュの未定乗数をλとすると、ラグランジュ関数は下式(4)のようになる。   When Lagrange's undetermined multiplier is λ, the Lagrangian function is expressed by the following equation (4).

Figure 2014176136
Figure 2014176136

そして、上記式(4)をQについて微分することにより、下式(5)が得られる。 Then, the following equation (5) is obtained by differentiating the above equation (4) with respect to Q i .

Figure 2014176136
Figure 2014176136

すなわち、上記式(5)より、下式(6)が成り立つ。   That is, from the above equation (5), the following equation (6) is established.

Figure 2014176136
Figure 2014176136

よって、上記式(6)を満たす無効電力の大きさQ〜Qを選択することにより、発電機3〜3の損失コストの総和が最小化される。 Therefore, the sum of the loss costs of the generators 3 1 to 3 N is minimized by selecting the magnitudes Q 1 to Q N of the reactive power that satisfy the above formula (6).

ただし、上記式(6)を満たす無効電力の大きさQ〜Qは、第1の制約条件としての式(1)を満たしていない可能性がある。そこで、無効電力の大きさQ〜Qの何れかが式(1)を満たしていない場合は、式(1)を満たしていないQをQ=0またはQ=Qimaxとして、無効電力の大きさQ〜Qの再計算を行う。つまり、i番目のQがQimax<Qとなり、式(1)を満たしていない場合、Q=Qimaxとして再計算を行い、i番目のQがQ<0となり、式(1)を満たしていない場合、Q=0として再計算を行う。 However, the reactive power magnitudes Q 1 to Q N satisfying the above equation (6) may not satisfy the equation (1) as the first constraint condition. Therefore, when any of the reactive power magnitudes Q 1 to Q N does not satisfy the expression (1), Q i not satisfying the expression (1) is set as Q i = 0 or Q i = Q imax . It performs recalculation of the reactive power of the magnitude Q 1 to Q N. That is, if the i-th Q i is Q imax <Q i and does not satisfy the equation (1), recalculation is performed with Q i = Q imax , and the i-th Q i becomes Q i <0, If 1) is not satisfied, recalculation is performed with Q i = 0.

以上のように、力率演算手段6aが算出した無効電力の大きさQ〜Qは、自動力率調整器7〜7へ送信され、自動力率調整器7〜7および自動電圧調整器8〜8により、各発電機3〜3が無効電力の大きさQ〜Qで発電するように力率が調整される。結果、本発明の実施形態にかかる自動力率制御システムによれば、需要家の構内に設置された複数の発電機における総損失を最小化しながらも受電点における力率を改善することができる。 As described above, the magnitude Q 1 to Q N of reactive power power factor calculation means 6a has been calculated is transmitted to the automatic power factor regulator 7 1 to 7-N, the automatic power factor regulator 7 1 to 7-N and The power factor is adjusted by the automatic voltage regulators 8 1 to 8 N so that each of the generators 3 1 to 3 N generates power with the magnitudes Q 1 to Q N of reactive power. As a result, according to the automatic power factor control system according to the embodiment of the present invention, the power factor at the power receiving point can be improved while minimizing the total loss in the plurality of generators installed in the customer premises.

〔自動力率制御方法〕
次に、図4を参照しながら、本発明の実施形態にかかる自動力率制御方法について説明する。図4は、本発明の実施形態にかかる自動力率制御方法を示すフローチャートである。
[Automatic power factor control method]
Next, an automatic power factor control method according to an embodiment of the present invention will be described with reference to FIG. FIG. 4 is a flowchart showing an automatic power factor control method according to the embodiment of the present invention.

