JP2014175522A - Light-receiving device capable of receiving certain amount of light regardless of altitude of sun - Google Patents

Light-receiving device capable of receiving certain amount of light regardless of altitude of sun Download PDF

Info

Publication number
JP2014175522A
JP2014175522A JP2013047916A JP2013047916A JP2014175522A JP 2014175522 A JP2014175522 A JP 2014175522A JP 2013047916 A JP2013047916 A JP 2013047916A JP 2013047916 A JP2013047916 A JP 2013047916A JP 2014175522 A JP2014175522 A JP 2014175522A
Authority
JP
Japan
Prior art keywords
solar cell
cell surface
facing
light
sun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013047916A
Other languages
Japanese (ja)
Inventor
Masanori Kobayashi
政憲 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013047916A priority Critical patent/JP2014175522A/en
Publication of JP2014175522A publication Critical patent/JP2014175522A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that since change in the altitude of the sun is caused by movement of the sun in one day, revolution of the sun in spring, summer, autumn and winter, and the difference of latitude of the sun, the amount of light received by the solar cell surface laid on a plane changes significantly and the light receiving efficiency is low, and to provide a light-emitting device and a power generation device having high light receiving efficiency in a limited occupied area.SOLUTION: A light-emitting device includes a solar cell surface directing substantially upward at the tip on top of a pole, a solar cell surface in the direction substantially perpendicular to a horizontal surface on the side face of the pole downward of the solar cell surface, and means for obtaining power by receiving sunlight simultaneously on the outside of the solar cell surface directing two directions.

Description

立体的に配置された太陽電池面による受光装置と発電装置に関する。 The present invention relates to a light receiving device and a power generation device using three-dimensionally arranged solar battery surfaces.

通常、太陽電池による発電においては、太陽電池面を屋根等に略平面状に並べて設け受光発電し、インバータ機能付きコンデショナ機器により余剰の電力が発生した場合は商用電力線に送って売電される。この方法は電力が余剰の場合は売電、不足の場合は商用電力線から電力を得ている。 Usually, in power generation using a solar cell, a solar cell surface is arranged in a substantially flat shape on a roof or the like to receive light and generate power, and when excess power is generated by a conditioner device with an inverter function, it is sent to a commercial power line for sale. In this method, power is sold when surplus power is obtained, and power is obtained from a commercial power line when power is insufficient.

前記、屋根等に平面状に並べられ設置された太陽電池面は、太陽の移動により常に太陽電池面に光が垂直に当たっている訳でなく、1日の朝方から夕方までにおける受光量はかなり少ない。
この様に設置された太陽電池では、一般においてこの様に略平面状に並べられた太陽電池における発電量は、一日平均約3〜4時間が発電時間とされている。
また前記、屋根等に平面状に並べられ設置された太陽電池面の受光においては、春夏秋冬の季節により太陽の高度の違いを生じるので、太陽電池面には常には光が垂直に当たっていない。
The solar cell surface arranged in a plane on the roof or the like does not always cause light to strike the solar cell surface vertically due to the movement of the sun, and the amount of light received from morning to evening in the day is considerably small.
In the solar cells installed in this way, generally, the amount of power generation in the solar cells arranged in a substantially planar manner in this way is about 3 to 4 hours per day on average.
Further, in the light reception of the solar cell surface arranged in a plane on the roof or the like, the solar altitude varies depending on the season of spring, summer, autumn, and winter, and therefore the light is not always vertically applied to the solar cell surface.

太陽電池を架台に設置し、太陽電池面の方向を夏の太陽高度に合わせて傾斜させた場合では、夏の間においては太陽電池面に太陽の光を略垂直に受光できるが、冬は太陽電池面に太陽からの光は斜めに照射される事になり、太陽電池の発電効率は大きく低下する。
また反対に太陽電池面の方向を冬の太陽高度に合わせた場合では、冬の間においては太陽電池面に太陽の光を略垂直に受光できるが、夏でもこの状態で太陽電池を使用すると、太陽からの光は斜めから受光される事になり、この様に太陽電池の発電効率は季節の違いにより大きく低下する。
よって太陽からの受光角度が太陽電池面にできるだけ垂直になる様に、春夏秋冬に合わせて定期的に太陽電池面の傾きを人の手で変えていたが大変な労力を要していた。
When a solar cell is installed on a gantry and the solar cell surface is tilted according to the summer solar altitude, solar light can be received almost vertically on the solar cell surface during the summer, but in the winter The light from the sun is irradiated obliquely on the battery surface, and the power generation efficiency of the solar battery is greatly reduced.
On the other hand, when the direction of the solar cell surface is adjusted to the winter solar altitude, solar light can be received almost vertically on the solar cell surface during the winter, but if you use the solar cell in this state even in summer, The light from the sun is received from an oblique direction, and thus the power generation efficiency of the solar cell is greatly reduced due to the difference in season.
Therefore, although the inclination of the solar cell surface was periodically changed manually by a person so as to make the light receiving angle from the sun as perpendicular to the solar cell surface as possible, it took a lot of labor.

上記屋根等に平面状に並べられ設置された太陽電池面による発電、架台に設置した太陽電池面による発電、限られた占有面積において太陽電池による発電にては太陽追従、太陽追尾等の各種方法の発電装置がある。これらの方式は太陽の光が太陽電池面に垂直に受光する様に、電動機等によって太陽電池面を太陽の移動方向に常に移動させる制御を行なっているものである。これらは、むずかしい三次元の制御と高価な設備投資が必要とされるばかりでなく、野外で用いる為に積雪や風圧に弱いと言う問題があった。また風圧や積雪による問題を克服する為に、頑丈な構造の装置にせざるを得なかった。 Various methods, such as solar tracking and solar tracking, in power generation using solar cell surfaces arranged in a plane on the roof, etc., power generation using solar cell surfaces installed on a gantry, and solar cell generation in a limited occupation area There is a power generator. In these systems, control is performed such that the solar cell surface is always moved in the solar moving direction by an electric motor or the like so that the sunlight is received perpendicularly to the solar cell surface. These not only require difficult three-dimensional control and expensive capital investment, but also have the problem of being vulnerable to snow and wind pressure for use outdoors. In addition, in order to overcome the problems caused by wind pressure and snow accumulation, it was necessary to use a device with a sturdy structure.

太陽追従、太陽追尾等における太陽方向に移動させる発電においては、発電量は略水平に配置された占有面積の太陽電池の約1.6〜1.7倍の発電が行なう事ができる。
この方法では、太陽電池面に常に略垂直に光が受光されるので、略一定の受光量が得られるが、その受光量は朝昼夕において、天候、大気の水蒸気量、塵等の状態によって常に均一とはならない。
In power generation that moves in the solar direction in solar tracking, solar tracking, and the like, the amount of power generation can be about 1.6 to 1.7 times that of a solar cell with an occupation area that is arranged substantially horizontally.
In this method, the light is always received substantially perpendicularly to the solar cell surface, so that a substantially constant amount of light is obtained, but the amount of light received depends on the weather, the amount of water vapor, dust, etc. It is not always uniform.

一日間の朝昼夕における太陽の東から西への移動、春夏秋冬の季節における太陽の高度の変化により、他の方法による占有面積当たりの発電量を大きく得る方法が見いだされていない。 No other method has been found to increase the amount of power generation per occupied area by the movement of the sun from east to west during the day and evening of the day and the change in the altitude of the sun during the spring, summer, autumn and winter seasons.

既に展示会や市場においては、図1の様に支柱の先端に略上方向に向きする太陽電池面のみを設けたタイプの受光装置や発電装置の電源がある。この様なタイプの受光装置は、一日間の日の出、日中、夕日における太陽の高度の変化、太陽の移動、また春夏秋冬の季節の違いにより太陽の高度と、日の出、日の入り方向が異なる為に、その受光効率はかなり低い。
支柱の先端に略上方向に向きする太陽電池面のみを設けたタイプの受光装置や発電装置は、屋根に設置された平面状に並べられた太陽電池の小型版と言える。
Already in exhibitions and markets, there is a power source for a light receiving device or a power generating device of a type in which only the solar cell surface facing substantially upward is provided at the tip of a support as shown in FIG. This type of light receiving device has different sun altitudes, sunrise and sunset directions due to changes in sun altitudes during the day, during the day and at sunset, sun movements, and spring, summer, autumn and winter seasons. In addition, the light receiving efficiency is considerably low.
A light receiving device or power generation device of a type in which only a solar cell surface facing substantially upward is provided at the tip of a support column can be said to be a small version of a solar cell arranged in a plane on a roof.

図2のグラフに示す様に一日間の朝昼夕において昼の間は最大値の受光発電を行なえるが朝夕においてはかなり低い発電となる。よって太陽電池面を平面状にいかに広く設けても図2の受光量のグラフの相似形になるばかりであり受光発電効率はよくない。 As shown in the graph of FIG. 2, the light receiving power generation of the maximum value can be performed during the daytime in the morning and evening of the day, but the power generation is considerably low in the morning and evening. Therefore, no matter how wide the solar cell surface is provided in a planar shape, it only becomes a similar shape to the graph of received light amount in FIG. 2, and the light receiving power generation efficiency is not good.

また図1の支柱の先端に略上方向に向きする太陽電池面1に積雪があると、受光発電を全く行えない。 In addition, if there is snow on the solar cell surface 1 facing substantially upward at the tip of the column in FIG. 1, no light receiving power generation can be performed.

今まで立体的に太陽の光を受光する太陽電池の出願は見当たらない。
特許文献1は「折畳可能な太陽追従タイプの太陽電池」による発電装置である。
特開2010−219318公報
Until now, there has been no application for solar cells that three-dimensionally receive sunlight.
Patent Document 1 is a power generation device using a “foldable solar-following solar cell”.
JP 2010-219318 A

前記の様に、平面状に並べられた太陽電池面の受光においては、一日間の朝方、昼間、夕方により太陽の高度が変わるばかりか、春夏秋冬の季節の変化により太陽の高度も変わるので、発電量が著しく変化する。 As described above, in the light reception of the solar cells arranged in a plane, not only the altitude of the sun changes depending on the morning, daytime and evening of the day, but also the altitude of the sun changes due to seasonal changes in spring, summer, autumn and winter. The amount of power generation changes significantly.

一日間の朝方、昼間、夕方の太陽の「高度の変化」と、春夏秋冬の「太陽の高度」の変化に対しても、一定の占有面積において一定以上の受光量が確保できる発電する受光装置、発電装置、電源の出現が待たれていた。 Light reception that generates electricity that can secure a certain amount of light reception in a certain occupied area even in the morning, daytime, and evening sun "altitude changes" in the day and changes in "sun altitude" in spring, summer, autumn and winter The advent of devices, power generators, and power supplies was awaited.

一日間における朝方、昼間、夕方の「太陽の移動」においても、受光量が高く且つ受光量が略一定以上であって、一定の太陽電池面の占める占有面積において、一定以上の受光量が確保できる発電方法の電源が待たれていた。 Even in the morning, daytime, and evening “movement of the sun” in a day, the amount of light received is high and the amount of light received is substantially constant or more, and a certain amount of light received is ensured in the area occupied by a certain solar cell surface. The power supply of the power generation method that can be waited.

平面状に並べられた太陽電池面の受光においては、太陽電池の広さを倍にしても、受光量は図2に示す様なグラフと相似形となり、日中における受光量のみが突出して増すだけであり、朝方、夕方における受光量は激減したままである。よって総発電量を増すため太陽電池面の広さを増すと日中は蓄電池による充電においては過電流状態になり蓄電池の劣化の原因になったり、発生する電力の全てを充電できなかったりする。よって1日間の朝昼夕において太陽が出ている間においては、略一定以上の発電量が確保できる太陽電池による電源が待たれていた。 In the light reception of the solar cell surfaces arranged in a plane, even if the size of the solar cell is doubled, the light reception amount is similar to the graph as shown in FIG. 2, and only the light reception amount during the day protrudes and increases. However, the amount of light received in the morning and evening remains drastically reduced. Therefore, if the area of the solar cell surface is increased to increase the total amount of power generation, charging by the storage battery becomes an overcurrent state during the day, which may cause deterioration of the storage battery or fail to charge all of the generated power. Therefore, while the sun is out in the morning and afternoon of one day, the power supply by the solar cell that can secure a power generation amount of approximately a certain level or more is awaited.

図1に示す略上方向のみの太陽電池面を具備した電源における太陽高度の違いによる受光量の変化を示す。
(太陽電池面に光を垂直に照射した時の受光量を100とし、単位なしの受光量比で示す。)
太陽光が太陽電池面への垂直に対して一定角度の傾斜で入射するとき
角度 略上方向の太陽電池面のみによる受光量
0° 100
15° 96
30° 86
45° 70
60° 50
75° 26
The change of the light reception amount by the difference in the solar height in the power supply which comprised the solar cell surface only in the substantially upward direction shown in FIG. 1 is shown.
(The amount of light received when the solar cell surface is irradiated with light vertically is assumed to be 100, and the ratio of the amount of light received without a unit is shown.)
When sunlight is incident at an angle with respect to the vertical to the solar cell surface
Angle Amount of light received only by the solar cell surface in the upward direction
0 ° 100
15 ° 96
30 ° 86
45 ° 70
60 ° 50
75 ° 26

地球の公転における夏冬の間の見掛けの地球の傾きは最大で23.4°×2=46.8°あり、受光地点の緯度の相違も加わって、上記の様に太陽の高度の変化により略上方向に向きする太陽電池面のみによる受光量は26〜100と大きくばらつく。よって受光する地点の緯度の相違において日の出位置、日中位置、日没位置が変化するので、日の出ている間において、受光量を一定以上とできる太陽電池により発電をする手段が待たれていた。 The apparent inclination of the earth during summer and winter in the Earth revolution is 23.4 ° × 2 = 46.8 °, and the difference in the latitude of the light receiving point is added. The amount of light received only by the solar cell surface facing substantially upward varies greatly from 26 to 100. Therefore, since the sunrise position, the daytime position, and the sunset position change depending on the latitude of the light receiving point, a means for generating power with a solar cell that can make the amount of received light more than a certain level during the sunrise has been awaited.

特に冬は太陽の高度が低いので、屋根等に略平面状に設置された太陽電池の受光量は少なく発電量は低くなっていた。冬でも夏と同じ位の発電量と受光量によって発電できる受光装置や発電装置が待たれていた。 In particular, since the altitude of the sun is low in winter, the amount of light received by solar cells installed on a roof or the like in a substantially flat shape is small and the amount of power generation is low. Even in winter, a light receiving device and a power generating device that can generate power with the same amount of power generation and light reception as in summer have been awaited.

略平面状に設置された太陽電池面の受光では、一日間の朝方、昼間、夕方における太陽電池の受光量は著しく異なり、朝夕は受光量が著しく低下する。
朝方、夕方の発電量も昼間と略同じ位に発生できる一定の受光量が得られる太陽電池による受光装置や発電装置が待たれていた。
In the light reception on the surface of the solar cell installed in a substantially flat shape, the amount of light received by the solar cell in the morning, daytime, and evening in the day is significantly different, and the amount of light received in the morning and evening is significantly reduced.
In the morning and evening, the amount of power generated in the morning and evening has been waiting for a light receiving device and a power generating device using a solar cell that can obtain a certain amount of received light that can be generated almost as much as in the daytime.

また積雪によって、略上方向に向きする太陽電池面のみでは発電しなくなる。積雪においても発電を可能とする太陽電池による受光装置や発電装置が待たれていた。 In addition, due to snow accumulation, power generation is stopped only with the solar cell surface facing substantially upward. A light receiving device and a power generation device using a solar cell that can generate power even in snow are waiting.

略上方向に向きする太陽電池面のみの電源においては、受光量は太陽の高度が高く太陽電池面に垂直に太陽の光を受光させた時が最大の受光量となる。
太陽の高度が低くなるに従って太陽電池面の受光量は減少する事となる。
本発明においては、前記の略上方向に向きする太陽電池面の他に、もう一つの太陽電池面である、前記略上方向に向きする太陽電池面に対して略垂直方向に向きする太陽電池面を具備させる手段を用いる。
In a power source with only a solar cell surface facing upward, the amount of received light is the maximum when the sun is received at a high altitude of the sun and perpendicular to the solar cell surface.
The amount of light received on the solar cell surface decreases as the altitude of the sun decreases.
In the present invention, in addition to the solar cell surface facing in the substantially upward direction, another solar cell surface, which is a solar cell facing in a direction substantially perpendicular to the solar cell surface facing in the substantially upward direction. A means for providing a surface is used.

第一として、水平面に対して略上方向に向きする太陽電池面と、前記太陽電池面の上側または下側に水平面に対して略垂直方向に向きする太陽電池面とを具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光方法や発電方法、の手段を用いる。 First, a solar cell surface facing substantially upward with respect to a horizontal plane, and a solar cell surface facing substantially perpendicular to the horizontal plane above or below the solar cell surface, the two A light receiving method or a power generation method is used, which is characterized in that solar light is simultaneously received on a solar cell surface facing in a direction to obtain generated electric power.

第二として、水平面に対して略上方向に向きする太陽電池面と、前記太陽電池面の上側または下側に水平面に対して略垂直方向に向きする太陽電池面とを具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置や発電装置、の手段を用いる。 Second, a solar cell surface facing substantially upward with respect to the horizontal plane, and a solar cell surface facing substantially perpendicular to the horizontal plane above or below the solar cell surface, the two A light receiving device or a power generating device is used, which is characterized in that the solar cell surface facing in the direction receives solar light simultaneously to generate generated electric power.

第三として、支柱の上先端に水平面に対して略上方向に向きする太陽電池面と、支柱の側面に水平面に対して略垂直方向に向きする太陽電池面を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置や発電装置、の手段による。 Third, a solar cell surface facing substantially upward with respect to the horizontal plane at the top end of the support column, and a solar cell surface facing substantially perpendicular to the horizontal plane on the side surface of the support column, the two directions By means of a light receiving device or a power generating device, the solar cell surface facing the solar cell simultaneously receives solar light to obtain generated electric power.

