JP2014173743A - Steam generation system - Google Patents

Steam generation system Download PDF

Info

Publication number
JP2014173743A
JP2014173743A JP2013043600A JP2013043600A JP2014173743A JP 2014173743 A JP2014173743 A JP 2014173743A JP 2013043600 A JP2013043600 A JP 2013043600A JP 2013043600 A JP2013043600 A JP 2013043600A JP 2014173743 A JP2014173743 A JP 2014173743A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
water
engine
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013043600A
Other languages
Japanese (ja)
Other versions
JP6152661B2 (en
Inventor
Satoru Oshita
悟 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2013043600A priority Critical patent/JP6152661B2/en
Publication of JP2014173743A publication Critical patent/JP2014173743A/en
Application granted granted Critical
Publication of JP6152661B2 publication Critical patent/JP6152661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PROBLEM TO BE SOLVED: To provide a steam generation system for heating feedwater by using a heat pump driven by an engine, and further generating steam from the water by using exhaust heat from the engine.SOLUTION: A heat pump 2 pumps up heat from a heat source fluid in an evaporator 8, and heats water in a water supply passage 4 in a condenser 6. An engine 3 drives a compressor 5 of the heat pump 2. The water of the water supply passage 4 is successively passed through a waste heat recovery heat exchanger 10, a subcooler 9 and the condenser 6. The waste heat recovery heat exchanger 10 is an indirect heat exchanger between the feedwater in the water supply passage 4 and the heat source fluid after passing through the evaporator 8. The subcooler 9 is an indirect heat exchanger between the feedwater in the water supply passage 4 and a refrigerant from the condenser 6 to an expansion valve 7. An exhaust gas heat exchanger 17 is further disposed to heat the water after passing through the condenser 6, by an exhaust gas from the engine 3 to generate steam.

Description

本発明は、エンジンで駆動されるヒートポンプを用いた蒸気発生システムに関するものである。   The present invention relates to a steam generation system using a heat pump driven by an engine.

従来、下記特許文献1に開示されるように、ボイラ(24)の給水タンク(23)への給水を、ヒートポンプ(12)を用いて加温できるシステムが知られている。また、出願人は、この従来技術に比べてヒートポンプの効率をさらに向上した給水加温システムを提案し、既に特許出願を済ませている(特願2012−79191)。   Conventionally, as disclosed in Patent Document 1 below, a system capable of heating water supplied to a water supply tank (23) of a boiler (24) using a heat pump (12) is known. In addition, the applicant has proposed a feed water warming system in which the efficiency of the heat pump is further improved as compared with this prior art, and has already filed a patent application (Japanese Patent Application No. 2012-79191).

特開2010−25431号公報(図2、図3)JP 2010-25431 A (FIGS. 2 and 3)

本発明が解決しようとする課題は、エンジンで駆動されるヒートポンプを用いて給水を加温し、その水をさらにエンジンからの排熱を用いて蒸気にできる蒸気発生システムを提供することにある。   The problem to be solved by the present invention is to provide a steam generation system capable of heating feed water using a heat pump driven by an engine and converting the water into steam using exhaust heat from the engine.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器において熱源流体から熱をくみ上げ、前記凝縮器において給水路の水を加温するヒートポンプと、このヒートポンプの圧縮機を駆動するエンジンとを備え、前記給水路の水は、廃熱回収熱交換器、過冷却器および前記凝縮器を順に通され、前記廃熱回収熱交換器は、前記給水路の給水と、前記蒸発器を通過後の熱源流体との間接熱交換器であり、前記過冷却器は、前記給水路の給水と、前記凝縮器から前記膨張弁への冷媒との間接熱交換器であり、前記凝縮器を通過後の水を、前記エンジンからの排ガスで加温して蒸気とする排ガス熱交換器をさらに備えることを特徴とする蒸気発生システムである。   The present invention has been made to solve the above problems, and the invention according to claim 1 is characterized in that a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate a refrigerant, and the evaporation. A heat pump that draws up heat from a heat source fluid in the condenser and heats water in the water supply channel in the condenser, and an engine that drives a compressor of the heat pump, and the water in the water supply channel is a waste heat recovery heat exchanger The waste heat recovery heat exchanger is an indirect heat exchanger between the feed water in the feed water channel and the heat source fluid after passing through the evaporator, and is passed through the supercooler and the condenser in order. A condenser is an indirect heat exchanger for supplying water from the water supply channel and a refrigerant from the condenser to the expansion valve, and heats the water after passing through the condenser with exhaust gas from the engine to generate steam. Further comprising an exhaust gas heat exchanger A steam generating system.