図4に示されるように、本発明の実施形態にかかる自動力率制御方法では、最初に無効電力検出器4により、受電点2における無効電力の大きさQが検出される(ステップS1)。一方、各発電機3〜3に設けられた有効電力検出器5〜5により、各発電機3〜3が発電する有効電力の大きさP〜Pが検出される(ステップS2)。 As shown in FIG. 4, in the automatic power factor control method according to the embodiment of the present invention, the reactive power detector 4 first detects the reactive power magnitude Q L at the power receiving point 2 (step S1). . On the other hand, each generator 3 1 to 3 active power provided to the N detectors 5 1 to 5 N, the magnitude P 1 to P N of active power each generator 3 1 to 3 N to generate electricity is detected (Step S2).

その後、力率演算装置6により、各発電機3〜3の可能出力曲線に基づき、各発電機3〜3が発電する有効電力の大きさP〜Pから、各発電機3〜3が発電する無効電力の大きさQ〜Qが満たすべき第1の制約条件が取得される(ステップS3)。また、各発電機3〜3が発電する無効電力の大きさQ〜Qの総和が、受電点2における無効電力の大きさQと等しいことによる第2の制約条件が取得される(ステップS4)。 Then, the power factor calculation unit 6, each generator 3 1 based on to 3 N of possible output curve, the magnitude P 1 to P N of active power each generator 3 1 to 3 N is power, each generator The first constraint condition that should be satisfied by the magnitudes Q 1 to Q N of the reactive power generated by 3 1 to 3 N is acquired (step S3). In addition, the second constraint condition is acquired that the sum of the reactive power magnitudes Q 1 to Q N generated by the generators 3 1 to 3 N is equal to the reactive power magnitude Q L at the power receiving point 2. (Step S4).

その後、力率演算装置6により、第2の制約条件の下で、各発電機3〜3の損失コストの総和が最小になる各発電機3〜3の無効電力の大きさQ〜Qが算出される(ステップS5)。このステップにおける最適な無効電力の大きさQ〜Qの算出には、例えば上述のようにラグランジュ未定乗数法が用いられる。 Then, the power factor calculation unit 6, under the second constraint, the size Q of the reactive power of each generator 3 1 to 3 N each generator 3 1 to 3 N where the sum of the loss cost is minimal 1 to Q N is calculated (step S5). For example, the Lagrange undetermined multiplier method is used to calculate the optimum reactive power magnitudes Q 1 to Q N in this step, as described above.

その後、力率演算装置6により、算出された各発電機3〜3の無効電力の大きさQ〜Qが第1の制約条件を満たしているか否かが判定される(ステップS6)。算出された各発電機3〜3の無効電力の大きさQ〜Qが第1の制約条件を満たしていない場合(ステップS6;No)、その第1の制約条件を満たしていない無効電力の大きさQをQ=0またはQ=Qimaxとして、無効電力の大きさQ〜Qの再計算が行われる(ステップS7)。一方、算出された各発電機3〜3の無効電力の大きさQ〜Qが第1の制約条件を満たしている場合(ステップS6;Yes)、算出された各発電機3〜3の無効電力の大きさQ〜Qが自動力率調整器7〜7へ送信され、自動力率調整器7〜7および自動電圧調整器8〜8により、各発電機3〜3が無効電力の大きさQ〜Qで発電するように力率が調整される(ステップS8)。 Thereafter, the power factor calculation device 6 determines whether or not the calculated reactive power magnitudes Q 1 to Q N of the generators 3 1 to 3 N satisfy the first constraint condition (step S 6). ). When the calculated magnitudes Q 1 to Q N of the generators 3 1 to 3 N do not satisfy the first constraint condition (step S6; No), the first constraint condition is not satisfied. Reactive power magnitudes Q 1 to Q N are recalculated with reactive power magnitude Q i set to Q i = 0 or Q i = Q imax (step S 7). On the other hand, when the calculated magnitudes Q 1 to Q N of the generators 3 1 to 3 N satisfy the first constraint condition (step S6; Yes), the calculated generators 3 1 to 3 of N reactive power magnitude Q 1 to Q N is transmitted to the automatic power factor regulator 7 1 to 7-N, the automatic power factor regulator 7 by 1 to 7-N and the automatic voltage regulator 8 1 to 8 N The power factor is adjusted so that each of the generators 3 1 to 3 N generates power with the magnitude of reactive power Q 1 to Q N (step S8).