第四として、支柱の上先端に水平面に対して略上方向に向きする太陽電池面と、支柱の側面に水平面に対して略垂直方向に向きする太陽電池面を具備して、少なくとも前記略垂直方向に向きする太陽電池を前記支柱を略中心として水平方向に回転させる事を特徴とすると共に、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置や発電装置、の手段による。 Fourthly, the solar cell surface facing substantially upward with respect to the horizontal plane at the top end of the support column, and the solar cell surface facing substantially perpendicular to the horizontal plane on the side surface of the support column, at least the substantially vertical The solar cell facing in the direction is rotated in the horizontal direction about the support column as a center, and the solar cell surface facing in the two directions is simultaneously received by receiving solar light to obtain generated electric power. It depends on the features of the light receiving device and the power generating device.

第五として、支柱の上先端に水平面に対して略上方向に向きする太陽電池面と、支柱の側面に水平面に対して略垂直方向に向きする太陽電池面を具備して、前記略垂直方向に向きする太陽電池面が前記支柱を囲む様に配置されている事を特徴とすると共に、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とる受光装置や発電装置、の手段による。 Fifth, a solar cell surface facing substantially upward with respect to the horizontal plane at the top end of the column, and a solar cell surface facing substantially perpendicular to the horizontal plane on the side surface of the column, the substantially vertical direction The solar cell surface facing toward the solar cell is disposed so as to surround the support column, and the solar cell surface facing in the two directions is simultaneously received by receiving solar light to obtain generated power. It depends on the means of the light receiving device and the power generation device.

第六として、立体の柱状の上面に略上方向に向きする太陽電池面と、立体柱状の側面に略垂直方向に向きする太陽電池面を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置や発電装置、の手段による。 Sixth, a solar cell surface facing a substantially vertical direction on a three-dimensional columnar upper surface and a solar cell surface facing a substantially vertical direction on a three-dimensional columnar side surface, and facing the two directions By means of a light receiving device or a power generating device, which simultaneously receives sunlight and obtains generated electric power.

第七として、立体の柱状の上面に略上方向に向きする太陽電池面と、立体柱状の側面に略垂直方向に向きする太陽電池面を具備して、前記二つの方向に向きする太陽電池を共に水平方向に回転させ、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置や発電装置、の手段による。 Seventh, a solar cell surface facing in a substantially upward direction on a three-dimensional columnar upper surface and a solar cell surface facing in a substantially vertical direction on a three-dimensional columnar side surface, the solar cell facing in the two directions The light receiving device and the power generating device are characterized in that both are rotated in the horizontal direction and the solar cell surfaces facing in the two directions receive solar light simultaneously to generate electric power.

第八として、前記第一から第七までの手段において、略上方向に向きする太陽電池面を水平面に対して傾斜させて設置する手段による。 Eighth, in the first to seventh means, the solar cell surface facing substantially upward is inclined with respect to the horizontal plane.

全ての請求項に共通な事は、太陽電池面を、略上方向に向きする太陽電池面と、略垂直方向に向きする太陽電池面の二つに分けて立体的に設置して、前記二つの太陽電池面が成す二面角を基本的に略直角に配置し、前記二つの太陽電池面に太陽の光を同時に受光した場合においては、発生する電力にて発電する事を特徴とする受光装置や発電装置の手段である。 What is common to all the claims is that the solar cell surface is divided into two parts, a solar cell surface facing substantially upward and a solar cell surface facing substantially vertical, and installed in three dimensions. The dihedral angle formed by two solar cell surfaces is basically arranged at a substantially right angle, and when the two solar cell surfaces receive solar light at the same time, the received light is generated by the generated electric power. It is a means of a device or a power generator.

本発明では、前記二つの太陽電池面が成す二面角の外側に太陽電池面を設けたタイプをAタイプ、二面角の内側に太陽電池面を設けたタイプをBタイプとしている。
略上方向に向きする太陽電池面については水平面に対して傾斜を設ける場合もある。
In the present invention, the type in which the solar cell surface is provided outside the dihedral angle formed by the two solar cell surfaces is the A type, and the type in which the solar cell surface is provided inside the dihedral angle is the B type.
In some cases, the solar cell surface facing substantially upward is inclined with respect to the horizontal plane.

略上方向に向きする太陽電池面1のみにおいては、受光量は太陽電池面に垂直に太陽の光を受光させた時が最大の受光量となり、太陽の高度が低くなるに従って太陽電池面1の受光量は減少する事となる。
本発明においては、前記の略上方向に向きする太陽電池面1の他に、もう一つの太陽電池面である略垂直方向に向きする太陽電池面3を一緒に組み合わせ具備させる事により、略上方向に向きする太陽電池面1における受光量が減少するに従い、略垂直方向に向きする太陽電池面3の受光量は逆に増大する。よって太陽の高さ高度に係わらず一定以上の受光量を得られると言う効果がある。
In only the solar cell surface 1 facing substantially upward, the amount of received light is the maximum when the solar light is received perpendicular to the solar cell surface, and as the solar altitude decreases, The amount of received light will decrease.
In the present invention, in addition to the solar cell surface 1 facing substantially upward, the solar cell surface 3 facing the substantially vertical direction, which is another solar cell surface, is combined and provided. As the amount of light received on the solar cell surface 1 facing in the direction decreases, the amount of light received on the solar cell surface 3 facing in the substantially vertical direction increases conversely. Therefore, there is an effect that it is possible to obtain a light receiving amount of a certain level regardless of the height of the sun.

一日間の太陽の昇る時から日の沈むまでを実験において、従来の方法である略平面状に並べて設けられた太陽電池のみでは図2の様に22〜100と受光量は大きく増減する。 In the experiment from the day when the sun rises until the sun sets, the amount of received light greatly increases and decreases by 22 to 100 as shown in FIG.

図6の実験では、春夏秋冬における太陽の高度の変化に係わらず、略上方向に向きする太陽電池面1の受光量と、略垂直方向に向きする太陽電池面3における受光量との和は太陽の高度の変化に対して122〜141と大きく増減を生じない収束した受光量が得られる効果があった。 In the experiment of FIG. 6, the sum of the amount of light received by the solar cell surface 1 facing substantially upward and the amount of light received by the solar cell surface 3 facing substantially vertical regardless of changes in the altitude of the sun during spring, summer, autumn and winter. Has an effect of obtaining a converged light reception amount that does not greatly increase or decrease as the solar altitude changes from 122 to 141.

本発明の図8の装置の実験では、太陽は真東から昇り真上を通過し、真西に沈むと太陽が移動をするとした場合、光源により常に100以上の受光量が得られる効果がある。(受光角度を15°〜165°とした。)
日の出、日の入りにおいては、山、遠方の雲による光の遮蔽、地球の円形における接線上にて太陽の光が大気中を斜めに通過する為に光はかなり減哀するがこれらを無視すれば、太陽は真東から昇り、略真上を通過して真西に沈むとした太陽移動時における調査実験結果では100〜141の収束した略一定量の受光量が得られた。
In the experiment of the apparatus of FIG. 8 according to the present invention, when the sun rises from the east and passes directly above and sinks to the west, the sun moves and there is an effect that the light source can always obtain an amount of received light of 100 or more. . (The light receiving angle was 15 ° to 165 °.)
At sunrise and sunset, the light is greatly diminished because the sun's light passes diagonally through the atmosphere on the tangent line of the earth, the mountains, distant clouds, but if you ignore these, As a result of the investigation experiment during the movement of the sun that the sun rises from just east, passes almost directly above, and sinks to the west, 100 to 141 converged substantially constant amount of received light was obtained.

図8の右側面図に示す様に、上記100〜141における受光量は、太陽が真東から昇り真上にて日中し、真西に沈む場合の数値である。太陽が略上方向に向きする太陽電池面1の真上にある場合は略上方向に向きする太陽電池面1にてのみにて得られた受光量となり、受光量は100となっている。
しかし日本国土および世界の国々のほとんどの地域においては緯度が0°ではなく、太陽の位置は略上方向に向きする太陽電池面1に対して垂直でなく、太陽は常に斜めの高度を保っている。よって南方向(90°)に向きにおいては、水平線に対して略垂直方向に向きする太陽電池面3と略上方向に向きする太陽電池面1にて共に受光するので、太陽の高度が45°の時では前記二つの方向に向きする太陽電池面に太陽の光を同時に受光した場合の受光量は最大で141となる。
As shown in the right side view of FIG. 8, the amount of light received in the above 100 to 141 is a numerical value when the sun rises from just east, goes straight above, and sinks to just west. When the sun is directly above the solar cell surface 1 facing substantially upward, the received light amount is obtained only on the solar cell surface 1 facing substantially upward, and the received light amount is 100.
However, in most parts of Japan and the rest of the world, the latitude is not 0 °, the position of the sun is not perpendicular to the solar cell surface 1 facing upward, and the sun always maintains an oblique altitude. Yes. Therefore, in the south direction (90 °), the solar cell surface 3 facing in the substantially vertical direction with respect to the horizontal line and the solar cell surface 1 facing in the substantially upward direction receive light, so that the altitude of the sun is 45 °. In this case, the maximum amount of light received when solar light is simultaneously received on the solar cell surfaces facing in the two directions is 141.

よって緯度が0°でない地域の実際の受光量は、図7のグラフに示す図の様に朝方、夕方においては100となるが、90°の日中における受光量においては必ずしも最小の100の二段の山とならず、最大で141の受光量となり得る。よって日本の国土においては日中でも100〜141の値に比べ、より収束した受光量の値が得られる効果がある。   Accordingly, the actual received light amount in the region where the latitude is not 0 ° is 100 in the morning and evening as shown in the graph of FIG. 7, but the minimum received light amount of 100 in the morning at 90 ° is not necessarily 100%. It is not a stepped mountain, and the amount of received light can be 141 at the maximum. Therefore, in Japan, compared to the values of 100 to 141 even during the day, there is an effect that a more converged light reception value can be obtained.

略上方向に向きする太陽電池面1のみの受光装置や発電装置では、使用する場所の緯度の違いに伴なって太陽の高度の違いにより受光量の違いも発生する。
本発明の電源においては、略上方向に向きする太陽電池面1と略垂直方向に向きする太陽電池面3の二つを具備する事により、本装置を使用する場所における緯度の高低に係わらず一定以上の受光量を確保でき、販売地域の緯度の相違により受光量が大きく変化すると言う問題が発生しない効果がある。
よって緯度の違いによる個別の製品を作成する事がなく、すべての製品を均一化した製品を製造販売できる効果がある。
In the light receiving device or power generation device with only the solar cell surface 1 facing upward, a difference in the amount of received light also occurs due to a difference in altitude of the sun with a difference in latitude of the place of use.
In the power source of the present invention, the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertical are provided, so that the latitude of the place where the apparatus is used is high or low. An amount of light received above a certain level can be secured, and there is an effect that the problem that the amount of received light changes greatly due to the difference in latitude in the sales area does not occur.
Therefore, it is possible to produce and sell a product in which all products are made uniform without creating individual products due to differences in latitude.

略上方向に向きする太陽電池面1と垂直方向に向きする電池面3を具備する事により、緯度の高い地域から緯度に低い地域まで受光装置または発電装置を使用する事ができる。 By including the solar cell surface 1 facing substantially upward and the battery surface 3 facing vertically, the light receiving device or the power generation device can be used from a high latitude region to a low latitude region.

春夏秋冬における朝方の日の出位置、夕方の日没位置を考慮しなければ、春夏秋冬の太陽の高度の変化、太陽の移動においても受光量は略一定以上を確保できる。
略上方向に向きする太陽電池面1の他に、略垂直方向に向きする太陽電池3を東西南北の複数方向に設けるか、略垂直方向に向きする太陽電池3を水平に回転させる事により、朝日から日中、日没まで受光ができる。太陽電池面を太陽の方向に制御して受光する太陽追従型、太陽追尾型の太陽電池と略同じ効果が得られる。朝日から夕日までの受光が可能の為に1日において時間値を乗した大きな全発電量を得る事がでる。
If the sunrise position in the morning and the sunset position in the evening in spring, summer, autumn and winter are not taken into consideration, the amount of received light can be secured at a substantially constant level or more even in the change of solar altitude and the movement of the sun in spring, summer, autumn and winter.
In addition to the solar cell surface 1 facing substantially upward, the solar cells 3 facing substantially vertical are provided in a plurality of directions of east, west, south, and north, or by horizontally rotating the solar cells 3 facing substantially vertical, Light can be received from morning sun to daytime to sunset. The solar cell surface and solar tracking solar cell that receives light by controlling the solar cell surface in the direction of the sun can obtain substantially the same effect. Because it is possible to receive light from the morning sun to the sunset, you can get a large total amount of power generated by multiplying the time value in one day.

太陽電池を、略上方向に向きする太陽電面池面1と垂直方向に向きする太陽電池面3の二つの面を具備する立体形とする事により、上方向に向きする太陽電池面1が略水平に上方向に設置されておれば、上方向に向きする太陽電池面の面積が、本電源の占有面積となり、一定の占有面積において一定量以上の受光量を確保できた効果がある。
垂直方向に向きする太陽電池面においては太陽電池の厚さが専有面積の一部となるが、その面積は僅かなものである。
By making the solar cell into a three-dimensional shape having two surfaces, a solar cell surface 1 facing substantially upward and a solar cell surface 3 facing vertically, the solar cell surface 1 facing upward is obtained. If it is installed substantially horizontally upward, the area of the solar cell surface facing upward becomes the occupied area of this power supply, and there is an effect that a certain amount of received light can be secured in a certain occupied area.
On the surface of the solar cell facing in the vertical direction, the thickness of the solar cell becomes a part of the exclusive area, but the area is slight.

一定の占有面積にて、一日間における太陽電池の受光量は、朝日、夕日においても100以上の略一定以上の受光量が得られる効果がある。 The amount of light received by the solar cell in a certain area over a certain occupied area has an effect that a light amount of approximately 100 or more can be obtained even in the morning sun and sunset.

一定の占有面積において、受光効率が高く、朝から夕方まで受光時間を長く得られる受光装置、発電装置を得られた。よって一定の発電量を得る電源において、相対的に太陽電池面を小さくできる効果もある。 In a certain occupied area, a light receiving device and a power generating device having high light receiving efficiency and a long light receiving time from morning to evening were obtained. Therefore, there is also an effect that the solar cell surface can be made relatively small in a power source that obtains a constant power generation amount.

図18、図19に示すBタイプにおいては、略上方向に向きする太陽電池面1と、前記太陽電池面の上側または下側に略垂直方向に向きする太陽電池面3とを具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光させる電源においては、直射日光による受光以外に反射波による受光量を得る事が期待できる効果がある。
図18、19においては、略上方向に向きする太陽電池面1からの反射光は、略垂直方向に向きする太陽電池面3に受光される。また略垂直方向に向きする太陽電池面3からの反射光は、略上方向に向きする太陽電池面1にて受光されると言う効果もある。
In the B type shown in FIG. 18 and FIG. 19, the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertically above or below the solar cell surface are provided. In a power source that simultaneously receives solar light on the solar cell surfaces facing in two directions, there is an effect that it can be expected to obtain an amount of light received by reflected waves in addition to light reception by direct sunlight.
18 and 19, the reflected light from the solar cell surface 1 facing substantially upward is received by the solar cell surface 3 facing substantially vertical. Further, there is an effect that the reflected light from the solar cell surface 3 facing in the substantially vertical direction is received by the solar cell surface 1 facing in the substantially upward direction.

略上方向に向きする太陽電池面1に積雪があって受光しない場合でも、略垂直方向に向きする太陽電池面3には積雪しないので、略垂直方向に向きする太陽電池面3には、太陽光が雪の表面により反射した光を受光する事ができる効果がある。 Even when there is snow on the solar cell surface 1 facing substantially upward and no light is received, no snow is accumulated on the solar cell surface 3 facing substantially vertical, so the solar cell surface 3 facing substantially vertical There is an effect that the light reflected by the snow surface can be received.

略上方向に向きする太陽電池面は支柱の上先端、又は立体の柱状の上面に固定されており、略垂直方向に向きする太陽電池面は、支柱や柱状の側面に固定されているので、太陽追従、太陽追尾の方式が可動部分であるので比べると、積雪や風に強い。 Since the solar cell surface facing substantially upward is fixed to the top end of the column or the three-dimensional columnar upper surface, the solar cell surface facing substantially vertical is fixed to the column and columnar side surface, Compared to the sun tracking and sun tracking, which are movable parts, they are more resistant to snow and wind.

略上方向に向いた太陽電池面1と共に、略垂直方向に向いた太陽電池面3を具備した本装置によって、前記二つの太陽電池面の面積を相対的に小さくする事ができる。よって、太陽電池面1,3を小さくする事により、太陽電池面1,3による風圧の影響も発生しにくくなる効果もある。 With the present device comprising the solar cell surface 1 oriented substantially upward and the solar cell surface 3 oriented substantially vertically, the area of the two solar cell surfaces can be made relatively small. Therefore, by making the solar cell surfaces 1 and 3 small, there is an effect that the influence of wind pressure due to the solar cell surfaces 1 and 3 is less likely to occur.

蓄電池においては、日中だけ急速充電を行うより、朝、昼、夕と継続した長い時間において適量の一定の電気を蓄電器に蓄電する方が蓄電池の寿命を延ばせて劣化の問題が進行しにくくなる観点からしても良い効果がある。 In a storage battery, rather than performing rapid charging only during the day, storing a proper amount of constant electricity in the battery for a long time that lasts in the morning, noon, and evening will prolong the life of the storage battery and make the deterioration problem less likely to progress. There is a good effect from the viewpoint.