請求項1に記載の発明によれば、エンジンで駆動されるヒートポンプを用いた蒸気発生システムにおいて、給水路の給水は、廃熱回収熱交換器、過冷却器および凝縮器を順に通される一方、ヒートポンプの熱源流体は、蒸発器および廃熱回収熱交換器を順に通される。蒸発器を通過後の熱源流体の廃熱や、凝縮器を通過後の冷媒の熱を用いて、凝縮器への給水を予熱しておくことで、ヒートポンプの効率を向上することができる。そして、凝縮器を通過後の水を、エンジンからの排ガスで加温して蒸気とすることができる。   According to the first aspect of the present invention, in the steam generation system using the heat pump driven by the engine, the water supply in the water supply passage is sequentially passed through the waste heat recovery heat exchanger, the subcooler, and the condenser. The heat source fluid of the heat pump is sequentially passed through the evaporator and the waste heat recovery heat exchanger. The efficiency of the heat pump can be improved by preheating the feed water to the condenser using the waste heat of the heat source fluid after passing through the evaporator and the heat of the refrigerant after passing through the condenser. And the water after passing a condenser can be heated with the waste gas from an engine, and can be made into a vapor | steam.

請求項2に記載の発明は、前記凝縮器を通過後の水を、前記エンジンのジャケットの冷却に用いて加温するジャケット熱交換器をさらに備え、このジャケット熱交換器を通過後の水を、前記排ガス熱交換器において前記エンジンからの排ガスで加温して蒸気とすることを特徴とする請求項1に記載の蒸気発生システムである。   The invention according to claim 2 further includes a jacket heat exchanger that heats the water after passing through the condenser by cooling the jacket of the engine, and the water after passing through the jacket heat exchanger. The steam generation system according to claim 1, wherein the exhaust gas heat exchanger heats the exhaust gas from the engine to produce steam.

請求項2に記載の発明によれば、給水をヒートポンプで加温した後、エンジンのジャケット冷却時の排熱でさらに加温することができる。そして、その加温後の水を、エンジンからの排ガスでさらに加温して蒸気とすることができる。   According to invention of Claim 2, after heating water supply with a heat pump, it can further heat with exhaust heat at the time of engine jacket cooling. Then, the heated water can be further heated with exhaust gas from the engine to be steam.

請求項3に記載の発明は、前記ジャケット熱交換器を通過後の水の内、一部のみを前記排ガス熱交換器へ供給して蒸気とすることを特徴とする請求項2に記載の蒸気発生システムである。   The invention according to claim 3 is characterized in that only a part of the water that has passed through the jacket heat exchanger is supplied to the exhaust gas heat exchanger to become steam. It is a generation system.

請求項3に記載の発明によれば、温水と蒸気の双方を得ることができる。また、ジャケット熱交換器を通過後の温水の一部だけを排ガス熱交換器へ供給することで、排ガス熱交換器における蒸気発生を容易に行うことができる。   According to the invention described in claim 3, both hot water and steam can be obtained. Further, by supplying only a part of the hot water after passing through the jacket heat exchanger to the exhaust gas heat exchanger, it is possible to easily generate steam in the exhaust gas heat exchanger.

さらに、請求項4に記載の発明は、前記エンジンは、ガスエンジンであり、前記ジャケット熱交換器の出口側の水温、または前記排ガス熱交換器の出口側の蒸気圧に基づき、前記ガスエンジンへの供給ガス量を調整することを特徴とする請求項2または請求項3に記載の蒸気発生システムである。   Further, according to a fourth aspect of the present invention, the engine is a gas engine, and based on the water temperature on the outlet side of the jacket heat exchanger or the vapor pressure on the outlet side of the exhaust gas heat exchanger, The steam generation system according to claim 2 or 3, wherein the amount of gas supplied is adjusted.