以上により、本発明の実施形態にかかる自動力率制御方法が終了する。   This completes the automatic power factor control method according to the embodiment of the present invention.

〔実施例〕
以下、本発明の実施形態にかかる自動力率制御装置および自動力率制御方法による無効電力の最適値計算の実施例を説明する。以下で説明する実施例では、発電機が3台ある場合を考える。つまり、各発電機の無効電力の大きさは、Q〜Qであり、損失コストは、F(Q)〜F(Q)である。
〔Example〕
Hereinafter, an example of the optimum value calculation of the reactive power by the automatic power factor control device and the automatic power factor control method according to the embodiment of the present invention will be described. In the embodiment described below, a case where there are three generators is considered. That is, the magnitude of reactive power of each generator is Q 1 to Q 3 , and the loss cost is F 1 (Q 1 ) to F 3 (Q 3 ).

各発電機の無効電力の大きさQ〜Qに対する損失コストF(Q)〜F(Q)は、下式(7)のように与えられるとする。 It is assumed that loss costs F 1 (Q 1 ) to F 3 (Q 3 ) with respect to the reactive power magnitudes Q 1 to Q 3 of each generator are given by the following equation (7).

Figure 2014176136
Figure 2014176136

また、各発電機の可能出力曲線から定まる第1の制約条件は、下式(8)のように決定されたとする。   Further, it is assumed that the first constraint condition determined from the possible output curve of each generator is determined as in the following equation (8).

Figure 2014176136
Figure 2014176136

以上の条件の下、各発電機の損失コストF(Q)〜F(Q)の総和が最小となる無効電力の大きさQ〜Qは、先述のラグランジュ未定乗数法により、下式(9)を満たす。 Under the above conditions, the reactive power magnitudes Q 1 to Q 3 that minimize the sum of the loss costs F 1 (Q 1 ) to F 3 (Q 3 ) of each generator are determined by the Lagrange multiplier method described above. The following equation (9) is satisfied.

Figure 2014176136
Figure 2014176136

受電点2における無効電力の大きさがQであるとすると、式(9)より下式(10)が得られる。 Assuming that the magnitude of reactive power at power receiving point 2 is Q L , the following equation (10) is obtained from equation (9).

Figure 2014176136
Figure 2014176136

すなわち、式(10)により、受電点2における無効電力の大きさQが指定されれば、λが定まり、式(9)により、λが定まれば、無効電力の大きさQ〜Qが定まる。 That is, if the reactive power magnitude Q L at the power receiving point 2 is specified by Expression (10), λ is determined, and if λ is determined by Expression (9), the reactive power magnitudes Q 1 to Q are determined. 3 is determined.

そこで、以下では、受電点2における無効電力の大きさQが具体的に与えられた場合の計算例について説明する。 Therefore, hereinafter, a calculation example in the case where the reactive power magnitude Q L at the power receiving point 2 is specifically given will be described.

〔例1〕Q=60の場合
式(9)(10)により、以下の値が得られる。
[Example 1] In the case of Q L = 60 The following values are obtained by the equations (9) and (10).

Figure 2014176136
Figure 2014176136

しかしながら、上記値では、Q>15となっているので、第1の制約条件を満たしていない。そこで、Q=15としてQおよびQについて再計算を行う。結果、以下の値が得られる。 However, since Q 3 > 15 at the above value, the first constraint condition is not satisfied. Therefore, recalculation is performed for Q 1 and Q 2 with Q 3 = 15. As a result, the following values are obtained.

Figure 2014176136
Figure 2014176136

上記値は、第1の制約条件を満たしているので、各発電機の損失コストF(Q)〜F(Q)の総和が最小となる無効電力の大きさとなっている。 Since the above value satisfies the first constraint condition, the reactive power is such that the sum of the loss costs F 1 (Q 1 ) to F 3 (Q 3 ) of each generator is minimized.