本発明によって、垂直方向の太陽電池面3を水平方向に回転させる簡単な二次元制御を行なえばよい。太陽追従、太陽追尾型の様にむずかしい従来の三次元制御の必要がなくなった。 According to the present invention, simple two-dimensional control for rotating the solar cell surface 3 in the vertical direction in the horizontal direction may be performed. The conventional three-dimensional control that is difficult to follow, such as the sun tracking and the sun tracking type, has been eliminated.

以下、太陽光の入射角における太陽電池の受光量について上記の効果の根拠と理由を図4、図5、図18、図19に示して説明をする。
水平線に対して略上方向に向きする太陽電池面1と、水平線に対して略垂直方向に向きする太陽電池面3をそれぞれθ=90°の関係にて仮定して固定して実験した。
Hereinafter, the grounds and reasons for the above effect of the amount of light received by the solar cell at the incident angle of sunlight will be described with reference to FIGS. 4, 5, 18, and 19.
The experiment was conducted by fixing the solar cell surface 1 facing substantially upward with respect to the horizontal line and the solar cell surface 3 facing substantially vertical with respect to the horizontal line on the assumption that θ = 90 °.

図4(Aタイプ)および図18(Bタイプ)は夏の略南中時の太陽の状態を示す。
冬に比べて太陽の高度は高く、入射角α1と入射角β1の和はα1+β1=90°となる。
図5(Aタイプ)および図19(Bタイプ)は冬の略南中時の太陽の状態を示す。
夏に比べて太陽の高度は低く、入射角α2と入射角β2の和はα2+β2=90°となる。
FIG. 4 (A type) and FIG. 18 (B type) show the state of the sun at approximately south-central time in summer.
The altitude of the sun is higher than in winter, and the sum of the incident angle α1 and the incident angle β1 is α1 + β1 = 90 °.
FIG. 5 (A type) and FIG. 19 (B type) show the state of the sun in the middle of winter in the south.
The altitude of the sun is lower than in summer, and the sum of the incident angle α2 and the incident angle β2 is α2 + β2 = 90 °.

夏は太陽の高度が高く、入射角α1と入射角β1の和はα1+β1=90°であり、冬は太陽の高度は低いが、入射角α2と入射角β2の和はα2+β2=90°となる。
つまり太陽の高度に係わらず、常に太陽電池面に対して太陽の光にが垂直に受光している時と同じ値となるかも知れないと仮定した。
In summer, the altitude of the sun is high, and the sum of the incident angle α1 and the incident angle β1 is α1 + β1 = 90 °. In winter, the sun is low, but the sum of the incident angle α2 and the incident angle β2 is α2 + β2 = 90 °. .
In other words, it was assumed that the value may be the same as when the solar light is always received perpendicular to the solar cell surface regardless of the altitude of the sun.

しかしながら、略上方向に向きする太陽電池1と、略垂直方向に向きする太陽電池3の受光量(各角度αβにおける受光量をアンダーラインを記して表す)はα1β1α1β2とはならない。COSθの関数により、太陽電池面における垂直に照射される受光量を100としても、上方向に向きする太陽電池と垂直方向に向きする太陽電池の二枚において均等に照射する45°の照射角における受光量の値は141となる。 However, the amount of light received by the solar cell 1 facing substantially upward and the solar cell 3 facing substantially vertically (the amount of light received at each angle αβ is indicated by an underline) is α1 + β1 = α1 + β2. Don't be. Even if the amount of light received vertically on the solar cell surface is set to 100 by the function of COSθ, the solar cell facing upward and the solar cell facing vertically are evenly irradiated at a 45 ° irradiation angle. The value of the amount of received light is 141.

太陽電池の出力は、太陽光が太陽電池の受光面に垂直に入射する場合に、その光度での最大出力をもたらす。
同じ光度でも、太陽光が太陽電池面への垂直に対してθ度の傾斜で入射するとき(入射角がθ度の時)太陽電池面に入射する光量はCOS(θ=0の時 COSθ=1.0<|αorβ|<n/2では0<COSθ<1)倍に減少するため出力もCOSθに減少すると言われている。
The output of the solar cell provides the maximum output at that light intensity when sunlight is incident perpendicular to the light receiving surface of the solar cell.
Even when the light intensity is the same, when sunlight is incident at an inclination of θ degrees with respect to the vertical to the solar cell surface (when the incident angle is θ degrees), the amount of light incident on the solar cell surface is COS (when θ = 0, COSθ = When 1.0 <| αorβ | <n / 2, the output decreases to 0 <COSθ <1).

今まで例えば、略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池面3を組み合わせて具備しても、実際の直射日光の受光量がどの様になるか推測できなかった。 Up to now, for example, even if the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertical are combined, it is impossible to estimate how the amount of actual direct sunlight is received. It was.

略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池3の受光量はα1β1α1β2の値が略一定以上と仮定すれば、太陽電池面1と太陽電池面3の受光量と発電量の和は、一枚における太陽電池の表面に太陽からの光が直角に照射したと受光量、発電量と粗同じ値となるだろうか実験にて確かめた。 Assuming that the amount of light received by the solar cell surface 1 facing substantially upward and the solar cell 3 facing substantially vertical is α1 + β1 and α1 + β2 are substantially constant or more, the solar cell surface 1 and the solar cell The sum of the amount of light received and the amount of power generated on surface 3 was experimentally confirmed to be the same value as the amount of light received and the amount of power generated when light from the sun was irradiated at a right angle on the surface of a single solar cell.

つまり略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池面3の前記二つに方向における受光量の和、発電量の和が、一枚における太陽電池面に太陽からの光が垂直に受光した時の受光量以上であり、各受光角度においての値が収束しておれば、この方式は使えると判断される。 In other words, the sum of the received light amount and the sum of the power generation amount in the two directions of the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertical are the same from the sun to the solar cell surface in one sheet. If this value is equal to or greater than the amount of light received vertically and the values at each light receiving angle converge, it is determined that this method can be used.

実験の結果、略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池面3の両方を組み合わせて具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光させる事により、全く異なった特性が得られた。
太陽電池面1と太陽電池面3による受光量の和は、一枚における太陽電池面1に太陽からの光が垂直に受光した時の受光量以上であり略収束した一定以上の数値が得られた。
As a result of the experiment, both the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertical are provided in combination, and solar light is simultaneously applied to the solar cell surfaces facing the two directions. By receiving light, completely different characteristics were obtained.
The sum of the amounts of light received by the solar cell surface 1 and the solar cell surface 3 is equal to or greater than the amount of light received when light from the sun is vertically received on the solar cell surface 1 in one sheet, and a numerical value greater than or equal to a substantially converged value is obtained. It was.

内容は変わって、図6の上図は太陽の高度の変化による受光量についての調査である。
略上方向の太陽電池面1と略垂直方向の太陽電池面3との、両太陽電池の受光量の和を求めた。以後、単位なしの受光量比で示す。
(水平面に対して略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池面3共、略同等の特性のものを用いた場合で示す。)
照射角度 略上方向の太陽電池面1と略垂直方向の太陽電池面3の受光量の和
15° 96.6+25.9≒122
30° 86.6+50.0≒136
45° 70.7+70.7≒141
60° 50.0+86.6≒136
75° 25.9+96.6≒122
The content changes, and the upper figure in FIG. 6 is an investigation of the amount of light received due to changes in the altitude of the sun.
The sum of the amounts of light received by both solar cells on the substantially upward solar cell surface 1 and the substantially vertical solar cell surface 3 was determined. Hereinafter, the ratio of received light quantity without unit is shown.
(The solar cell surface 1 facing substantially upward with respect to the horizontal plane and the solar cell surface 3 facing substantially vertical are shown using substantially the same characteristics.)
Irradiation angle Sum of received light amounts of solar cell surface 1 in the substantially upward direction and solar cell surface 3 in the substantially vertical direction 15 ° 96.6 + 25.9≈122
30 ° 86.6 + 50.0 ≒ 136
45 ° 70.7 + 70.7 ≒ 141
60 ° 50.0 + 86.6 ≒ 136
75 ° 25.9 + 96.6 ≒ 122

この様に、略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池3の両方を組み合わせて具備させ、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光させた実験を行う事により、
太陽の高度の変化に対して122〜141の収束した受光量が得られた。
In this way, both the solar cell surface 1 facing substantially upward and the solar cell 3 facing substantially vertical are provided in combination, and solar light is simultaneously received by the solar cell surfaces facing the two directions. By conducting the experiment
A converged light reception amount of 122 to 141 was obtained with respect to changes in the altitude of the sun.

図6の下図の様に、略上方向の太陽電池面1を、太陽の高度と直角になる様にθ2=30°傾けた場合では、略垂直方向の太陽電池面3と、前記二つの太陽電池の受光量の和は
照射角度 略上方向の太陽電池面1と略垂直方向の太陽電池面3の受光量の和
30° 100+50=150
45° 97+71=168
60° 87+87=174
75° 71+97=168
As shown in the lower diagram of FIG. 6, when the solar cell surface 1 in the substantially upward direction is tilted by θ2 = 30 ° so as to be perpendicular to the altitude of the sun, the solar cell surface 3 in the substantially vertical direction and the two solar cells The sum of the received light amount of the battery is the sum of the received light amounts of the solar cell surface 1 in the substantially vertical direction and the solar cell surface 3 in the substantially vertical direction.
30 ° 100 + 50 = 150
45 ° 97 + 71 = 168
60 ° 87 + 87 = 174
75 ° 71 + 97 = 168

同様に、太陽の高度の変化に対して150〜174の収束した受光量が得られた。この様に上方向に向きする太陽電池面1は水平面状態にした時より、斜めにした方が多い受光量を得る事ができる効果があった。 Similarly, 150 to 174 converged light receiving amounts were obtained with respect to changes in solar altitude. As described above, the solar cell surface 1 facing upward has an effect of obtaining a larger amount of received light when the solar cell surface 1 is inclined than when it is in a horizontal plane state.

この様に上方向に向きする太陽電池面1の角度を例えばθ2=30°としたのは、設計時には、太陽電池面1上の雨や雪の流せる様に、また太陽の光が太陽電池面1に垂直に受光する様に、略上方向に向きする太陽電池1にθ2の傾きを持たせる場合が多い。 In this way, the angle of the solar cell surface 1 facing upward is set to θ2 = 30 °, for example, so that rain and snow can flow on the solar cell surface 1 at the time of designing, In many cases, the solar cell 1 facing substantially upward is given an inclination of θ2 so as to receive light perpendicularly to 1.

また、略上方向に向きする太陽電池面1と略垂直方向に向きする太陽電池面3の二つの太陽電池面を具備した電源を南方向に取り付けた場合、春夏秋冬における太陽の高度の変化に対して、季節の相違に関わらず、前記二つの太陽電池の和によって受光量の変化を最小限にする事ができる効果もある。
よって今まで架台等に設置された太陽電池面では、受光効率を高める為に夏冬等の太陽高度に合わせて太陽電池面の角度を調整していたが、この様な作業の必要はなくなった。
Further, when a power source having two solar cell surfaces, that is, a solar cell surface 1 facing substantially upward and a solar cell surface 3 facing substantially vertical, is mounted in the south direction, the change in altitude of the sun during spring, summer, autumn and winter On the other hand, there is an effect that the change in the amount of received light can be minimized by the sum of the two solar cells regardless of the difference in season.
Therefore, the solar cell surface installed on a pedestal has been adjusted to the angle of the solar cell surface according to the solar altitude in summer and winter to increase the light receiving efficiency, but such work is no longer necessary. .

次に、上方向に向きする太陽電池面1のみを用いて、日の昇る時から日の沈む時までにおいて、太陽電池の受光量を調べた。この結果を図2にグラフで示す。縦軸が受光量であり横軸が太陽の方向である。
太陽は真東から昇り、真上を通過して真西に沈むとした調査実験結果である。
真東および真西における太陽からの受光量は、日の出(180°)、日の入り(0°)においては丸い太陽が地平線や水平線に半分のみ表れている場合があるので、受光量の数字はここでは明記しない。
太陽電池面に垂直に照射された光の時の受光量を100とする。
太陽光が太陽電池面への垂直に対してθ度の傾斜で入射するとき
照射角度・方向 略上方向の太陽電池のみでの受光量
15° 26
30° 50
45° 70
60° 86
75° 96
90° 100
105° 96
120° 86
135° 70
150° 50
165° 26
この様に入射角の変化により、受光量は26〜100までばらつく。
Next, using only the solar cell surface 1 facing upward, the amount of light received by the solar cell was examined from when the sun rose until when the sun went down. The results are shown graphically in FIG. The vertical axis is the amount of received light, and the horizontal axis is the direction of the sun.
This is the result of a survey experiment in which the sun rises from the east, passes directly above, and sinks to the west.
The amount of light received from the sun in the east and at the west is half round on the horizon and horizon at sunrise (180 °) and sunset (0 °). Not specified.
The amount of light received at the time of light irradiated perpendicularly on the solar cell surface is defined as 100.
When sunlight is incident at an inclination of θ degrees with respect to the vertical to the solar cell surface Irradiation angle / direction Amount of light received by only the solar cell in the upward direction
15 ° 26
30 ° 50
45 ° 70
60 ° 86
75 ° 96
90 ° 100
105 ° 96
120 ° 86
135 ° 70
150 ° 50
165 ° 26
Thus, the amount of received light varies from 26 to 100 due to the change in the incident angle.

次に図8の実施例2において、略上方向に向きする太陽電池面1、太陽電池面7、太陽電池面5、太陽電池面3の太陽電池を具備させた本装置により太陽電池の受光量和を調査し実験を行った。太陽は真東から昇り、略真上を通過して真西に沈むとしたので、今回は太陽電池面3は用いない調査実験結果である。 Next, in Example 2 of FIG. 8, the amount of light received by the solar cell by the present device including the solar cell surface 1, the solar cell surface 7, the solar cell surface 5, and the solar cell surface 3 facing substantially upward. The Japanese were investigated and experimented. Since the sun rises from the east, passes almost directly above, and sinks to the west, this time is the result of an investigation experiment in which the solar cell surface 3 is not used.

その結果、略上方向の太陽電池と、略垂直方向の太陽電池と、両太陽電池の受光量の和は図7に示す様になった。
縦軸が受光量であり横軸が太陽の方向で、図8と相対している。
照射角度 略上方向の太陽電池と略垂直方向の太陽電の受光量の和
15° 25.9+96.6≒122
30° 50.0+86.6≒136
45° 70.7+70.7≒141
60° 86.6+50.0≒136
75° 96.6+25.9≒122
90° 100.0+ 0 =100
105° 96.6+25.9≒122
120° 86.6+50.0≒136
135° 70.7+70.7≒141
150° 50.0+86.6≒136
165° 25.9+96.6≒122
As a result, the sum of the amounts of light received by the solar cells in the substantially upward direction, the solar cells in the substantially vertical direction, and both solar cells is as shown in FIG.
The vertical axis represents the amount of received light, and the horizontal axis represents the sun direction, which is relative to FIG.
Irradiation angle Sum of received light amount of solar cell in substantially upward direction and solar power in substantially vertical direction 15 ° 25.9 + 96.6≈122
30 ° 50.0 + 86.6 ≒ 136
45 ° 70.7 + 70.7 ≒ 141
60 ° 86.6 + 50.0 ≒ 136
75 ° 96.6 + 25.9 ≒ 122
90 ° 100.0+ 0 = 100
105 ° 96.6 + 25.9 ≒ 122
120 ° 86.6 + 50.0 ≒ 136
135 ° 70.7 + 70.7 ≒ 141
150 ° 50.0 + 86.6 ≒ 136
165 ° 25.9 + 96.6 ≒ 122

この受光量は太陽が昇り始めて略上方向に向きする太陽電池面1の真上を通過して沈むまでの本装置における受光量は図7に示す様である。15°から75°までは太陽電池面1,7にて受光し、90°の時は太陽電池面1のみにて受光し、105°から165°までは、太陽電池面1,5にて受光する。 FIG. 7 shows the amount of received light until the sun starts rising and passes just above the solar cell surface 1 facing substantially upward and sinks. Light is received by solar cell surfaces 1 and 7 from 15 ° to 75 °, received only by solar cell surface 1 at 90 °, and received by solar cell surfaces 1 and 5 from 105 ° to 165 °. To do.

この様に、略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池面3を朝日の昇る方向に太陽電池面7と、夕日の沈む方向に太陽電池面5の三枚の太陽電池を各方向に向かせて具備させて測定した所、太陽の昇る時から日の沈むまでを実験において122〜141の収束した受光量が得られた。 In this way, the solar cell surface 1 facing substantially upward, the solar cell surface 3 facing substantially vertical, the solar cell surface 7 in the direction of rising sun, and the solar cell surface 5 in the direction of sunset. When the solar cell was measured with the solar cell facing in each direction, a converged light reception amount of 122 to 141 was obtained in the experiment from when the sun rose until the sun set.

次の様に実施例においては、太陽電池を支柱に取り付けて用いる種類と、太陽電池を柱状立体に取り付けて用いる種類の2種類がある。 As described below, in the embodiment, there are two types, a type in which a solar cell is attached to a column and a type in which a solar cell is attached to a columnar solid.