請求項4に記載の発明によれば、ジャケット熱交換器の出口側の水温、または排ガス熱交換器の出口側の蒸気圧に基づき、ガスエンジンへの供給ガス量を調整することで、所望の温水または蒸気を得ることができる。   According to the fourth aspect of the present invention, the desired amount of gas supplied to the gas engine is adjusted based on the water temperature on the outlet side of the jacket heat exchanger or the vapor pressure on the outlet side of the exhaust gas heat exchanger. Hot water or steam can be obtained.

本発明によれば、エンジンで駆動されるヒートポンプを用いて給水を加温し、その水をさらにエンジンからの排熱を用いて蒸気にすることができる。   ADVANTAGE OF THE INVENTION According to this invention, water supply can be heated using the heat pump driven with an engine, and the water can further be made into steam using the exhaust heat from an engine.

本発明の蒸気発生システムの一実施例を示す概略図である。It is the schematic which shows one Example of the steam generation system of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の蒸気発生システム1の一実施例を示す概略図である。
本実施例の蒸気発生システム1は、蒸気圧縮式のヒートポンプ2と、このヒートポンプ2を駆動するエンジン3とを備える。そして、蒸気発生システム1は、給水路4の水を、ヒートポンプ2で加温した後、エンジン3の排熱を用いて蒸気にする。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of the steam generation system 1 of the present invention.
The steam generation system 1 according to the present embodiment includes a vapor compression heat pump 2 and an engine 3 that drives the heat pump 2. Then, the steam generation system 1 heats the water in the water supply channel 4 with the heat pump 2 and then converts the water into steam using the exhaust heat of the engine 3.

ヒートポンプ2は、圧縮機5、凝縮器6、膨張弁7および蒸発器8が順次環状に接続されて構成される。そして、圧縮機5は、ガス冷媒を圧縮して高温高圧にする。また、凝縮器6は、圧縮機5からのガス冷媒を凝縮液化する。さらに、膨張弁7は、凝縮器6からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器8は、膨張弁7からの冷媒の蒸発を図る。   The heat pump 2 is configured by sequentially connecting a compressor 5, a condenser 6, an expansion valve 7 and an evaporator 8 in an annular shape. The compressor 5 compresses the gas refrigerant to a high temperature and a high pressure. The condenser 6 condenses and liquefies the gas refrigerant from the compressor 5. Further, the expansion valve 7 allows the liquid refrigerant from the condenser 6 to pass therethrough, thereby reducing the pressure and temperature of the refrigerant. The evaporator 8 evaporates the refrigerant from the expansion valve 7.

従って、ヒートポンプ2は、蒸発器8において、冷媒が外部から熱を奪って気化する一方、凝縮器6において、冷媒が外部へ放熱して凝縮することになる。これを利用して、ヒートポンプ2は、蒸発器8において熱源流体から熱をくみ上げ、凝縮器6において給水路4の水を加温する。なお、熱源流体は、特に問わないが、本実施例では熱源水(たとえば廃温水)である。   Therefore, in the heat pump 2, the refrigerant takes heat from the outside in the evaporator 8 and vaporizes, while in the condenser 6, the refrigerant dissipates heat to the outside and condenses. Using this, the heat pump 2 draws up heat from the heat source fluid in the evaporator 8 and heats the water in the water supply channel 4 in the condenser 6. The heat source fluid is not particularly limited, but is heat source water (for example, waste hot water) in this embodiment.

ヒートポンプ2は、さらに、凝縮器6と膨張弁7との間に、過冷却器9を備えるのが好ましい。過冷却器9は、凝縮器6から膨張弁7への冷媒と、凝縮器6への給水との間接熱交換器である。過冷却器9により、凝縮器6への給水で、凝縮器6から膨張弁7への冷媒を過冷却することができると共に、凝縮器6から膨張弁7への冷媒で、凝縮器6への給水を加温することができる。ヒートポンプ2の冷媒は、好適には、凝縮器6において潜熱を放出し、過冷却器9において顕熱を放出する。   It is preferable that the heat pump 2 further includes a supercooler 9 between the condenser 6 and the expansion valve 7. The subcooler 9 is an indirect heat exchanger between the refrigerant from the condenser 6 to the expansion valve 7 and the feed water to the condenser 6. The subcooler 9 can supercool the refrigerant from the condenser 6 to the expansion valve 7 by supplying water to the condenser 6, and can supply the refrigerant to the condenser 6 by the refrigerant from the condenser 6 to the expansion valve 7. The water supply can be heated. The refrigerant of the heat pump 2 preferably releases latent heat in the condenser 6 and releases sensible heat in the subcooler 9.