〔例2〕Q=30の場合
式(9)(10)により、以下の値が得られる。
[Example 2] In the case of Q L = 30 The following values are obtained by the equations (9) and (10).

Figure 2014176136
Figure 2014176136

上記値は、第1の制約条件を満たしているので、再計算することなく、各発電機の損失コストF(Q)〜F(Q)の総和が最小となる無効電力の大きさとなっている。 Since the above value satisfies the first constraint condition, the amount of reactive power that minimizes the sum of the loss costs F 1 (Q 1 ) to F 3 (Q 3 ) of each generator without recalculation. It has become.

〔例3〕Q=5の場合
式(9)(10)により、以下の値が得られる。
[Example 3] In the case of Q L = 5 The following values are obtained by the equations (9) and (10).

Figure 2014176136
Figure 2014176136

しかしながら、上記値では、Q<0となっているので、第1の制約条件を満たしていない。そこで、Q=0としてQおよびQについて再計算を行う。結果、以下の値が得られる。 However, since Q 2 <0 at the above value, the first constraint condition is not satisfied. Therefore, recalculation is performed for Q 1 and Q 3 with Q 2 = 0. As a result, the following values are obtained.

Figure 2014176136
Figure 2014176136

上記値は、第1の制約条件を満たしているので、各発電機の損失コストF(Q)〜F(Q)の総和が最小となる無効電力の大きさとなっている。 Since the above value satisfies the first constraint condition, the reactive power is such that the sum of the loss costs F 1 (Q 1 ) to F 3 (Q 3 ) of each generator is minimized.

1 自動力率制御システム
2 受電点
〜3 発電機
4 無効電力検出器
〜5 有効電力検出器
6 力率演算装置
6a 力率演算手段
6b 演算条件記憶手段
〜7 自動力率調整器(APFR)
〜8 自動電圧調整器(AVR)
DESCRIPTION OF SYMBOLS 1 Automatic power factor control system 2 Power receiving point 3 1 to 3 N generator 4 Reactive power detector 5 1 to 5 N Active power detector 6 Power factor calculation device 6a Power factor calculation means 6b Calculation condition storage means 7 1 to 7 N Automatic power factor adjuster (APFR)
8 1 to 8 N automatic voltage regulator (AVR)

Claims (4)