従来の方法、支柱の先端のみに上方向に太陽電池面を具備する受光装置Conventional method, light receiving device having a solar cell surface upward only at the tip of a column 従来の方法における1日の受光量を示すグラフGraph showing the amount of light received per day in the conventional method 実施例1に示す、上方向に向きする太陽電池と垂直方向に向きした太陽電池を具備し支柱に取付けられた太陽電池(Aタイプ)A solar cell (A type) which is provided with a solar cell oriented in the vertical direction and a solar cell oriented in the vertical direction as shown in Example 1 太陽の高度による夏の日中の太陽電池への入射角の例(Aタイプ)Example of incident angle to solar cell in summer day due to solar altitude (A type) 太陽の高度による冬の日中の太陽電池への入射角の例(Aタイプ)Example of incident angle to solar cell in winter daytime due to solar altitude (A type) 太陽の高度の変化による太陽電池への受光角の例Example of acceptance angle to solar cells due to changes in solar altitude 本発明における1日の太陽の方向と受光量の関係を示すグラフThe graph which shows the direction of the sun of the day in this invention, and the relationship of received light quantity 実施例2の水平線に対して垂直方向で東西南に向きする太陽電池を具備する電源と一日における太陽の移動による略垂直方向に向きする太陽電池面への入射角Incident angle to the surface of the solar cell facing in the substantially vertical direction due to the movement of the sun in one day and the power source including the solar cell facing in the vertical direction with respect to the horizontal line of Example 2 実施例3に示す、略垂直方向に向きする□状の太陽電池面の受光装置または発電装置。A light receiving device or a power generation device on a □ -shaped solar cell surface facing in a substantially vertical direction shown in Example 3. 実施例4に示す、略垂直方向に向きする太陽電池面を前記水平面に対して略垂直方向を軸として電動機により前記軸を中心として水平方向に回転させる受光装置または発電装置。The light-receiving device or power generator which rotates the solar cell surface which shows in the substantially vertical direction shown in Example 4 to a horizontal direction centering | focusing on the said axis | shaft with an electric motor centering on a substantially perpendicular direction with respect to the said horizontal surface. 実施例5に示す、上部が可動の太陽電池(Aタイプ)Solar cell with movable upper part shown in Example 5 (A type) 実施例6に示す、箱体に取付けられた太陽電池(Aタイプ)Solar cell (A type) attached to a box shown in Example 6 実施例7に示す太陽電池群の受光装置や発電装置(Aタイプ)Photovoltaic device and power generation device (A type) of the solar cell group shown in Example 7 実施例8の太陽電池の応用組み合わせ(Aタイプ)Application combination of solar cell of Example 8 (A type) 実施例9に示す、箱体が可動箱体と固定箱体に上下が分かれ、上部が電動機等により回転する太陽電池の受光装置や発電装置(Aタイプ)As shown in Example 9, the light receiving device or power generator (A type) of a solar cell in which the box is divided into a movable box and a fixed box and the upper part is rotated by an electric motor or the like. 実施例10に示す、朝、昼、夕に受光できる様に箱体に取付けられた太陽電池面のある受光装置や発電装置(Aタイプ)A light receiving device or power generation device (A type) having a solar cell surface attached to a box so that it can receive light in the morning, noon, and evening shown in Example 10. 実施例12に示す、上方向に向きする太陽電池と垂直方向に向きした太陽電池を具備し支柱に取付けられた太陽電池(Bタイプ)A solar cell (B type) having a solar cell facing upward and a solar cell facing vertically, as shown in Example 12, and attached to a support column 太陽の高度による夏の日中の太陽電池への入射角の例(Bタイプ)Example of incident angle to solar cell in summer day due to solar altitude (B type) 太陽の高度による冬の日中の太陽電池への入射角の例(Bタイプ)Example of incident angle to solar cell in winter daytime due to solar altitude (B type) 実施例13に示す、上部が可動の太陽電池(Bタイプ)Solar cell with movable upper part shown in Example 13 (B type) 実施例14に示す、ホルダに取付けられた太陽電池(Bタイプ)Solar cell attached to holder shown in Example 14 (B type) 実施例15に示す、箱体が可動箱体と固定箱体に上下が分かれ、上部が電動機等により回転する太陽電池面による受光装置や発電装置(Bタイプ)As shown in Example 15, the box is divided into a movable box and a fixed box, and a light receiving device and a power generation device (B type) using a solar cell surface whose upper part is rotated by an electric motor or the like. 実施例16に示す太陽電池群の受光装置や発電装置(Bタイプ)Photovoltaic device and power generator of solar cell group shown in Example 16 (B type) 実施例17に示す。L形柱に設けられた上方向に向きする太陽電池と垂直方向に向きする太陽電池の一関係(Bタイプ)Example 17 is shown. A relationship between the solar cell facing upward and the solar cell facing vertically (provided on the L-shaped column) 実施例18に示す太陽電池群の応用Application of solar cell group shown in Example 18

実施例1は図3に示す様に、支柱の上先端に水平面に対して略上方向に向きする太陽電池面1と、前記太陽電池面の下側にあり支柱の側面に略垂直方向に向きする太陽電池面3を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力にて発電する事を特徴とする受光装置や発電装置である。 As shown in FIG. 3, Example 1 has a solar cell surface 1 that faces substantially upward with respect to a horizontal plane at the upper end of the column, and is positioned substantially vertically to the side surface of the column that is below the solar cell surface. The light receiving device and the power generating device are characterized in that the solar cell surface 3 is provided, and the solar cell surfaces facing in the two directions are simultaneously received by the solar light to generate electric power.

また、略上方向に向きする太陽電池面と、前記太陽電池面の上側にあり内側面に略垂直方向に向きする太陽電池面とを具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置や発電装置である。 A solar cell surface facing substantially upward; and a solar cell surface above the solar cell surface and facing in a direction substantially perpendicular to the inner surface; The light receiving device and the power generation device are characterized in that the generated light is simultaneously received and the generated electric power is obtained.

上方向に向きする太陽電池面1と、前記太陽電池面の下側にあり、外側面に略
垂直方向に向きした太陽電池面3を組み合わせたAタイプの例である。
図3に示す様に、略上方向に向きする太陽電池面1と、略垂直に向きして太陽からの光を受光できる方向に面する南向きに太陽電池面3を支柱2にアーム4を介して取り付けた構成図である。
光を受光できる方向は必ずしも南でなくてもよいが北半球では南の方向に太陽の南中位置があるので、この様に略日中に受光する事を目的とした受光装置、発電装置の場合、本発明により、春夏秋冬の季節による太陽の高度の変化の影響をほとんど受ける事がない。
This is an example of an A type in which a solar cell surface 1 facing upward and a solar cell surface 3 located on the lower side of the solar cell surface and facing a substantially vertical direction are combined with the outer surface.
As shown in FIG. 3, the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing the direction in which light from the sun can be received substantially vertically and facing the arm 4 on the column 2 It is the block diagram attached via.
The direction in which light can be received is not necessarily south, but in the northern hemisphere there is a south-south position of the sun in the south direction. The present invention is hardly affected by changes in the altitude of the sun depending on the season of spring, summer, autumn and winter.

図3では、略上方向に向きする太陽電池面1は、支柱2の上方の先端に取り付けられている。支柱2と略上方向に向きする太陽電池1は、例えばブラケットを介して取り付けられている。取り付け方法は多種多様であり、支柱2に水平面に対して略上方向に向きする太陽電池1が固定又は固着されていればよい。 In FIG. 3, the solar cell surface 1 facing substantially upward is attached to the top end of the support 2. The solar cell 1 facing substantially upward with the support column 2 is attached via, for example, a bracket. There are a variety of attachment methods, and it is only necessary that the solar cell 1 that is oriented substantially upward with respect to the horizontal plane is fixed or fixed to the support column 2.

また支柱2に対して略垂直方向に向きして太陽からの光を受光できる方向に面する太陽電池面3がアーム4を介して取り付けられている。アーム4は必ずしも必要なものではなく、略垂直に向きして太陽からの光を受光できる方向に面する太陽電池面3が受光できる状態であれば、はアーム4を介す事なしに直接支柱2に取り付けてもよい。 Further, a solar cell surface 3 facing in a direction substantially perpendicular to the support column 2 and receiving light from the sun is attached via an arm 4. The arm 4 is not necessarily required. If the solar cell surface 3 facing the direction in which light from the sun can be received in a substantially vertical direction can be received, the arm 4 can be directly supported without the arm 4. 2 may be attached.

前記二つの太陽電池面1,3により発生する電気は配線を介して蓄電池やインバータやインバータ機能付きコンデショナ等に接続される。 Electricity generated by the two solar cell surfaces 1 and 3 is connected to a storage battery, an inverter, a conditioner with an inverter function, or the like via wiring.

支柱は角柱でも丸柱のいずれでもよい。
本実施例の用途としては、支柱に照明を具備させて道路や公園等の街灯に用いられるがこの限りではない
The column may be either a prism or a round column.
As an application of this embodiment, it is used for street lamps such as roads and parks with lighting on the pillars, but this is not limited.

実施例1では、受光は略垂直方向に向きする太陽電池面3は支柱2に南方向に取り付けられているので、略昼のみにおける受光で発電を目的とする場合に適当であるが朝日の昇る頃、夕日の沈む頃における受光はできない。 In the first embodiment, the solar cell surface 3 facing light reception in a substantially vertical direction is attached to the support column 2 in the south direction. At that time, it cannot receive light when the sunset goes.

実施例2は図8に示す様に、支柱の上先端に水平面に対して略上方向に向きする太陽電池面1と、前記太陽電池面の下側にあり、支柱の側面に略垂直方向に向きする太陽電池面を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力にて発電する事を特徴とする受光装置や発電装置である。 As shown in FIG. 8, Example 2 is a solar cell surface 1 facing substantially upward with respect to a horizontal plane at the upper end of the support column, and below the solar cell surface, and in a direction substantially perpendicular to the side surface of the support column. A light receiving device and a power generating device, characterized by comprising solar cell surfaces facing each other, and generating solar power by simultaneously receiving solar light on the solar cell surfaces facing in the two directions.

太陽が東から出て南中し西に沈むまでの一日間において、略一定の受光量を得る為に、略垂直方向に向きする太陽電池面3を南方向に、略垂直方向に向きする太陽電池面7を東方向に、水平面に対して略垂直方向に向きする太陽電池面5を西方向に設けて、朝昼夕と受光できる様に支柱2にアーム4を介して取り付けた受光装置、発電装置である。 In order to obtain a substantially constant amount of light received in one day from the east to the south and then to the west, the solar cell surface 3 facing the substantially vertical direction is directed to the south and the vertically oriented solar. A light receiving device attached to the support column 2 via the arm 4 so as to be able to receive light in the morning and evening, with the battery surface 7 facing east and the solar cell surface 5 facing substantially perpendicular to the horizontal plane facing the west; It is a power generation device.

この様に、本実施例においては、略上方向に向きする太陽電池面1を一面に具備している。また複数の略垂直方向に向きする太陽電池面3,5,7を設けている事を特徴としている。 Thus, in the present embodiment, the solar cell surface 1 facing substantially upward is provided on one side. Further, it is characterized in that a plurality of solar cell surfaces 3, 5, and 7 facing in a substantially vertical direction are provided.

太陽は東から昇ぼり日光は垂直の太陽電池7にて受光し、太陽が昇りながら東から南の方向に移動すると共に日光は略上方向に向きする太陽電池1と共に南方向に垂直方向に向きする太陽電池面3にも同時に受光する様になる。やがて太陽が南中する頃に日光は南方向に略垂直に向きする太陽電池面3と略上方向に向きする太陽電池面1にて受光される。更に太陽が西方向に向かうと共に略垂直方向に向きする太陽電池3と西方向に向きする太陽電池面5と共に上方向に向きする太陽電池1にて受光される。やがて西方向に垂直方向に向きする太陽電池5と略上方向に向きする太陽電池面1にて受光される。太陽が沈む頃には西向きの垂直方向に向きする太陽電池面5のみにて受光する。 The sun rises from the east, sunlight is received by the vertical solar cell 7, and the sun moves up from the east to the south while the sun rises, and the sunlight is oriented vertically in the south direction together with the solar cell 1 facing substantially upward. The solar cell surface 3 is also simultaneously received. Eventually, when the sun goes south, sunlight is received by the solar cell surface 3 facing substantially perpendicular to the south direction and the solar cell surface 1 facing substantially upward. Further, the sun is received by the solar cell 1 facing upward and the solar cell 3 facing substantially vertically and the solar cell surface 5 facing west. Eventually, the light is received by the solar cell 5 facing vertically in the west direction and the solar cell surface 1 facing substantially upward. When the sun goes down, light is received only by the solar cell surface 5 oriented in the westward vertical direction.

この様に日光は上方向に向きする太陽電池面1と垂直方向に向きする太陽電池面7と南方向で垂直方向に向きする太陽電池面3と西方向で垂直方向に向きする太陽電池面5にて太陽の移動と共に日光は分散されて各太陽電池面にて受光される。 In this way, sunlight is directed to the solar cell surface 1 facing upward, the solar cell surface 7 facing vertically, the solar cell surface 3 facing vertically in the south direction, and the solar cell surface 5 facing vertically in the west direction. As the sun moves, sunlight is dispersed and received by each solar cell surface.

実施例2において、例えば夕方に受光する必要が無い場合、水平面に対して略垂直方向に向きする太陽電池面5は必ずしも必要としない。朝日から日中までの間に受光発電を目的とする受光装置、発電装置においては、水平面に対して略上方向の太陽電池面1と水平面に対して略垂直方向に向きする太陽電池面3、7を具備すればよい。 In Example 2, for example, when it is not necessary to receive light in the evening, the solar cell surface 5 facing in a direction substantially perpendicular to the horizontal plane is not necessarily required. In the light receiving device and the power generating device for the purpose of receiving and generating power between the morning sun and the daytime, the solar cell surface 1 substantially upward with respect to the horizontal plane and the solar cell surface 3 facing substantially perpendicular to the horizontal plane, 7 may be provided.

略上方向に向きする太陽電池面と、前記太陽電池面の下側にあり外側面に略垂直方向に向きする太陽電池面とを具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置または電源装置である。 A solar cell surface facing substantially upward, and a solar cell surface below the solar cell surface and facing substantially perpendicular to the outer surface, and the solar cell surface facing the two directions A light receiving device or a power supply device characterized in that it receives light simultaneously and obtains generated electric power.

支柱の上先端に水平面に対して略上方向に向きする太陽電池面1と、支柱の側面に複数の略垂直方向に向きする太陽電池面を具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置または発電装置でもある。 A solar cell surface 1 facing substantially upward with respect to a horizontal plane at the top end of the column, and a plurality of solar cell surfaces facing substantially vertical directions on the side surface of the column, the solar cell surface facing in the two directions Further, the light receiving device or the power generation device is characterized in that it receives solar light at the same time to obtain electric power generated.

夕日における受光に用いる電源においては、略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池面3を南方向に取り付け、太陽が日中してから水平線または地平線に沈むまで、太陽電池面1と太陽電池面5の受光量と発電量の和にて一定以上の発電量を得る事ができる。 In the power source used for receiving light in the sunset, the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertical are mounted in the south direction until the sun goes down to the horizon or horizon after daylight. The amount of power generation above a certain level can be obtained by the sum of the amount of light received and the amount of power generation on the solar cell surface 1 and the solar cell surface 5.

略上方向に向きする太陽電池面1と略垂直方向に向きする太陽電池面3が設けられているので春夏秋冬における太陽の日中高度に係わらず、太陽電池1枚当たりの太陽電池面1と3における受光量の和は略一定とできる。 Since the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertical are provided, the solar cell surface 1 per solar cell regardless of the daytime altitude of the sun in spring, summer, autumn and winter. The sum of the amounts of light received at 3 and 3 can be made substantially constant.

この様に実施例2においては、太陽が東から昇り南中し西に沈むまで、略上方向に向きする太陽電池面1と略垂直方向に向きする太陽電池面3、7、5によって太陽の移動に係わらず受光を互いに分散して行ない、春夏秋冬の太陽の高度の変化、一日における朝昼夕の太陽の移動に関わらず、一定以上の発電量を得る事ができる。 Thus, in Example 2, the solar cell surface 3, 7 and 5 facing in the substantially vertical direction and the solar cell surfaces 3, 7, and 5 facing in the substantially vertical direction until the sun rises from the east, goes south and then sinks in the west. Regardless of the movement, the received light is distributed to each other, and a power generation amount above a certain level can be obtained regardless of changes in the altitude of the sun during spring, summer, autumn and winter, or movement of the sun in the morning, daytime and evening.

請求項は実施例1と同じである。 The claims are the same as in the first embodiment.

実施例2においては、略垂直方向に向きする太陽電池面を、東向きの太陽電池面7、南向きの太陽電池面3、西向きの太陽電池面5と三枚の太陽電池をそれぞれ独立して配置した。実施例3では太陽電池面を一体として設けたものである。 In Example 2, the solar cell surface facing in a substantially vertical direction is divided into an east-facing solar cell surface 7, a south-facing solar cell surface 3, a west-facing solar cell surface 5 and three solar cells. Arranged. In Example 3, the solar cell surface is provided integrally.

図9は実施例3で、支柱の上先端に略上方向に向きする太陽電池面と、前記太陽電池面の下側の支柱の側面に略垂直方向に向きする太陽電池面を具備して、前記略垂直方向に向きする太陽電池面が前記支柱を囲む様に配置されている事を特徴とすると共に、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力にて発電する事を特徴とする受光装置や発電装置である。 FIG. 9 shows a solar cell surface facing substantially upward at the top end of the support column and a solar cell surface facing substantially vertically on the side surface of the support column below the solar cell surface in Example 3. The solar cell surface facing in the substantially vertical direction is arranged so as to surround the support column, and the solar cell surface facing in the two directions receives light from the sun at the same time to generate electric power. A light receiving device or a power generation device characterized by generating electricity.

略垂直方向に向きする太陽電池面9はそれぞれ東向き、南向き、西向きになる様に上面から見て「コの字状」「△状」「○状」または「□状」に配置されている。
ここでは例として上面から見て「□状」の図を示す。
The solar cell surfaces 9 facing in a substantially vertical direction are arranged in a “U” shape, a “△” shape, a “◯” shape, or a “□” shape when viewed from the top so as to face east, south, and west, respectively. Yes.
Here, as an example, a “□ -shaped” view as seen from above is shown.

また実施例3においては略垂直方向に向きする太陽電池面9を上から見た時は、「△状」にて各辺を南向き、東北向き、西北向きに配置してもよい。略垂直方向の太陽電池面は腕4により数か所によって支えられている。 In Example 3, when the solar cell surface 9 facing in a substantially vertical direction is viewed from above, each side may be arranged in the “Δ shape” facing south, northeast, and northwest. The substantially vertical solar cell surface is supported by the arm 4 at several locations.