つまり、凝縮器6において、ガス冷媒は凝縮して液冷媒となり、その液冷媒が過冷却器9に供給されて、過冷却器9において、液冷媒はさらに冷却(過冷却)される。冷媒の凝縮用と過冷却用とで熱交換器を分けることで、熱交換器の設計が容易となり、熱交換器を簡易な構造で小型化でき、コストの削減を図ることができる。また、汎用の熱交換器の利用も可能となる。   That is, in the condenser 6, the gas refrigerant is condensed into a liquid refrigerant, and the liquid refrigerant is supplied to the subcooler 9, and the liquid refrigerant is further cooled (supercooled) in the subcooler 9. By separating the heat exchangers for refrigerant condensing and supercooling, the heat exchanger can be easily designed, the heat exchanger can be downsized with a simple structure, and the cost can be reduced. In addition, a general-purpose heat exchanger can be used.

その他、ヒートポンプ2には、圧縮機5の入口側にアキュムレータを設置したり、圧縮機5の出口側に油分離器を設置したり、凝縮器6の出口側(凝縮器6と過冷却器9との間)に受液器を設置したりしてもよい。   In addition, in the heat pump 2, an accumulator is installed on the inlet side of the compressor 5, an oil separator is installed on the outlet side of the compressor 5, or the outlet side of the condenser 6 (the condenser 6 and the subcooler 9). A receiver may be installed between the two).

蒸気発生システム1は、さらに、廃熱回収熱交換器10を備えるのが好ましい。この廃熱回収熱交換器10は、過冷却器9への給水と、蒸発器8を通過後の熱源水との間接熱交換器である。従って、給水路4の水は、給水ポンプ11により、廃熱回収熱交換器10、過冷却器9および凝縮器6へと順に通されることになる。   It is preferable that the steam generation system 1 further includes a waste heat recovery heat exchanger 10. The waste heat recovery heat exchanger 10 is an indirect heat exchanger for supplying water to the subcooler 9 and heat source water after passing through the evaporator 8. Accordingly, the water in the water supply channel 4 is passed through the waste heat recovery heat exchanger 10, the subcooler 9, and the condenser 6 in order by the water supply pump 11.

一方、熱源水は、熱源供給路12を介して、蒸発器8を通された後、廃熱回収熱交換器10に通される。本実施例では、熱源供給路12には、蒸発器8より上流側に熱源供給ポンプ13が設けられており、この熱源供給ポンプ13を作動させることで、熱源水を、蒸発器8と廃熱回収熱交換器10とに順に通すことができる。   On the other hand, the heat source water is passed through the evaporator 8 via the heat source supply path 12 and then passed to the waste heat recovery heat exchanger 10. In the present embodiment, the heat source supply path 12 is provided with a heat source supply pump 13 on the upstream side of the evaporator 8, and the heat source supply pump 13 is operated to convert the heat source water into the evaporator 8 and waste heat. It can be passed through the recovered heat exchanger 10 in order.

蒸発器8を先に通した後に廃熱回収熱交換器10に熱源水を通すことで、廃熱回収熱交換器10を先に通した後に蒸発器8に熱源水を通す場合と比較して、蒸発器8における冷媒の蒸発温度(つまり蒸発圧力)を高めることができ、圧縮機5の圧力比を小さくすることができ、省エネルギーを図ることができる。   By passing the heat source water through the waste heat recovery heat exchanger 10 after passing the evaporator 8 first, compared with the case where the heat source water is passed through the evaporator 8 after passing the waste heat recovery heat exchanger 10 first. The evaporation temperature (that is, the evaporation pressure) of the refrigerant in the evaporator 8 can be increased, the pressure ratio of the compressor 5 can be reduced, and energy can be saved.