受電点における無効電力を検出する無効電力検出手段と、
各発電機が発電する有効電力を検出する有効電力検出手段と、
前記受電点における無効電力と前記各発電機が発電する有効電力とに基づいて、前記各発電機の損失コストの総和が最小になる前記各発電機の無効電力の最適値を算出する力率演算手段と、
前記力率演算手段が算出した前記各発電機が発電すべき無効電力に基づき、前記各発電機の界磁電流を制御する力率調整手段と、
を備えることを特徴とする自動力率制御システム。
Reactive power detection means for detecting reactive power at a power receiving point;
Active power detection means for detecting active power generated by each generator;
Based on the reactive power at the power receiving point and the active power generated by each of the generators, a power factor calculation that calculates an optimum value of the reactive power of each generator that minimizes the sum of the loss costs of the generators Means,
Power factor adjusting means for controlling the field current of each of the generators based on the reactive power to be generated by each of the generators calculated by the power factor calculating means;
An automatic power factor control system characterized by comprising:
前記力率演算手段は、
前記各発電機が発電する有効電力に基づき前記各発電機が発電する無効電力が満たすべき第1の制約条件を取得し、
前記各発電機が発電すべき無効電力の総和が前記受電点における無効電力に一致することによる第2の制約条件を取得し、
前記第2の制約条件の下で前記各発電機の損失コストの総和が最小になる前記各発電機の無効電力を算出し、
前記算出された各発電機の無効電力が前記第1の制約条件を満たす場合に、当該各発電機の無効電力を前記各発電機が発電すべき無効電力の最適値とする、
ことを特徴とする請求項1に記載の自動力率制御システム。
The power factor calculation means is
Obtaining the first constraint condition that the reactive power generated by each generator should satisfy based on the active power generated by each of the generators;
Obtaining a second constraint condition that the total of reactive power to be generated by each of the generators coincides with the reactive power at the power receiving point;
Calculating the reactive power of each generator that minimizes the total loss cost of each generator under the second constraint,
When the calculated reactive power of each generator satisfies the first constraint condition, the reactive power of each generator is set to the optimum value of reactive power to be generated by each generator,
The automatic power factor control system according to claim 1.
受電点における無効電力を検出する無効電力検出ステップと、
各発電機が発電する有効電力を検出する有効電力検出ステップと、
前記受電点における無効電力と前記各発電機が発電する有効電力とに基づいて、前記各発電機の損失コストの総和が最小になる前記各発電機の無効電力の最適値を算出する力率演算ステップと、
前記力率演算手段が算出した前記各発電機が発電すべき無効電力に基づき、前記各発電機の界磁電流を制御する力率調整ステップと、
を含むことを特徴とする自動力率制御方法。
A reactive power detection step for detecting reactive power at a power receiving point;
An active power detection step for detecting active power generated by each generator;
Based on the reactive power at the power receiving point and the active power generated by each of the generators, a power factor calculation that calculates an optimum value of the reactive power of each generator that minimizes the sum of the loss costs of the generators Steps,
A power factor adjustment step for controlling the field current of each generator based on the reactive power to be generated by each of the generators calculated by the power factor calculating means;
The automatic power factor control method characterized by including.
前記力率演算ステップは、
前記各発電機が発電する有効電力に基づき前記各発電機が発電する無効電力が満たすべき第1の制約条件を取得し、
前記各発電機が発電すべき無効電力の総和が前記受電点における無効電力に一致することによる第2の制約条件を取得し、
前記第2の制約条件の下で前記各発電機の損失コストの総和が最小になる前記各発電機の無効電力を算出し、
前記算出された各発電機の無効電力が前記第1の制約条件を満たす場合に、当該各発電機の無効電力を前記各発電機が発電すべき無効電力の最適値とする、
ことを特徴とする請求項3に記載の自動力率制御方法。
The power factor calculation step includes:
Obtaining the first constraint condition that the reactive power generated by each generator should satisfy based on the active power generated by each of the generators;
Obtaining a second constraint condition that the total of reactive power to be generated by each of the generators coincides with the reactive power at the power receiving point;
Calculating the reactive power of each generator that minimizes the total loss cost of each generator under the second constraint,
When the calculated reactive power of each generator satisfies the first constraint condition, the reactive power of each generator is set to the optimum value of reactive power to be generated by each generator,
The automatic power factor control method according to claim 3.
JP2013044341A 2013-03-06 2013-03-06 Automatic power factor control system and automatic power factor control method Active JP5846141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013044341A JP5846141B2 (en) 2013-03-06 2013-03-06 Automatic power factor control system and automatic power factor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013044341A JP5846141B2 (en) 2013-03-06 2013-03-06 Automatic power factor control system and automatic power factor control method

Publications (2)

Publication Number Publication Date
JP2014176136A true JP2014176136A (en) 2014-09-22
JP5846141B2 JP5846141B2 (en) 2016-01-20

Family

ID=51696904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044341A Active JP5846141B2 (en) 2013-03-06 2013-03-06 Automatic power factor control system and automatic power factor control method

Country Status (1)

Country Link
JP (1) JP5846141B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680444A (en) * 2016-03-07 2016-06-15 首钢京唐钢铁联合有限责任公司 Power factor control analysis method for power transmission and distribution line
WO2017034051A1 (en) * 2015-08-26 2017-03-02 전자부품연구원 System and method for controlling wind farm composed of various wind turbines
CN107196315A (en) * 2017-06-09 2017-09-22 华南理工大学 The extendable power-less optimized controlling method of the power distribution network containing light-preserved system
CN108321810A (en) * 2018-02-12 2018-07-24 华南理工大学 Inhibit the distribution Multiple Time Scales powerless control method of grid-connected voltage fluctuation
CN114614719A (en) * 2022-05-16 2022-06-10 山东大学 Predictive power factor control method and system for motor drive system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322939B1 (en) 2020-08-12 2022-05-03 Royal Power Energy Inc. Power quality improvement system with automatic power factor correction and harmonic filtering