上記一体に取り付けられた略垂直方向に向きする太陽電池面は電気的に、各面を独立的に設けても良いし、一体的に設けても良い。 The surfaces of the solar cells facing the substantially vertical direction that are integrally attached may be electrically provided independently or may be provided integrally.

他は、実施例1,2と同様である。請求項は実施例1,2と同様である。 Others are the same as in the first and second embodiments. The claims are the same as in the first and second embodiments.

実施例2および実施例3においては、東、南、西の各方向に略垂直な方向に向きする太陽電池面をそれぞれ設けている。     In Example 2 and Example 3, solar cell surfaces facing in directions substantially perpendicular to the east, south, and west directions are provided.

実施例4は図10に示す様であり、支柱の上先端に略上方向に向きする太陽電池面1と、前記太陽電池面の下側にあり支柱の側面に略垂直方向に向きする太陽電池面3を具備して、前記略垂直方向に向きする太陽電池面を前記支柱を略中心として水平方向に回転させる事を特徴とすると共に、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置や発電装置である。 Example 4 is as shown in FIG. 10, and is a solar cell surface 1 facing substantially upward at the upper end of the support column, and a solar cell that is below the solar cell surface and faces substantially vertically to the side surface of the support column. The solar cell surface having the surface 3 is rotated in the horizontal direction about the support column as a center and the solar cell surface facing in the two directions is solar light. The light receiving device and the power generation device are characterized in that the power generated by receiving the light simultaneously is obtained.


本電源においては、略垂直方向に向けられ設けられた太陽電池面3を、必要な方向の東西南北方向等に電動機10等により水平方向に回転させる事により、太陽の移動と共に一枚の太陽電池面3により必要の場合、東西南北等の各方向からの受光を行なえる事を特徴としている。
.
In this power source, a solar cell surface 3 provided in a substantially vertical direction is rotated in the horizontal direction by an electric motor 10 or the like in a necessary direction, such as east, west, south, or north, so that one solar cell is moved along with the movement of the sun. The surface 3 is characterized in that it can receive light from each direction such as east, west, south, and north when necessary.

この様に垂直方向の太陽電池面3を回転させる事により、太陽電池面を東、南、西等に移動させ、図8、図9の受光装置や発電装置と同じ効果を出す事ができる。この様にする事により、太陽電池のコストを下げると共に容易な二次元移動にて太陽追従タイプと同様な効果がある。 Thus, by rotating the solar cell surface 3 in the vertical direction, the solar cell surface can be moved to the east, south, west, etc., and the same effect as the light receiving device and the power generation device of FIGS. By doing in this way, the cost of the solar cell can be reduced and the same effect as the solar follow-up type can be obtained with easy two-dimensional movement.

略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池面3からなり、前記略垂直方向に向きする太陽電池面3を前記略垂直方向を軸として電動機10により前記軸を中心として水平方向に回転させる事を特徴とし、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る受光装置または発電装置である。 The solar cell surface 1 is directed substantially upward, and the solar cell surface 3 is oriented substantially vertically. The solar cell surface 3 oriented in the substantially vertical direction is set by the electric motor 10 with the substantially vertical direction as an axis. The light receiving device or the power generating device is characterized in that it is rotated in the horizontal direction as a center, and receives solar light simultaneously on the solar cell surfaces facing in the two directions to obtain generated electric power.

一般に略垂直方向に向きする太陽電池面3は、東方向から南方向に回り更に西方向に
移動する。
これは略垂直方向に設けられた太陽電池面を実施例2、実施例3の様に垂直方向で東方向、南方向、西方向等に向きする各太陽電池面をそれぞれ具備する事無く一枚の太陽電池を電動機等により回転させて、略垂直方向に向きする太陽電池面を各方向に設ける事なしに各方向にて受光する事を達成するものである。
Generally, the solar cell surface 3 facing in a substantially vertical direction turns from the east direction to the south direction and further moves to the west direction.
This is a single solar cell surface provided in a substantially vertical direction without having each solar cell surface facing the east, south, west, etc. in the vertical direction as in Example 2 and Example 3. The solar cell is rotated by an electric motor or the like to receive light in each direction without providing a solar cell surface in a substantially vertical direction in each direction.

略上方向に向きする太陽電池面と、前記太陽電池面の下側にあり外側面に略垂直方向に向きする太陽電池面とを具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置または発電装置である。 A solar cell surface facing substantially upward, and a solar cell surface below the solar cell surface and facing substantially perpendicular to the outer surface, and the solar cell surface facing the two directions A light receiving device or a power generation device characterized in that it simultaneously receives light and obtains generated electric power.

支柱の上先端に略上方向に向きする太陽電池面と、支柱の側面に略垂直方向に向きする太陽電池面を具備して、少なくとも前記略垂直方向に向きする太陽電池面が前記支柱を略中心として水平に回転させる事を特徴とすると共に、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置または発電装置とも言える。 A solar cell surface facing substantially upward at the top end of the column and a solar cell surface facing substantially vertical on the side surface of the column, and at least the solar cell surface facing in the substantially vertical direction substantially defines the column. It can be said to be a light receiving device or a power generating device characterized in that it is rotated horizontally as a center and also receives solar light simultaneously on the solar cell surfaces facing in the two directions to generate electric power generated.

以下図10の構成を説明する。支柱2の先端に略上方向に向きする太陽電池面1が取り付けられている。太陽電池面1と支柱2の取り付けは例えばブラケットを用いてもよい。また支柱2には略垂直に向きして太陽からの光を受光できる方向に面する太陽電池面3はアーム4によって電動機軸12を介して電動機10と減速機11に取り付けられている。電動機10はケース14にて支柱2に固定されている。 The configuration of FIG. 10 will be described below. A solar cell surface 1 facing substantially upward is attached to the tip of the column 2. For example, a bracket may be used to attach the solar cell surface 1 and the column 2. A solar cell surface 3 facing the column 2 in a direction substantially perpendicular to the direction in which light from the sun can be received is attached to the motor 10 and the speed reducer 11 via the motor shaft 12 by an arm 4. The electric motor 10 is fixed to the column 2 by a case 14.

電動機10は制御器により、太陽の一日の移動に応じて回転制御され、水平面に対して略垂直に向きして太陽からの光を受光できる方向に面する太陽電池3の移動の制御方法は時間的制御または太陽追従でもよくいずれの方法でもよい。
太陽電池3は太陽が昇る略東側から太陽が沈む略西の方向に水平面に対して略垂直に向きして太陽からの光を受光できるものである。
前記二つの太陽電池面1,3により発生する電気の和は配線を介して蓄電池30に蓄えられる。またはインバータやインバータ付きコンデショナを通じて商用電源に接続してもよい。
The electric motor 10 is rotationally controlled by the controller according to the movement of the day of the sun, and a method for controlling the movement of the solar cell 3 facing in a direction substantially perpendicular to the horizontal plane and receiving light from the sun is as follows. Either time control or sun following may be used, and any method may be used.
The solar cell 3 can receive light from the sun in a direction substantially perpendicular to the horizontal plane in a direction substantially west where the sun sinks from a substantially east side where the sun rises.
The sum of electricity generated by the two solar cell surfaces 1 and 3 is stored in the storage battery 30 via wiring. Alternatively, it may be connected to a commercial power source through an inverter or a conditioner with an inverter.

実施例5は図11に示す様であり、支柱の上先端に略上方向に向きする太陽電池面と、支柱の側面に略垂直方向に向きする太陽電池面を具備して、前記略垂直方向に向きする太陽電池面を前記支柱を略中心として水平方向に回転させる事を特徴とすると共に、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力にて発電する事を特徴とする受光装置や発電装置である。請求項については実施例4と同じである。 Example 5 is as shown in FIG. 11, comprising a solar cell surface facing substantially upward at the top end of the column and a solar cell surface facing substantially vertical on the side surface of the column. The solar cell surface facing in the horizontal direction is rotated in a horizontal direction about the support column as a center, and the solar cell surface facing in the two directions is simultaneously received by the solar light to generate electric power. It is a light receiving device and a power generation device characterized by the above. The claims are the same as in the fourth embodiment.

支柱の下部18に電動機10を設け、この電動機10により略垂直方向に向きする太陽電池面3、略上方向に向きする太陽電池1を同時に回転させる構造となっている。 The electric motor 10 is provided in the lower part 18 of the support | pillar, and it has the structure which rotates the solar cell surface 3 which faces to a substantially perpendicular direction, and the solar cell 1 which faces to a substantially upward direction by this motor 10 simultaneously.

支柱の上部17には、略垂直方向に向きする太陽電池面3と略上方向に向きする太陽電池面1が固定または固着されており、支柱の上部17はベアリング等13と軸12を介して電動機10、減速機11と連結され、前記太陽電池面1、3を回転させるものである。 The solar cell surface 3 facing in a substantially vertical direction and the solar cell surface 1 facing in a substantially upward direction are fixed or fixed to the upper portion 17 of the support column, and the upper portion 17 of the support column is supported via a bearing 13 and a shaft 12. It is connected to the electric motor 10 and the speed reducer 11 to rotate the solar cell surfaces 1 and 3.

他は実施例4と同じである。請求項は実施例4と同じである。効果についても同じである。 The rest is the same as in Example 4. The claims are the same as in the fourth embodiment. The same is true for the effect.

実施例6は図12であり、立体の柱状の上面に略上方向に向きする太陽電池面1と、前記太陽電池面の下側であり、立体の柱状の側面に略垂直方向に向きする太陽電池面3を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力にて発電する事を特徴とする受光装置や発電装置である。 Example 6 is FIG. 12, the solar cell surface 1 facing substantially upward on the three-dimensional columnar upper surface, and the sun that is below the solar cell surface and faces substantially perpendicular to the three-dimensional columnar side surface. A light receiving device or a power generating device comprising the battery surface 3 and generating electric power by generating light by simultaneously receiving solar light on the solar cell surfaces facing in the two directions.

立体柱状の箱体19に水平面に対して略上方向に向きする太陽電池1と、略垂直方向に向きする太陽電池3を具備し、春夏秋冬の季節における太陽の高度の変化に対して略一定の受光量を得て発電を行う受光装置や発電装置である。
主に日中における受光を目的とし、朝夕方の受光を目的としていない。
A three-dimensional columnar box 19 is provided with a solar cell 1 oriented substantially upward with respect to a horizontal plane and a solar cell 3 oriented substantially perpendicularly, and is substantially resistant to changes in the altitude of the sun during the spring, summer, autumn and winter seasons. It is a light receiving device or a power generating device that generates power by obtaining a certain amount of received light.
It is mainly intended for light reception during the daytime and not for light reception in the morning and evening.

本実施例の電源においては、略垂直方向に向きする太陽電池面3を具備する側面以外の太陽電池を具備しないない側面を側面20としている。
立体柱状の箱体19の底部分には移動、固定の為の車輪22が具備されている。
In the power source of the present embodiment, the side surface not including the solar cell other than the side surface including the solar cell surface 3 facing in the substantially vertical direction is defined as the side surface 20.
Wheels 22 for moving and fixing are provided at the bottom of the three-dimensional columnar box 19.

略上方向に向きする太陽電池面1と、前記太陽電池面の下側にあり外側面に略垂直方向に向きする太陽電池面3を具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発電する事を特徴とする受光装置や発電装置である。 A solar cell surface 1 facing substantially upward, and a solar cell surface 3 below the solar cell surface and facing in a substantially vertical direction on the outer surface, and the solar cell surface facing the two directions The light receiving device and the power generating device are characterized by simultaneously receiving and generating power.

なお本実施例は略垂直方向に向きする太陽電池面3を箱体19に固定せずに、太陽電池面3と箱体19を蝶番等にて連結して、太陽電池面3を上方向に可動として移動し、略上方向に向きする太陽電池面1と同様な面までに移動して固定できる様にしてもよい。 In the present embodiment, the solar cell surface 3 facing the substantially vertical direction is not fixed to the box body 19 but the solar cell surface 3 and the box body 19 are connected by a hinge or the like so that the solar cell surface 3 is directed upward. It may move so that it can move and be fixed to a surface similar to the solar cell surface 1 facing substantially upward.

実施例7は図13に示す様であり、立体の柱状の上面に略上方向に向きする太陽電池面と、前記太陽電池面の下側の立体の柱状の側面に略垂直方向に向きする太陽電池面を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置や発電装置である。     Example 7 is as shown in FIG. 13, and the solar cell surface facing substantially upward on the three-dimensional columnar upper surface, and the sun facing substantially perpendicular to the three-dimensional columnar side surface below the solar cell surface. A light receiving device and a power generator having a battery surface, wherein the solar cell surface facing in the two directions simultaneously receives sunlight and generates electric power.

略上方向に向きする太陽電池面1と、前記太陽電池面の下側の外側に水平面に対して略垂直方向に向きする太陽電池面3を複数並べた太陽電池群はからなっている。前記二つの面により作られた二面角の外角に(L字形の外角に)太陽電池面を具備していて、これらを横に複数並べた太陽電池群からなり、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光させて発電する事を特徴とする受光装置や発電装置である。(Aタイプと呼ぶ)
略垂直方向に向きする太陽電池面3は通常南向きに設置されるが設置方向はこの限りではない。
A solar cell group is formed by arranging a plurality of solar cell surfaces 1 facing substantially upward, and a plurality of solar cell surfaces 3 facing substantially perpendicular to a horizontal plane on the outer side below the solar cell surface. A solar cell surface is provided at an outer angle of a dihedral angle formed by the two surfaces (in an L-shaped outer angle), and a plurality of these solar cells are arranged side by side, and are directed in the two directions. A light receiving device and a power generating device characterized in that solar light is simultaneously received by the solar cell surface to generate power. (Referred to as A type)
The solar cell surface 3 facing in the substantially vertical direction is usually installed in the south direction, but the installation direction is not limited to this.

この様な太陽電池群は、建物の屋上の縁、各階周りの縁、河川土手の縁、高架橋の縁がL形柱21に相当し、これらの縁に沿って設置が可能である。
また太陽電池群においては、図25に示す様に、略上方向に向きする太陽電池面と、略垂直方向に向きする複数の太陽電池面を階段状に設けてもよい。
In such a solar cell group, the edge of the roof of the building, the edge around each floor, the edge of the river bank, and the edge of the viaduct correspond to the L-shaped column 21 and can be installed along these edges.
Further, in the solar cell group, as shown in FIG. 25, a solar cell surface facing substantially upward and a plurality of solar cell surfaces facing substantially vertical may be provided stepwise.

略上方向に向きする太陽電池面1を複数並べられた太陽電池群にて受光による発生する電力と、略垂直方向に向きする太陽電池面3を複数並べられた太陽電池群にて受光による発生する電力は、蓄電池、インバータまたはインバータ機能付きコンデショナに送られ、商用電源または家庭内に流れる事となる。 Electric power generated by receiving light in a solar cell group in which a plurality of solar cell surfaces 1 facing substantially upward are arranged, and generation by light reception in a solar cell group in which a plurality of solar cell surfaces 3 facing in a substantially vertical direction are arranged. The electric power to be sent is sent to a storage battery, an inverter, or a conditioner with an inverter function, and flows into a commercial power source or home.

この電源は大容量発電に効果がある。太陽の高度の変化のある季節に係わらず専有面積における総発電量を多く得る事ができる。 This power source is effective for large-capacity power generation. Regardless of the season with changes in the altitude of the sun, it is possible to obtain a large amount of total power generation in the exclusive area.

図14の様に、略上方向に向きする太陽電池面1と、前記太陽電池面の端側の下側の外側に水平面に対して略垂直方向に向きする太陽電池面3との関係(Aタイプ)において、図3、図8、図9、図10、図11、図12、図13、図15、図16に示す実施例に応用できる。 As shown in FIG. 14, the relationship between the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially perpendicular to the horizontal plane on the lower outer side of the end side of the solar cell surface (A Type) can be applied to the embodiments shown in FIGS. 3, 8, 9, 10, 11, 12, 13, 15, and 16.

略上方向に向きする太陽電池面1と略垂直方向に面する太陽電池面3の二つの太陽電池面は個別に設けて接していてもよいし、一体でもよいし、二つの面に同時に受光できる範囲であれば離れていてもよい。 The two solar cell surfaces, the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertical, may be provided separately and may be in contact with each other, or may be simultaneously received by the two surfaces. As long as it is possible, it may be separated.

前記2つの太陽電池面の関係においては、略上方向に向きする太陽電池面1の下側であれば、略上方向に向きする太陽電池面1の内側に略垂直方向に向きする太陽電池面3を具備する様にしてもよい。支柱の最先端に略上方向に向きする太陽電池面1と略垂直方向に向きする太陽電池面3を側面にそれぞれ具備する電源に該当する場合がある。 In the relationship between the two solar cell surfaces, a solar cell surface facing in a substantially vertical direction on the inner side of the solar cell surface 1 facing in a substantially upward direction as long as it is below the solar cell surface 1 facing in a substantially upward direction. 3 may be provided. There is a case where it corresponds to a power source provided with a solar cell surface 1 facing substantially upward and a solar cell surface 3 facing substantially vertical at the foremost end of the column.

略上方向に向きする太陽電池面1と略垂直方向に向きした太陽電池面3は個別で設けて、前記2つの太陽電池面を離して設ける場合の間隔は、前記2つの太陽電池面が同時に受光できる間隔であればよい。 When the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertical are provided separately, and the two solar cell surfaces are separated, the distance between the two solar cell surfaces is the same. Any interval that can receive light may be used.

また略上方向に向きする太陽電池1と略垂直方向に向きした太陽電池面3は電気的にも形状的にも一体にして1つの太陽電池を折り曲げて設けてもよい。 Further, the solar cell 1 facing substantially upward and the solar cell surface 3 facing substantially vertical may be provided by bending one solar cell integrally in terms of electrical and shape.