エンジン3は、ヒートポンプ2の圧縮機5を駆動する。図示例では、エンジン3の動力は、ベルト14を介して圧縮機5を駆動する。エンジン3は、その構成を特に問わないが、たとえばガスエンジンまたはディーゼルエンジンであり、駆動に伴い排ガスを排出する。また、本実施例のエンジン3は、後述するように、ジャケット15を備える水冷式とされている。   The engine 3 drives the compressor 5 of the heat pump 2. In the illustrated example, the power of the engine 3 drives the compressor 5 via the belt 14. The configuration of the engine 3 is not particularly limited. For example, the engine 3 is a gas engine or a diesel engine, and exhausts exhaust gas when driven. Further, the engine 3 of this embodiment is a water-cooled type including a jacket 15 as will be described later.

蒸気発生システム1は、ジャケット熱交換器16と排ガス熱交換器17との内、少なくとも排ガス熱交換器17を備える。本実施例では、蒸気発生システム1は、ジャケット熱交換器16と排ガス熱交換器17との双方を備える。   The steam generation system 1 includes at least an exhaust gas heat exchanger 17 among the jacket heat exchanger 16 and the exhaust gas heat exchanger 17. In this embodiment, the steam generation system 1 includes both a jacket heat exchanger 16 and an exhaust gas heat exchanger 17.

ジャケット熱交換器16は、凝縮器6を通過後の水を、エンジン3のジャケット15の冷却に用いて加温するための間接熱交換器である。この際、凝縮器6からの水は、エンジン3のジャケット15に直接に流してもよい(つまりジャケット15自体をジャケット熱交換器16としてもよい)が、ジャケット15とジャケット熱交換器16との間に液体(ジャケット冷却水)を循環させ、その循環液と給水路4の水とをジャケット熱交換器16で熱交換するのがよい。これにより、循環液で、凝縮器6からの給水が加温される。逆に、凝縮器6からの給水により、循環液は冷却され、ひいてはジャケット15やエンジン3の冷却が図られる。   The jacket heat exchanger 16 is an indirect heat exchanger for heating the water after passing through the condenser 6 by using it for cooling the jacket 15 of the engine 3. At this time, the water from the condenser 6 may flow directly to the jacket 15 of the engine 3 (that is, the jacket 15 itself may be used as the jacket heat exchanger 16). It is preferable to circulate a liquid (jacket cooling water) between them and exchange heat between the circulating liquid and the water in the water supply channel 4 by the jacket heat exchanger 16. Thereby, the feed water from the condenser 6 is heated with the circulating fluid. On the contrary, the circulating fluid is cooled by the water supply from the condenser 6, and consequently the jacket 15 and the engine 3 are cooled.

排ガス熱交換器17は、エンジン3からの排ガス路18に設けられ、ジャケット熱交換器16を通過後の水を、エンジン3からの排ガスで加温して蒸気化する間接熱交換器である。つまり、ジャケット熱交換器16から排ガス熱交換器17へ供給された温水は、排ガス熱交換器17において、エンジン3からの排ガスと熱交換してさらに加温され、蒸気として蒸気路19から導出される。   The exhaust gas heat exchanger 17 is an indirect heat exchanger that is provided in the exhaust gas path 18 from the engine 3 and warms the water after passing through the jacket heat exchanger 16 with the exhaust gas from the engine 3 to vaporize it. In other words, the hot water supplied from the jacket heat exchanger 16 to the exhaust gas heat exchanger 17 is further heated by exchanging heat with the exhaust gas from the engine 3 in the exhaust gas heat exchanger 17 and led out from the steam path 19 as steam. The

ジャケット熱交換器16を通過後の水は、その全部が排ガス熱交換器17に供給されてもよいが、一部のみが排ガス熱交換器17に供給されて蒸気化されるのが好ましい。図示例の場合、ジャケット熱交換器16からの温水配管は、温水使用設備への給水路4Aと、排ガス熱交換器17への給水路4Bとに分岐されており、ジャケット熱交換器16からの温水の一部だけを排ガス熱交換器17に供給して蒸気化する。これにより、温水と蒸気の双方を得ることができる。また、ジャケット熱交換器16を通過後の温水の一部だけを排ガス熱交換器17へ供給することで、排ガス熱交換器17における蒸気発生を容易に行うことができる。   Although all of the water after passing through the jacket heat exchanger 16 may be supplied to the exhaust gas heat exchanger 17, it is preferable that only a part of the water is supplied to the exhaust gas heat exchanger 17 and vaporized. In the case of the illustrated example, the hot water piping from the jacket heat exchanger 16 is branched into a water supply path 4A to the hot water use facility and a water supply path 4B to the exhaust gas heat exchanger 17. Only a part of the hot water is supplied to the exhaust gas heat exchanger 17 and vaporized. Thereby, both warm water and steam can be obtained. Further, by supplying only a part of the hot water after passing through the jacket heat exchanger 16 to the exhaust gas heat exchanger 17, steam generation in the exhaust gas heat exchanger 17 can be easily performed.