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468963A (en) * 1977-11-11 1979-06-02 Hitachi Ltd Received power-factor improving controller
JPH0614466A (en) * 1992-06-22 1994-01-21 Yaskawa Electric Corp Automatically controlling method for power factor
JP2004064936A (en) * 2002-07-31 2004-02-26 Mitsubishi Paper Mills Ltd Method for controlling reactive power in non-utility generator set

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468963A (en) * 1977-11-11 1979-06-02 Hitachi Ltd Received power-factor improving controller
JPH0614466A (en) * 1992-06-22 1994-01-21 Yaskawa Electric Corp Automatically controlling method for power factor
JP2004064936A (en) * 2002-07-31 2004-02-26 Mitsubishi Paper Mills Ltd Method for controlling reactive power in non-utility generator set

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034051A1 (en) * 2015-08-26 2017-03-02 전자부품연구원 System and method for controlling wind farm composed of various wind turbines
CN105680444A (en) * 2016-03-07 2016-06-15 首钢京唐钢铁联合有限责任公司 Power factor control analysis method for power transmission and distribution line
CN107196315A (en) * 2017-06-09 2017-09-22 华南理工大学 The extendable power-less optimized controlling method of the power distribution network containing light-preserved system
CN108321810A (en) * 2018-02-12 2018-07-24 华南理工大学 Inhibit the distribution Multiple Time Scales powerless control method of grid-connected voltage fluctuation
CN108321810B (en) * 2018-02-12 2021-03-30 华南理工大学 Multi-time-scale reactive power control method for distribution network to suppress voltage fluctuation at photovoltaic grid-connected point
CN114614719A (en) * 2022-05-16 2022-06-10 山东大学 Predictive power factor control method and system for motor drive system

Also Published As

Publication number Publication date
JP5846141B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5846141B2 (en) Automatic power factor control system and automatic power factor control method
CA3100374C (en) Using distributed power electronics-based devices to improve the voltage and frequency stability of distribution systems
JP5893544B2 (en) Voltage control device, voltage control method, power adjustment device, and voltage control program
Lopes Self-tuning virtual synchronous machine: A control strategy for energy storage systems to support dynamic frequency control
JP4306760B2 (en) Distributed power supply
JP5108031B2 (en) Magnetic flux control system for active voltage regulation
JP5076157B2 (en) Distributed power supply system and system voltage stabilization method using this system
JP6587522B2 (en) Voltage / reactive power control device, method, and voltage / reactive power control system
JP2020145921A (en) Power distribution network and processing method
US9130448B2 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
JP2007306744A (en) Distribution system voltage regulation system
WO2014057867A1 (en) Solar power generation device and power management system, and electric power load and measuring apparatus for same
Simon et al. Wide area oscillation damping controller for DFIG using WAMS with delay compensation
JP4968105B2 (en) Distributed power supply
JP2017535239A (en) How to optimize reactive power consumption
JP2017099148A (en) Power management system and power management method
US20150249417A1 (en) Synchronous generator controller based on flux optimizer
JP2014060818A (en) Excitation control apparatus and excitation control method
JP2017070116A (en) Power control system and power control method
US20130155738A1 (en) System and method for controlling reactive power in a power conversion system
JP6075348B2 (en) Voltage regulator
JP2010166723A (en) Method and device for adjusting power generation output
WO2017056379A1 (en) Power control system and power control method
JP2017011911A (en) Wind farm controller, wind farm and wind farm control method
JP5942490B2 (en) Automatic power factor control device and automatic power factor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5846141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250