実施例9は図15に示す様である。立体の柱状の上面に略上方向に向きする太陽電池面1と、立体の柱状の側面に略垂直方向に向きする太陽電池面3を具備して、前記二つの方向に向きする太陽電池を共に水平方向に回転させ、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置や発電装置である。 Example 9 is as shown in FIG. A solar cell surface 1 facing substantially upward on a three-dimensional columnar upper surface, and a solar cell surface 3 facing substantially vertical on a three-dimensional columnar side surface, both of the solar cells facing the two directions It is a light receiving device and a power generating device that are rotated in the horizontal direction and simultaneously receive solar light on the solar cell surfaces facing in the two directions to generate electric power.

箱体は上下に分かれ、上部は可動箱体23であり、水平方向に回転ができる様になっている。下部は固定箱体24であり、上部箱体23は軸12に取り付けられている。減速機11を介して電動機10により回転する事を特徴とする電源である。立体柱状の箱体は必ずしも角柱でなくともよく円柱であってもよい。 The box is divided into upper and lower parts, and the upper part is a movable box 23, which can be rotated in the horizontal direction. The lower part is a fixed box 24, and the upper box 23 is attached to the shaft 12. The power source is characterized by being rotated by the electric motor 10 via the speed reducer 11. The three-dimensional columnar box is not necessarily a prism, and may be a cylinder.

この様に垂直方向の太陽電池面3を回転させる事により、太陽電池面を東、南、西等の方向に回転移動させる事ができる。この様にする事により、略垂直に向きする太陽電池を1方向のみに具備させられるので、太陽電池のコストを下げると共に二次元の太陽追従タイプと同様な効果を出す事ができる。 By rotating the solar cell surface 3 in the vertical direction in this way, the solar cell surface can be rotated and moved in directions such as east, south, and west. By doing in this way, since the solar cell oriented substantially vertically can be provided in only one direction, the cost of the solar cell can be reduced and the same effect as the two-dimensional solar tracking type can be obtained.

太陽電池3は太陽が昇る略東側から太陽が沈む略西の方向に水平面に対して略垂直に向きして太陽からの光を受光できるものである。
電動機10は制御器により、太陽の一日の移動に応じて回転制御され、水平面に対して略垂直に向きして太陽からの光を受光できる方向に面する太陽電池3の移動の制御方法は時間的または太陽追従でもよくいずれの方法でもよい。
前記二つの太陽電池面1,3により発生する電気は配線を介して蓄電池30に蓄えられる。またはインバータやコンデショナを通じて商用電源に接続してもよい。
The solar cell 3 can receive light from the sun in a direction substantially perpendicular to the horizontal plane in a direction substantially west where the sun sinks from a substantially east side where the sun rises.
The electric motor 10 is rotationally controlled by the controller according to the movement of the day of the sun, and a method for controlling the movement of the solar cell 3 facing in a direction substantially perpendicular to the horizontal plane and receiving light from the sun is as follows. Either temporal or solar tracking may be used.
Electricity generated by the two solar cell surfaces 1 and 3 is stored in the storage battery 30 through wiring. Alternatively, it may be connected to a commercial power source through an inverter or a conditioner.

なお本実施例は略垂直方向に向きする太陽電池面3を箱体19に固定せずに、太陽電池面3と箱体19を蝶番等にて連結して、太陽電池面3を上方向に可動として移動し、略上方向に向きする太陽電池面1と同様な面までに移動して固定できる様にしてもよい。 In the present embodiment, the solar cell surface 3 facing the substantially vertical direction is not fixed to the box body 19 but the solar cell surface 3 and the box body 19 are connected by a hinge or the like so that the solar cell surface 3 is directed upward. It may move so that it can move and be fixed to a surface similar to the solar cell surface 1 facing substantially upward.

実施例10は図16に示す様である。立体の柱状の上面に略上方向に向きする太陽電池面1と、前記太陽電池面の下側に立体の柱状の側面に略垂直方向に向きする太陽電池面3を複数具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力にて発電する事を特徴とする受光装置や発電装置である。請求項については実施例6,7と同じである。 Example 10 is as shown in FIG. A plurality of solar cell surfaces 1 facing substantially upward on a three-dimensional columnar upper surface, and a plurality of solar cell surfaces 3 facing substantially perpendicular to a three-dimensional columnar side surface below the solar cell surface, A light-receiving device and a power-generating device, characterized in that the solar cell surface facing in one direction simultaneously receives solar light and generates electric power using generated electric power. The claims are the same as in the sixth and seventh embodiments.

立体柱状の箱体19に略上方向に向きする太陽電池面1と、略垂直方向に向きし取付けられた太陽電池面3を複数具備し、春夏秋冬の季節の変化においても1日間においても略一定以上の全受光量を得て発電を行う受光装置や発電装置である。 It has a plurality of solar cell surfaces 1 facing a substantially columnar box 19 in a substantially upward direction and a solar cell surface 3 mounted in a substantially vertical direction. It is a light receiving device or a power generating device that generates electric power by obtaining a total amount of received light that is substantially equal to or greater than a certain level.

通常この様な実施例に示す電源の場合、実験で行った様に、例として略上方向に向きして取付けられた太陽電池面1と、東、南、西方向に向きする複数の垂直方向に向いた太陽電池面3を具備している。
前記二つの方向に向きする太陽電池面に太陽の直射日光を同時に受光させ発生する電力を得る受光装置や発電装置である。
Usually, in the case of the power source shown in such an embodiment, as performed in the experiment, the solar cell surface 1 mounted in the substantially upward direction as an example, and a plurality of vertical directions facing in the east, south and west directions The solar cell surface 3 facing toward is provided.
It is a light-receiving device or a power generation device that obtains electric power generated by simultaneously receiving direct sunlight from the solar cell surfaces facing in the two directions.

略垂直方向の太陽電池面3は、必ずしも東方向、南方向、西方向の3つ方向にある必要はなく遮蔽物の例えばビル等により日が入り込まない方向が、例えば東方向にある場合、略垂直方向に向きする東方向の太陽電池3は必要はない。 The solar cell surface 3 in the substantially vertical direction does not necessarily have to be in the three directions of the east, south, and west directions. If the direction in which the sun does not enter due to, for example, a building is in the east direction, for example, The solar cell 3 in the east direction facing the vertical direction is not necessary.

略上方向に向きする太陽電池面と、前記太陽電池面の下側にあり外側面に略垂直方向に向きする太陽電池面とを具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置または発電装置である。 A solar cell surface facing substantially upward, and a solar cell surface below the solar cell surface and facing substantially perpendicular to the outer surface, and the solar cell surface facing the two directions A light receiving device or a power generation device characterized in that it simultaneously receives light and obtains generated electric power.

または、立体の柱状の上面に略上方向に向きする太陽電池面と、立体の柱状の側面に略垂直方向に向きする太陽電池面を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする発電装置または受光装置とも言える。 Alternatively, a solar cell surface facing substantially upward on a three-dimensional columnar upper surface and a solar cell surface facing substantially perpendicular to a three-dimensional columnar side surface, the solar cell surface facing in the two directions It can also be said to be a power generation device or a light receiving device characterized in that it receives solar light at the same time and generates electric power generated.

なお本実施例は略垂直方向に向きする太陽電池面3を箱体19に固定せずに、太陽電池面3と箱体19を蝶番等にて連結して、太陽電池面3を上方向に可動として移動し、略上方向に向きする太陽電池面1と同様な面までに移動して固定できる様にしてもよい。 In the present embodiment, the solar cell surface 3 facing the substantially vertical direction is not fixed to the box body 19 but the solar cell surface 3 and the box body 19 are connected by a hinge or the like so that the solar cell surface 3 is directed upward. It may move so that it can move and be fixed to a surface similar to the solar cell surface 1 facing substantially upward.

他の部分については実施例6と同じである。各太陽電池面の受光の作用は図8、図9と同様である。 Other parts are the same as those in the sixth embodiment. The effect of light reception on each solar cell surface is the same as in FIGS.

図17は実施例11を示す。支柱の上先端に水平面に対して略上方向に向きする太陽電池面1と、前記太陽電池面の上側の支柱の側面に略垂直方向に向きする太陽電池面3を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力にて発電する事を特徴とする受光装置や発電装置である。 FIG. 17 shows an eleventh embodiment. The solar cell surface 1 facing substantially upward with respect to the horizontal plane at the top end of the support column, and the solar cell surface 3 facing substantially perpendicular to the side surface of the support column on the upper side of the solar cell surface, A light receiving device and a power generating device, characterized in that solar light is simultaneously received on a solar cell surface facing in a direction to generate electric power using generated electric power.

L形柱21の底面である上面には、上方向に向きする太陽電池1と、L形柱の内側の側面に前記太陽電池面の端側の上方向の垂直方向に向きした太陽電池面3を組み合わせて具備した(Bタイプ)例である。
支柱2の上先端にL形柱21は固着されている。
前記二つの方向に向きする太陽電池面に太陽の直射光を同時に受光し発生する電流の和にて電力を得る事を特徴とする受光装置や発電装置である
On the upper surface, which is the bottom surface of the L-shaped column 21, the solar cell 1 facing upward, and the solar cell surface 3 facing the upward vertical direction on the end side of the solar cell surface on the inner side surface of the L-shaped column (B type).
An L-shaped column 21 is fixed to the upper end of the column 2.
A light receiving device and a power generation device characterized in that the solar cell surface facing in the two directions simultaneously receives the direct sunlight and obtains electric power by the sum of the generated currents.

他は図3の実施例1(Aタイプ)と同様である。 Others are the same as Example 1 (A type) of FIG.

実施例12は 図11の実施例5がAタイプに対して、Bタイプであり、図20に示す様である。支柱の上先端に略上方向に向きする太陽電池面1と、前記太陽電池面の上側に略垂直方向に向きする太陽電池面3を具備して、前記二つの太陽電池面を前記支柱を略中心として水平方向に回転させる事を特徴とすると共に、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力にて発電する事を特徴とする受光装置や発電装置である。 In the twelfth embodiment, the fifth embodiment shown in FIG. 11 is a B type compared to the A type, as shown in FIG. A solar cell surface 1 facing substantially upward at the top end of the support column and a solar cell surface 3 facing substantially vertically above the solar cell surface, the two solar cell surfaces being substantially the same as the support column. A light receiving device or a power generating device characterized in that it is rotated in the horizontal direction as the center, and that the solar cell surface facing in the two directions simultaneously receives solar light and generates electric power with generated power. is there.

L形柱21の底面である上面に上方向に向きする太陽電池面1を、L形柱21の側面の内側に垂直方向に向きする太陽電池面3を具備している。支柱上17の上先端にL形柱21は固着されている。
支柱の上先端17に略上方向に向きする太陽電池面1と、支柱の側面の上方向に略垂直方向に向きする太陽電池面3の二つの太陽電池面を前記支柱上17を水平方向に回転させる事を特徴とすると共に、支柱下18には、支柱上17を回転させるためにベアリング等13を介して電動機10、減速機11と電動機の軸17を支柱上に固着している。前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電流の和にて電力を得る事を特徴とする受光装置や発電装置である。
The solar cell surface 1 facing upward is provided on the upper surface, which is the bottom surface of the L-shaped column 21, and the solar cell surface 3 facing vertically is provided inside the side surface of the L-shaped column 21. The L-shaped column 21 is fixed to the upper end of the upper column 17.
The two solar cell surfaces, the solar cell surface 1 facing substantially upward on the upper end 17 of the column and the solar cell surface 3 facing substantially vertically on the upper side of the column, are arranged horizontally on the column 17. The motor 10, the speed reducer 11, and the motor shaft 17 are fixed to the support column 18 via a bearing 13 or the like for rotating the support column 17. It is a light receiving device or a power generation device characterized in that electric power is obtained by summing current generated by simultaneously receiving solar light on the solar cell surfaces facing in the two directions.

この様に垂直方向の太陽電池面3を回転させる事により、太陽電池面を東、南、西等に移動させる事ができる。この様にする事により、略垂直に向きする太陽電池面3を一面として回転させる事により東西南北に回転させる事により、太陽電池の必要数を減らしてコストを下げると共に二次元移動する太陽追従タイプと同様な効果を出す事ができる。 By rotating the solar cell surface 3 in the vertical direction in this way, the solar cell surface can be moved to the east, south, west, and the like. By doing in this way, by rotating the solar cell surface 3 oriented substantially vertically as one surface, it is rotated to the east, west, south, and north, thereby reducing the required number of solar cells and reducing the cost and moving in two dimensions. Can produce the same effect.

略上方向に向きする太陽電池面と、前記太陽電池面の上側にあり内側面に略垂直方向に向きする太陽電池面とを具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置または発電装置である。
他は実施例5(Aタイプ)と同様である。
A solar cell surface facing substantially upward, and a solar cell surface on the upper side of the solar cell surface and facing in a direction substantially perpendicular to the inner surface, and solar light on the solar cell surfaces facing the two directions. The light receiving device or the power generation device is characterized in that the power generated by receiving the light simultaneously is obtained.
Others are the same as Example 5 (A type).

実施例13は図21に示す様である。立体柱状のL形柱21の上面に略上方向に向きする太陽電池面1と、前記太陽電池面の上側の立体柱状の側面に略垂直方向に向きする太陽電池面3を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力にて発電する事を特徴とする受光装置や発電装置である。 Example 13 is as shown in FIG. A solar cell surface 1 facing substantially upward on the upper surface of the three-dimensional columnar L-shaped column 21; and a solar cell surface 3 facing substantially perpendicular to the three-dimensional columnar side surface on the upper side of the solar cell surface, A light receiving device and a power generating device characterized in that the solar cell surface facing in two directions simultaneously receives solar light and generates electric power with electric power generated.

L型柱21の底面である上面には略上方向に向きする太陽電池面1と、L形柱21の側面の内側には略垂直方向に向きする太陽電池面3が固定されている。(Bタイプ)
L型柱21の底面には車輪22が回転できる様に固定されている。
A solar cell surface 1 facing substantially upward is fixed to the upper surface, which is the bottom surface of the L-shaped column 21, and a solar cell surface 3 facing substantially vertical is fixed to the inside of the side surface of the L-shaped column 21. (B type)
The wheel 22 is fixed to the bottom surface of the L-shaped column 21 so that it can rotate.

略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池面3と、前記二つの面にて作られた二面角の内側に(L字形の内側に)太陽電池の受光面を具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光させ発生する電力を得る事を特徴とする受光装置や発電装置である。 The solar cell surface 1 facing substantially upward, the solar cell surface 3 facing substantially vertical, and the light reception of the solar cell inside the dihedral angle formed by the two surfaces (inside the L-shape) A light receiving device and a power generation device characterized in that the solar cell surface having the surface and receiving the light of the sun simultaneously on the solar cell surfaces facing in the two directions obtains the generated electric power.

実施例14は図22に示す様である。立体の柱状の上面に略上方向に向きする太陽電池面1と、立体の柱状の側面に略垂直方向に向きする太陽電池面3を具備して、前記二つの方向に向きする太陽電池面を共に水平方向に回転させ、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力にて発電する事を特徴とする受光装置や発電装置である。 Example 14 is as shown in FIG. A solar cell surface 1 facing substantially upward on a three-dimensional columnar upper surface, and a solar cell surface 3 facing substantially perpendicular to a three-dimensional columnar side surface, the solar cell surfaces facing in the two directions Both of the light receiving device and the power generating device are characterized in that both are rotated in the horizontal direction, and the solar cell surfaces facing in the two directions receive light from the sun at the same time and generate electric power with the generated electric power.

装置は上下に分かれ、上部はL形柱21であり、L形柱21の底面である上面には略上方向に向きする太陽電池面1と、L形柱の側面である前記太陽電池面の端側の下側の内側には水平面に対して略垂直方向に向きする太陽電池面3とを具備し回転ができる様になっている。
前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電流の和にて発電する事を特徴としている電源である。
下部は固定箱体24であり底面には回転可能な車輪22が取り付けられている。L形柱21が電動機により回転する事を特徴としている。
The apparatus is divided into an upper part and a lower part, and the upper part is an L-shaped column 21, and the upper surface, which is the bottom surface of the L-shaped column 21, has a solar cell surface 1 facing substantially upward and the solar cell surface that is the side surface of the L-shaped column. A solar cell surface 3 oriented substantially perpendicular to the horizontal plane is provided inside the lower side of the end side so that it can rotate.
The power source is characterized in that the solar cell surfaces facing in the two directions receive solar light at the same time and generate electric power with the sum of currents generated.
The lower part is a fixed box 24, and a rotatable wheel 22 is attached to the bottom. The L-shaped column 21 is rotated by an electric motor.

この様に垂直方向の太陽電池面3を回転させる事により、太陽電池面を東、南、西等に移動させる事ができる。この様にする事により、略垂直に向きする太陽電池を1方向のみに必要数を設定しコストを下げると共に太陽追従タイプと同様な効果を出す事ができる。 By rotating the solar cell surface 3 in the vertical direction in this way, the solar cell surface can be moved to the east, south, west, and the like. By doing so, it is possible to set the required number of solar cells oriented substantially vertically in only one direction to reduce the cost and to obtain the same effect as the solar following type.

上部箱体23は電動機軸12を介して電動機10と減速機11に取り付けられている。
電動機10は制御器により、太陽の一日の移動に応じて回転制御され、水平面に対して略垂直に向きして太陽からの光を受光できる方向に面する太陽電池3の移動の制御方法は時間的制御または二次元の太陽追従でもよくいずれの方法でもよい。
太陽電池3は太陽が昇る略東側から太陽が沈む略西の方向に水平面に対して略垂直に向きして太陽からの光を受光できるものである。
前記二つの太陽電池面1,3により発生する電気は配線を介して蓄電池30に蓄えられる。またはインバータやコンデショナを通じて商用電源に接続してもよい。
The upper box body 23 is attached to the electric motor 10 and the speed reducer 11 via the electric motor shaft 12.
The electric motor 10 is rotationally controlled by the controller according to the movement of the day of the sun, and a method for controlling the movement of the solar cell 3 facing in a direction substantially perpendicular to the horizontal plane and receiving light from the sun is as follows. Either time control or two-dimensional sun tracking may be used.
The solar cell 3 can receive light from the sun in a direction substantially perpendicular to the horizontal plane in a direction substantially west where the sun sinks from a substantially east side where the sun rises.
Electricity generated by the two solar cell surfaces 1 and 3 is stored in the storage battery 30 through wiring. Alternatively, it may be connected to a commercial power source through an inverter or a conditioner.

略上方向に向きする太陽電池面と、前記太陽電池面の上側にあり内側面に略垂直方向に向きする太陽電池面とを具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置または発電装置である。 A solar cell surface facing substantially upward, and a solar cell surface on the upper side of the solar cell surface and facing in a direction substantially perpendicular to the inner surface, and solar light on the solar cell surfaces facing the two directions. The light receiving device or the power generation device is characterized in that the power generated by receiving the light simultaneously is obtained.

他は図15の実施例9(Aタイプ)と同様である。 Others are the same as Example 9 (A type) of FIG.

図13の実施例7のAタイプに対して、本発明の実施例15は図23に示すBタイプである。立体の柱状の上面に略上方向に向きする太陽電池面と、前記太陽電池面の上側の、立体の柱状の側面に略垂直方向に向きする太陽電池面を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力にて発電する事を特徴とする受光装置や発電装置である。 In contrast to the A type of the seventh embodiment shown in FIG. 13, the fifteenth embodiment of the present invention is the B type shown in FIG. A solar cell surface facing substantially upward on a three-dimensional columnar upper surface, and a solar cell surface facing substantially perpendicular to a three-dimensional columnar side surface above the solar cell surface, in the two directions The light receiving device and the power generating device are characterized in that solar light is simultaneously received on a facing solar cell surface and generated by electric power generated.

略上方向に向きする太陽電池面1と、前記太陽電池面の端側の上側の内側に略垂直方向に向きする太陽電池面3を複数並べた太陽電池群からなっている。前記二つの面により作られた二面角の内側に(L字形の内角に)太陽電池面を具備していて、これらを横に複数並べた太陽電池群からなり、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光させて発電する事を特徴とする電源である。
この様な太陽電池群は、建物の屋上の縁、各階周りに沿って設置、河川土手の縁に沿って設置、高架橋の縁に沿って設置が可能である。
これらの建物の屋上の縁、各階周り、河川土手の縁、高架橋の縁が立体の柱状のL形柱21に相当する。L形柱21の底面である上面には略上方向に向きする太陽電池1とL形柱の側面の内側には、略垂直方向に向きする太陽電池3を具備している。
It consists of a solar cell group in which a plurality of solar cell surfaces 1 facing in a substantially upward direction and a plurality of solar cell surfaces 3 facing in a substantially vertical direction are arranged inside the upper side of the end side of the solar cell surface. A solar cell surface is provided inside a dihedral angle formed by the two surfaces (in an L-shaped inner angle), and a solar cell group in which a plurality of these are arranged side by side, and faces in the two directions. It is a power source characterized in that the solar cell surface simultaneously receives sunlight to generate power.
Such a solar cell group can be installed along the edge of the roof of the building, around each floor, installed along the edge of the river bank, and installed along the edge of the viaduct.
The edge of the roof of these buildings, the surroundings of each floor, the edge of the river bank, and the edge of the viaduct correspond to the three-dimensional columnar L-shaped column 21. A solar cell 1 facing substantially upward is provided on the upper surface, which is the bottom surface of the L-shaped column 21, and a solar cell 3 facing substantially vertically is provided on the inner side of the side surface of the L-shaped column.

略上方向に向きする太陽電池面と、前記太陽電池面の上側にあり内側面に略垂直方向に向きする太陽電池面とを具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする受光装置または発電装置である。 A solar cell surface facing substantially upward, and a solar cell surface on the upper side of the solar cell surface and facing in a direction substantially perpendicular to the inner surface, and solar light on the solar cell surfaces facing the two directions. The light receiving device or the power generation device is characterized in that the power generated by receiving the light simultaneously is obtained.

または、立体の柱状の上面に略上方向に向きする太陽電池面と、立体の柱状の側面に略垂直方向に向きする太陽電池面を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力を得る事を特徴とする発電装置または受光装置である。
上記以外は実施例7(Aタイプ)と同様である。
Alternatively, a solar cell surface facing substantially upward on a three-dimensional columnar upper surface and a solar cell surface facing substantially perpendicular to a three-dimensional columnar side surface, the solar cell surface facing in the two directions A power generating device or a light receiving device is characterized in that it receives solar light simultaneously to obtain generated electric power.
Other than the above, this example is the same as Example 7 (A type).

図24の様に、略上方向に向きする太陽電池面1と、前記太陽電池面の端側の上側の内側に略垂直方向に向きする太陽電池面3との関係(Bタイプ)において、図18、図20、図21、図22、図23に示す実施例に応用できる。
略上方向に向きする太陽電池面1と略垂直方向に面する太陽電池面3は接していてもよいし、一体でもよいし、同時に受光できる範囲において離れていてもよい。
As shown in FIG. 24, in the relationship (B type) between the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertically inside the upper end of the solar cell surface. 18, FIG. 20, FIG. 21, FIG. 22, and FIG.
The solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertical may be in contact with each other, may be integrated, or may be separated within a range where light can be received simultaneously.

実施例7の図13および実施例15の図23に示す様に太陽電池群においては、図26に示す様に、略上方向に向きする太陽電池面1と水平面に対して略垂直方向に向きする太陽電池面3を複数用いて、階段状に設けてもよいし、複数用いてもよく、階段状に用いてもよい。
「略上方向に向きする太陽電池面と、前記太陽電池面の端側の下側の外側に略垂直方向に向きする太陽電池面とを具備した電源」と「略上方向に向きする太陽電池面と、前記太陽電池面の端側の上側の内側に略垂直方向に向きする太陽電池面とを具備した電源」組み合わせと捉える事ができる。
As shown in FIG. 13 of Example 7 and FIG. 23 of Example 15, in the solar cell group, as shown in FIG. 26, the solar cell surface 1 faces substantially upward and is oriented substantially perpendicularly to the horizontal plane. A plurality of solar cell surfaces 3 to be used may be provided in a staircase shape, a plurality of solar cell surfaces 3 may be used, or a plurality of solar cell surfaces 3 may be used in a staircase shape.
“Power supply comprising a solar cell surface facing substantially upward, and a solar cell surface facing substantially vertical on the outside of the lower end of the solar cell surface” and “solar cell facing substantially upward” It can be understood as a combination of “a power source comprising a surface and a solar cell surface facing in a substantially vertical direction inside the upper side of the end side of the solar cell surface”.

複数の各々の上方向に向きする太陽電池面1と、複数の各々の垂直方向に向きする太陽電池面3においては、各太陽電池面には前記二つの方向に向きする太陽電池面に太陽の直射光を同時に受光し発生する電流の和による手段にて発電する事を特徴としている。 In each of the plurality of solar cell surfaces 1 facing upward and the plurality of solar cell surfaces 3 facing each other in the vertical direction, each solar cell surface has a solar cell surface facing the two directions. It is characterized in that it generates power by means of the sum of currents generated by simultaneously receiving direct light.

実施例4の図10、実施例5の図11、実施例9の図15、実施例12の図20、実施例14の図22においては、日の出方向、日没方向に合わせて電動機10の回転角度を設定する事により、略垂直方向に向きする太陽電池面3の方向を制御でき日の出、日の入り時に受光量100を得ることができる。   In FIG. 10 of the fourth embodiment, FIG. 11 of the fifth embodiment, FIG. 15 of the ninth embodiment, FIG. 20 of the twelfth embodiment, and FIG. 22 of the fourteenth embodiment, the motor 10 rotates in accordance with the sunrise direction and the sunset direction. By setting the angle, the direction of the solar cell surface 3 facing in a substantially vertical direction can be controlled, and the amount of received light 100 can be obtained at sunrise and sunset.

実施例2の図8においては、略垂直方向に向きする太陽電池面3は南方向、太陽電池面7は東方向、太陽電池面5は西方向にそれぞれ配置されているので、朝日夕日を受光できる。また実施例3の図9、実施例10の図16においては、略垂直方向に向きする太陽電池3は東方向、南方向、西方向にそれぞれ配置されているので、朝日、夕日を受光できる。 In FIG. 8 of the second embodiment, the solar cell surface 3 oriented in the substantially vertical direction is arranged in the south direction, the solar cell surface 7 is arranged in the east direction, and the solar cell surface 5 is arranged in the west direction. it can. Moreover, in FIG. 9 of Example 3 and FIG. 16 of Example 10, the solar cells 3 oriented in the substantially vertical direction are respectively arranged in the east direction, the south direction, and the west direction.

以下本出願の全ての受光装置および発電装置について共通項目について示す。 The common items of all the light receiving devices and power generation devices of the present application will be described below.

本出願および実施例における電源において、実施例1〜実施例17における電源においては、バッテリィチャージャと蓄電池を用いて専有面積の少ない独立電源として用いられる事がある。しかし複数個並べて設置し、インバータまたはインバータ機能付きコンデショナを通して商用電源に接続させる場合もある。
用途においては照明塔、広告塔に用いられるが、必ずしも用途においてはこれに限った事ではない。
In the power supply in this application and the examples, the power supplies in Examples 1 to 17 may be used as an independent power source with a small occupied area using a battery charger and a storage battery. However, there are also cases where a plurality of them are installed side by side and connected to a commercial power source through an inverter or a conditioner with an inverter function.
Although it is used for lighting towers and advertising towers in applications, it is not necessarily limited to these applications.

本出願および実施例における受光装置または発電装置において、実施例6、7、9、10、13、14は非常用電源、太陽電池による発電機として用いられる事が多いが、必ずしも用途においてはこれに限った事ではない。 In the light receiving device or the power generation device in the present application and the examples, the examples 6, 7, 9, 10, 13, and 14 are often used as emergency power sources and solar cell generators. Not limited.

本出願および実施例における受光装置または発電装置において、略上方向に向きする太陽電池面1と、前記太陽電池面の上側の内側に略垂直方向に向きする太陽電池面3とを具備する意味は、図18、図19に示す様に「二つの面により作られた二面角の内角に(L字形またはL形柱の内角)太陽電池面を具備する」と同等の意味である。 In the light receiving device or the power generation device in the present application and the embodiment, the meaning of including the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertically inside the upper side of the solar cell surface means As shown in FIGS. 18 and 19, it is equivalent to “having a solar cell surface at the inner angle of a dihedral angle formed by two surfaces (the inner angle of an L-shaped or L-shaped column)”.

本出願および実施例における受光装置または発電装置において、支柱の上先端に略上方向に向きする太陽電池面1と、支柱の側面に略垂直方向に向きする太陽電池面3を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し発生する電力は配線にて蓄電池30に接続されるものもある。
蓄電池30は略上方向に向きする太陽電池1や略垂直方向の太陽電池3の裏面側位置等、太陽の光を受光しない面側位置に取り付けてもよいし、別途設けられた箱体33に収納して支柱2に取り付けてもよい。
In the light receiving device or the power generation device according to the present application and the embodiment, the solar cell surface 1 facing substantially upward at the top end of the support, and the solar cell surface 3 facing substantially perpendicular to the side of the support, Some of the electric power generated by simultaneously receiving solar light on the solar cell surfaces facing in two directions is connected to the storage battery 30 by wiring.
The storage battery 30 may be attached to a surface side position that does not receive solar light, such as the back surface side position of the solar cell 1 facing substantially upward or the solar cell 3 substantially vertical, or may be attached to a separately provided box 33. It may be stored and attached to the column 2.

本出願および実施例における受光装置または発電装置において、各請求項における「略垂直方向に向きする太陽電池面3」は「略垂直に向きして太陽からの光を受光できる方向に面する太陽電池面3」と同等である。 In the light-receiving device or the power generation device according to the present application and the embodiment, “a solar cell surface 3 facing in a substantially vertical direction” in each claim is “a solar cell facing in a substantially vertical direction and capable of receiving light from the sun”. Equivalent to “surface 3”.

本出願および実施例における受光装置または発電装置において、蓄電池を取り付けて用いるタイプと、蓄電池とインバータを用いるタイプと、インバータを用いるタイプと、インバータ機能付きコンデショナを取り付け商用電源に接続するタイプの4種類ある。 In the light receiving device or the power generation device in the present application and the embodiment, there are four types: a type that uses a storage battery, a type that uses a storage battery and an inverter, a type that uses an inverter, and a type that attaches a conditioner with an inverter function and connects to a commercial power source. is there.

本出願および実施例における受光装置または発電装置においては、電源設備、電源装置、電源機器を含むものとする。 The light receiving device or the power generation device in the present application and examples includes a power supply facility, a power supply device, and a power supply device.

本出願および実施例における受光装置または発電装置において、略上方向に向きする太陽電池1は、略水平に取り付けられていてもよく、また斜めに取り付けられていてもよいが、上方向の向きに取り付けられている必要がある。よって「略」上方向と表現している。「略」垂直方向についても、図14、図24の各種状態があり得るが、基本的には、上方向に向きする太陽電池面1と垂直方向に向きする太陽電池面3がなす二面角は略直角である。 In the light receiving device or the power generation device in the present application and the example, the solar cell 1 facing substantially upward may be attached substantially horizontally or may be attached obliquely, but in the upward direction. Must be installed. Therefore, it is expressed as “substantially” upward. 14 and 24, there are various states as shown in FIG. 14 and FIG. 24. Basically, the dihedral angle formed by the solar cell surface 1 facing upward and the solar cell surface 3 facing vertically is formed. Is approximately a right angle.

本出願および実施例における受光装置または発電装置において、略上方向に向きする太陽電池1は、斜めに取り付けられている場合は通常、日光の入射角を垂直になる様にする為である。
他に斜めに取り付ける他の理由としては、雨を流すため、積雪が流れ落ちる様に、太陽の高度に合わせて水平線に対して斜めに取り付けられる場合が多い。
In the light-receiving device or the power generation device in the present application and the embodiment, the solar cell 1 facing substantially upward is normally set so that the incident angle of sunlight is vertical when attached obliquely.
As another reason for attaching it obliquely, it is often attached obliquely with respect to the horizon in accordance with the altitude of the sun so that snow flows down because rain flows.

本出願および実施例における受光装置や発電装置において、略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池面3の二つの太陽電池面を一体とし、受光装置や発電装置も権利の範囲に含むものとする。 In the light receiving device and the power generation device according to the present application and the embodiment, the two solar cell surfaces of the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertical are integrated, and the light receiving device and power generation device are integrated. Are also included in the scope of rights.

本出願および実施例における受光装置や発電装置において、略上方向に向きする太陽電池1は一枚で構成されていてもよいし、複数枚で構成されていてもよい。
略垂直方向に設けられた太陽電池3においても、その構成は一枚でもよいし複数枚であってもよい。
In the light receiving device and the power generation device according to the present application and the examples, the solar cell 1 facing substantially upward may be composed of one sheet or a plurality of sheets.
Also in the solar cell 3 provided in the substantially vertical direction, the structure may be one piece or plural pieces.

本出願および実施例における受光装置または発電装置において、略上方向に向きする太陽電池面1と、略垂直方向に向きして設けられた太陽電池面3の、二つの太陽電池の関係を説明し易くする為に二つの太陽電池は同じ性能であるものとして検討した。
しかしながら実際には、略上方向に向きする太陽電池1と略垂直方向に向きする太陽電池面3の大きさ広さや、性能は必ずしも同じでなくともよいし、季節や用途や必要な出力によって、太陽電池の性能、大きさは適選適度にて決定できるものとする。
基本的には設計上問題がなければ、略上方向に向きする太陽電池面1と略垂直方向に向きする太陽電池面3の大きさ、枚数は同等が良い。
In the light receiving device or the power generation device according to the present application and the embodiment, the relationship between two solar cells, that is, a solar cell surface 1 that faces substantially upward and a solar cell surface 3 that faces substantially vertically. In order to facilitate, the two solar cells were considered as having the same performance.
In practice, however, the size and performance of the solar cell surface 3 facing substantially upward and the solar cell surface 3 facing substantially vertical do not necessarily have to be the same. Depending on the season, application, and required output, The performance and size of the solar cell can be determined appropriately and appropriately.
Basically, if there is no problem in design, the size and the number of the solar cell surfaces 1 facing substantially upward and the solar cell surfaces 3 facing substantially vertical are good.

本出願および実施例における受光装置または発電装置において、夕日と朝日の場合は光が地表に斜めに到達するので、光が大気圏内を通過する距離が長くなり、大気に含まれる水蒸気、塵、微粒子等により地上に到達するまでにある程度の光の減哀を生じる。これらを加味して太陽電池面の大きさを決定する。 In the light-receiving device or the power generation device in the present application and the embodiment, in the case of sunset and morning sun, the light reaches the ground surface obliquely, so the distance that the light passes through the atmosphere becomes long, and water vapor, dust, and fine particles contained in the atmosphere It causes a certain amount of light loss until it reaches the ground. Considering these, the size of the solar cell surface is determined.

本出願および実施例における受光装置または発電装置において、朝日または夕日において減哀度が大きい場合は、支柱タイプにおいても、立体柱状タイプにおいても、朝日または夕日に面する太陽電池の受光量および発電量を増すために、朝日または夕日向けの太陽電池による発電については、サイズの大きい太陽電池を用いるか発電量の大きい太陽電池面を用いる場合がある。 In the light receiving device or the power generating device in the present application and the embodiment, when the degree of aggravation is large in the morning sun or sunset, the amount of light received and the amount of power generated by the solar cell facing the morning sun or sunset in both the pillar type and the three-dimensional columnar type In order to increase power generation, there is a case where a solar cell having a large size or a solar cell surface having a large power generation amount is used for power generation by a solar cell for the morning sun or sunset.

本出願および実施例における受光装置または発電装置において、太陽電池からの出力を並列に用いて、バッテリィチャージャを介して蓄電池に接続する場合は、各々の太陽電池の出力線に逆流防止ダイオード等を用いなければならない。 In the light receiving device or the power generation device in the present application and the embodiment, when the output from the solar cell is used in parallel and connected to the storage battery through the battery charger, a backflow prevention diode or the like is used for the output line of each solar cell. There must be.

本出願および実施例における受光装置または発電装置において、受光量と発電量は、太陽電池の種類特性により異なるので、ここでは受光量と発電量は説明上は比例すると仮定した。 In the light receiving device or the power generation device in the present application and the example, the amount of light received and the amount of power generation differ depending on the type characteristics of the solar cell, so here it is assumed that the amount of light received and the amount of power generation are proportional.

本出願および実施例における受光装置または発電装置において、太陽電池の受光量はここでは便宜上、直射光を受光する様に記されているが、太陽からの光は大気や雲によりその強弱を表現しにくいので、必ずしも直射光とは限らない。 In the light receiving device or the power generation device in the present application and the embodiment, the amount of light received by the solar cell is described here to receive direct light for convenience, but the light from the sun expresses its strength by the atmosphere and clouds. Because it is difficult, it is not always direct light.

本出願および実施例における受光装置または発電装置において、蓄電池30は単数に設けてもよく、複数の蓄電池を直列接続または並列接続して設けてもよい。 In the light receiving device or the power generation device in the present application and the embodiment, the storage battery 30 may be provided as a single unit, or a plurality of storage batteries may be provided in series connection or parallel connection.

本出願および実施例における受光装置または発電装置において、配線、蓄電池30は支柱2の中に収納してもよく、別途箱体に収納して支柱に取り付けてもよい。蓄電池は太陽電池面1,3の裏側に取り付けてもよい。支柱は角柱であっても円形の断面であってもよい。 In the light receiving device or the power generation device in the present application and the embodiment, the wiring and the storage battery 30 may be housed in the support column 2 or may be separately stored in a box and attached to the support column. The storage battery may be attached to the back side of the solar cell surfaces 1 and 3. The column may be a prism or a circular cross section.

本出願および実施例における受光装置や発電装置において、太陽電池は小さな半導体の集まりでもあり、一定以上の受光にて昇圧し電圧は一定となる。その後受光量により電流値が増す。電圧×電流の和は=電力となるので、電力は電流、電圧、電気との語句に置き換える事ができる。通常各太陽電池面からの出力は並列に接続され、蓄電池やインバーであるAC変換器やインバータ機能のあるコンデショナに送られる。 In the light receiving device and the power generation device according to the present application and the embodiment, the solar cell is also a collection of small semiconductors, and the voltage is increased by receiving light above a certain level. Thereafter, the current value increases with the amount of received light. Since the sum of voltage × current is equal to electric power, electric power can be replaced with the terms “current”, “voltage”, and “electricity”. Usually, the output from each solar cell surface is connected in parallel and sent to a storage battery or an AC converter such as an invar or a conditioner having an inverter function.

本出願および実施例における受光装置または発電装置において、太陽電池はセルの集合から成るモ
ジュールが一般的に市場に流通している。
結晶シリコン太陽電池、薄膜シリコン太陽電池、HIT太陽電池、化合物半導体系太陽電池、色素増感太陽電池、有機薄膜太陽電池等、様々な種類があるが、ここにおける太陽電池においてこれらの種類の限定を行う物ではない。
また、太陽電池はフイルム状の太陽電池でも太陽電池パネルであっても良い。
In the light receiving device or the power generation device in the present application and the embodiment, a module including a set of cells is generally distributed in the market.
There are various types, such as crystalline silicon solar cells, thin film silicon solar cells, HIT solar cells, compound semiconductor solar cells, dye-sensitized solar cells, and organic thin film solar cells. Not what you do.
The solar cell may be a film-like solar cell or a solar cell panel.

本出願および実施例における受光装置または発電装置において、立体柱状とは、略上方向に向きする平面と、略垂直方向に向きする側面を持つ立体であり、正方体、直方体、円柱、台形柱、三角柱、四角柱、多角柱、L型柱を含むものである。 In the light receiving device or the power generation device in the present application and the embodiment, the three-dimensional columnar shape is a three-dimensional shape having a plane facing substantially upward and a side surface facing substantially vertical, and is a rectangular parallelepiped, a rectangular parallelepiped, a cylinder, a trapezoidal pillar, and a triangular prism , Square pillars, polygonal pillars, and L-shaped pillars.

本出願および実施例における受光装置または発電装置において、略上方向に向きする太陽電池面1の受光量においては、春夏秋冬における太陽の高度は地球の地軸の傾きに左右される。緯度により太陽の高度は異なるのが、略上方向に向きする太陽電池面1に太陽の光が垂直に受光し、雨、雪の流す事を考慮すれば傾きθ2を30〜45°設ける必要がある場合も有り得る。 In the light receiving device or the power generation device according to the present application and the example, the solar altitude in the spring, summer, autumn and winter depends on the inclination of the earth's earth axis in the amount of light received by the solar cell surface 1 facing substantially upward. Although the altitude of the sun differs depending on the latitude, it is necessary to provide an inclination θ2 of 30 to 45 ° in consideration of the fact that solar light is received vertically on the solar cell surface 1 that faces substantially upward and rain and snow flow. There can be some cases.

よって本出願書においては水平面に対して略上方向に向きする太陽電池面1は都合上垂直方向に向きする太陽電池面3との角度θ1は90°と記した。しかしながら
前述する、図14、図2に示す様の各種の図の様に、上方向に向きする太陽電池面1には傾斜θ2を設けてもよい。
Therefore, in the present application, the angle θ1 between the solar cell surface 1 facing substantially upward with respect to the horizontal plane and the solar cell surface 3 facing vertically is described as 90 °. However, as shown in the various figures as shown in FIGS. 14 and 2, the solar cell surface 1 facing upward may be provided with an inclination θ2.

本出願および実施例における受光装置または発電装置において、東西南北は地球の北半球について述べている。よって緯度の高い場所における太陽の日中は南方向となる。 In the light receiving device or power generation device in the present application and examples, east, west, south, and north describe the northern hemisphere of the earth. Therefore, the daytime of the sun at high latitudes is south.

本出願および実施例における受光装置または発電装置において、略上方向に向きする太陽電池面1と、略垂直方向に向きする太陽電池面3を電気的に接続する場合は、直列和または並列和のいずれかの接続でもよい。
略上方向に向きする複数の太陽電池同士又は略垂直方向に向きする複数の太陽電池同士を用いる場合は直列和または並列和のいずれかの接続でもよい。
In the light receiving device or the power generation device in the present application and the embodiment, when the solar cell surface 1 facing substantially upward and the solar cell surface 3 facing substantially vertical are electrically connected, a series sum or a parallel sum Either connection may be used.
In the case of using a plurality of solar cells facing substantially upward or a plurality of solar cells facing substantially vertical, either a serial sum or a parallel sum connection may be used.

本出願および実施例における受光装置または発電装置において、蓄電池の種類はこれを問わないが、例えば鉛蓄電池、ニッケル水素電池、リチユームイオン電池、カドニューム電池、コンデンサ電池が上げられる。 In the light receiving device or the power generation device in the present application and the embodiment, the type of the storage battery is not limited, and examples thereof include a lead storage battery, a nickel hydrogen battery, a lithium ion battery, a cadmium battery, and a capacitor battery.

発電、非常用電源、広告塔、照明塔の太陽電池による電気エネルギーの取得に利用できる。     It can be used for power generation, emergency power supply, advertising towers, lighting towers to acquire electrical energy from solar cells.

1.略上方向に向きする太陽電池
2.支柱
3.略垂直方向に向きする太陽電池
4.アーム
5.略垂直方向に向きする西方向に向きする太陽電池
6.A方向
7.略垂直方向に向きする東方向に向きする太陽電池
8.B方向
9.略垂直方向に向きする□状の太陽電池
10.電動機
11.変速ギヤ
12.電動機軸
13.ベアリング等
14.カバー
15.C方向
17.支柱上
18.支柱下
19.立体柱状の箱体
20.太陽電池なしの側面
21.L形柱
22.車輪
23.可動箱体
24.固定箱体
27.上方向に稼働可能な水平面に対して略垂直方向に向きする太陽電池
30.蓄電池
31.バッテリィチャージャ
32.インバータ
33.箱体
1. 1. Solar cell facing substantially upward Strut 3. 3. Solar cell oriented in a substantially vertical direction Arm 5. 5. Solar cell facing in the west direction facing in a substantially vertical direction A direction 7. Solar cell facing in the east direction facing in a substantially vertical direction. B direction 9. 9. A square solar cell oriented in a substantially vertical direction. Electric motor 11. Transmission gear 12. Motor shaft 13. Bearing etc.14. Cover 15. C direction 17. On the support 18. Under the support 19. Solid columnar box 20. Side without solar cell 21. L-shaped column 22. Wheels 23. Movable box 24. Fixed box 27. 30. Solar cell oriented in a direction substantially perpendicular to a horizontal plane operable upward. Storage battery 31. Battery charger 32. Inverter 33. Box

Claims (4)

略上方向に向きする太陽電池面と、前記太陽電池面の上側または下側に略垂直方向に向きする太陽電池面とを具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し電力を得る事を特徴とする太陽電池の受光装置。 A solar cell surface facing in a substantially upward direction; and a solar cell surface facing in a substantially vertical direction on the upper side or the lower side of the solar cell surface. A solar cell light receiving device characterized in that it simultaneously receives light and obtains electric power. 支柱の上先端に水平面に対して略上方向に向きする太陽電池面と、支柱の側面に水平面に対して略垂直方向に向きする太陽電池面を具備し、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し電力を得る事を特徴とする請求項1記載の太陽電池の受光装置。 A solar cell surface having a solar cell surface facing substantially upward with respect to a horizontal plane at an upper end of the column and a solar cell surface facing substantially perpendicular to the horizontal plane on a side surface of the column, and facing the two directions The solar cell light receiving device according to claim 1, wherein solar light is simultaneously received on the surface to obtain electric power. 立体の柱状の上面に略上方向に向きする太陽電池面と、立体の柱状の側面に略垂直方向に向きする太陽電池面を具備して、前記二つの方向に向きする太陽電池面に太陽の光を同時に受光し電力を得る事を特徴とする請求項1記載の太陽電池の受光装置。 A solar cell surface facing substantially upward on a three-dimensional columnar upper surface and a solar cell surface facing substantially vertical on a three-dimensional columnar side surface, and the solar cell surface facing the two directions 2. The solar cell light receiving device according to claim 1, wherein light is simultaneously received to obtain electric power. 略上方向に向きする太陽電池面が水平面に対して傾斜している事を特徴とする請求項1から請求項3までに記載のいずれかの太陽電池の受光装置。 The solar cell light receiving device according to any one of claims 1 to 3, wherein a solar cell surface facing substantially upward is inclined with respect to a horizontal plane.
JP2013047916A 2013-03-11 2013-03-11 Light-receiving device capable of receiving certain amount of light regardless of altitude of sun Pending JP2014175522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013047916A JP2014175522A (en) 2013-03-11 2013-03-11 Light-receiving device capable of receiving certain amount of light regardless of altitude of sun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013047916A JP2014175522A (en) 2013-03-11 2013-03-11 Light-receiving device capable of receiving certain amount of light regardless of altitude of sun

Publications (1)

Publication Number Publication Date
JP2014175522A true JP2014175522A (en) 2014-09-22

Family

ID=51696449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047916A Pending JP2014175522A (en) 2013-03-11 2013-03-11 Light-receiving device capable of receiving certain amount of light regardless of altitude of sun

Country Status (1)

Country Link
JP (1) JP2014175522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726361B1 (en) * 2014-10-28 2015-05-27 株式会社アクシア Solar power system

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084987U (en) * 1983-11-17 1985-06-12 シャープ株式会社 signage device
JPS60187065A (en) * 1984-03-06 1985-09-24 Agency Of Ind Science & Technol Solar bear power generating system
JPH07335925A (en) * 1994-06-03 1995-12-22 Hitachi Ltd Solar cell
JPH10233236A (en) * 1996-12-19 1998-09-02 Showa Paul Kk Pole equipped with solar battery
JP2001358353A (en) * 2000-06-09 2001-12-26 Hitachi Ltd Phtovoltaic power generator and its installing method
JP2003346521A (en) * 2002-05-27 2003-12-05 Ishikawajima Harima Heavy Ind Co Ltd Lighting equipment
JP2004288092A (en) * 2003-03-25 2004-10-14 Mitsubishi Electric Corp Self power feeding type radio data collection system
US6888513B1 (en) * 2001-10-18 2005-05-03 Raytheon Company Method and apparatus for storage and deployment of folded panel structures
JP2005158908A (en) * 2003-11-25 2005-06-16 Hitachi Ltd Vertical rotation photovoltaic power generation system
JP2006128584A (en) * 2004-10-29 2006-05-18 Masaya Nagasawa Triangle-pole photovoltaic power generator
JP2007103806A (en) * 2005-10-06 2007-04-19 Ntt Facilities Inc Solar power generation equipment
JP2009250224A (en) * 2008-04-11 2009-10-29 Panasonic Corp Solar and wind power generation apparatus
JP2012019185A (en) * 2010-06-09 2012-01-26 Sony Corp Power generation device and power generation method
JP2012043936A (en) * 2010-08-18 2012-03-01 Takahiro Hasegawa Solar cell device
JP2013243225A (en) * 2012-05-18 2013-12-05 Hitachi Power Solutions Co Ltd Solar power generation device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084987U (en) * 1983-11-17 1985-06-12 シャープ株式会社 signage device
JPS60187065A (en) * 1984-03-06 1985-09-24 Agency Of Ind Science & Technol Solar bear power generating system
JPH07335925A (en) * 1994-06-03 1995-12-22 Hitachi Ltd Solar cell
JPH10233236A (en) * 1996-12-19 1998-09-02 Showa Paul Kk Pole equipped with solar battery
JP2001358353A (en) * 2000-06-09 2001-12-26 Hitachi Ltd Phtovoltaic power generator and its installing method
US6888513B1 (en) * 2001-10-18 2005-05-03 Raytheon Company Method and apparatus for storage and deployment of folded panel structures
JP2003346521A (en) * 2002-05-27 2003-12-05 Ishikawajima Harima Heavy Ind Co Ltd Lighting equipment
JP2004288092A (en) * 2003-03-25 2004-10-14 Mitsubishi Electric Corp Self power feeding type radio data collection system
JP2005158908A (en) * 2003-11-25 2005-06-16 Hitachi Ltd Vertical rotation photovoltaic power generation system
JP2006128584A (en) * 2004-10-29 2006-05-18 Masaya Nagasawa Triangle-pole photovoltaic power generator
JP2007103806A (en) * 2005-10-06 2007-04-19 Ntt Facilities Inc Solar power generation equipment
JP2009250224A (en) * 2008-04-11 2009-10-29 Panasonic Corp Solar and wind power generation apparatus
JP2012019185A (en) * 2010-06-09 2012-01-26 Sony Corp Power generation device and power generation method
JP2012043936A (en) * 2010-08-18 2012-03-01 Takahiro Hasegawa Solar cell device
JP2013243225A (en) * 2012-05-18 2013-12-05 Hitachi Power Solutions Co Ltd Solar power generation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726361B1 (en) * 2014-10-28 2015-05-27 株式会社アクシア Solar power system

Similar Documents

Publication Publication Date Title
US10518657B2 (en) Light standard with electric vehicle (EV) charger
Ahmad et al. Power feasibility of a low power consumption solar tracker
Thakkar et al. A simple non-linear model for the effect of partial shade on PV systems
Moradi et al. Annual performance comparison between tracking and fixed photovoltaic arrays
Khadidja et al. Optimisation of a solar tracker system for photovoltaic power plants in Saharian region, example of Ouargla
CN109209758B (en) Wind-solar integrated power generation device and use method thereof
Othman et al. Potential of building integrated photovoltaic application on roof top of residential development in Shah Alam
Chang Performance study on the east–west oriented single-axis tracked panel
Ahmad et al. On the effectiveness of time and date-based sun positioning solar collector in tropical climate: A case study in Northern Peninsular Malaysia
Oprea et al. Determination of Optimum Tilt Angle for Fixed Photovoltaic Modules in Iasi, Romania
Sambo et al. Implementation of standard solar PV projects in Nigeria
Faranda et al. Analysis of a PV system with single-axis tracking energy production and performances
Parveen et al. IoT based solar tracking system for efficient power generation
Alkhalidi et al. Comparing between best energy efficient techniques worldwide with existing solution implemented in Al-Ahliyya Amman University
Pavlović et al. Determining optimum tilt angles and orientations of photovoltaic panels in niš, Serbia
JP2014175522A (en) Light-receiving device capable of receiving certain amount of light regardless of altitude of sun
Bugała et al. Long–term performance evaluation of a fixed and solar follow–up systems with modified astronomical positioning in Polish conditions
US20210126465A1 (en) Electric vehicle (ev) charging system with down-sun wind turbine
Chiras Power from the Sun: A practical guide to solar electricity
WO2022093539A1 (en) Electric vehicle (ev) charging system with down-sun wind turbine
Pavlović et al. Assessment of the possibilities of building integrated PV systems of 1 kW electricity generation in Banja Luka
RU106725U1 (en) Solar power station
EP4052539A1 (en) Light tracking assembly for solar and wind power energy
Mikami et al. Advantages of concentrator photovoltaic system in high solar radiation region
López Design and simulation of a grid-connected PV system for self-consumption

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224