ところで、廃熱回収熱交換器10を通過後の熱源水の温度に基づき、蒸発器8への熱源水の供給流量を調整可能としてもよい。具体的には、熱源供給路12には廃熱回収熱交換器10の出口側に温度センサ20を設けておき、この温度センサ20の検出温度に基づき熱源供給ポンプ13をインバータ制御するか、熱源供給路12に設けた弁の開度を調整すればよい。これにより、熱源水の排出温度を所望に調整することができる。   By the way, the supply flow rate of the heat source water to the evaporator 8 may be adjustable based on the temperature of the heat source water after passing through the waste heat recovery heat exchanger 10. Specifically, a temperature sensor 20 is provided on the outlet side of the waste heat recovery heat exchanger 10 in the heat source supply path 12, and the heat source supply pump 13 is inverter-controlled based on the detected temperature of the temperature sensor 20, or the heat source What is necessary is just to adjust the opening degree of the valve provided in the supply path 12. Thereby, the discharge temperature of the heat source water can be adjusted as desired.

また、ジャケット熱交換器16の出口側の水温、または排ガス熱交換器17の出口側の蒸気圧に基づき、エンジン3の出力を制御してもよい。本実施例では、エンジン3はガスエンジンとされ、ジャケット熱交換器16の出口側の水温、または排ガス熱交換器17の出口側の蒸気圧に基づき、ガスエンジン3への供給ガス量を調整する。これにより、所望の温水または蒸気を得ることができる。   Further, the output of the engine 3 may be controlled based on the water temperature on the outlet side of the jacket heat exchanger 16 or the vapor pressure on the outlet side of the exhaust gas heat exchanger 17. In this embodiment, the engine 3 is a gas engine, and the amount of gas supplied to the gas engine 3 is adjusted based on the water temperature on the outlet side of the jacket heat exchanger 16 or the vapor pressure on the outlet side of the exhaust gas heat exchanger 17. . Thereby, desired warm water or steam can be obtained.

本発明の蒸気発生システム1は、前記実施例の構成に限らず、適宜変更可能である。たとえば、前記実施例では、ヒートポンプ2で加温された給水は、ジャケット熱交換器16でさらに加温され、その加温後の温水が排ガス熱交換器17において蒸気化されたが、場合により、ジャケット熱交換器16の設置を省略することもできる。その場合、ヒートポンプ2で加温された給水は、凝縮器6から排ガス熱交換器17へ供給され、排ガス熱交換器17において蒸気化される。その際、前記実施例1と同様に、凝縮器6からの温水の一部のみを排ガス熱交換器17へ供給して蒸気化するのが好ましい。   The steam generation system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. For example, in the said Example, the feed water heated with the heat pump 2 was further heated with the jacket heat exchanger 16, and the warm water after the heating was vaporized in the exhaust gas heat exchanger 17, but depending on the case, The installation of the jacket heat exchanger 16 can be omitted. In that case, the feed water heated by the heat pump 2 is supplied from the condenser 6 to the exhaust gas heat exchanger 17 and is vaporized in the exhaust gas heat exchanger 17. At that time, as in the first embodiment, it is preferable that only a part of the hot water from the condenser 6 is supplied to the exhaust gas heat exchanger 17 to be vaporized.

また、前記実施例では、ヒートポンプ2の熱源として熱源水を用いた例について説明したが、ヒートポンプ2の熱源流体として、熱源水に限らず、空気や排ガスなど各種の流体を用いることができる。但し、熱源流体は、蒸発器8においてヒートポンプ2の冷媒に熱(顕熱)を与えつつ自身は温度低下を伴い、その後、廃熱回収熱交換器10において給水に熱(顕熱)を与えつつ自身は温度低下を伴う流体が好ましい。   Moreover, although the said Example demonstrated the example which used heat-source water as a heat source of the heat pump 2, as a heat-source fluid of the heat pump 2, not only heat-source water but various fluids, such as air and waste gas, can be used. However, while the heat source fluid gives heat (sensible heat) to the refrigerant of the heat pump 2 in the evaporator 8, the heat source fluid itself falls in temperature, and then gives heat (sensible heat) to the feed water in the waste heat recovery heat exchanger 10. The fluid itself with a temperature drop is preferable.

1 蒸気発生システム
2 ヒートポンプ
3 エンジン
4 給水路
5 圧縮機
6 凝縮器
7 膨張弁
8 蒸発器
9 過冷却器
10 廃熱回収熱交換器
11 給水ポンプ
12 熱源供給路
13 熱源供給ポンプ
14 ベルト
15 ジャケット
16 ジャケット熱交換器
17 排ガス熱交換器
18 排ガス路
19 蒸気路
20 温度センサ
DESCRIPTION OF SYMBOLS 1 Steam generation system 2 Heat pump 3 Engine 4 Water supply path 5 Compressor 6 Condenser 7 Expansion valve 8 Evaporator 9 Supercooler 10 Waste heat recovery heat exchanger 11 Water supply pump 12 Heat source supply path 13 Heat source supply pump 14 Belt 15 Jacket 16 Jacket heat exchanger 17 Exhaust gas heat exchanger 18 Exhaust gas path 19 Steam path 20 Temperature sensor

Claims (4)

圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器において熱源流体から熱をくみ上げ、前記凝縮器において給水路の水を加温するヒートポンプと、
このヒートポンプの圧縮機を駆動するエンジンとを備え、
前記給水路の水は、廃熱回収熱交換器、過冷却器および前記凝縮器を順に通され、
前記廃熱回収熱交換器は、前記給水路の給水と、前記蒸発器を通過後の熱源流体との間接熱交換器であり、
前記過冷却器は、前記給水路の給水と、前記凝縮器から前記膨張弁への冷媒との間接熱交換器であり、
前記凝縮器を通過後の水を、前記エンジンからの排ガスで加温して蒸気とする排ガス熱交換器をさらに備える
ことを特徴とする蒸気発生システム。
A compressor, a condenser, an expansion valve and an evaporator sequentially connected in a ring to circulate the refrigerant, draw up heat from a heat source fluid in the evaporator, and heat the water in the water supply channel in the condenser;
An engine that drives the compressor of this heat pump,
The water in the water supply channel is passed through a waste heat recovery heat exchanger, a supercooler, and the condenser in order,
The waste heat recovery heat exchanger is an indirect heat exchanger between the water supply of the water supply channel and the heat source fluid after passing through the evaporator,
The supercooler is an indirect heat exchanger between the water supply in the water supply channel and the refrigerant from the condenser to the expansion valve,
A steam generation system, further comprising an exhaust gas heat exchanger that heats the water after passing through the condenser with the exhaust gas from the engine to produce steam.
前記凝縮器を通過後の水を、前記エンジンのジャケットの冷却に用いて加温するジャケット熱交換器をさらに備え、
このジャケット熱交換器を通過後の水を、前記排ガス熱交換器において前記エンジンからの排ガスで加温して蒸気とする
ことを特徴とする請求項1に記載の蒸気発生システム。
A jacket heat exchanger for heating the water after passing through the condenser to cool the jacket of the engine;
The steam generation system according to claim 1, wherein the water after passing through the jacket heat exchanger is heated by the exhaust gas from the engine in the exhaust gas heat exchanger to become steam.
前記ジャケット熱交換器を通過後の水の内、一部のみを前記排ガス熱交換器へ供給して蒸気とする
ことを特徴とする請求項2に記載の蒸気発生システム。
The steam generation system according to claim 2, wherein only a part of the water that has passed through the jacket heat exchanger is supplied to the exhaust gas heat exchanger to be steam.
前記エンジンは、ガスエンジンであり、
前記ジャケット熱交換器の出口側の水温、または前記排ガス熱交換器の出口側の蒸気圧に基づき、前記ガスエンジンへの供給ガス量を調整する
ことを特徴とする請求項2または請求項3に記載の蒸気発生システム。
The engine is a gas engine;
The amount of gas supplied to the gas engine is adjusted based on the water temperature on the outlet side of the jacket heat exchanger or the vapor pressure on the outlet side of the exhaust gas heat exchanger. The steam generation system described.
JP2013043600A 2013-03-06 2013-03-06 Steam generation system Expired - Fee Related JP6152661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013043600A JP6152661B2 (en) 2013-03-06 2013-03-06 Steam generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013043600A JP6152661B2 (en) 2013-03-06 2013-03-06 Steam generation system

Publications (2)

Publication Number Publication Date
JP2014173743A true JP2014173743A (en) 2014-09-22
JP6152661B2 JP6152661B2 (en) 2017-06-28

Family

ID=51695155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013043600A Expired - Fee Related JP6152661B2 (en) 2013-03-06 2013-03-06 Steam generation system

Country Status (1)

Country Link
JP (1) JP6152661B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738723A (en) * 2022-04-18 2022-07-12 湖南麦思克科技有限公司 Method and system for generating steam by using compression heat pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128104U (en) * 1984-01-31 1985-08-28 日本鋼管株式会社 Engine-driven high-pressure steam generator
JPS6196373A (en) * 1984-10-16 1986-05-15 富士重工業株式会社 Engine-heat pump device
JPS61125547A (en) * 1984-11-21 1986-06-13 株式会社東芝 Heat pump type boiler device
JPH044661U (en) * 1990-04-27 1992-01-16
JP2012017925A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128104U (en) * 1984-01-31 1985-08-28 日本鋼管株式会社 Engine-driven high-pressure steam generator
JPS6196373A (en) * 1984-10-16 1986-05-15 富士重工業株式会社 Engine-heat pump device
JPS61125547A (en) * 1984-11-21 1986-06-13 株式会社東芝 Heat pump type boiler device
JPH044661U (en) * 1990-04-27 1992-01-16
JP2012017925A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738723A (en) * 2022-04-18 2022-07-12 湖南麦思克科技有限公司 Method and system for generating steam by using compression heat pump
CN114738723B (en) * 2022-04-18 2024-04-09 湖南麦思克科技有限公司 Method and system for generating steam by using compression heat pump

Also Published As

Publication number Publication date
JP6152661B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
JP5339193B2 (en) Exhaust gas heat recovery device
JP5338731B2 (en) Waste heat regeneration system
JP5958819B2 (en) Heat pump system and cooling system using the same
RU2015130837A (en) Rankine cycle system and corresponding method
RU2012119769A (en) COMBINED HEATED SYSTEM WITH A CLOSED CIRCUIT FOR RECOVERY OF THE WASTE HEAT AND THE METHOD OF ITS OPERATION
JP4471992B2 (en) Multi-source heat pump steam / hot water generator
JP2011208524A (en) Waste heat regeneration system
JP2014173742A (en) Feedwater heating system
JP2013011259A (en) Rankine cycle
RU2009143172A (en) METHOD AND DEVICE FOR TRANSFORMING THERMAL ENERGY INTO ELECTRICITY, HEAT OF HIGH POTENTIAL AND COLD
KR20120081847A (en) Flue gas heat source hot and cold water making system
JP4999992B2 (en) Gas turbine combined power generation system
JP6152661B2 (en) Steam generation system
JP6066189B2 (en) Water heating system
JP2016151191A (en) Power generation system
JP6065212B2 (en) Water heating system
JP2011075206A (en) Heat pump system generating a plurality of systems of warm water with different temperature
JP5153664B2 (en) Waste heat regeneration system
JP5954581B2 (en) Steam generation system
KR20190077692A (en) heat transmitter
JP6103203B2 (en) Water heating system
JP2013194926A (en) Steam generating system
CN208749417U (en) Double heat source organic Rankine cycle power generation systems
JP2018017131A (en) Rankine cycle system
KR100933869B1 (en) Hot water generating apparatus using heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170515

R150 Certificate of patent or registration of utility model

Ref document number: 6152661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees