JP2014173506A - Various energy conservation cycle combination engine - Google Patents

Various energy conservation cycle combination engine Download PDF

Info

Publication number
JP2014173506A
JP2014173506A JP2013047440A JP2013047440A JP2014173506A JP 2014173506 A JP2014173506 A JP 2014173506A JP 2013047440 A JP2013047440 A JP 2013047440A JP 2013047440 A JP2013047440 A JP 2013047440A JP 2014173506 A JP2014173506 A JP 2014173506A
Authority
JP
Japan
Prior art keywords
blade
engine
coalescence
storage cycle
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013047440A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tanigawa
浩保 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013047440A priority Critical patent/JP2014173506A/en
Publication of JP2014173506A publication Critical patent/JP2014173506A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable injection speed of substance 3E, vacuum and head drop to be manufactured with wisdom of mankind in view of the fact that the maximum energy on the earth that can be manufactured through gravitational acceleration and head drop in vacuum of large specific gravity substance.SOLUTION: A column pipe 12B of a gravitational electric power generation building 12 for manufacturing a head drop is also used as a large specific gravity substance lifting device 2F. Substance with large specific weight 3E is applied to generate electric power through a vertical full dynamic blade substance with large specific weight 3E gravitational turbine 11B for accelerating through gravitational acceleration in the lifting conservation injection vacuum at an uppermost part. This is more than 10 times of the existing pumping-up electric power generation under the same amount of water. Improved existing gas turbine is attained by making a stationary blade into a dynamic blade in double reverse rotating, super-heated steam 5H manufactured by a compressed air heat exchanger 2Y is applied to manufacture 20 times of heated steam in the existing boiler, various engines including all the dynamic blades for outputting 10 times rotation plus 10 times injection propulsion, automobiles run in 1/10 fuel cost, airplanes or ships run in ten times speed, the airplanes are driven by 1/50 ten thousands as expenditures for reaching space, and an operational profit rate in all applications for manufactured products such as one-day trip every where on the earth is remarkably No.1 class in the world eternally.

Description

本発明の竪型全動翼比重大物質重力タービン11B発電は、最先端科学技術が敬遠の製造困難な全動翼二重反転機関を実用化し、無限に近い利益を世界規模100%独占製造独占運用永遠独占狙い、水の電気分解全盛等にして、地球で最も簡単に再生増大が可能なエネルギーが真空中の重力加速度で、発電量が比重大物質速度×落差に比例するため、重力発電建物12+比重大物質上昇装置2Fの高さや強度を最重要として、柱管12Bを比重大物質上昇装置2Fとして使用し、管径を増大することで鉄骨骨組12Aの柱を強大として、800m以上等の強大な高層建築物が可能な竪型全動翼比重大物質重力タービン11B発電とし、竪型全動翼比重大物質重力タービン11B製作過程で、最も重要な工程を超高速回転時の回転バランス調整加工として、内側軸装置60A+外側軸装置60B夫々の両端に各種軸受12Cを具備し、内側軸装置60Aと外側軸装置60B夫々を別々に組立てして、夫々を工作機械で超高速回転バランス調整加工後に分解して本組立にし、前例の無い内側軸装置60A兼円筒内側動翼群60Cと、外側軸装置60B兼円筒外側動翼群60Dの二重反転にする、各種エネルギ保存サイクル合体機関や各種エネルギ保存合体方法の技術に関する。 The vertical turbine blade critical material gravity turbine 11B power generation of the present invention has practically used a difficult-to-manufacture all-blade counter-rotating engine whose state-of-the-art science and technology is far from the world, and has almost 100% exclusive monopoly production worldwide. Gravity-powered buildings aiming at eternal monopoly operation, water electrolysis prime, etc., because the energy that can be most easily regenerated on the earth is the gravitational acceleration in vacuum and the amount of power generation is proportional to the specific material velocity x head The height and strength of the 12+ specific material rising device 2F is the most important, the column tube 12B is used as the specific material rising device 2F, and the column of the steel frame 12A is made strong by increasing the tube diameter, such as 800 m or more. Rotating balance adjustment during ultra-high speed rotation is the most important process in the manufacturing process of vertical type moving blade ratio critical material gravity turbine 11B, which can make a powerful high-rise building. As a work, various bearings 12C are provided at both ends of the inner shaft device 60A and the outer shaft device 60B, the inner shaft device 60A and the outer shaft device 60B are separately assembled, and each of them is adjusted with an ultra-high speed rotation balance with a machine tool. After disassembling and making this assembly, unconventional inner shaft device 60A / cylindrical inner rotor blade group 60C and outer shaft device 60B / cylindrical outer rotor blade group 60D are double-reversed. The present invention relates to a technique for energy conservation and coalescence.

竪型全動翼比重大物質重力タービン11B発電電気駆動機関や電気製造物駆動機関は、前記と略同様に最も重要な工程を超高速回転時の回転バランス調整加工として、内側軸装置60A+外側軸装置60B夫々の両端に各種軸受12Cを具備し、内側軸装置60Aと外側軸装置60B夫々を別々に組立てして、夫々を工作機械で超高速回転バランス調整加工後に分解して本組立にし、前例の無い円筒内側動翼群60Cと円筒外側動翼群60Dの二重反転にする、液体酸素製造機89Aや、簡単多段圧縮機89Bや、簡単ガス機関89Cや、簡単空気噴射機関89Dや、簡単噴射機関89E駆動にして、簡単ガス機関自動車89Fや、簡単ガス機関船舶89Gや、簡単ガス機関飛行機89Hや、簡単空気噴射機関船舶89Iや、簡単噴射機関飛行機89Jや、回転翼飛行機89Kや、回転翼噴射飛行機89Lや、特大オスプレイ89Mや、大型オスプレイ89Nを駆動にし、船舶の駆動では、自然現象高速化2aとして海水に窒素や酸素やCO2を供給微生物や海草類増大して、食物連鎖等で魚類等人類の食料を大増大し、飛行機や自動車駆動ではCO2排気1/10や燃料費1/10や1/50万経費宇宙到達狙い、飛行機や船舶は10倍速度狙い、夫々で運用利益率抜群世界一永遠持続狙う、各種エネルギ保存サイクル合体機関や各種エネルギ保存合体方法の技術に関する。 The vertical all-blade ratio critical material gravity turbine 11B power generation electric drive engine and electric product drive engine are the same as described above, and the most important process is the rotation balance adjustment processing at the time of ultra-high speed rotation. Various types of bearings 12C are provided at both ends of each device 60B, the inner shaft device 60A and the outer shaft device 60B are separately assembled, and each is disassembled after ultra-high speed rotation balance adjustment processing with a machine tool to form this assembly. Liquid oxygen producing machine 89A, simple multistage compressor 89B, simple gas engine 89C, simple air injection engine 89D, etc. By driving the injection engine 89E, a simple gas engine automobile 89F, a simple gas engine ship 89G, a simple gas engine airplane 89H, a simple air injection engine ship 89I, a simple injection engine flight Aircraft 89J, rotary wing airplane 89K, rotary wing jet airplane 89L, extra large Osprey 89M and large Osprey 89N are driven, and in the drive of ships, nitrogen, oxygen and CO2 are supplied to seawater as natural phenomenon acceleration 2a And seaweeds increase, fish and other human foods increase in the food chain, etc., and by plane and automobile drive, CO2 exhaust 1/10, fuel costs 1/10 and 1 / 500,000 costs aim to reach space, planes and ships The present invention relates to various energy conservation cycle coalescence engines and various energy conservation coalescence techniques aiming at 10 times speed and aiming for the world's most eternally sustainable operating profit rate.

最近の揚水発電にはポンプ入力が回転速度の三乗に比例するため、可変速モーターを採用には賛成ですが、既存揚水発電の水速度がマッハ1/7やマッハ1/5等のため実験結果を予想では、同一水質量の水速度既存揚水発電の10倍マッハ2噴射速度製造×真空中の重力加速度0製造×落差10倍製造の発電量=100倍発電量に増大するため、真空中の重力加速度製造をロシア落下隕石速度マッハ50に近付けると、同一水質量既存揚水発電量の100倍×50/2=2500倍発電量に近付き、更に発電量が速度の三乗に比例すると天文学的な倍率の発電量になる背景技術があり、地球温暖化防止革命や、経済成長戦略革命や、運用利益率抜群世界一永遠等により、日本の財政赤字1000兆円を比較的短期間に0にする等が狙える背景技術がある。   Since the pump input is proportional to the cube of the rotational speed of recent pumped-storage power generation, I agree with the adoption of a variable speed motor, but the experiments are conducted because the water speed of the existing pumped-storage power generation is Mach 1/7, Mach 1/5, etc. As a result, the water speed of the same water mass will increase to 10 times Mach 2 injection speed production of existing pumped-storage power generation x gravity acceleration 0 production in vacuum x 10 times drop production power generation = 100 times power generation quantity, Astronomical gravity production of Russia approaches the fallen meteorite speed Mach 50 of Russia, the same water mass approaches 100 times × 50/2 = 2500 times the existing pumped power generation amount, and astronomical that the power generation amount is proportional to the cube of the speed There is a background technology that produces a large amount of power generation, and Japan's fiscal deficit of 1,000 trillion yen has been reduced to 0 in a relatively short period of time due to the global warming prevention revolution, the economic growth strategy revolution, and the world's most eternal operating profit rate. Background that can be aimed at Surgery there is.

既存火力発電のボイラーは大気圧燃料燃焼で過熱蒸気を製造、蒸気タービンでの発電ですが、断熱圧縮の温度上昇は空気温度20℃が圧縮比8で13倍の260℃になるため、圧縮比20の空気中で燃料噴射燃焼すると燃焼温度が13倍を大きく超えて、実験が必要な同一燃料量既存ボイラーの13倍を大きく超える過熱蒸気5H製造量になる背景技術があり、既存最先端科学技術の飛行機や船舶のガスタービンは、静翼と動翼を交互に具備して、圧縮機では圧縮空気を静翼で堰き止め方向転換繰り返す無茶圧縮にし、タービンでは燃焼ガスを静翼で堰き止め方向転換を繰り返す無茶膨張にして、仕事皆無の静翼を動翼と交互に半数具備し、夫々で回転出力や噴射推進出力を1/10〜1/100等にして、飛行機速度や船舶速度を1/10等にしているため、飛行機や船舶は10倍速度狙い飛行機は宇宙飛行全盛にし、宇宙到達費用1/50万や1日に地球を16周する等として、運用利益率抜群世界一永遠を狙える背景技術がある。   The boiler of the existing thermal power generation produces superheated steam by atmospheric pressure fuel combustion and power generation by the steam turbine, but the temperature rise of adiabatic compression is 260 ° C, which is 13 times the air temperature 20 ° C, and the compression ratio 8 When fuel injection combustion is performed in 20 air, the combustion temperature greatly exceeds 13 times, and there is a background technology that makes the amount of superheated steam 5H production that exceeds 13 times that of existing boilers with the same amount of fuel required for experiments. Technological airplanes and marine gas turbines are equipped with alternating stationary blades and moving blades. In the compressor, compressed air is repeatedly dammed by the stationary blades, and the combustion gas is blocked by the stationary blades. Change the direction and repeat the change of direction, and have half of the stationary vanes with no work, alternately with the moving blades, and set the rotation output and jet propulsion output to 1/10 to 1/100, etc. 1/10 Therefore, airplanes and ships are aiming for 10 times speed, airplanes are in full space flight, the space arrival cost is 1 / 500,000, and the earth goes around 16 times a day. There is.

日本国特許1607151号、特許1609617号、特許1645350号、特許1924889号、特許1912522号、特許1959305号、特許1986119号、特許2604636号、1992年米国特許5133305号、1993年米国特許5230307号、1995年米国特許5429078号、1997年米国特許5701864号、PCT国際出願番号PCT/JP97/01814号・米国特許第6119650号、中国特許第8818号、EU英国特許902175号、PCT国際出願番号PCT/JP97/02250号・米国特許第6263664号がある。Japanese Patent No. 1607151, Patent No. 1609617, Patent No. 1645350, Patent No. 1924889, Patent No. 1912522, Patent No. 1959305, Patent No. 11986119, Patent No. 2646636, 1992 U.S. Pat. No. 5,133,305, 1993 U.S. Pat. US Pat. No. 5,429,078, 1997 US Pat. No. 5,701,864, PCT International Application No. PCT / JP97 / 01814, US Pat. No. 6,119,650, Chinese Patent No. 8818, EU British Patent No. 902175, PCT International Application No. PCT / JP97 / 02250 No. 6,263,664.

PCT国際出願公開NO.WO 2010/101017 PCT/JP2010/052171の出願があり、特願2007−179204提出日:平成19年7月9日より特願2007−265115提出日:平成19年10月11日まで5個の出願があり、特願2008−006612提出日:平成20年1月16日より特願2008−327045提出日:平成20年12月24日まで45個の出願があり、特願2009−011656提出日:平成21年1月22日より特願2009−298004提出日:平成21年12月28日まで322個の出願があり、特願2010−000841提出日:平成22年1月6日より特願2010−033224提出日:平成22年2月18日まで32個の出願があり、特願2011−055078提出日:平成23年3月14日より特願2011−267508提出日平成23年12月7日まで22個の出願があり、特願2012−032245提出日:平成24年2月17日より特願2012−271035提出日:平成24年12月12日まで29個の出願があり、特願2013−7975提出日:平成25年1月21日があります。PCT International Application Publication No. There are applications of WO 2010/101017 PCT / JP2010 / 052171, and the filing date of Japanese Patent Application 2007-179204: July 9, 2007 to the filing date of Japanese Patent Application 2007-265115: October 11, 2007 No. 2008-006612 filing date: January 16, 2008 to No. 2008-327045 filing date: There are 45 applications from December 24, 2008, filing date of Japanese Patent Application No. 2009-011656: From January 22, 2009, the filing date of the Japanese Patent Application 2009-298004: There were 322 applications until December 28, 2009, and the filing date of the Japanese Patent Application 2010-000841: the Japanese Patent Application 2010 from January 6, 2010 -0332424 Submission date: There were 32 applications until February 18, 2010, and Japanese Patent Application No. 2011-055078 submission date: 2011 There are 22 applications from March 14 to the date of submission of the Japanese Patent Application 2011-267508 to December 7, 2011, the date of submission of the Japanese Patent Application 2012-032245: the date of submission of the Japanese Patent Application 2012-271355 from February 17, 2012 : There are 29 applications until December 12, 2012, and the filing date of Japanese Patent Application No. 2013-7975: January 21, 2013.

既存の揚水発電の発電部分では、位置エネルギーのみ使用で揚水電力以下の発電にする等、仕事率kg重m/秒の単位符号違反が明白で、発電量増大の意志皆無等無茶過ぎる点の改良と、飛行機や船舶を駆動するガスタービンの圧縮機やタービンの改良点は、静翼と動翼を交互に具備し、圧縮機では圧縮空気を静翼で堰き止め繰り返しで無茶圧縮して、タービンではガス速度を静翼で堰き止め反転噴射を繰り替えし、全く仕事をしない静翼でガス速度の殆どを消費する等、無茶過ぎる点を改良する課題がある。   In the existing pumped-storage power generation, the unit code violation of the work load kg weight m / second is obvious, such as using only the potential energy and generating less than the pumped power. And the improvement of compressors and turbines for gas turbines that drive airplanes and ships is provided with alternating stationary blades and moving blades. Then, there is a problem of improving the point that it is too unreasonable, such as damming the gas velocity with a stationary blade and repeating reverse injection and consuming most of the gas velocity with a stationary blade that does not work at all.

既存の静翼を円筒外側動翼群60Bに既存の動翼を円筒内側動翼群60Aとした、竪型全動翼比重大物質重力タービン11Bや、液体酸素製造機89Aや、簡単多段圧縮機89Bや、簡単ガス機関89Cや、簡単空気噴射機関89Dや、簡単噴射機関89Eとし、自動車等車両類や船舶類や飛行機類を回転力駆動や噴射推進駆動して、飛行機は既存最高飛行高度付近より過熱蒸気ロケット噴射し、宇宙到達費用既存燃料費程度として、宇宙飛行全盛1日に地球を16周する等とし、地球上何処でも日帰り旅行や大気中はCO2排気僅少飛行狙いとして、世界規模100%独占して極秘製造極秘運用する発電や船舶や飛行機や自動車等とし、既存最先端科学技術の無茶過ぎる点を改良して、利益率抜群の世界一や新規雇用抜群の世界一にし、地球温暖化防止する。 An existing stationary blade is a cylindrical outer moving blade group 60B and an existing moving blade is a cylindrical inner moving blade group 60A. A vertical total moving blade specific material gravity turbine 11B, a liquid oxygen production machine 89A, and a simple multistage compressor 89B, simple gas engine 89C, simple air injection engine 89D, simple injection engine 89E, and vehicles such as automobiles, ships, and airplanes are driven by rotational force and jet propulsion, and the airplane is near the existing highest flight altitude. More superheated steam rockets are injected, space arrival costs are about the same as existing fuel costs, and around the earth 16 times a day at the height of space flight, etc. Power generation, ships, airplanes, automobiles, etc., which are monopolized and secretly operated, improve the point of existing state-of-the-art science and technology, and make it the best in the world with outstanding profitability and the best in new employment. To prevent global warming.

実験が必要ですが、既存の揚水発電の発電部分に真空中の重力加速度+噴射速度+落差を追加すると、同一揚水量の発電量を10〜100倍発電量狙いの大革命に出来る効果が大きく、竪型全動翼比重大物質重力タービン11B燃料費0安価発電の、電気駆動太陽光加熱器21で加熱した空気を圧縮熱回収する熱製造にすると、燃料費0で無限大に近い熱製造熱利用に出来る効果も大きく、副産物の液体窒素や液体酸素も膨大な量になるため、液体窒素は氷の製造等各種冷熱として使用出来る大きな効果があり、液体酸素を空気圧縮に換えて使用すると圧縮仕事率を空気圧縮の21/60000容積圧縮仕事率にし、簡単ガス機関89Cや簡単空気噴射機関89Dや簡単噴射機関89E等を駆動にして、自動車等車両類や船舶類や飛行機類を回転力駆動や噴射推進駆動するため、1/10燃料費や10倍速度を狙える大きな効果や、地球温暖化防止革命にする効果がある。 Experimentation is necessary, but adding gravity acceleration + injection speed + head in the vacuum to the power generation part of the existing pumped-storage power generation has a great effect of making the power generation of the same pumping capacity 10 to 100 times the target of power generation, Vertical type moving blade ratio critical material gravity turbine 11B fuel cost 0 low cost power generation, heat heated by electric drive solar heater 21 to recover compression heat, heat production heat close to infinity at 0 fuel cost The effect that can be used is also great, and liquid nitrogen and liquid oxygen as by-products are also enormous, so liquid nitrogen has a great effect that can be used as various kinds of cold heat such as ice production. When liquid oxygen is used instead of air compression, it is compressed The work rate is set to 21/60000 volumetric compression work rate of air compression, simple gas engine 89C, simple air injection engine 89D, simple injection engine 89E, etc. are driven, and vehicles such as automobiles, ships and airplanes are driven. To rolling force driving and injection propulsion drive, great effect and which aim to 1/10 the fuel costs and 10 double speed, the effect of global warming prevention revolution.

重力発電建物12の説明図(実施例1)Illustration of gravity power building 12 (Example 1) 竪型全動翼比重大物質重力タービン11B軸受12Cの説明図(実施例2)Explanatory drawing of vertical type moving blade ratio critical material gravity turbine 11B bearing 12C (Example 2) 内側軸装置60A外側軸装置60Bの円筒動翼群の説明図(実施例3)Explanatory drawing of the cylindrical blade group of the inner shaft device 60A and the outer shaft device 60B (Example 3) 太陽光加熱器21の説明図(実施例4)Explanatory drawing of the solar heater 21 (Example 4) 液体酸素製造機89Aの説明図(実施例5)Explanatory drawing of liquid oxygen production machine 89A (Example 5) 簡単多段圧縮機89Bの説明図(実施例6)Explanatory drawing of simple multistage compressor 89B (Example 6) 簡単ガス機関89Cの説明図(実施例7)Illustration of simple gas engine 89C (Example 7) 簡単空気噴射機関89Dの説明図(実施例8)Explanatory drawing of simple air injection engine 89D (Example 8) 簡単噴射機関89Eの説明図(実施例9)Explanatory drawing of the simple injection engine 89E (Example 9) 簡単ガス機関自動車89Fの説明図(実施例10)Illustration of simple gas locomotive 89F (Example 10) 簡単ガス機関船舶89Gの説明図(実施例11)Explanatory drawing of simple gas engine ship 89G (Example 11) 簡単ガス機関飛行機89Hの説明図(実施例12)Explanatory drawing of the simple gas engine airplane 89H (Example 12) 簡単空気噴射機関船舶89Iの説明図(実施例13)Explanatory drawing of the simple air injection engine ship 89I (Example 13) 簡単噴射機関飛行機89Jの説明図(実施例14)Explanatory drawing of simple injection engine airplane 89J (Example 14) 回転翼飛行機89Kの説明図(実施例15)Explanatory drawing of rotary wing airplane 89K (Example 15) 回転翼噴射飛行機89Lの説明図(実施例16)Explanatory drawing of rotary wing jet airplane 89L (Example 16) 特大オスプレイ89Mの説明図(実施例17)Illustration of oversized Osprey 89M (Example 17) 大型オスプレイ89Nの説明図(実施例18)Illustration of Large Osprey 89N (Example 18)

既存技術に二重反転機関の前例皆無で本発明全部が二重反転機関関連のため、製造の過程で円筒内側動翼群60Cと円筒外側動翼群60Dを夫々別々に組立とし、夫々の両端には各種軸受を具備で運転時と同様に工作機械で回転や加工可能として、夫々を超高速回転でもバランス運転良好に加工後に分解本組立にする、全く新しい加工技術を中核とし、同一揚水量既存揚水発電の10〜100倍発電量や、同一燃料量での宇宙飛行全盛狙いや、同一燃料量10倍速度の飛行機や船舶等に挑戦して、無茶過ぎる既存最先端科学技術を実証します。   Since there is no example of a counter-rotating engine in the existing technology and the present invention is entirely related to the counter-rotating engine, the inner rotor blade group 60C and the outer cylinder rotor group 60D are separately assembled in the manufacturing process, Is equipped with various bearings and can be rotated and machined by machine tools in the same way as during operation, and each of them has a completely new machining technology, with the same amount of pumped water. Demonstrate the current state-of-the-art science and technology that is unreasonable by challenging the power generation capacity 10 to 100 times that of existing pumped-storage power generation, aiming at the prime of space flight with the same fuel amount, and planes and ships with the same fuel amount 10 times faster .

図1の重力発電建物12は、揚水発電水速度音速の1/7〜1/5を真空中の重力加速度+噴射速度マッハ1〜3とし、水銀3E速度マッハ3以上で発電して同一水銀3E質量揚水発電量の15倍以上狙いとして、落差を重力発電建物12で無限製造発電量無限増大狙いにし、重力発電建物12の最上部より比重大物質の水3Eを高速噴射して、真空度上昇中の重力加速度加速する過程で、円筒外側動翼群60D+円筒内側動翼群60Cに噴射し夫々を二重反転駆動して、竪型全動翼水重力タービン11A多数を次々に駆動するため、比重大物質上昇装置2Fによる比重大物質3Eや2Eの最上部までの運搬速度が重要です。そこで重力発電建物12の柱を柱管12B兼比重大物質上昇装置2Fとして、柱管12Bの管径を拡大して頑丈な柱にすると共に低速上昇速度で揚水電力僅少にし、継手に角フランジ12Dを鉄骨骨組12Aに合せて具備して、鉄骨骨組12Aの上下を角フランジ12Dにボルト締め組立てにし、重力発電建物12を構成柱管12Bの内部を比重大物質上昇装置2Fとして使用して、水銀3Eを最上部に上昇保存し、比重大物質加速器6Wでマッハ1〜3で噴射して、真空度上昇中の重力加速度加速にし、竪型全動翼比重大物質重力タービン11B発電にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 In the gravity power generation building 12 of FIG. 1, 1/7 to 1/5 of pumped water generation water speed sound speed is gravity acceleration + injection speed Mach 1 to 3 in a vacuum, and power is generated at a mercury 3E speed Mach 3 or more to generate the same mercury 3E. Aiming at 15 times or more of the mass pumped-storage power generation, the drop is aimed to increase the infinite production power generation in the gravity power generation building 12, and the water 3E of a specific material is injected at a high speed from the top of the gravity power generation building 12 to increase the degree of vacuum In the process of accelerating the acceleration of gravity in the middle, the cylinder outer rotor blade group 60D + cylindrical inner rotor blade group 60C is sprayed and each of them is double-reversed to drive a large number of vertical all blade water gravity turbines 11A one after another. The transport speed to the top of the specific material 3E or 2E by the specific material rising device 2F is important. Therefore, the column of the gravitational power generation building 12 is used as the column tube 12B and the significant substance rising device 2F, and the diameter of the column tube 12B is enlarged to make it a sturdy column, and the pumping power is reduced at a low rate of rise. In accordance with the steel frame 12A, the upper and lower sides of the steel frame 12A are bolted and assembled to the square flange 12D, and the gravity power generation building 12 is used as a specific material rising device 2F inside the column tube 12B. 3E is stored at the top, and is injected by Mach 1 to 3 with a specific material accelerator 6W, and acceleration of gravity acceleration while raising the degree of vacuum is made, and a vertical type moving blade specific material gravity turbine 11B power generation is produced. Energy conservation cycle coalescence engine power generation and coalescence method power generation.

図2の竪型全動翼比重大物質重力タービン11B発電は、発電量がkg重m/秒に比例するため大重量直線超高速噴射対応の全動翼二重反転とし、夫々が二重反転する円筒内側動翼群60C兼内側軸装置60Aと、円筒外側動翼群60D兼外側軸装置60Bにして、夫々の両端には夫々最適軸受12Cを具備して夫々別々に組立後工作機械で加工可能にし、超高速バランス調整加工運転良好に加工後の夫々を分解精密本組立て等として、全く新しい加工組立技術により1組の竪型全動翼比重大物質重力タービン11Bを製造し、重力発電建物12の柱管12Bの高さに合わせて50〜100組等の組立として、柱管12B兼比重大物質上昇装置2Fにより水銀3E等を最上部に上昇保存し、比重大物質加速器6Wで比重大物質水銀3Eをマッハ2等で噴射比重大物質2Eを混合噴射して、既存蒸気タービン以上に真空度を上昇した中で真空中の重力加速度加速し、重力加速度直線加速の過程で、円筒内側動翼群60Cと円筒外側動翼群60Dを二重反転駆動して、比重大物質3E速度を理論最良で電気に変換する発電の過程で、例えば比重大物質3E速度5〜10倍速度も人類の知恵で再生可能であり、比重大物質3E落差5〜10倍も人類の知恵て再生可能等、既存最先端科学技術を大改良し、既存揚水発電の100倍発電量狙いにして、実験が必要ですが燃料費0で発電量を無限増大にし、利益率抜群世界一の地球温暖化防止にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 The vertical all-blade ratio critical material gravity turbine 11B power generation shown in FIG. 2 has a power generation amount proportional to kg weight m / sec. The inner cylindrical blade group 60C and inner shaft device 60A and the outer cylindrical blade group 60D and outer shaft device 60B are respectively provided with optimum bearings 12C at both ends, and each is assembled and machined separately by a machine tool. Enables ultra-high-speed balance adjustment processing operation. After each processing is disassembled and precision assembling, etc., a set of vertical all-blade specific material gravity turbine 11B is manufactured by a completely new processing and assembly technology, gravity power building Ascend to 50-100 sets in accordance with the height of the 12 column pipes 12B, and store the mercury 3E etc. at the top by the column tube 12B and specific material rising device 2F. The substance mercury 3E The injection ratio critical substance 2E is mixed and injected at 2 etc., and the acceleration of gravity in the vacuum is accelerated while the degree of vacuum is higher than that of the existing steam turbine. In the process of linear acceleration of gravity acceleration, The outer blade group 60D is driven in reverse, and the specific critical material 3E speed is converted into electricity with the best theoretical theory. For example, the specific critical material 3E speed can be regenerated with the wisdom of humanity. There is a significant improvement in the existing state-of-the-art science and technology, such as the reproducibility of the 3E drop by 5-10 times with the wisdom of humanity. The power generation amount will be infinitely increased, and the world's best global warming prevention with the highest profit rate will be achieved.

図3の図2円筒内側動翼群60C兼内側軸装置60Aと、円筒外側動翼群60D兼外側軸装置60B夫々の、嵌合組立部9Mで最も重要な構成は超精密螺子組立固定等超精密加工として、何回も分解組立を繰り返しても超高速回転で回転バランスに変化が無い構成や精度とし、円筒内側動翼群60C兼内側軸装置60Aと、円筒外側動翼群60D兼外側軸装置60Bの二重反転にして、円筒外側動翼群60Dを外側動翼60dの外入口翼60eや、外側動翼60dの外中間翼60g複数〜多数や、外側動翼60dの外出口翼60kにし、円筒内側動翼群60Cを内側動翼60cの内入口翼60fや、内側動翼60cの内中間翼60h複数〜多数や、内側動翼60cの内出口翼60jとして、100組製造では夫々を100個製造落差800m使用等にし、部品数最少や全自動製造可能略全部に近付ける等として、最も困難で人類史上最大の貢献や超精密製造とし、同一揚水銀質量既存揚水発電の10〜100倍発電量狙いにして、実験が必要ですが燃料費0で発電量を無限増大し、利益率抜群世界一の地球温暖化防止にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。   The most important configuration in the fitting assembly portion 9M of the cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device 60B in FIG. As precision machining, the structure and accuracy are such that the rotation balance does not change even after repeated disassembly and assembly many times, and the cylindrical inner blade group 60C and inner shaft device 60A and the outer cylindrical blade group 60D and outer shaft By inverting the device 60B, the cylindrical outer rotor blade group 60D is changed into the outer inlet blade 60e of the outer rotor blade 60d, the plurality of outer intermediate blades 60g of the outer rotor blade 60d, or the outer outlet blade 60k of the outer rotor blade 60d. In the manufacturing of 100 sets, the cylindrical inner blade group 60C is used as the inner inlet blade 60f of the inner rotor blade 60c, a plurality of inner intermediate blades 60h of the inner rotor blade 60c, and the inner outlet blade 60j of the inner rotor blade 60c. 100 production head 800m It is the most difficult, the greatest contribution in human history and ultra-precision manufacturing, such as minimizing the number of parts and almost all possible automatic production, etc. Although experimentation is necessary, the amount of power generation is increased infinitely at zero fuel cost, and the world's best prevention of global warming is achieved.

図4の太陽光加熱器21の熱製造は、空気20℃を断熱圧縮比4で160℃になるため、20MPa等超高圧圧縮に燃料噴射燃焼熱交換過熱蒸気5Hを製造して、同一燃料量の過熱蒸気5H製造量を、既存ボイラーの10〜100倍を狙う圧縮空気熱交換器2Yの吸入空気温度を最高にし、竪型全動翼比重大物質重力タービン11B燃料費0発電極端に安価電気駆動して、過熱蒸気5H最大製造+液体空気28a冷熱副産物の供給設備3Dにし、温熱利用全盛や冷熱利用全盛にするもので、太陽光加熱器21を水面に浮力を設け又は平地に円形鉄道を設けて具備し、太陽光を東から西に直角維持回転制御する図に無い水上装置や陸上装置として、太陽光加熱器21には回転支持部4fを設けて歯車装置4dやローラー4eを具備し、円筒回転部77Gとして太陽光を上下方向直角維持回転制御して、浮力や円形鉄道利用により東西方向直角維持回転制御する装置とし、太陽光を2方向直角維持回転制御して、加熱保存熱量最大狙う熱吸収管4H内空気温度を最高にする装置とし、地球最大熱量の太陽光を矩形長レンズ2dにより直線状に集めて、焦点距離付近に熱吸収管4H具備内部空気路28A空気28a温度を最高にして、外部空気路28A空気28a温度も上昇し、既存のレンズ断面を直線状に延長矩形の長レンズ2dとして、レンズ材質全部を使用可能とし、発泡プラスチック等の断熱材2cを円筒回転部77G等で囲って円筒等の長大な筒として、長大な長レンズ2dを継手80A+締付具80Bで密封上部を4H外部空気路28Aとし、2空気路28A選択吸入の1〜複数段熱ポンプ1Gとして吸入圧縮して、簡単多段圧縮機89B液体酸素製造機89A等を熱ポンプ1Gとして800〜1200℃複数回とし、1〜複数段圧縮空気熱交換器2Yで圧縮毎熱回収を繰返して、液体空気28a冷熱を液体酸素室5K+液体窒素室5Lに保存し、400℃前後24〜200MPa過熱蒸気5H温熱を高圧高温水蒸気室5Nに分割保存して、液体空気冷熱+過熱蒸気温熱供給設備3Dにし各種用途に使用して、電気駆動全盛や蓄電池駆動全盛にし、電気製造物の各種温熱利用全盛や各種冷熱利用全盛にする。 In the heat production of the solar heater 21 of FIG. 4, since air 20 ° C. becomes 160 ° C. with an adiabatic compression ratio 4, the fuel injection combustion heat exchange superheated steam 5H is produced by ultra high pressure compression such as 20 MPa, and the same fuel amount is produced. Of superheated steam 5H, the intake air temperature of the compressed air heat exchanger 2Y aiming at 10 to 100 times that of the existing boiler is maximized, and the vertical type moving blade ratio critical material gravity turbine 11B fuel cost 0 power generation extremely cheap electricity Drive to make the superheated steam 5H maximum production + liquid air 28a cooling by-product supply equipment 3D, and make the use of warm heat and prime use of cold heat, the solar heater 21 with buoyancy on the water surface or a circular railroad on the flat ground The solar heater 21 is provided with a rotation support portion 4f and a gear device 4d and a roller 4e as a floating device and a land device not shown in the drawing that maintain and rotate sunlight at right angles from east to west. , Cylindrical rotation 77G is a device that controls the vertical rotation of sunlight in the vertical direction by using buoyancy and circular rails, and controls the rotation of the west-west direction by using buoyancy and circular rails. A device that maximizes the air temperature in the 4H, collects sunlight with the largest amount of earth in a straight line by the rectangular long lens 2d, maximizes the temperature of the air 28a inside the air passage 28A equipped with the heat absorption tube 4H near the focal length, The temperature of the external air passage 28A air 28a also rises, and the entire lens material can be used as a rectangular long lens 2d extending linearly in the existing lens cross section, and the heat insulating material 2c such as foamed plastic is surrounded by a cylindrical rotating portion 77G or the like. As a long cylinder such as a cylinder, a long long lens 2d is connected to a joint 80A + fastener 80B and the sealed upper part is set to a 4H external air passage 28A. Compressed by suction as a multistage heat pump 1G, simple multistage compressor 89B, liquid oxygen producing machine 89A, etc. as heat pump 1G, 800-1200 ° C multiple times, and recovered heat per compression by 1-multistage compressed air heat exchanger 2Y The liquid air 28a cold heat is stored in the liquid oxygen chamber 5K + the liquid nitrogen chamber 5L, and the 24-hot air steam 5H around 24 to 200 ° C. is divided and stored in the high-pressure high-temperature steam chamber 5N, and the liquid air cold heat + superheated steam heat is stored. The supply equipment 3D is used for various purposes, and the electric drive prime and the storage battery drive prime are made, and the various warm use primes and various cold use primes of the electric product are made.

図5の液体酸素製造機89Aは、竪型全動翼比重大物質重力タービン11B燃料費0発電電気駆動にし、太陽光加熱器21で加熱した空気28aを超高圧圧縮して、圧縮空気熱交換器2Yで熱交換して過熱蒸気5H温熱+液体酸素5K冷熱+液体窒素5L冷熱大量生産狙いにし、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に組立後に工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転等とし、液体酸素5K+液体窒素5L+過熱蒸気5Hを製造では圧縮空気熱交換機2Y使用として、図4の太陽光加熱器21で加熱した空気28aを長大圧縮空気熱交換機2Yで熱交換し、過熱蒸気5H製造+精留塔排ガス冷却で低温超高圧圧縮空気28aを大量生産として、空気28aを断熱直線膨張の過程で外側出力翼8tと内側出力翼8sを二重反転し、竪型全動翼比重大物質重力タービン11B燃料費0発電極端に安価電気僅少での駆動として、過熱蒸気5H温熱大量製造でメタンハイドレートに注入メタンを回収する等温熱利用全盛にし、液体酸素5Kや液体窒素5Lは燃料燃焼用に使用することで、圧縮仕事率を21/60000や79/60000等超高圧燃焼部具備の各種機関にして、飛行機や船舶や自動車等を各種回転駆動や超高速噴射推進駆動にする、液体酸素製造機89Aにする。   The liquid oxygen producing machine 89A in FIG. 5 uses a vertical all-blade ratio critical material gravity turbine 11B with a fuel cost of 0 power generation electric drive, compresses the air 28a heated by the solar heater 21 by ultra-high pressure, and performs compressed air heat exchange. Heat exchange is performed in the vessel 2Y, and the mass of the superheated steam 5H + liquid oxygen 5K cold + liquid nitrogen 5L is targeted for mass production, and the cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device 60B. Bearings 12C are provided at the optimum positions at both ends, and both ends can be held and precisely processed by machine tools after assembling separately, ultra-high speed rotation balance adjustment processing is enabled, and the inner shaft device 60A and inner compression blade 8q and inner output are provided. As a manufacturing balance adjustment process for the blade 8s, the outer shaft device 60B, the outer compression blade 8r, and the outer output blade 8t, the assembly of the inner shaft device 60A and the outer shaft device 60B can be performed at a very high speed. In the production of liquid oxygen 5K + liquid nitrogen 5L + superheated steam 5H, the compressed air heat exchanger 2Y is used, and the air 28a heated by the solar heater 21 in FIG. 4 is heat-exchanged by the long compressed air heat exchanger 2Y to produce the superheated steam 5H. + Mass production of low temperature ultra high pressure compressed air 28a by rectifying tower exhaust gas cooling, air 28a in the process of adiabatic linear expansion, the outer output blades 8t and the inner output blades 8s are double-reversed, and the major material ratio of the vertical blades Gravity turbine 11B Fuel cost 0 Power generation Extremely cheap Electricity As a drive with very little electricity, it is the prime use of isothermal heat that recovers methane injected into methane hydrate by mass production of superheated steam 5H, liquid oxygen 5K and liquid nitrogen 5L are for fuel combustion By using it for various engines equipped with ultrahigh pressure combustion parts such as 21/60000 and 79/60000, it is possible to drive various airplanes, ships, automobiles, etc. To high-speed jet propulsion drive, to liquid oxygen making machine 89A.

図6の簡単多段圧縮機89Bは、各種機関に連結して超高圧圧縮空気28aを製造するもので、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に組立後に工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや、外側軸装置60B兼外側圧縮翼8rの複数を製造やバランス調整加工として、夫々を本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転とし、外箱翼6Gより吸入の空気28aを超高圧圧縮して、圧縮空気熱交換機2Yで熱交換過熱蒸気5Hを製造する2回圧縮や3回圧縮等とし、最適温度の高圧圧縮空気28aを製造する簡単多段圧縮機89Bとして、各種機関に連結して液体酸素製造機89Aや簡単ガス機関89Cや、簡単空気噴射機関89Dや簡単噴射機関89E等を駆動し、回転出力や噴射推進出力を発生して、飛行機や船舶や自動車等を各種回転駆動や超高速噴射推進駆動にする、マイクロ超高速簡単多段圧縮機89Bを含む簡単多段圧縮機89B各種連結駆動にする。 A simple multistage compressor 89B shown in FIG. 6 is connected to various engines to produce ultra-high pressure compressed air 28a. The cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device are used. The bearings 12C are provided at the optimum positions on both ends of each of the 60B, and both ends can be precisely processed by a machine tool after assembling separately, and ultra-high speed rotation balance adjustment processing is enabled, the inner shaft device 60A and the inner compression blade 8q, A plurality of outer shaft devices 60B and outer compression blades 8r are manufactured and balance-adjusted, and each is assembled into a super-high-speed double reversal of the inner shaft device 60A and the outer shaft device 60B. A simple multi-stage compressor 89 for producing high-pressure compressed air 28a at an optimum temperature by compressing the air 28a with ultra-high pressure and using the compressed air heat exchanger 2Y to produce heat exchange superheated steam 5H, such as twice compression or three times compression. Connected to various engines to drive a liquid oxygen production machine 89A, a simple gas engine 89C, a simple air injection engine 89D, a simple injection engine 89E, etc. A simple multi-stage compressor 89B including a micro ultra-high speed simple multi-stage compressor 89B is used for various rotational drives and ultra-high-speed jet propulsion drives.

図7の簡単ガス機関89Cは,圧縮空気熱交換器2Yで過熱蒸気5H製造を超高圧環境での燃焼熱交換として、同一燃料量既存ボイラーの13〜20倍前後過熱蒸気5H製造量等とし、過熱蒸気5Hで先の出願の全動翼蒸気タービン11を真空まで膨張駆動して、既存火力発電の20倍発電量狙いし、簡単ガス機関89Cでは全動翼により、既存ガスタービンの10倍回転出力+10倍噴射推進出力等として、円筒内側動翼群60C兼内側軸装置60A及び円筒外側動翼群60D兼外側軸装置60Bとし、夫々の両端最適位置に軸受12C具備して、夫々別々に組立後に工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転空気圧縮とし、同一燃料量で過熱蒸気5H製造量既存ボイラーの20倍狙う、圧縮空気熱交換器2Yの過熱蒸気5H製造として、超高圧圧縮空気28aに燃料噴射燃焼+過熱蒸気5H製造簡単ガス機関89C駆動とし、竪型全動翼比重大物質重力タービン11B発電電気製造物駆動を含めて、入口を閉止した長大な圧縮空気熱交換機2Y使用の過程では、酸素窒素噴射ノズル6Mより液体酸素5Hや液体窒素5Lを噴射して、燃料噴射ノズル6Xより燃料噴射燃焼し、通常燃焼と合体の過熱蒸気5H大量生産で全動翼蒸気タービン駆動火力発電等として、火力発電では図4の太陽光加熱器21で加熱した空気28aを圧縮燃料噴射燃焼し、長大圧縮空気熱交換機2Yで熱交換して、理論空燃比燃焼で既存ガスタービンの4倍燃焼量にし、超高圧燃焼で過熱蒸気5H製造量を既存ボイラーの10倍狙い発電として、液体酸素5Kや液体窒素5Lを燃料燃焼用に使用の場合は、圧縮仕事率を21/60000や79/60000等超高圧燃焼部具備の各種機関にして、同一燃料量既存の10倍発電量や10倍速度や1/10燃料費を狙う、発電や飛行機や船舶や自動車等とし、各種回転駆動や超高速噴射推進駆動にする、簡単ガス機関89Cにする。 The simple gas engine 89C in FIG. 7 uses the compressed air heat exchanger 2Y to produce superheated steam 5H as combustion heat exchange in an ultra-high pressure environment, and produces the same amount of superheated steam 5H around 13 to 20 times that of an existing boiler. The superheated steam 5H is used to expand and drive the entire rotor blade steam turbine 11 of the previous application to a vacuum, aiming for a power generation amount 20 times that of the existing thermal power generation, and the simple gas engine 89C rotates 10 times the existing gas turbine by all the rotor blades. As the output +10 times propulsion propulsion output, etc., the cylinder inner rotor blade group 60C and inner shaft device 60A and the cylindrical outer rotor blade group 60D and outer shaft device 60B are provided. It is possible to perform both-end holding precision machining with a machine tool later, ultra-high-speed rotation balance adjustment processing, inner shaft device 60A and inner compression blade 8q, inner output blade 8s, outer shaft device 60B and outer compression blade 8 As a manufacturing balance adjustment process of r and the outer output blade 8t, the superassembly of the inner shaft device 60A and the outer shaft device 60B is carried out by this assembly, and the superheated steam 5H is produced with the same fuel amount. Aiming to double, as superheated steam 5H production of compressed air heat exchanger 2Y, fuel injection combustion to superhigh pressure compressed air 28a + superheated steam 5H production Simple gas engine 89C drive, vertical type moving blade ratio critical material gravity turbine 11B power generation electric In the process of using the long compressed air heat exchanger 2Y with the inlet closed, including product driving, liquid oxygen 5H and liquid nitrogen 5L are injected from the oxygen nitrogen injection nozzle 6M, and fuel injection combustion is performed from the fuel injection nozzle 6X. In the mass production of superheated steam 5H combined with normal combustion, as the all blade blade turbine driven thermal power generation, etc., in the thermal power generation, the air 28 heated by the solar heater 21 in FIG. Compressed fuel injection combustion, heat exchange with the long compressed air heat exchanger 2Y, the theoretical air-fuel ratio combustion to 4 times the combustion amount of the existing gas turbine, super high pressure combustion to aim the production amount of superheated steam 5H 10 times that of the existing boiler For power generation, when liquid oxygen 5K or liquid nitrogen 5L is used for fuel combustion, the compression work rate is set to various engines equipped with ultra-high pressure combustion parts such as 21/60000 and 79/60000, and the same fuel amount is 10 times that of existing ones. A simple gas engine 89C is used for power generation, airplanes, ships, automobiles, etc., aiming for power generation, 10 times speed and 1/10 fuel cost, and various rotational driving and ultra-high speed injection propulsion driving.

図8の簡単空気噴射機関89Dは、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に組立後に工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転空気圧縮とし、同一燃料量で過熱蒸気5H製造量既存ボイラーの10倍狙う、圧縮空気熱交換器2Yの過熱蒸気5H製造として、超高圧圧縮空気28aに燃料噴射燃焼+過熱蒸気5H製造簡単空気噴射機関89D駆動とし、超高圧圧縮空気28a質量増大の燃料噴射燃焼にして、回転出力発生+過熱蒸気5Hを製造ロケット外箱77B内に噴射し、空気吸引噴射で10倍速度を狙う過程では外周からも空気吸引噴射して、竪型全動翼比重大物質重力タービン11B発電電気製造物駆動を含めて、長大な圧縮空気熱交換機2Y使用の過程で入口を閉止し、酸素窒素噴射ノズル6Mより液体酸素5Hや液体窒素5Lを噴射して、燃料噴射ノズル6Xより燃料噴射燃焼し、通常燃焼と合体の過熱蒸気5H大量生産として、通常燃焼でも理論空燃比燃焼で過熱蒸気5Hを通常の4倍燃焼量で製造の大量生産とし、液体酸素5Kや液体窒素5Lは燃料燃焼用に使用して、圧縮仕事率を21/60000や79/60000等超高圧燃焼部具備にし、10倍速度や1/10燃料費を狙う、船舶等を超高速噴射推進駆動にする、簡単空気噴射機関89Dにする。 The simple air injection engine 89D of FIG. 8 includes bearings 12C at the optimum positions at both ends of the cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device 60B, and is assembled separately. It is possible to perform both-end holding precision machining with a machine tool later, ultra-high-speed rotational balance adjustment processing, inner shaft device 60A and inner compression blade 8q and inner output blade 8s, outer shaft device 60B and outer compression blade 8r and outer output. As the manufacturing balance adjustment process of the blade 8t, the main assembly makes the ultra-high-speed counter-rotating air compression of the inner shaft device 60A and the outer shaft device 60B, and the target amount is 10 times that of the existing boiler. As superheated steam 5H production of air heat exchanger 2Y, fuel injection combustion + superheated steam 5H production simple air injection engine 89D drive to ultrahigh pressure compressed air 28a, ultrahigh pressure compressed air 28a quality In the process of increasing fuel injection combustion, generating rotational output + superheated steam 5H into the production rocket outer box 77B, and in the process of aiming for 10 times speed by air suction injection, air suction injection is also performed from the outer periphery, and vertical full motion Including the blade ratio critical material gravity turbine 11B power generation electrical product drive, the inlet is closed in the process of using the long compressed air heat exchanger 2Y, liquid oxygen 5H and liquid nitrogen 5L are injected from the oxygen nitrogen injection nozzle 6M, Fuel injection combustion from the fuel injection nozzle 6X, mass production of superheated steam 5H combined with normal combustion, mass production of superheated steam 5H with the theoretical air-fuel ratio combustion even with normal combustion and four times the normal combustion amount, and liquid oxygen 5K And 5L of liquid nitrogen is used for fuel combustion, has a compression work rate of 21/60000 and 79/60000, etc., and has an ultra-high pressure combustion part, aiming for 10 times speed and 1/10 fuel cost, super high speed for ships etc. To injection propulsion drive, to simplify air injection engine 89D.

図9の簡単噴射機関89Eは、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に組立後に工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転空気圧縮とし、同一燃料量で過熱蒸気5H製造量既存ボイラーの10倍狙う、圧縮空気熱交換器2Yの過熱蒸気5H製造として、超高圧圧縮空気28aに燃料噴射燃焼+過熱蒸気5H製造簡単噴射機関89E駆動とし、超高圧圧縮空気28a質量増大の燃料噴射燃焼にして、回転出力発生+過熱蒸気5Hを製造ロケット外箱77B内に噴射空気吸引噴射では、竪型全動翼比重大物質重力タービン11B発電電気製造物駆動を含めて、長大な圧縮空気熱交換機2Y使用の過程で入口を閉止し、酸素窒素噴射ノズル6Mより液体酸素5Hや液体窒素5Lを噴射して、燃料噴射ノズル6Xより燃料噴射燃焼し、通常燃焼と合体の過熱蒸気5H大量生産として、通常燃焼でも理論空燃比燃焼で過熱蒸気5H通常の4倍燃焼量製造の大量生産とし、液体酸素5Kや液体窒素5Lは燃料燃焼用に使用して、圧縮仕事率を21/60000や79/60000等超高圧燃焼部具備にし、10倍速度や1/10燃料費を狙う、飛行機や船舶等を回転駆動や超高速噴射推進駆動にする、簡単噴射機関89Eにする。 The simple injection engine 89E of FIG. 9 has bearings 12C at the optimum positions at both ends of the cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device 60B, respectively, and is assembled separately. The machine tool enables both-end holding precision machining, ultra-high speed rotation balance adjustment machining, inner shaft device 60A, inner compression blade 8q, inner output blade 8s, outer shaft device 60B, outer compression blade 8r, and outer output blade. 8t production balance adjustment processing, this assembly will make the ultra-high speed counter-rotating air compression of the inner shaft device 60A and the outer shaft device 60B, the compressed air aiming 10 times the amount of superheated steam 5H production amount with the same fuel amount As superheated steam 5H production of heat exchanger 2Y, fuel injection combustion to superhigh pressure compressed air 28a + superheated steam 5H production Simple injection engine 89E drive, supermass high pressure compressed air 28a mass increase Rotating power generation + superheated steam 5H is injected into the rocket outer box 77B for injection injection combustion, and a large compression including a vertical full blade ratio material gravity turbine 11B power generation electric product drive In the process of using the air heat exchanger 2Y, the inlet is closed, liquid oxygen 5H or liquid nitrogen 5L is injected from the oxygen nitrogen injection nozzle 6M, fuel injection combustion is performed from the fuel injection nozzle 6X, and a large amount of superheated steam 5H combined with normal combustion As the production, the mass production of the combustion of the superheated steam 5H, which is four times the normal combustion ratio of the theoretical air-fuel ratio combustion in the normal combustion, and the liquid oxygen 5K and the liquid nitrogen 5L are used for fuel combustion, and the compression work rate is 21/60000. Use simple injection engine 89E with ultra-high pressure combustion part such as 79/60000, aiming for 10 times speed and 1/10 fuel cost, turning airplane or ship to rotational drive or ultra-high speed injection propulsion drive

図10の簡単ガス機関自動車89Fは、既存マイクロガスタービン自動車の改良発明の簡単ガス機関89C駆動とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として既存ガスタービンの10倍回転出力にし、同一燃料量既存火力発電の10倍発電量狙う簡単ガス機関89C発電として、簡単ガス機関89Cで、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼し、夫々過熱蒸気5Hを製造30MPa等で噴射して、夫々で燃焼ガス49を吸引噴射し、同一燃料量既存マイクロガスタービンの10倍回転出力等として、発電機1を駆動して蓄電池1Aに蓄電し、蓄電池駆動車輪4Jを回転して通常の自動車運転にして、燃料費を既存自動車の1/10狙い簡単ガス機関自動車89Fにし、バスやタクシーでの運用利益率を抜群世界一の地球温暖化防止にする。 The simple gas engine vehicle 89F in FIG. 10 is driven by the simple gas engine 89C, which is an improved invention of the existing micro gas turbine vehicle, and requires experimentation, but the amount of superheated steam 5H produced is 10 times that of the existing boiler, or the total moving blade + superheated steam 5H As a simple gas engine 89C power generation aiming at 10 times the output of the existing gas turbine as production and the same fuel amount as 10 times the existing thermal power generation, in the simple gas engine 89C, normal air compression fuel injection combustion and liquid oxygen liquid nitrogen Fuel injection combustion is performed in compression injection, superheated steam 5H is produced at 30MPa, respectively, and combustion gas 49 is sucked and injected at each, and the generator 1 is used as a 10 times rotational output of an existing micro gas turbine with the same fuel amount. Drive and store electricity in the storage battery 1A, rotate the storage battery driving wheel 4J to normal vehicle operation, and aim for 1/10 of the existing vehicle with a simple gas machine The automobile 89F, to the preeminent world of global warming prevention operating profit margin by bus or taxi.

図11の簡単ガス機関船舶89Gは、既存ガスタービン船舶の改良発明の簡単ガス機関89C駆動の船舶として、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として既存ガスタービンの10倍回転出力の簡単ガス機関89Cにし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを駆動スクリュウ7C駆動して、その排気を超高速噴射して推進力を発生その外周でも空気吸引噴射し、同一燃料量既存ガスタービンの10倍回転出力+10倍噴射推進出力等として、平坦な海上を空気浮上過熱蒸気浮上飛行機越えや接近の超高速噴射推進にし、同一燃料量既存船舶の10倍速度に近付けることで、簡単ガス機関船舶89Gの運用利益率を抜群世界一の地球温暖化防止にする。 The simple gas engine ship 89G shown in FIG. 11 needs to be tested as a simple gas engine 89C driven ship that is an improved invention of the existing gas turbine ship, but the amount of superheated steam 5H produced is 10 times that of the existing boiler, or the total moving blade + superheated steam. 5H production is a simple gas engine 89C with 10 times the rotational output of the existing gas turbine, and fuel injection combustion is performed in normal air compression fuel injection combustion and compression injection of liquid oxygen liquid nitrogen, respectively, and superheated steam 5H is produced at 30 MPa or more, respectively. High-speed injection, suction and injection of each combustion gas 49 and drive the simple gas engine 89C to drive the screw 7C, the exhaust gas is injected at ultra-high speed to generate propulsion force, air suction injection at the outer periphery, the same fuel amount existing As the gas turbine's 10 times rotation output + 10 times injection propulsion output, etc., the flat sea is made to be super high speed injection propulsion beyond the air flotation superheated steam flotation airplane and approach, and the same fuel By close to 10 times the degree of existing vessels, the operating profit margin of simple gas engine ship 89G to the preeminent world of global warming prevention.

図12の簡単ガス機関飛行機89Hは、既存ターボブロップエンジンの改良発明の簡単ガス機関89C駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単ガス機関89Cにし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを駆動プロペラ7A駆動して、その排気を超高速噴射して推進力を発生し、同一燃料量既存ターボブロップエンジンの10倍回転出力+10倍噴射推進出力等として、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大し、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮噴射と燃料噴射燃焼して、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張にし、簡単ガス機関89C駆動直線排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、簡単ガス機関飛行機89Hの運用利益率を抜群世界一の地球温暖化防止にする。 The simple gas engine airplane 89H in FIG. 12 is a simple gas engine 89C driven airplane that is an improved invention of the existing turbo flop engine, and requires experimentation, but the amount of superheated steam 5H produced is 10 times that of the existing boiler, or the total moving blade + superheated steam 5H production is a simple gas engine 89C with 10 times rotational output or 10 times injection propulsion output of an existing gas turbine, and fuel injection combustion is performed for normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively, and superheated steam, respectively. 5H is manufactured at a high speed of 30 MPa, etc., each combustion gas 49 is sucked and injected, the simple gas engine 89C is driven by the driving propeller 7A, the exhaust is injected at a high speed to generate a propulsive force, and the same fuel amount Produces superheated steam 5H by normal air-compressed fuel-injection combustion when flying in the atmosphere as 10 times rotation output + 10 times injection propulsion output of an existing turbo flop engine The combustion gas 49 is compressed and injected with 30MPa superheated steam 5H and compressed and linearly expanded with a 30MPa superheated steam 5H. By making exhaust injection, the space arrival cost is 1 / 500,000, etc., and the space arrival cost is about the same as the existing airplane, making the operating profit rate of the simple gas engine airplane 89H the world's best global warming prevention.

図13の簡単空気噴射機関船舶89Iは、既存ガスタービン船舶の改良発明の簡単空気噴射機関89D駆動の船舶とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単空気噴射機関89Dとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼として、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、前方の空気28aを吸引船底に噴射の過程で、外周でも再度空気吸引噴射既存ガスタービン船舶の10倍前後噴射推進にして、夫々の燃焼ガス49で簡単空気噴射機関89Dを回転駆動後に排気噴射前方の空気を吸引噴射し、同一燃料量既存ガスタービン船舶の10倍噴射推進出力以上等として、平坦な海上を燃焼ガス49浮上+過熱蒸気5H浮上飛行機越えや接近の超高速噴射推進し、同一燃料量既存船舶の10倍速度以上狙うことで、簡単空気噴射機関船舶89Iの運用利益率を抜群世界一の地球温暖化防止にする。 The simple air-injection engine ship 89I in FIG. 13 is a modified air-injection engine 89D-driven ship that is an improved invention of the existing gas turbine ship, and requires experimentation, but the amount of superheated steam 5H produced is 10 times that of the existing boiler, As superheated steam 5H production, a simple air injection engine 89D with 10 times rotational output and 10 times injection propulsion output of an existing gas turbine is used, and fuel injection combustion is used for normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively. The superheated steam 5H is injected into the rocket outer box 77B at a manufacturing pressure of 30 MPa, etc., and the front air 28a is injected into the bottom of the suction ship, and the outer periphery is again propelled about 10 times as much as the existing gas turbine ship. After the simple air injection engine 89D is rotationally driven with the combustion gas 49, the air in front of the exhaust injection is sucked and injected, and the same fuel amount is injected 10 times that of the existing gas turbine ship. A simple air-injection engine ship 89I, aiming at over 10 times the speed of the existing ship with the same fuel amount by propelling over the flat sea with combustion gas 49 levitation + superheated steam 5H levitation plane over and close approach Is the world's best global warming prevention.

図14の簡単噴射機関飛行機89Jは、既存ジェットエンジンの改良発明の簡単噴射機関89E駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単噴射機関89Eとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、前方の空気28aを吸引噴射既存ジェット機の10倍前後噴射推進にして、夫々の燃焼ガス49で簡単噴射機関89Eを回転駆動後に排気噴射前方の空気を吸引噴射し、同一燃料量既存ジェット機の10倍噴射推進出力狙いとして、燃焼ガス49+過熱蒸気5H超高速噴射推進し、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大して、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼にし、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、簡単噴射機関飛行機89Jの運用利益率を抜群世界一の地球温暖化防止にする。 The simple injection engine airplane 89J in FIG. 14 is a simple injection engine 89E driven airplane that is an improvement invention of the existing jet engine, and requires experimentation, but the amount of superheated steam 5H produced is 10 times that of the existing boiler, or the total moving blade + superheated steam 5H As a manufacture, a simple injection engine 89E having a 10 times rotational output or 10 times injection propulsion output of an existing gas turbine is used, and fuel injection combustion is performed for normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively, and superheated steam 5H Is injected into the outer rocket box 77B at 30MPa, etc., and the forward air 28a is propelled about 10 times as much as that of the existing suction jet, and the simple injection engine 89E is driven to rotate by the respective combustion gases 49 before the exhaust injection forward. Air is sucked and injected, with the same fuel amount as 10x injection propulsion output of existing jets, combustion gas 49 + superheated steam 5H super high speed injection propulsion, large During the flight, the superheated steam 5H is produced and stored in a normal air-compressed fuel injection combustion, and compression and fuel injection combustion of liquid oxygen liquid nitrogen fuel 30MPa and the like from the vicinity of the highest flight altitude is usually performed. By using the superheated steam 5H for suction injection linear expansion exhaust injection, the space arrival cost is 1 / 500,000, etc., and the space arrival cost is about the same as the existing aircraft, making the operating profit rate of the simple injection engine airplane 89J the best in the world Prevent global warming.

図15の回転翼飛行機89Kは、既存ヘリコプターの改良発明の簡単ガス機関89C駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単ガス機関89Cとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを直線膨張の駆動として、その排気を超高速噴射して推進力を発生し、同一燃料量既存ヘリコプターの10倍回転出力狙いで回転翼7Bを回転駆動して、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大し、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼して、その燃焼ガス49排気を30MPa過熱蒸気5Hで吸引噴射直線膨張にし、簡単ガス機関89C駆動直線排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、回転翼飛行機89Kの運用利益率を抜群世界一の地球温暖化防止にする。 The rotary wing airplane 89K in FIG. 15 is a simple gas engine 89C driven airplane that is an improved invention of the existing helicopter and requires experimentation, but the production amount of superheated steam 5H is 10 times that of the existing boiler, or the production of all rotor blades + superheated steam 5H. A simple gas engine 89C with 10 times rotational output and 10 times injection propulsion output of an existing gas turbine is used to produce superheated steam 5H by fuel injection combustion in normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively. Super-high-speed injection at 30 MPa, etc., each combustion gas 49 is sucked and injected, the simple gas engine 89C is driven for linear expansion, its exhaust is injected at high speed to generate propulsion, and the same fuel amount of the existing helicopter 10 The rotary blade 7B is driven to rotate with the aim of doubling the rotation output. When flying in the atmosphere, the superheated steam 5H is produced and stored and increased by the normal air-compressed fuel injection combustion. Combustion compression and fuel injection combustion of liquid oxygen liquid nitrogen fuel 30MPa etc. from near, and the combustion gas 49 exhaust gas is suction injection linear expansion with 30MPa superheated steam 5H, simple gas engine 89C drive linear exhaust injection, space arrival cost By setting the cost to reach space to 1 / 500,000, the same as the existing airplane, the operating profit rate of the rotary wing airplane 89K will be the best global warming prevention in the world.

図16の回転翼噴射飛行機89Lは、既存ヘリコプターの改良発明の簡単噴射機関89E駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単噴射機関89Eとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、上方の空気28aと燃焼ガス49を吸引噴射既存ジェット機の10倍前後噴射推進にして、夫々の燃焼ガス49で簡単噴射機関89Eを回転し、回転翼7B駆動後に排気噴射上方の空気と燃焼ガス49を吸引噴射し、同一燃料量既存ジェット機の10倍噴射推進出力狙いとして、燃焼ガス49+過熱蒸気5H超高速噴射推進にし、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大して、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼にし、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機燃料費程度にすることで、回転翼噴射飛行機89Lの運用利益率を抜群世界一の地球温暖化防止にする。 The rotor-blade jet airplane 89L in FIG. 16 is an airplane driven by a simple injection engine 89E, which is an improved invention of an existing helicopter, and requires experimentation, but the amount of superheated steam 5H produced is 10 times that of an existing boiler, or all rotor blades + superheated steam 5H are produced. As a simple injection engine 89E with 10 times rotational output or 10 times injection propulsion output of an existing gas turbine, fuel injection combustion is performed for normal air compression fuel injection combustion and compression injection of liquid oxygen liquid nitrogen, and superheated steam 5H is respectively produced. Injected into the rocket outer box 77B at a production of 30 MPa, etc., the upper air 28a and the combustion gas 49 are propelled by about 10 times that of the existing jet jet, and the simple injection engine 89E is rotated by each combustion gas 49 to rotate. After driving the blades 7B, the air above the exhaust injection and the combustion gas 49 are sucked and injected, and the same fuel amount as the target of 10 times injection propulsion output of the combustion gas 4 + Superheated steam 5H super-high speed injection propulsion, when flying in the atmosphere, increase the production and storage of superheated steam 5H by normal air compression fuel injection combustion, compression of liquid oxygen liquid nitrogen fuel 30MPa etc. from the vicinity of the normal maximum flight altitude The fuel injection combustion is performed, and the combustion gas 49 is changed to suction injection linear expansion exhaust injection with 30 MPa superheated steam 5H, the space arrival cost is reduced to 1 / 500,000, etc., and the space arrival cost is reduced to the existing airplane fuel cost. Make the operating profit rate of the wing jet airplane 89L the world's best global warming prevention.

図17の特大オスプレイ89Mは、既存オスプレイの改良発明の簡単噴射機関89E駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単噴射機関89Eとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、上方の空気28aと燃焼ガス49を吸引噴射既存ジェット機の10倍前後噴射推進にして、夫々の燃焼ガス49直線噴射で簡単噴射機関89Eを回転し、プロペラ7A駆動後に排気噴射上方の空気と燃焼ガス49を吸引噴射し、同一燃料量既存ジェット機の10倍噴射推進出力狙いとして、燃焼ガス49+過熱蒸気5H超高速噴射推進にし、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大して、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼にし、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機燃料費程度にすることで、回転翼噴射飛行機89Lの運用利益率を抜群世界一の地球温暖化防止にする。 The oversized Osprey 89M in FIG. 17 is an airplane driven by the simple injection engine 89E of the improved invention of the existing Osprey and requires experimentation, but the production amount of superheated steam 5H is 10 times that of the existing boiler, A simple injection engine 89E with 10 times rotational output and 10 times injection propulsion output of an existing gas turbine is used to produce superheated steam 5H by performing fuel injection combustion in normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively. Is injected into the outer casing 77B of the rocket, and the upper air 28a and the combustion gas 49 are propelled about 10 times as much as the existing jets of suction injection, and the simple injection engine 89E is rotated by each combustion gas 49 linear injection, and the propeller After driving 7A, the air above the exhaust injection and the combustion gas 49 are sucked and injected, and the same fuel amount is burned as the target of 10 times the injection propulsion output of the existing jet 49+ superheated steam 5H super-high-speed injection propulsion, superheated steam 5H is produced and increased by normal air compressed fuel injection combustion when flying in the atmosphere, and usually compressed by liquid oxygen liquid nitrogen fuel 30MPa etc. from around the highest flight altitude By making the combustion gas 49 into a suction injection linear expansion exhaust injection with 30 MPa superheated steam 5H, the space arrival cost is 1 / 500,000 etc., and the space arrival cost is about the same as the existing airplane fuel cost, The operating profit rate of the rotary wing jet airplane 89L will be the world's best global warming prevention.

図18の大型オスプレイ89Nは、既存オスプレイの改良発明の簡単ガス機関89C駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単ガス機関89Cとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを直線膨張の駆動として、その排気を超高速噴射して噴射推進出力を発生し、同一燃料量既存ヘリコプターの10倍回転出力狙いでプロペラ7Aを回転駆動して、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大し、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼して、その燃焼ガス49排気を30MPa過熱蒸気5Hで吸引噴射直線膨張にし、簡単ガス機関89C駆動直線排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、回転翼飛行機89Kの運用利益率を抜群世界一の地球温暖化防止にする。 The large Osprey 89N shown in FIG. 18 is a simple gas engine 89C driven airplane that is an improved invention of the existing Osprey, and requires experimentation, but the production amount of superheated steam 5H is 10 times that of the existing boiler, A simple gas engine 89C with 10 times rotational output or 10 times injection propulsion output of an existing gas turbine is used to produce superheated steam 5H by performing fuel injection combustion in normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively. Etc., each of the combustion gases 49 is sucked and injected, the simple gas engine 89C is driven for linear expansion, its exhaust is injected at a high speed to generate an injection propulsion output, and the same fuel amount of the existing helicopter 10 The propeller 7A is driven to rotate with the aim of double-rotation output. When flying in the atmosphere, the superheated steam 5H is produced and stored and increased by normal air-compressed fuel injection combustion. Combustion and fuel injection combustion of liquid oxygen liquid nitrogen fuel 30MPa and the like from around the row altitude, the combustion gas 49 exhaust is made into a suction injection linear expansion with 30MPa superheated steam 5H, a simple gas engine 89C drive linear exhaust injection is made, By setting the arrival cost to 1 / 500,000 and making the space arrival cost comparable to that of existing airplanes, the operating profit rate of the rotary wing airplane 89K will be the world's best global warming prevention.

既存揚水発電は長期間改良皆無のため、水噴射速度マッハ3等追加+真空中の重力加速度追加+落差無限大追加発電にし、竪型全動翼比重大物質重力タービン11B発電にして、既存揚水発電と比較説明すると、揚水発電の発電部分に、ウォータージェット加工機の水噴射速度マッハ3等に真空中の重力加速度+落差を追加し、発電部分も仕事率kg重m/秒が質量×速度×落差に比例して、燃料費0の発電量が10〜100倍等無限増大する可能性があり、世界の揚水発電全部を竪型全動翼比重大物質重力タービン11B発電とし、利益率抜群世界一にして地球温暖化防止する可能性がある。 Since there is no improvement in the existing pumped-storage power generation for a long time, water injection speed Mach 3 etc. added + gravity acceleration added in vacuum + drop infinite additional power generation, vertical type moving blade specific material gravity turbine 11B power generation, existing pumped water In comparison with power generation, in the power generation part of pumped-storage power generation, gravity acceleration + head in vacuum is added to the water jet speed Mach 3 etc. of the water jet processing machine, and the power generation part also has a work load kg weight m / sec. × In proportion to the drop, there is a possibility that the amount of power generation with zero fuel cost will increase indefinitely, such as 10 to 100 times. There is a possibility to prevent global warming in the world.

既存火力発電のボイラーは長期間改良皆無や、20℃空気断熱圧縮後の空気温度が圧縮比2で82℃や圧縮比4で160℃等に上昇のため、超高圧燃焼で燃料発熱量に変化が少ない場合、本発明の圧縮空気熱交換器2Yで燃料噴射燃焼20MPa等の超高圧燃焼熱交換として、過熱蒸気5H製造では製造量が10〜20倍になる可能性があり、世界の火力発電ボイラー全部を圧縮空気熱交換器2Yとして発電する、簡単ガス機関89C発電にし、世界の火力発電を総入れ替えして、同一燃料量10〜20倍発電量にし、利益率抜群世界一にして地球温暖化防止する可能性がある。 Boilers for existing thermal power generation have not been improved for a long time, and the air temperature after adiabatic compression at 20 ° C has increased to 82 ° C at a compression ratio of 2 and 160 ° C at a compression ratio of 4. If there is little, the production amount of superheated steam 5H in the compressed air heat exchanger 2Y of the present invention, such as fuel injection combustion 20MPa, may increase 10 to 20 times, and the world's thermal power generation All boilers generate electricity as a compressed air heat exchanger 2Y, with simple gas engine 89C power generation, total replacement of thermal power generation in the world to the same fuel amount 10 to 20 times, and the world's highest profit rate There is a possibility of prevention.

既存ガスタービンは過熱蒸気5H製造皆無に加えて、静翼と動翼を交互に夫々半分具備して、圧縮機では圧縮空気を静翼で堰き止め方向転換繰り返す無茶圧縮にし、タービンでは燃焼ガスを静翼で堰き止め方向転換を繰り返す無茶膨張にして、回転出力や噴射推進出力を1/10〜1/100等にしているため、静翼を円筒外側動翼群60Dとして円筒内側動翼群60Cと二重反転する、全動翼の簡単ガス機関89Cや簡単空気噴射機関89Dや簡単噴射機関89E等とし、圧縮空気熱交換器2Y過熱蒸気5H製造で回転出力や噴射推進出力を100倍に近付け、更に竪型全動翼比重大物質重力タービン11B発電電気製造物駆動を追加して、太陽光加熱器21過熱蒸気5H温熱製造副産物の液体酸素5K+液体窒素5L使用にし、空気容積圧縮仕事率の21/60000+79/60000容積圧縮仕事率にして、簡単ガス機関89Cや簡単空気噴射機関89Dや簡単噴射機関89Eを駆動し、自動車ではCO2排気や燃料費を1/10に近付ける可能性があり、船舶は同一燃料費で10倍速度に近付ける可能性があり、飛行機は宇宙到達費用を1/50万等として、宇宙利用全盛として地球上何処でも日帰り旅行にして地球温暖化防止する等、温熱冷熱利用全盛の大革命にする可能性もある。 In addition to the production of superheated steam 5H, the existing gas turbine is equipped with half of the stationary blades and moving blades alternately, and the compressor uses the stationary blades to dam the compressed air and repeatedly changes the direction, and the turbine generates combustion gas. Since the vane expansion is repeated without changing the direction of damming with the stationary blade, the rotation output and the jet propulsion output are set to 1/10 to 1/100, etc., so that the stationary blade is the cylindrical outer blade group 60D and the inner cylindrical blade group 60C. With a simple gas engine 89C, a simple air injection engine 89D, a simple injection engine 89E, etc., which are double-reversed, the rotational output and the injection propulsion output are brought close to 100 times in the manufacture of the compressed air heat exchanger 2Y superheated steam 5H In addition, a vertical all-blade ratio critical material gravity turbine 11B power generation electric product drive is added to use solar heater 21 superheated steam 5H thermal production by-product liquid oxygen 5K + liquid nitrogen 5L, air volume There is a possibility of driving the simple gas engine 89C, the simple air injection engine 89D and the simple injection engine 89E with a reduction work rate of 21/60000 + 79/60000 volumetric compression work rate, and in the automobile, CO2 exhaust and fuel costs may be brought close to 1/10. There is a possibility that ships may approach the speed of 10 times with the same fuel cost, airplanes will reach the space cost of 1 / 500,000, etc., as a prime use of space to take a day trip anywhere on earth to prevent global warming, etc. There is also the possibility of making a major revolution in the use of hot and cold heat.

0:各種エネルギ保存サイクル合体機関、 0:各種エネルギ保存サイクル合体機関及び合体方法、 1:発電機、 1A:蓄電池、 1B:圧力機関(酸素圧力歯車機関・酸素圧力往復機関・水圧力歯車機関・水圧力往復機関等) 1C:アルコール、 1D:燃料噴射ポンプ、 1F:復水ポンプ、 1G:1〜複数段熱ポンプ(熱エネルギを空気温度とし熱ポンプ(各種空気圧縮機)で複数回圧縮2Cの2X2Y2Zで複数回熱回収温熱50+冷熱28aで分割保存) 1K:液体燃料制御弁、 1L:燃料加熱管、 1Q:開閉弁、 1Y:複数段燃焼室、 1b:燃料(液体燃料+液化可能気体燃料) 1b:燃料管(燃料噴射温度が最適温度になるように具備する) 1c:液体燃料、 1d:水銀、 1g:重力加速部、 1h:横軸(外側軸装置と内側軸装置の回転方向交互にする軸) 2:太陽光加熱器(長レンズで太陽光を直線状に集めて高温部形成吸入空気を加熱) 2a:自然現象高速化(空気中では変化略0の残飯類が近くの川に移動すると一夜で0に近付く膨大な微生物量を人類の食糧増大に利用) 2a:自然現象高速化(発電では海水に冷熱28aを混合自然現象高速化した海水を海底に供給窒素や酸素やCO2等の栄養分を供給微生物増大して魚類やコンブ等食糧大増大する装置) 2a:自然現象高速化(船舶では海中に窒素や酸素やCO2等の栄養分を供給微生物の消化能力を森林の数万倍狙い植物プランクトンや海草等を増殖食物連鎖等により魚類やコンブ類等人類の食糧を増大) 2b:水抵抗僅少(船底に空気や燃焼ガスや過熱蒸気等を高速噴射して水抵抗僅少にする) 2c:断熱材、 2d:長レンズ(凸レンズ断面を直線状に延長矩形とし、複数使用で焦点距離最短レンズ幅最大狙う) 2e:水面、 2g:比重大物質加速方向、 2A:耐熱材、 2B:熱吸収材、 2C:1〜複数段圧縮熱回収器(熱エネルギを空気温度とし熱ポンプで複数回圧縮熱交換器で複数回熱回収して残りを温熱50+液体冷熱28aに分割保存) 2E:比重大物質(合金含む、白金球・金球・タングステン合金粉末焼結球・銀球・銅球・錫球・鉛球・亜鉛球・アルミニウム球・インジウム・カドミウム・ガリウム・タリウム・ビスマス等比重の大きい物質) 2E:比重大物質(製造法は小径程衝撃エネルギが低減するため例えば溶融鋼を空気中に噴射高速衝突粉砕空気冷却水冷却で超小径鋼球等製造) 2E:比重大物質(シリコン樹脂被覆やケイ素樹脂被覆の、被覆白金合金球・被覆金合金球・被覆タングステン合金粉末焼結球・被覆銀合金球・被覆ビスマス合金球・被覆銅合金球・被覆錫合金球・被覆鉛合金球・被覆亜鉛合金球・被覆アルミニウム合金球) 2F:比重大物質上昇装置(重力エネルギを上昇保存) 2H:冷熱海水混合器、 2X:空気熱交換器 2Y:圧縮空気熱交換器(液体空気冷熱+温熱製造する) 2Z:比重大物質熱交換器(500度以下液体金属の温度管理等で使用) 3a:撥水鍍金、 3i:簡単多段圧縮機、 3s:簡単圧縮機、 3u:タービン、 3A:撥水コーティング、 3B:水圧力往復機関、 3D:電気+液体空気冷熱+過熱蒸気温熱供給設備(重力発電電気で冷熱+温熱製造し、液体酸素や液体窒素を供給自動車や船舶や飛行機を駆動や過熱蒸気で供給メタンハイドレートに注入メタンを回収等電気+冷熱+温熱利用全盛にする) 3E:比重大物質(水銀や水等常温で液体の比重大物質) 3E:比重大物質(低融点合金の500度以下液体で安定高温液体合金) 3F:酸素圧力往復機関、 3G:理論燃焼歯車機関、 3H:往復ピストン、 3J:理論燃焼往復機関、 3K:外接歯車 3L:複数段燃焼室、 3M:水蒸気圧力往復機関、 3N:水蒸気圧力歯車機関 3P:理論膨張機関(気体の体積は圧力に反比例する理論で最良機関+酸素水素増大燃焼狙う) 3Q:理論膨張機関(ボイルの法則で最良機関+真空中の最高加速駆動狙う) 3R:理論ガスタービン(気体の体積は圧力に反比例対応の理論最良ガスタービン) 3S:理論蒸気タービン(気体の体積は圧力に反比例対応の理論最良蒸気タービン) 3T:理論気体圧縮機(気体の体積は圧力に反比例対応の理論最良気体圧縮機) 3U:理論タービン、 3V:ポンプ機関(既存各種ポンプをエンジンで使用) 3X:圧縮機機関(既存各種圧縮機をエンジンで使用) 3Y:二重反転機関(気体の体積は圧力に反比例対応のエンジン) 3Z:酸素圧力歯車機関、 3a:撥水鍍金、 3b:撥水コーティング、 4F:燃焼ガス往復機関、 4H:熱吸収管(長レンズ2dで太陽光を熱吸収管に直線状に集めて管内空気温度を最高に加熱して菅外空気温度も上昇する) 4J:蓄電池駆動車輪、 4K:理論膨張機関自動車、 4Q:理論燃焼室(過熱蒸気製造で理論空燃比燃焼既存の4倍燃焼量等や20倍圧力過熱蒸気噴射狙う燃焼室)、 4W:理論圧縮室、 4Y:理論燃焼室(水蒸気の中で高温燃焼して水の熱分解電気分解燃焼狙い化合物0狙い燃焼室) 4Z:燃焼ガス歯車機関、 4X:タービン翼断面(断面積を拡大表面積増大) 4a:液体燃料ポンプ、 4b:液体酸素ポンプ、 4c:水ポンプ、 4d:歯車装置、 4e:ローラー、 4f:回転支持部、 5:空気噴射ノズル、 5a:高圧高温燃焼ガス制御弁、 5b:圧縮吸入空気路、 5d:燃焼流内壁、 5e:超高圧酸素、 5h:精留塔排ガス、 5h:精留塔排ガス管、 5A:給気弁、 5B:冷却ヒレ、 5C:排気室、 5D:排気弁、 5E:給気室、 5F:酸素加熱管、 5G:水蒸気加熱管、 5G:高圧高温水加熱管、 5H:過熱蒸気、 5H:高圧高温過熱蒸気管、 5K:液体酸素、 5K:液体酸素室、 5L:液体窒素、 5L:液体窒素室、 5M:高圧高温燃焼室、 5M:高圧高温燃焼ガス室、 5N:高圧高温水蒸気室、 5N:高圧高温水蒸気、 5P:水蒸気制御弁、 5Q:水制御弁、 5R:過熱蒸気制御弁、 5S:圧縮空気加熱管、 5T:液体酸素制御弁、 6:最終圧縮翼、 6A:過熱蒸気ロケット噴口、 6B:圧縮空気噴射ノズル、 6C:燃焼ガス水蒸気ノズル、 6E:比重大物質噴射ノズル、 6F:水噴射ノズル、 6G:静翼、 6H:排水管、 6L:酸素噴射ノズル、 6M:酸素窒素噴射ノズル、 6W:比重大物質加速機(液体比重大物質3E圧力と比重差利用して比重大物質3Eや2E混合噴射) 6X:燃料噴射ノズル、6X:アフターバーナー(吸引空気流に燃料噴射冷熱28a燃焼流6Yに合流燃焼して燃料燃焼量大増大で宇宙上昇) 6Y:燃焼ガス噴射ノズル(冷熱28a燃焼流) 6Z:過熱蒸気噴射ノズル、 7A:プロペラ、 7B:回転翼、 7C:スクリュー、 7I:簡単ガス機関自動車、 7J:簡単ガス機関船舶、 7K:簡単ガス機関飛行機、 7L:簡単空気噴射機関船舶、 7M:簡単噴射機関飛行機、 7N:回転翼飛行機、 7O:回転翼噴射飛行機、 7P:特大オスプレイ、 7Q:大型オスプレイ、 8a:タービン翼(サイクル数や比重大物質性質仕事速度や周速度に合せた角度や曲線や回転半径二重反転としたタービン翼) 8c:タービン翼(内側と外側動翼群夫々を内側と外側軸装置の円筒部に夫々嵌合組立固定する全自動製造加工狙うタービン翼) 8d:上側膨張翼群、 8e:下側膨張翼群、 8f:組立タービン翼群、 8g:上側圧縮翼群、 8h:下側圧縮翼群、 8j:組立圧縮翼群、 8k:内側圧縮翼、 8m:外側圧縮翼、 8n:内側出力翼、 8p:外側出力翼、 8q:内側圧縮翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした圧縮翼) 8r:外側圧縮翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした圧縮翼) 8s:内側出力翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした出力翼) 8t:外側出力翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした出力翼) 8B:横型全動翼水重力タービン、 8C:横型全動翼比重大物質重力タービン、 8D:横型全動翼水重力タービン、 8E:横型全動翼比重大物質重力タービン、 8V:竪型全動翼水重力タービン、 8W:竪型全動翼比重大物質重力タービン、 8X:竪型全動翼水重力タービン、 8Y:竪型全動翼比重大物質重力タービン、 9:耐摩耗環状組立(8cを含む比重大物質流路のみ超硬合金で環状製造軽量化する嵌合組立方法) 9b:上吸引下反発磁石、 9A:円筒環状組立(耐摩耗円筒環状組立て動翼群タービン翼(8a)6種類逆回転用6種類にすることで構造簡単や部品数僅少や全自動加工容易や組立容易や軽量化容易等にする) 9A:円筒環状組立(外入口翼60e+外中間翼60g+外出口翼60k嵌合で外側動翼60dを構成し、内入口翼60f+内中間翼60h+内出口翼60j嵌合で内側動翼60cを構成する円筒部) 9B:反発永久磁石、 9C:吸引永久磁石、 9D:圧縮空気部、 9E:真空部、 9M:嵌合組立部、 9Q:垂直平行板(噴射空気を保存船尾に誘導する垂直平行の板) 10:船体、 10A:船室、 10b:操縦室、 10c:制御室、 10d:客室、 10e:貨物室、 11:全動翼蒸気タービン、 11A:竪型全動翼水重力タービン、 11B:竪型全動翼比重大物質重力タービン、 11C:横型全動翼水重力タービン、 11D:気体専用冷却室、 11E:横型全動翼比重大物質重力タービン、 12:重力発電建物、 12A:鉄骨骨組、 12B:柱管、 12C:軸受、 12D:角フランジ、 16B:垂直軸、 21:太陽光加熱器(吸入空気路を熱吸収管4H内にも設けて主使用する) 24:燃焼ガス制御弁、 24A:圧縮空気制御弁、 24B:液体酸素制御弁、 24C:液体窒素制御弁、 24D:酸素制御弁、 24E:窒素制御弁、 25:過熱蒸気制御弁、 25b:燃料制御弁、 25c:燃料管、 28a:空気、 28a:冷熱(空気28aを熱ポンプで圧縮して圧縮空気熱量の過熱蒸気50温熱+液体酸素や液体窒素を含む圧縮空気28a冷熱に分割保存) 28b:圧縮空気熱量、 28A:吸入空気路、 28B:空気路入口、 38:回転案内具、 38a:飛行胴、 38b:飛行翼、 38c:飛行尾翼、 38d:垂直翼、 38e:翼前縁心、 38g:水上翼、 38h:浮上艇、 38B:空気吸引噴射船舶(79S79T79Y79Z具備) 38C:水吸引噴射船舶(79U79X具備) 38H:理論スクリュウ船舶、 38J:理論噴射船舶、 38T:理論噴射飛行機、 38U:理論プロペラ飛行機、 39A:太陽熱重力飛行機、 39B:太陽熱重力回転飛行機、 39C:太陽熱重力ヘリコプター、 39D:スクリュー船舶、 39G:太陽熱重力飛行船舶、 39H:酸素合体スクリュー船舶、 39J:酸素合体噴射船舶、 39K:酸素合体スクリュー噴射船舶、 39L:酸素合体噴射飛行機、 39M:酸素合体プロペラ飛行機、 39N:酸素合体プロペラ噴射飛行機、 39P:酸素合体回転翼飛行機、 39Q:酸素合体スクリュー船舶、 39R:酸素合体噴射船舶、 39S:酸素合体スクリュー噴射船舶、 39T:酸素合体噴射飛行機、 39U:酸素合体プロペラ飛行機、 40A:方向舵、 49:燃焼ガス、 50:過熱蒸気、 50:過熱蒸気室、 50:温熱(空気28aを熱ポンプで圧縮して圧縮空気熱量の過熱蒸気50温熱+圧縮空気28a冷熱に分割保存) 50A:水蒸気、 50a:過熱蒸気噴射管、 51:空気抽出器、 51:合流抽出器(合流するための抽出器) 51A:空気抽出室、 52a:高温水52a:海洋深層水、 52b:高温水、 52d:温熱(50から変化) 52e:冷熱(28aから変化) 55B:変速装置、 60:円筒動翼群、 60A:内側軸装置(タービン翼具備装置) 60B:外側軸装置(タービン翼具備装置) 60C:円筒内側動翼群(耐摩耗円筒環状組立固定動翼群を含めて全自動加工容易組立容易にする) 60D:円筒外側動翼群(耐摩耗円筒環状組立固定動翼群を含めて全自動加工容易組立容易にする) 60E:入口固定外翼(外側動翼群
を環状組立固定する入口翼) 60F:入口固定内翼(内側動翼群を環状組立固定する入口翼) 60G:外側環状翼(外側動翼群を環状組立する中間翼) 60H:内側環状翼(内側動翼群を環状組立する中間翼) 60J:出口固定外翼(外側動翼群を環状組立固定する出口翼) 60K:出口固定内翼(内側動翼群を環状組立固定する出口翼) 60c:内側動翼、 60d:外側動翼、 60e:外入口翼、 60f:内入口翼、 60g:外中間翼、 60h:内中間翼、 60j:内出口翼、 60k:外出口翼、 76:歯車装置(磁気摩擦動力伝達装置を含む) 77B:ロケット外箱、 77C:二重反転機外箱、 77F:噴射部外箱、 77G:円筒回転部、 77a:タービン外箱、 77b:圧縮機外箱、 80:軸受(磁気軸受+空気軸受含) 80a:推力軸受(磁気軸受+空気軸受含) 80A:継手、 80B:締付具、 80Y:液体空気吸引ウォータージェット(高圧高温燃焼室5M高圧高温水蒸気室5Nを受給して5Mに複数回燃料噴射燃焼して5Nを内周と内周外周から複数回加熱して噴射し、空気吸引噴射して水を吸引噴射する) 80Z:液体空気吸引ウォータージェット(高圧高温燃焼室5M高圧高温水蒸気室5Nを受給して5Mに複数回燃料噴射燃焼して5Nを内周と内周外周から複数回加熱して噴射し、空気吸引流複数か所にも燃料噴射燃焼噴射して、空気吸引噴射して水を吸引噴射する) 84:二重反転磁気摩擦装置(固定部具備内側動翼群と外側動翼群を略同速度反対回転にする装置) 84Y:二重反転歯車装置(既存技術で二重反転する装置) 85:二重反転磁気装置(磁石利用歯車高さ僅少から無接触にし横軸1h歯車により相互逆回転にする) 85Y:二重反転歯車装置(既存横軸1h歯車により相互逆回転にする) 88p:液体酸素製造機、 88q:簡単ガス機関、 88r:簡単空気噴射機関、 88s:簡単噴射機関、 88A:酸素合体空気噴射部(ロケット燃焼+ジェット燃焼+水蒸気噴射等と合体噴射) 88B:酸素合体空気噴射部(超高圧ロケット燃焼+ジェット燃焼+過熱蒸気噴射吸引) 88C:理論空気噴射部、 88M:理論水噴射部、 88K:酸素合体水噴射部(ロケット燃焼+ジェット燃焼+水蒸気噴射等と合体噴射) 88L:酸素合体水噴射部(超高圧ロケット燃焼+ジェット燃焼+過熱蒸気噴射吸引) 89A:液体酸素製造機、 89B:簡単多段圧縮機、 89C:簡単ガス機関、 89D:簡単空気噴射機関、 89E:簡単噴射機関、 89F:簡単ガス機関自動車、 89G:簡単ガス機関船舶、 89H:簡単ガス機関飛行機、 89I:簡単空気噴射機関船舶、 89J:簡単噴射機関飛行機、 89K:回転翼飛行機、 89L:回転翼噴射飛行機、 89M:特大オスプレイ、 89N:大型オスプレイ、 95a:燃焼ガス溜、 95b:圧縮空気溜、 95c:過熱蒸気溜、 103:冷熱回収器、
0: Various energy storage cycle coalescence engine, 0: Various energy conservation cycle coalescence engine and coalescence method, 1: Generator, 1A: Storage battery, 1B: Pressure engine (oxygen pressure gear engine, oxygen pressure reciprocating engine, water pressure gear engine, 1C: alcohol, 1D: fuel injection pump, 1F: condensate pump, 1G: 1 to multistage heat pump (heat energy is air temperature and compressed multiple times with heat pump (various air compressors) 2C 1K: Liquid fuel control valve, 1L: Fuel heating pipe, 1Q: On-off valve, 1Y: Multistage combustion chamber, 1b: Fuel (liquid fuel + liquefiable gas) 2X2Y2Z Fuel) 1b: Fuel pipe (provided so that the fuel injection temperature becomes the optimum temperature) 1c: Liquid fuel, 1d: Mercury, 1g: Gravity accelerating unit, 1h: Horizontal shaft (outer shaft device and inner 2) Sunlight heater (collects sunlight in a straight line with a long lens and heats the high-temperature portion forming intake air) 2a: Speeds up the natural phenomenon (change in air is almost zero) When the leftovers move to a nearby river, a huge amount of microorganisms that approaches zero overnight will be used to increase food for humans. Equipment that increases the supply of nutrients such as nitrogen, oxygen, and CO2 and increases foods such as fish and kombu. 2a: Speeds up natural phenomena (in ships, the supply of nutrients such as nitrogen, oxygen, and CO2 into the sea makes it possible to digest microorganisms. Phytoplankton, seaweed, etc. aiming for tens of thousands of forests, increasing food for fish such as fish and kombu by increasing the food chain, etc. 2b: Low water resistance (by injecting air, combustion gas, superheated steam, etc. at the bottom of the ship at high speed) Minimize water resistance ) 2c: heat insulating material, 2d: long lens (convex lens cross-section extended into a straight line, a plurality of uses aiming at the shortest focal length lens width) 2e: water surface, 2g: specific material acceleration direction, 2A: heat-resistant material, 2B : Heat absorbing material, 2C: 1 to multi-stage compression heat recovery device (heat energy is air temperature, heat recovery is performed multiple times with a heat pump multiple times with a compression heat exchanger, and the remainder is divided and stored as warm 50 + liquid cold 28a) 2E : Specific material (including alloy, platinum sphere, gold sphere, tungsten alloy powder sintered sphere, silver sphere, copper sphere, tin sphere, lead sphere, zinc sphere, aluminum sphere, indium, cadmium, gallium, thallium, bismuth, etc. Substance) 2E: Specific critical substance (Since the manufacturing method reduces impact energy as the diameter decreases, for example, molten steel is injected into the air to produce ultra-small diameter steel balls by high-speed collision pulverization air cooling water cooling) 2E: Specific critical substance (Siri Covered platinum alloy balls, coated gold alloy balls, coated tungsten alloy powder sintered balls, coated silver alloy balls, coated bismuth alloy balls, coated copper alloy balls, coated tin alloy balls, coated lead alloy balls -Coated zinc alloy sphere-Coated aluminum alloy sphere 2F: Specific critical substance elevating device (gravity energy is increased and stored) 2H: Cold seawater mixer, 2X: Air heat exchanger 2Y: Compressed air heat exchanger (liquid air cold heat + 2Z: Specific heat exchanger (used for temperature control of liquid metal below 500 degrees) 3a: Water repellent plating, 3i: Simple multistage compressor, 3s: Simple compressor, 3u: Turbine, 3A: Water repellent coating, 3B: Water pressure reciprocating engine, 3D: Electricity + liquid air cold heat + superheated steam heat supply equipment (cooling + heat production with gravity power generation electricity, supplying liquid oxygen and liquid nitrogen Car, ship and flight Methane is injected into the methane hydrate supplied with overheated steam or superheated steam, etc. Recovery of methane, etc. Electricity + cold heat + warm use intensive 3E: Specific critical substances (specific critical liquid substances such as mercury and water at room temperature) 3E: Specific critical substances ( 3F: oxygen pressure reciprocating engine, 3G: theoretical combustion gear engine, 3H: reciprocating piston, 3J: theoretical combustion reciprocating engine, 3K: external gear 3L: multistage combustion chamber 3M: Steam pressure reciprocating engine, 3N: Steam pressure gear engine 3P: Theoretical expansion engine (the gas volume is the inversely proportional to the pressure, the best engine + oxygen hydrogen increase combustion aim) 3Q: Theoretical expansion engine (Best by Boyle's law) 3R: Theoretical gas turbine (theoretical best gas turbine whose gas volume is inversely proportional to the pressure) 3S: Theoretical steam turbine (the gas volume is pressure) 3T: Theoretical gas compressor (Theoretical best gas compressor whose gas volume is inversely proportional to the pressure) 3U: Theoretical turbine, 3V: Pump engine (Use existing pumps in the engine) 3X: Compressor engine (uses various existing compressors in the engine) 3Y: Counter-reversal engine (engine whose gas volume is inversely proportional to pressure) 3Z: Oxygen pressure gear engine, 3a: Water repellent plating, 3b: Water repellent Coating, 4F: Combustion gas reciprocating engine, 4H: Heat absorption tube (The long lens 2d collects sunlight into the heat absorption tube in a straight line, and the air temperature inside the tube is heated to the maximum to increase the outside air temperature) 4J: Battery drive wheel, 4K: Theoretical expansion engine vehicle, 4Q: Theoretical combustion chamber (theoretical air-fuel ratio combustion in the superheated steam production, the combustion chamber aiming at 20 times pressure superheated steam injection, etc.), 4W: Theoretical compression 4Y: Theoretical combustion chamber (combustion chamber for high-temperature pyrolysis electrolysis combustion of water by steam in steam) 0Z: Combustion gas gear engine, 4X: Turbine blade cross section (increase cross-sectional area and increase surface area) 4a : Liquid fuel pump, 4b: Liquid oxygen pump, 4c: Water pump, 4d: Gear device, 4e: Roller, 4f: Rotation support part, 5: Air injection nozzle, 5a: High-pressure high-temperature combustion gas control valve, 5b: Compression suction Air path, 5d: Combustion flow inner wall, 5e: Ultra high pressure oxygen, 5h: Rectification tower exhaust gas, 5h: Rectification tower exhaust pipe, 5A: Supply valve, 5B: Cooling fin, 5C: Exhaust chamber, 5D: Exhaust valve 5E: Air supply chamber, 5F: Oxygen heating tube, 5G: Steam heating tube, 5G: High pressure high temperature water heating tube, 5H: Superheated steam, 5H: High pressure high temperature superheated steam tube, 5K: Liquid oxygen, 5K: Liquid oxygen chamber 5L: Liquid nitrogen, 5L: liquid nitrogen chamber, 5M: high pressure high temperature combustion chamber, 5M: high pressure high temperature combustion gas chamber, 5N: high pressure high temperature steam chamber, 5N: high pressure high temperature steam, 5P: steam control valve, 5Q: water control valve, 5R: superheated steam Control valve, 5S: Compressed air heating pipe, 5T: Liquid oxygen control valve, 6: Final compression blade, 6A: Superheated steam rocket nozzle, 6B: Compressed air injection nozzle, 6C: Combustion gas water vapor nozzle, 6E: Specific critical material injection Nozzle, 6F: Water injection nozzle, 6G: Stator blade, 6H: Drain pipe, 6L: Oxygen injection nozzle, 6M: Oxygen nitrogen injection nozzle, 6W: Specific critical material accelerator (Liquid specific material 3E pressure and specific gravity difference 6X: Fuel injection nozzle, 6X: After burner (combustion of the fuel injection cold heat 28a and the combustion flow 6Y into the suction air flow, and the increase in the amount of fuel combustion increases the universe. 6Y: Combustion gas injection nozzle (cooling 28a combustion flow) 6Z: Superheated steam injection nozzle, 7A: Propeller, 7B: Rotary blade, 7C: Screw, 7I: Simple gas engine vehicle, 7J: Simple gas engine ship, 7K: Simple gas Engine airplane, 7L: Simple air injection engine ship, 7M: Simple injection engine airplane, 7N: Rotary wing airplane, 7O: Rotary wing injection airplane, 7P: Extra large osprey, 7Q: Large osprey, 8a: Turbine wing (cycle number and specific gravity) Large material properties Turbine blades with angle, curve and rotational radius double reversal according to work speed and peripheral speed 8c: Turbine blades (inner and outer rotor blade groups are fitted to the inner and outer shaft device cylinders respectively) 8d: upper expansion blade group, 8e: lower expansion blade group, 8f: assembly turbine blade group, 8g: upper compression blade group, h: Lower compression blade group, 8j: Assembly compression blade group, 8k: Inner compression blade, 8m: Outer compression blade, 8n: Inner output blade, 8p: Outer output blade, 8q: Inner compression blade (rotational speed and peripheral speed) 8r: Outer compression blade (compression blade with angle, curve and rotation radius doubly reversed according to rotational speed and peripheral speed) 8s: Inner output blade (An output blade with an angle, a curve, and a rotational radius double reversal according to the rotational speed and peripheral speed) 8t: Outer output blade (an output blade with an angle, a curve, and a rotational radius double according to the rotational speed and the peripheral speed) 8B: Horizontal all-blade hydrogravity turbine, 8C: Horizontal all-blade specific material gravity turbine, 8D: Horizontal all-blade water gravity turbine, 8E: Horizontal all-blade material gravity turbine, 8V: All-type turbine Rotor Water Gravity Turbine, 8W Bin, 8X: Vertical all blade hydrogravity turbine, 8Y: Vertical all blade specific material gravity turbine, 9: Wear resistant annular assembly 9b: Upper attractive lower repulsion magnet 9A: Cylindrical ring assembly (wear resistant cylindrical ring assembly blade group turbine blade (8a) 6 types 6 types for reverse rotation, simple structure and few parts 9A: Cylindrical ring assembly (outer inlet blade 60e + outer intermediate blade 60g + outer outlet blade 60k is fitted to form outer rotor blade 60d, inner inlet blade 60f + inner 9B: Repulsive permanent magnet, 9C: Suction permanent magnet, 9D: Compressed air part, 9E: Vacuum part, 9M: Fitting assembly part, Intermediate blade 60h + Inner outlet blade 60j 9Q: Vertical parallel plate (preserves blast air 10: hull, 10A: cabin, 10b: cockpit, 10c: control room, 10d: cabin, 10e: cargo compartment, 11: full-blade steam turbine, 11A: vertical full motion Blade Water Gravity Turbine, 11B: Vertical Type Whole Blade Ratio Material Gravity Turbine, 11C: Horizontal Type Whole Blade Water Gravity Turbine, 11D: Gas Cooling Chamber, 11E: Horizontal Type Whole Blade Ratio Material Gravity Turbine, 12: Gravity Power generation building, 12A: Steel frame, 12B: Column tube, 12C: Bearing, 12D: Square flange, 16B: Vertical shaft, 21: Solar heater (mainly used with the intake air path provided in the heat absorption tube 4H) 24) Combustion gas control valve, 24A: Compressed air control valve, 24B: Liquid oxygen control valve, 24C: Liquid nitrogen control valve, 24D: Oxygen control valve, 24E: Nitrogen control valve, 25: Superheated steam control valve, 25 : Fuel control valve, 25c: Fuel pipe, 28a: Air, 28a: Cold heat (compressed air 28a is compressed with a heat pump and compressed air is heated to 50 warm heat + compressed air 28a cold containing liquid oxygen and liquid nitrogen) 28b: Calorific value of compressed air, 28A: Intake air passage, 28B: Air passage inlet, 38: Rotation guide, 38a: Flight trunk, 38b: Flight wing, 38c: Flight tail, 38d: Vertical wing, 38e: Wing leading edge 38H: Air suction jet ship (with 79S79T79Y79Z) 38C: Water suction jet ship (with 79U79X) 38H: Theoretical screw ship, 38J: Theoretical jet ship, 38T: Theoretical jet airplane, 38U: theoretical propeller airplane, 39A: solar thermal gravity airplane, 39B: solar thermal gravity rotating airplane, 39C: solar thermal gravity helicopter , 39D: screw ship, 39G: solar thermal gravity ship, 39H: oxygen coalescence screw ship, 39J: oxygen coalescence injection ship, 39K: oxygen coalescence screw injection ship, 39L: oxygen coalescence jet airplane, 39M: oxygen coalescence propeller airplane, 39N: oxygen coalescence propeller jet plane, 39P: oxygen coalescence rotorcraft, 39Q: oxygen coalescence screw ship, 39R: oxygen coalescence jet ship, 39S: oxygen coalescence screw jet ship, 39T: oxygen coalescence jet airplane, 39U: oxygen coalescence propeller Airplane, 40A: Rudder, 49: Combustion gas, 50: Superheated steam, 50: Superheated steam chamber, 50: Heat (compressed air 28a with a heat pump and divided into 50 heat of compressed air calorie heat + compressed air 28a cold) 50A: Water vapor, 50a: Superheated steam injection pipe, 51: Empty Extractor 51: Combined extractor (extractor for joining) 51A: Air extraction chamber 52a: Hot water 52a: Deep sea water 52b: Hot water 52d: Hot (change from 50) 52e: Cold (28a) 55B: Transmission, 60: Cylindrical blade group, 60A: Inner shaft device (equipment with turbine blades) 60B: Outer shaft device (equipment with turbine blades) 60C: Cylindrical inner blade group (wear-resistant cylindrical annular assembly) 60D: Cylindrical outer rotor blade group (Wear resistant cylindrical annular assembly including fixed rotor blade group facilitates easy assembly) 60E: Outlet fixed outside Blade (inlet blade for annular assembly fixing outer rotor blade group) 60F: inlet fixed inner blade (inlet blade for annular assembly fixing inner rotor blade group) 60G: outer annular blade (intermediate blade for annular assembly of outer rotor blade group) 60H: Inner ring Blade (intermediate blade for annular assembly of inner blade group) 60J: Outlet fixed outer blade (exit blade for annular assembly fixing outer blade group) 60K: Outlet fixed inner blade (exit blade for annular assembly fixing of inner blade group) ) 60c: inner blade, 60d: outer blade, 60e: outer inlet blade, 60f: inner inlet blade, 60g: outer intermediate blade, 60h: inner intermediate blade, 60j: inner outlet blade, 60k: outer outlet blade, 76 : Gear device (including magnetic frictional power transmission device) 77B: Rocket outer box, 77C: Counter-rotating machine outer box, 77F: Injection section outer box, 77G: Cylindrical rotating section, 77a: Turbine outer box, 77b: Compressor Outer box, 80: Bearing (including magnetic bearing + air bearing) 80a: Thrust bearing (including magnetic bearing + air bearing) 80A: Joint, 80B: Fastener, 80Y: Liquid air suction water jet (high pressure high temperature combustion chamber 5M high pressure High temperature steam room 5N Received and injected and burned multiple times at 5M and heated and injected 5N multiple times from the inner and outer peripheries, sucked and injected by air suction and injected) 80Z: Liquid air suction water jet (high pressure and high temperature) Combustion chamber 5M Receives high-pressure high-temperature steam chamber 5N, and injects and burns fuel 5M multiple times and heats and injects 5N multiple times from the inner and outer peripheries. 84: Counter-rotating magnetic friction device (device that rotates the inner rotor blade group and the outer rotor blade group at the same speed in the opposite direction) 84Y: Counter-rotating Gear device (device that double-reverses with existing technology) 85: Double-reverse magnetic device (magnet-utilized gear height is slight to non-contact and reciprocally rotates with a horizontal shaft 1h gear) 85Y: Double-reverse gear device (existing (Reverse rotation by 1h gear on the horizontal axis) 8p: Liquid oxygen production machine, 88q: Simple gas engine, 88r: Simple air injection engine, 88s: Simple injection engine, 88A: Oxygen combined air injection unit (rocket combined with jet combustion + steam injection, etc.) 88B: Oxygen Combined air injection unit (ultra-high pressure rocket combustion + jet combustion + superheated steam injection suction) 88C: theoretical air injection unit, 88M: theoretical water injection unit, 88K: oxygen combined water injection unit (rocket combustion + jet combustion + water vapor injection, etc. 88L: oxygen combined water injection unit (super high pressure rocket combustion + jet combustion + superheated steam injection suction) 89A: liquid oxygen production machine, 89B: simple multistage compressor, 89C: simple gas engine, 89D: simple air injection engine 89E: simple injection engine, 89F: simple gas engine vehicle, 89G: simple gas engine ship, 89H: simple gas engine airplane, 89I: simple air injection engine ship, 89J: simple injection engine airplane, 89K: rotary wing airplane, 89L: rotary wing injection airplane, 89M: extra large Osprey, 89N: large Osprey, 95a: combustion gas reservoir, 95b: compressed air reservoir, 95c: Superheated steam reservoir, 103: Cold heat recovery device,

Claims (153)

竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の一部とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method as part of vertical type moving blade specific material gravity turbine (11B) specific material riser (2F) and gravity power generation building (12). 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various types of energy storage cycle coalescence engine and coalescence method using a vertical all-blade ratio critical material gravity turbine (11B) specific material riser (2F) and a column tube (12B) of a gravity power generation building (12). 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method as pillars of vertical material moving blade ratio critical material gravity turbine (11B) specific material lift device (2F) and gravity power generation building (12). 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の中核とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method as the core of vertical type moving blade specific material gravity turbine (11B) specific material riser (2F) and gravity power generation building (12). 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形とした各種エネルギ保存サイクル合体機関及び合体方法。   Various types of energy storage cycle coalescing engines having a rectangular pipe (12B) and a square flange (12D) of a vertical type moving blade ratio critical material gravity turbine (11B) specific material rising device (2F) and gravity power generation building (12), and Merge method. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)に固着した各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type rotor blade specific material gravity turbine (11B) specific material riser (2F) and gravity power generation building (12) column tube (12B) square flange (12D) is fixed to steel frame (12A) as square Various energy storage cycle coalescence engines and coalescence methods. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)にボルト締めした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type blade blade critical material gravity turbine (11B) specific material riser (2F) and gravity power generation building (12) column tube (12B) square flange (12D) is square and bolted to steel frame (12A) Various energy storage cycle coalescence engines and coalescence methods. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下で固着した各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) ratio critical material riser (2F) and gravity power generation building (12) column tube (12B) square flange (12D) squared and fixed to steel frame (12A) top and bottom Various energy storage cycle coalescence engines and coalescence methods. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下でボルト締めした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade specific material gravity turbine (11B) specific material riser (2F) / gravity power generation building (12) column tube (12B) square flange (12D) square and steel frame (12A) up and down bolt Various tightened energy conservation cycle coalescence engines and coalescence methods. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を増大する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade specific material gravity turbine (11B) specific material riser (2F) and gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A) upper and lower bolts Various energy storage cycle coalescence engines and coalescence methods that increase the number of floors by tightening. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を10階以上とした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade specific material gravity turbine (11B) specific material riser (2F) and gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A) upper and lower bolts Various energy conservation cycle coalescing engines and coalescence methods with floors of 10 or more. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を200階以下とした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade specific material gravity turbine (11B) specific material riser (2F) and gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A) upper and lower bolts Various energy conservation cycle coalescence engines and coalescence methods with floors of 200 floors or less. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を150階以下とした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade specific material gravity turbine (11B) specific material riser (2F) and gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A) upper and lower bolts Various energy conservation cycle coalescence engines and coalescence methods with floors of 150 floors or less. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を100階以下とした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade specific material gravity turbine (11B) specific material riser (2F) and gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A) upper and lower bolts Various energy conservation cycle coalescence engines and coalescence methods with floors of 100 floors or less. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を80階以下とした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade specific material gravity turbine (11B) specific material riser (2F) and gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A) upper and lower bolts Various energy conservation cycle coalescence engines and coalescence methods with floors below 80 floors. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を60階以下とした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade specific material gravity turbine (11B) specific material riser (2F) and gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A) upper and lower bolts Various energy conservation cycle coalescence engines and coalescence methods with floors of 60 floors or less. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存使用する各種エネルギ保存サイクル合体機関及び合体方法。   Various energy conservation cycle coalescence engines and coalescence that use the significant material (3E) ascended and stored at the top in the vertical type moving blade specific material gravity turbine (11B) specific material riser (2F) and column pipe (12B) Method. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)で噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all-blade specific material gravity turbine (11B) specific material riser (2F) and column pipe (12B) with specific material (3E) rise to the top and preservation ratio material injection (6W) Various energy storage cycle coalescence engine and coalescence method. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ3以上で噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) ratio critical material riser (2F) and column pipe (12B) raise specific material (3E) to the top Conservation ratio critical material accelerator (6W) Mach 3 Various energy storage cycle coalescence engines and coalescence methods to be injected as described above. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ3以下で噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) ratio critical material riser (2F) and column pipe (12B) raise specific material (3E) to the top Conservation ratio critical material accelerator (6W) Mach 3 Various energy storage cycle coalescence engines and coalescence methods to be injected below. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ1以上で噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical material blade specific material gravity turbine (11B) specific material riser (2F) and column tube (12B) with specific material (3E) raised to the top Preservation ratio material material accelerator (6W) Mach 1 Various energy storage cycle coalescence engines and coalescence methods to be injected as described above. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ1以下で噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical material blade specific material gravity turbine (11B) specific material riser (2F) and column tube (12B) with specific material (3E) raised to the top Preservation ratio material material accelerator (6W) Mach 1 Various energy storage cycle coalescence engines and coalescence methods to be injected below. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)で噴射真空中重力加速度加速する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all-blade specific material gravity turbine (11B) specific material riser (2F) and column pipe (12B) with specific material (3E) rise to the top and preservation ratio material injection (6W) Various energy storage cycle coalescence engine and coalescence method for acceleration of gravitational acceleration in vacuum. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ3以上で噴射真空中重力加速度加速する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) ratio critical material riser (2F) and column pipe (12B) raise specific material (3E) to the top Conservation ratio critical material accelerator (6W) Mach 3 Various energy storage cycle coalescence engines and coalescence methods for accelerating gravitational acceleration in a jet vacuum. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ3以下で噴射真空中重力加速度加速する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) ratio critical material riser (2F) and column pipe (12B) raise specific material (3E) to the top Conservation ratio critical material accelerator (6W) Mach 3 Various energy storage cycle coalescence engines and coalescence methods for accelerating gravitational acceleration in a jet vacuum below. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ1以上で噴射真空中重力加速度加速する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical material blade specific material gravity turbine (11B) specific material riser (2F) and column tube (12B) with specific material (3E) raised to the top Preservation ratio material material accelerator (6W) Mach 1 Various energy storage cycle coalescence engines and coalescence methods for accelerating gravitational acceleration in a jet vacuum. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ1以下で噴射真空中重力加速度加速する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical material blade specific material gravity turbine (11B) specific material riser (2F) and column tube (12B) with specific material (3E) raised to the top Preservation ratio material material accelerator (6W) Mach 1 Various energy storage cycle coalescence engines and coalescence methods for accelerating gravitational acceleration in a jet vacuum below. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all-blade specific material gravity turbine (11B) specific material riser (2F) and column pipe (12B) with specific material (3E) rise to the top and preservation ratio material injection (6W) Various energy storage cycle coalescence engine and coalescence method for injecting into gravity acceleration acceleration cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C) in vacuum. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ3以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) ratio critical material riser (2F) and column pipe (12B) raise specific material (3E) to the top Conservation ratio critical material accelerator (6W) Mach 3 As described above, various energy storage cycle coalescence engines and coalescence methods for injecting into the gravity acceleration acceleration cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C) in jet vacuum. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ3以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) ratio critical material riser (2F) and column pipe (12B) raise specific material (3E) to the top Conservation ratio critical material accelerator (6W) Mach 3 Various energy storage cycle coalescence engines and coalescence methods for injecting into a gravity acceleration acceleration cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C) in jet vacuum in the following. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ1以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical material blade specific material gravity turbine (11B) specific material riser (2F) and column tube (12B) with specific material (3E) raised to the top Preservation ratio material material accelerator (6W) Mach 1 As described above, various energy storage cycle coalescence engines and coalescence methods for injecting into the gravity acceleration acceleration cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C) in jet vacuum. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ1以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical material blade specific material gravity turbine (11B) specific material riser (2F) and column tube (12B) with specific material (3E) raised to the top Preservation ratio material material accelerator (6W) Mach 1 Various energy storage cycle coalescence engines and coalescence methods for injecting into a gravity acceleration acceleration cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C) in jet vacuum in the following. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all-blade specific material gravity turbine (11B) specific material riser (2F) and column pipe (12B) with specific material (3E) rise to the top and preservation ratio material injection (6W) Various energy storage cycle coalescing engines and coalescence methods in which each of the jets is driven in a counter-rotating manner into a vacuum outer gravity blade group (60D) and a cylinder inner blade group (60C) in vacuum 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ3以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) ratio critical material riser (2F) and column pipe (12B) raise specific material (3E) to the top Conservation ratio critical material accelerator (6W) Mach 3 As described above, various energy storage cycle coalescence engines and coalescence methods for driving the jets to reversely rotate in the jet vacuum gravity acceleration accelerating cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C). 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ3以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) ratio critical material riser (2F) and column pipe (12B) raise specific material (3E) to the top Conservation ratio critical material accelerator (6W) Mach 3 In the following, various energy storage cycle coalescence engines and coalescence methods in which each of the jets is driven in a counter-rotating manner into the gravity vacuum acceleration cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C) in jet vacuum. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ1以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical material blade specific material gravity turbine (11B) specific material riser (2F) and column tube (12B) with specific material (3E) raised to the top Preservation ratio material material accelerator (6W) Mach 1 As described above, various energy storage cycle coalescence engines and coalescence methods for driving the jets to reversely rotate in the jet vacuum gravity acceleration accelerating cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C). 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ1以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical material blade specific material gravity turbine (11B) specific material riser (2F) and column tube (12B) with specific material (3E) raised to the top Preservation ratio material material accelerator (6W) Mach 1 In the following, various energy storage cycle coalescence engines and coalescence methods in which each of the jets is driven in a counter-rotating manner into the gravity vacuum acceleration cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C) in jet vacuum. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動して発電する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all-blade specific material gravity turbine (11B) specific material riser (2F) and column pipe (12B) with specific material (3E) rise to the top and preservation ratio material injection (6W) Various energy storage cycle coalescence engines and coalescence methods for generating electric power by inverting and injecting each of the jets into a vacuum outer gravity blade group (60D) and a cylinder inner blade group (60C) in vacuum. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ3以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動して発電する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) ratio critical material riser (2F) and column pipe (12B) raise specific material (3E) to the top Conservation ratio critical material accelerator (6W) Mach 3 As described above, various energy storage cycle coalescence engines and coalescence methods for generating electric power by inverting and driving the respective jets in the jet vacuum gravity acceleration accelerating cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C). 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ3以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動して発電する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) ratio critical material riser (2F) and column pipe (12B) raise specific material (3E) to the top Conservation ratio critical material accelerator (6W) Mach 3 Various energy storage cycle coalescence engines and coalescence methods for generating electric power by inverting and injecting each of the jets into the outer vacuum blade group (60D) and the inner cylinder blade group (60C) in the gravity acceleration acceleration cylinder in the jet vacuum. 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ1以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動して発電する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical material blade specific material gravity turbine (11B) specific material riser (2F) and column tube (12B) with specific material (3E) raised to the top Preservation ratio material material accelerator (6W) Mach 1 As described above, various energy storage cycle coalescence engines and coalescence methods for generating electric power by inverting and driving the respective jets in the jet vacuum gravity acceleration accelerating cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C). 竪型全動翼比重大物質重力タービン(11B)比重大物質上昇装置(2F)兼柱管(12B)で比重大物質(3E)を最上部に上昇保存比重大物質加速機(6W)マッハ1以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動して発電する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical material blade specific material gravity turbine (11B) specific material riser (2F) and column tube (12B) with specific material (3E) raised to the top Preservation ratio material material accelerator (6W) Mach 1 Various energy storage cycle coalescence engines and coalescence methods for generating electric power by inverting and injecting each of the jets into the outer vacuum blade group (60D) and the inner cylinder blade group (60C) in the gravity acceleration acceleration cylinder in the jet vacuum. 竪型全動翼比重大物質重力タービン(11B)外側軸装置(60B)兼円筒外側動翼群(60D)や内側軸装置(60A)兼円筒内側動翼群(60C)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Bearings at both ends of the vertical all blade ratio material gravity turbine (11B) outer shaft device (60B) and cylindrical outer blade group (60D) and inner shaft device (60A) and cylinder inner blade group (60C) ( 12C) Various energy storage cycle coalescence engines and coalescence methods provided. 竪型全動翼比重大物質重力タービン(11B)外側軸装置(60B)兼円筒外側動翼群(60D)や内側軸装置(60A)兼円筒内側動翼群(60C)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Bearings at both ends of the vertical all blade ratio material gravity turbine (11B) outer shaft device (60B) and cylindrical outer blade group (60D) and inner shaft device (60A) and cylinder inner blade group (60C) ( 12C) Various energy storage cycle merging engines and merging methods that enable both-end support processing with a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)外側軸装置(60B)兼円筒外側動翼群(60D)や内側軸装置(60A)兼円筒内側動翼群(60C)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Bearings at both ends of the vertical all blade ratio material gravity turbine (11B) outer shaft device (60B) and cylindrical outer blade group (60D) and inner shaft device (60A) and cylinder inner blade group (60C) ( 12C) Various energy storage cycle merging engines and merging methods in which both ends are supported and ultra-high-speed balance adjustment processing is separately performed by temporary assembly machine tools. 竪型全動翼比重大物質重力タービン(11B)外側軸装置(60B)兼円筒外側動翼群(60D)や内側軸装置(60A)兼円筒内側動翼群(60C)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Bearings at both ends of the vertical all blade ratio material gravity turbine (11B) outer shaft device (60B) and cylindrical outer blade group (60D) and inner shaft device (60A) and cylinder inner blade group (60C) ( 12C) Various energy storage cycle merging engines and merging methods for performing ultra-high-speed balance adjustment ultra-precision machining with both ends supported by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)外側軸装置(60B)兼円筒外側動翼群(60D)や内側軸装置(60A)兼円筒内側動翼群(60C)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Bearings at both ends of the vertical all blade ratio material gravity turbine (11B) outer shaft device (60B) and cylindrical outer blade group (60D) and inner shaft device (60A) and cylinder inner blade group (60C) ( 12C) Various energy storage cycle merging engines and merging methods to be assembled after ultra-high-speed balance adjustment and ultra-precision machining on both ends separately by temporary assembly machine tools. 竪型全動翼比重大物質重力タービン(11B)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Spider-type all blade ratio critical material gravity turbine (11B) generator-driven liquid oxygen production machine (89A) outer shaft device (60B) and outer compression blade (8r) and inner shaft device (60A) and inner compression blade (8q) ) Various energy storage cycle coalescence engines and coalescence methods equipped with bearings (12C) at both ends. 竪型全動翼比重大物質重力タービン(11B)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Spider-type all blade ratio critical material gravity turbine (11B) generator-driven liquid oxygen production machine (89A) outer shaft device (60B) and outer compression blade (8r) and inner shaft device (60A) and inner compression blade (8q) ) Various energy storage cycle merging engines and merging methods each having bearings (12C) at both ends and separately supporting both ends with a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Spider-type all blade ratio critical material gravity turbine (11B) generator-driven liquid oxygen production machine (89A) outer shaft device (60B) and outer compression blade (8r) and inner shaft device (60A) and inner compression blade (8q) ) Various energy storage cycle merging engines and merging methods, in which bearings (12C) are provided at both ends, and both ends are supported by a temporary assembly machine tool, and both ends are supported and ultra-high-speed balance adjustment is performed. 竪型全動翼比重大物質重力タービン(11B)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Spider-type all blade ratio critical material gravity turbine (11B) generator-driven liquid oxygen production machine (89A) outer shaft device (60B) and outer compression blade (8r) and inner shaft device (60A) and inner compression blade (8q) ) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, respectively, and both ends are supported and ultra-high-speed balance adjustment ultra-precision machining is performed with a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Spider-type all blade ratio critical material gravity turbine (11B) generator-driven liquid oxygen production machine (89A) outer shaft device (60B) and outer compression blade (8r) and inner shaft device (60A) and inner compression blade (8q) ) Bearings (12C) at both ends, and each energy storage cycle coalescence engine and coalescence method to be assembled after ultra-high-speed balance adjustment ultra-precision machining with both ends supported by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Electric power driven liquid oxygen production machine (89A) Outer shaft device (60B) and outer output blade (8t) and Inner shaft device (60A) and inner output blade (8s) ) Various energy storage cycle coalescence engines and coalescence methods equipped with bearings (12C) at both ends. 竪型全動翼比重大物質重力タービン(11B)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Electric power driven liquid oxygen production machine (89A) Outer shaft device (60B) and outer output blade (8t) and Inner shaft device (60A) and inner output blade (8s) ) Various energy storage cycle merging engines and merging methods each having bearings (12C) at both ends and separately supporting both ends with a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Electric power driven liquid oxygen production machine (89A) Outer shaft device (60B) and outer output blade (8t) and Inner shaft device (60A) and inner output blade (8s) ) Various energy storage cycle merging engines and merging methods, in which bearings (12C) are provided at both ends, and both ends are supported by a temporary assembly machine tool, and both ends are supported and ultra-high-speed balance adjustment is performed. 竪型全動翼比重大物質重力タービン(11B)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Electric power driven liquid oxygen production machine (89A) Outer shaft device (60B) and outer output blade (8t) and Inner shaft device (60A) and inner output blade (8s) ) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, respectively, and both ends are supported and ultra-high-speed balance adjustment ultra-precision machining is performed with a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Electric power driven liquid oxygen production machine (89A) Outer shaft device (60B) and outer output blade (8t) and Inner shaft device (60A) and inner output blade (8s) ) Bearings (12C) at both ends, and each energy storage cycle coalescence engine and coalescence method to be assembled after ultra-high-speed balance adjustment ultra-precision machining with both ends supported by a temporary assembly machine tool. 各種連結駆動する簡単多段圧縮機(89B)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備した竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple multi-stage compressor (89B), outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compressor blade (8q), which are connected and driven, are fitted with bearings (12C) at both ends. Various energy storage cycle coalescing engine and coalescence method capable of containing all blade ratio material gravity turbine (11B) power generation electric product drive. 各種連結駆動する簡単多段圧縮機(89B)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Bearings (12C) are provided separately at both ends of each of the simple multistage compressors (89B), outer shaft devices (60B) and outer compressor blades (8r), and inner shaft devices (60A) and inner compressor blades (8q) that are connected and driven in various ways. Various types of energy storage cycle coalescence engine and coalescence method capable of containing a vertical-type all-blade specific material gravity turbine (11B) generator electric product drive capable of supporting both ends with a temporary assembly machine tool. 各種連結駆動する簡単多段圧縮機(89B)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Bearings (12C) are provided separately at both ends of each of the simple multistage compressors (89B), outer shaft devices (60B) and outer compressor blades (8r), and inner shaft devices (60A) and inner compressor blades (8q) that are connected and driven in various ways. Various types of energy storage cycle coalescence engine and coalescence method capable of containing a vertical type moving blade ratio critical material gravity turbine (11B) power generation electric product driven at both ends with a temporary assembly machine tool and adjusted at ultra high speed. 各種連結駆動する簡単多段圧縮機(89B)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Bearings (12C) are provided separately at both ends of each of the simple multistage compressors (89B), outer shaft devices (60B) and outer compressor blades (8r), and inner shaft devices (60A) and inner compressor blades (8q) that are connected and driven in various ways. Both types of energy storage cycle coalescence engine and coalescence method capable of being driven by a vertical type blade blade critical material gravity turbine (11B) power generation electrical product to be processed at both ends with a temporary assembly machine tool, ultra-high speed balance adjustment and ultra-precision machining. 各種連結駆動する簡単多段圧縮機(89B)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Bearings (12C) are provided separately at both ends of each of the simple multistage compressors (89B), outer shaft devices (60B) and outer compressor blades (8r), and inner shaft devices (60A) and inner compressor blades (8q) that are connected and driven in various ways. Supporting both ends with a temporary assembly machine tool Ultra-high-speed balance adjustment Super-precision machining to make the final assembly of a blade-type all-blade ratio critical material Gravity turbine (11B) Various energy storage cycle coalescence engine and coalescence method that can be driven . 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple gas engine (89C) including power generation electric product drive Outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compressor blade (8q) Various energy storage cycle coalescence engines and coalescence methods provided with bearings (12C) at both ends. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple gas engine (89C) including power generation electric product drive Outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compressor blade (8q) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends and both ends are separately supported by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple gas engine (89C) including power generation electric product drive Outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compressor blade (8q) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, and the both ends are supported and ultra-high-speed balance adjustment processing is separately performed by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple gas engine (89C) including power generation electric product drive Outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compressor blade (8q) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, and both ends are supported and ultra-high-speed balance adjustment ultra-precision machining is performed separately by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple gas engine (89C) including power generation electric product drive Outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compressor blade (8q) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, and each assembly is separately assembled by temporary assembly machine tools after both ends are supported and ultra-high speed balance adjustment is performed after ultra-precision machining. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all blade ratio material gravity turbine (11B) Simple gas engine (89C) including power generation electrical product drive Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output blade (8s) Various energy storage cycle coalescence engines and coalescence methods equipped with bearings (12C) at both ends. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all blade ratio material gravity turbine (11B) Simple gas engine (89C) including power generation electrical product drive Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output blade (8s) Various energy storage cycle coalescence engines and coalescence methods that have bearings (12C) at both ends and can be supported at both ends by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all blade ratio material gravity turbine (11B) Simple gas engine (89C) including power generation electrical product drive Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output blade (8s) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, and both ends are supported and ultra-high-speed balance adjustment processing is separately performed by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all blade ratio material gravity turbine (11B) Simple gas engine (89C) including power generation electrical product drive Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output blade (8s) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, and both ends are supported and ultra-high-speed balance adjustment ultra-precision machining is performed separately by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all blade ratio material gravity turbine (11B) Simple gas engine (89C) including power generation electrical product drive Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output blade (8s) Bearings (12C) provided at both ends, and various energy storage cycle combining engines and combining methods to be assembled after ultra-high-speed balance adjustment and ultra-precision processing with both ends supported by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all blade ratio material gravity turbine (11B) Simple air injection engine (89D) including power generation electrical product drive Outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compression Various energy storage cycle coalescence engines and coalescence methods having bearings (12C) at both ends of each blade (8q). 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all blade ratio material gravity turbine (11B) Simple air injection engine (89D) including power generation electrical product drive Outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compression Bearings (12C) are provided at both ends of each of the blades (8q), and various energy storage cycle combining engines and combining methods that enable both-end support processing with a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all blade ratio material gravity turbine (11B) Simple air injection engine (89D) including power generation electrical product drive Outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compression Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends of each of the blades (8q), and both ends are supported and ultra-high-speed balance adjustment processing is performed by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all blade ratio material gravity turbine (11B) Simple air injection engine (89D) including power generation electrical product drive Outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compression Various energy storage cycle merging engines and merging methods that have bearings (12C) at both ends of each of the blades (8q), respectively, and perform ultra-high-speed balance adjustment ultra-precision machining at both ends with a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all blade ratio material gravity turbine (11B) Simple air injection engine (89D) including power generation electrical product drive Outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compression Bearings (12C) are provided at both ends of each blade (8q), and various energy storage cycle coalescence engines and coalescence methods are separately assembled by temporary assembly machine tools after both ends are supported and ultra-high-speed balance adjustment is performed after ultra-precision machining. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all-blade ratio critical material gravity turbine (11B) simple air injection engine (89D) including power generation electrical product drive outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output Various energy storage cycle coalescence engines and coalescence methods equipped with bearings (12C) at both ends of each blade (8s). 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all-blade ratio critical material gravity turbine (11B) simple air injection engine (89D) including power generation electrical product drive outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output Bearings (12C) are provided at both ends of each of the blades (8s), and various energy storage cycle combining engines and combining methods that enable both ends to be supported by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all-blade ratio critical material gravity turbine (11B) simple air injection engine (89D) including power generation electrical product drive outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends of each of the blades (8s), respectively, and both ends are supported by a temporary assembly machine tool and ultra-high speed balance adjustment processing is performed. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all-blade ratio critical material gravity turbine (11B) simple air injection engine (89D) including power generation electrical product drive outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output Bearings (12C) are provided at both ends of each blade (8s), and various energy storage cycle merging engines and merging methods are used to perform ultra-high-speed balance adjustment ultra-precision machining with both ends supported by temporary assembly machine tools. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical all-blade ratio critical material gravity turbine (11B) simple air injection engine (89D) including power generation electrical product drive outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output Bearings (12C) are provided at both ends of each wing (8s), and various energy storage cycle coalescence engines and coalescence methods are separately assembled by temporary assembly machine tools after both ends are supported and ultrahigh-speed balance adjustment is performed after ultraprecision machining. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple injection engine (89E) including outer power unit (60B) and outer compressor unit (8r) and inner shaft unit (60A) and inner unit compressor (8q) Various energy storage cycle coalescence engines and coalescence methods provided with bearings (12C) at both ends. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple injection engine (89E) including outer power unit (60B) and outer compressor unit (8r) and inner shaft unit (60A) and inner unit compressor (8q) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends and both ends are separately supported by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple injection engine (89E) including outer power unit (60B) and outer compressor unit (8r) and inner shaft unit (60A) and inner unit compressor (8q) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, and the both ends are supported and ultra-high-speed balance adjustment processing is separately performed by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple injection engine (89E) including outer power unit (60B) and outer compressor unit (8r) and inner shaft unit (60A) and inner unit compressor (8q) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, and both ends are supported and ultra-high-speed balance adjustment ultra-precision machining is performed separately by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple injection engine (89E) including outer power unit (60B) and outer compressor unit (8r) and inner shaft unit (60A) and inner unit compressor (8q) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, and each assembly is separately assembled by temporary assembly machine tools after both ends are supported and ultra-high speed balance adjustment is performed after ultra-precision machining. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple injection engine (89E) including power generation electric product drive Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output blade (8s) Various energy storage cycle coalescence engines and coalescence methods equipped with bearings (12C) at both ends. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple injection engine (89E) including power generation electric product drive Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output blade (8s) Various energy storage cycle coalescence engines and coalescence methods that have bearings (12C) at both ends and can be supported at both ends by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple injection engine (89E) including power generation electric product drive Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output blade (8s) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, and both ends are supported and ultra-high-speed balance adjustment processing is separately performed by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple injection engine (89E) including power generation electric product drive Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output blade (8s) Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends, and both ends are supported and ultra-high-speed balance adjustment ultra-precision machining is performed separately by a temporary assembly machine tool. 竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Vertical type moving blade ratio critical material gravity turbine (11B) Simple injection engine (89E) including power generation electric product drive Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner output blade (8s) Bearings (12C) provided at both ends, and various energy storage cycle combining engines and combining methods to be assembled after ultra-high-speed balance adjustment and ultra-precision processing with both ends supported by a temporary assembly machine tool. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として回転出力や噴射推進出力を既存ガスタービンの2倍以上にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) as the same fuel amount as that of existing boilers. Various energy storage cycle coalescing engines and coalescence methods that can be driven and contained in a vertical-type all-blade ratio critical material gravity turbine (11B) power generation electric product that makes the rotational output and injection propulsion output more than double that of the existing gas turbine. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力や噴射推進出力を既存ガスタービンの4倍以上にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Various energy storage cycle coalescence engines and coalescence methods that can be driven and contained in a vertical type moving blade ratio critical material gravity turbine (11B) power generation electric product that makes the rotational output and injection propulsion output more than four times that of the existing gas turbine. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Various energy storage cycle coalescence engine and coalescence method capable of containing a vertical type moving blade ratio critical material gravity turbine (11B) power generation electric product to make the rotation output and injection propulsion output more than 8 times that of the existing gas turbine. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力を既存ガスタービンの8倍以上にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Various energy storage cycle coalescence engine and coalescence method capable of containing a vertical type moving blade ratio critical material gravity turbine (11B) power generation electric product to make the rotational output more than twice that of the existing gas turbine. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力を既存ガスタービンの16倍以上にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Various energy storage cycle coalescence engine and coalescence method capable of containing a vertical type moving blade ratio critical material gravity turbine (11B) power generation electric product driving that makes the rotational output more than 16 times that of the existing gas turbine. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力を既存ガスタービンの8倍以上の簡単ガス機関自動車(89F)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 The energy output cycle coalescence engine that can be driven by the vertical type moving blade ratio critical material gravity turbine (11B) power generation electric product to make it a simple gas engine motor vehicle (89F) whose rotational output is more than 8 times that of the existing gas turbine And coalescing method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力を既存ガスタービンの16倍以上の簡単ガス機関自動車(89F)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. The energy output cycle coalescence engine that can be driven by the vertical type moving blade ratio critical material gravity turbine (11B) power generation electrical product to make the rotation output more than 16 times that of the existing gas turbine And coalescing method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力を既存ガスタービンの8倍以上の自動車類にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Various energy storage cycle coalescence engine and coalescence method capable of driving and driving the vertical type moving blade ratio critical material gravity turbine (11B) power generation electric product to make automobiles more than double the rotation output to 8 times or more of existing gas turbines. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力を既存ガスタービンの16倍以上の自動車類にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Various energy storage cycle coalescence engine and coalescence method capable of driving and driving the vertical type moving blade ratio critical material gravity turbine (11B) power generation electric product, which makes the rotation output more than 16 times that of existing gas turbines. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力を既存ガスタービンの8倍以上の車両類にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Various energy storage cycle coalescence engine and coalescence method capable of containing a vertical type moving blade ratio critical material gravity turbine (11B) power generation electrical product to make vehicles more than twice as many as the rotational output of existing gas turbines. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力を既存ガスタービンの16倍以上の車両類にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Various energy storage cycle coalescence engines and coalescence methods capable of containing a vertical type moving blade ratio critical material gravity turbine (11B) power generation electric product to make the rotation output more than 16 times that of a vehicle having a rotational output of 16 times or more. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として回転出力や噴射推進出力を既存ガスタービンの2倍以上の簡単ガス機関船舶(89G)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) as the same fuel amount as that of existing boilers. Rotating output and injection propulsion output to make a simple gas engine ship (89G) more than twice as large as the existing gas turbine Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力や噴射推進出力を既存ガスタービンの4倍以上の簡単ガス機関船舶(89G)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Rotating output and injection propulsion output to make a simple gas engine ship (89G) more than 4 times that of the existing gas turbine Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単ガス機関船舶(89G)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Rotating output and injection propulsion output to make a simple gas engine ship (89G) more than 8 times that of the existing gas turbine Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として回転出力や噴射推進出力を既存ガスタービンの2倍以上の簡単ガス機関飛行機(89H)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) as the same fuel amount as that of existing boilers. Rotating output and injection propulsion output to make a simple gas engine airplane (89H) more than twice that of an existing gas turbine Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力や噴射推進出力を既存ガスタービンの4倍以上の簡単ガス機関飛行機(89H)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Rotating output and injection propulsion output to make a simple gas engine airplane (89H) more than 4 times that of an existing gas turbine Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単ガス機関飛行機(89H)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Rotating output and injection propulsion output to make a simple gas engine airplane (89H) more than 8 times that of an existing gas turbine Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として回転出力や噴射推進出力を既存ガスタービンの2倍以上の回転翼飛行機(89K)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) as the same fuel amount as that of existing boilers. More than twice the rotational output and injection propulsion output to make the rotor blade airplane (89K) more than twice that of the existing gas turbine. Cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力や噴射推進出力を既存ガスタービンの4倍以上の回転翼飛行機(89K)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Rotating power and injection propulsion power to make the rotor blade airplane (89K) more than 4 times that of the existing gas turbine. Cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の回転翼飛行機(89K)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Rotating output and injection propulsion output to make rotor blade airplane (89K) more than 8 times that of existing gas turbines. Vertical type moving blade specific material gravity turbine (11B) Power generation Electric product drive can contain various energy storage Cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として回転出力や噴射推進出力を既存ガスタービンの2倍以上の大型オスプレイ(89N)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) as the same fuel amount as that of existing boilers. Rotating output and propulsion propulsion output to a large Osprey (89N) that is more than twice that of existing gas turbines. Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力や噴射推進出力を既存ガスタービンの4倍以上の大型オスプレイ(89N)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Rotating output and injection propulsion output to make large osprey (89N) more than 4 times that of existing gas turbines Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の大型オスプレイ(89N)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Rotating output and injection propulsion output with a large Osprey (89N) more than 8 times that of the existing gas turbine Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として回転出力や噴射推進出力を既存ガスタービンの2倍以上の簡単空気噴射機関船舶(89I)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E), which completely abolishes existing stator blades and has double rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount of existing boilers. Rotating output and injection propulsion output more than double that of a simple air-injection engine ship (89I) that is more than twice that of an existing gas turbine. Energy conservation cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力や噴射推進出力を既存ガスタービンの4倍以上の簡単空気噴射機関船舶(89I)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) that completely abolishes existing stator blades and has double rotating blades, is equipped with a compressed air heat exchanger (2Y), and produces the same amount of superheated steam (5H) as the same fuel amount of existing boilers. Rotating output and propulsion propulsion output is more than 4 times that of existing gas turbine, making it a simple air injection engine ship (89I). Energy conservation cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単空気噴射機関船舶(89I)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple injection engine (89E) that completely abolishes existing stationary blades and double-rotating blades, and is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount. Rotating output and injection propulsion output more than double that of a simple air-injection engine ship (89I) more than 8 times that of an existing gas turbine Energy conservation cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として回転出力や噴射推進出力を既存ガスタービンの2倍以上の簡単噴射機関飛行機(89J)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E), which completely abolishes existing stator blades and has double rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount of existing boilers. Rotating output and injection propulsion output to make a simple injection engine airplane (89J) more than twice that of an existing gas turbine Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力や噴射推進出力を既存ガスタービンの4倍以上の簡単噴射機関飛行機(89J)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) that completely abolishes existing stator blades and has double rotating blades, is equipped with a compressed air heat exchanger (2Y), and produces the same amount of superheated steam (5H) as the same fuel amount of existing boilers. Rotating output and injection propulsion output to make a simple injection engine airplane (89J) more than 4 times that of existing gas turbines Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単噴射機関飛行機(89J)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple injection engine (89E) that completely abolishes existing stationary blades and double-rotating blades, and is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount. Rotating output and injection propulsion output to make a simple injection engine airplane (89J) more than 8 times that of existing gas turbines Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として回転出力や噴射推進出力を既存ガスタービンの2倍以上の回転翼噴射飛行機(89L)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E), which completely abolishes existing stator blades and has double rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount of existing boilers. Rotating blades and injection propulsion powers that are more than double that of a rotary blade injection airplane (89L) that is twice or more that of an existing gas turbine. Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力や噴射推進出力を既存ガスタービンの4倍以上の回転翼噴射飛行機(89L)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) that completely abolishes existing stator blades and has double rotating blades, is equipped with a compressed air heat exchanger (2Y), and produces the same amount of superheated steam (5H) as the same fuel amount of existing boilers. Rotating blades and injection propulsion powers that make the rotor blade injection plane (89L) more than 4 times that of existing gas turbines Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の回転翼噴射飛行機(89L)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple injection engine (89E) that completely abolishes existing stationary blades and double-rotating blades, and is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount. Rotating blades and injection propulsion power to make rotor blade injection plane (89L) more than 8 times that of the existing gas turbine Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として回転出力や噴射推進出力を既存ガスタービンの2倍以上の特大オスプレイ(89M)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E), which completely abolishes existing stator blades and has double rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount of existing boilers. Rotating output and injection propulsion output is oversized Osprey (89M) more than twice that of existing gas turbine Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力や噴射推進出力を既存ガスタービンの4倍以上の特大オスプレイ(89M)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) that completely abolishes existing stator blades and has double rotating blades, is equipped with a compressed air heat exchanger (2Y), and produces the same amount of superheated steam (5H) as the same fuel amount of existing boilers. Rotating output and propulsion propulsion output over 4 times that of existing gas turbines with oversized Osprey (89M) Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の特大オスプレイ(89M)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple injection engine (89E) that completely abolishes existing stationary blades and double-rotating blades, and is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount. Rotating output and injection propulsion output are oversized Osprey (89M) more than 8 times that of existing gas turbines Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単空気噴射機関(89D)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として回転出力や噴射推進出力を既存ガスタービンの2倍以上の簡単空気噴射機関船舶(89I)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple air injection engine (89D) that completely abolishes existing stationary blades and double-rotates all blades, and has a compressed air heat exchanger (2Y), producing superheated steam (5H) with the same fuel amount as the existing boiler More than twice the rotational output and injection propulsion output to make the simple air-injection engine ship (89I) more than twice the existing gas turbine can be driven by the vertical full blade ratio material gravity turbine (11B) power generation electric product drive Various energy storage cycle coalescence engines and coalescence methods. 既存の静翼を全廃して全動翼二重反転とした簡単空気噴射機関(89D)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として回転出力や噴射推進出力を既存ガスタービンの4倍以上の簡単空気噴射機関船舶(89I)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple air injection engine (89D) that completely abolishes existing stationary blades and double-rotates all blades, and has a compressed air heat exchanger (2Y), producing superheated steam (5H) with the same fuel amount as the existing boiler More than 4 times the rotational output and injection propulsion output is a simple air injection engine ship (89I) that is 4 times more than the existing gas turbine. Various energy storage cycle coalescence engines and coalescence methods. 既存の静翼を全廃して全動翼二重反転とした簡単空気噴射機関(89D)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単空気噴射機関船舶(89I)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple air injection engine (89D) that completely abolishes existing stationary blades and double-rotates all blades, and has a compressed air heat exchanger (2Y), producing superheated steam (5H) with the same fuel amount as the existing boiler More than 8 times the rotary output and injection propulsion output is 8 times more than the existing gas turbine simple air injection engine ship (89I). Various energy storage cycle coalescence engines and coalescence methods. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として全動翼蒸気タービン(11)を駆動し(89C)回転出力を既存ガスタービンの2倍以上にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) as the same fuel amount as that of existing boilers. It is possible to include a vertical type full blade ratio gravity material gravity turbine (11B) power generation electric product drive that drives the whole rotor blade steam turbine (11) as much as twice or more (89C) and makes the rotational output more than twice that of the existing gas turbine. Various energy storage cycle coalescence engines and coalescence methods. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として全動翼蒸気タービン(11)を駆動し(89C)回転出力を既存ガスタービンの4倍以上にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 It is possible to include a vertical type full blade ratio gravity material gravity turbine (11B) power generation electric product drive that drives the whole rotor blade steam turbine (11) as much as twice or more (89C) and the rotational output is four times that of the existing gas turbine. Various energy storage cycle coalescence engines and coalescence methods. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として全動翼蒸気タービン(11)を駆動し(89C)回転出力を既存ガスタービンの8倍以上にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. It is possible to include a vertical type full blade ratio gravity material gravity turbine (11B) power generation electric product drive that drives the whole blade steam turbine (11) as much as twice or more (89C) and the rotational output is eight times that of the existing gas turbine. Various energy storage cycle coalescence engines and coalescence methods. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として全動翼蒸気タービン(11)を駆動し(89C)回転出力を既存ガスタービンの8倍以上にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 It is possible to include a vertical type full blade ratio gravity material gravity turbine (11B) power generation electric product drive that drives the whole blade steam turbine (11) as much as twice or more (89C) and the rotational output is eight times that of the existing gas turbine. Various energy storage cycle coalescence engines and coalescence methods. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として全動翼蒸気タービン(11)を駆動し(89C)回転出力を既存ガスタービンの16倍以上にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. It is possible to include a vertical type full blade ratio gravity material gravity turbine (11B) power generation electric product drive that drives the whole rotor blade steam turbine (11) to more than double (89C) and the rotational output is 16 times that of the existing gas turbine. Various energy storage cycle coalescence engines and coalescence methods. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力を既存ガスタービンの8倍以上の簡単ガス機関自動車(89F)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Double-type full-blade specific material gravity turbine (11B) that drives all-blade steam turbines (11) to generate electric power (89C) and makes the rotational output more than eight times that of existing gas turbines. ) Various energy storage cycle coalescing engines and coalescence methods that can be driven by power generation products 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力を既存ガスタービンの16倍以上の簡単ガス機関自動車(89F)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. The vertical blade-type steam turbine (11) is driven to generate power (89C), and the rotary output becomes a simple gas engine vehicle (89F) that is 16 times or more that of the existing gas turbine. ) Various energy storage cycle coalescing engines and coalescence methods that can be driven by power generation products. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力を既存ガスタービンの8倍以上の自動車類にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Double-type all-blade specific material gravity turbine (11B) power generation electric product that drives all-blade steam turbine (11) to more than double the power generation (89C) and makes the rotation output more than eight times that of existing gas turbines Various energy storage cycle coalescence engines and coalescence methods that can be driven and contained. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力を既存ガスタービンの16倍以上の自動車類にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. A vertical all-blade specific material gravity turbine (11B) power generation electrical product that drives the power generation of the whole blade steam turbine (11) at a speed of 89 times or more and makes the rotation output 16 times or more that of the existing gas turbine. Various energy storage cycle coalescence engines and coalescence methods that can be driven and contained. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力を既存ガスタービンの8倍以上の車両類にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Double-type full-blade specific material gravity turbine (11B) power generation electric product that drives all-blade steam turbine (11) to generate power more than twice (89C) and makes the rotation output more than eight times that of existing gas turbines Various energy storage cycle coalescence engines and coalescence methods that can be driven and contained. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力を既存ガスタービンの16倍以上の車両類にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Double-type full-blade specific material gravity turbine (11B) power generation electrical product that drives all-blade steam turbines (11) to generate more than double the power (89C) and makes the rotational output more than 16 times that of existing gas turbines Various energy storage cycle coalescence engines and coalescence methods that can be driven and contained. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの2倍以上の簡単ガス機関船舶(89G)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) as the same fuel amount as that of existing boilers. Double-type all-blade ratio critical material that drives all-blade steam turbines (11) to generate power (89C) more than double, and makes the rotational output and injection propulsion output more than double that of existing gas turbines (89G) Gravity turbine (11B) various energy storage cycle coalescing engine and coalescence method capable of containing power generation electric product drive. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの4倍以上の簡単ガス機関船舶(89G)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Double-type all-blade blade critical material that drives all-blade steam turbines (11) to generate power (89C), and makes the rotational output and injection propulsion output more than four times that of existing gas turbines (89G) Gravity turbine (11B) various energy storage cycle coalescing engine and coalescence method capable of containing power generation electric product drive. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単ガス機関船舶(89G)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Double-type all-blade ratio critical material that drives all-blade steam turbines (11) to generate power (89C), and makes the rotational output and injection propulsion output more than eight times that of existing gas turbines (89G) Gravity turbine (11B) various energy storage cycle coalescing engine and coalescence method capable of containing power generation electric product drive. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの2倍以上の簡単ガス機関飛行機(89H)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) as the same fuel amount as that of existing boilers. Double-type all-blade ratio critical substance that drives and generates power for all blade steam turbines (11) at least twice, and makes the rotation output and injection propulsion output more than twice that of existing gas turbines as a simple gas engine airplane (89H) Gravity turbine (11B) various energy storage cycle coalescing engine and coalescence method capable of containing power generation electric product drive. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの4倍以上の簡単ガス機関飛行機(89H)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Double-type all-blade ratio critical material that drives all-blade steam turbine (11) to generate power (89C), and makes the rotational output and injection propulsion output more than four times that of existing gas turbines (89H) Gravity turbine (11B) various energy storage cycle coalescing engine and coalescence method capable of containing power generation electric product drive. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単ガス機関飛行機(89H)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Double-type all-blade ratio critical substance that drives and generates power for all rotor blade steam turbines (11C) and makes the output of rotation and injection propulsion more than eight times that of existing gas turbines (89H) Gravity turbine (11B) various energy storage cycle coalescing engine and coalescence method capable of containing power generation electric product drive. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの2倍以上の回転翼飛行機(89K)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) as the same fuel amount as that of existing boilers. Rotating blade turbine (11) is driven to generate power (89C), and the rotary power and injection propulsion power is more than twice that of the existing gas turbine. Various energy storage cycle coalescence engine and coalescence method capable of containing turbine (11B) power generation electric product drive. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの4倍以上の回転翼飛行機(89K)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Rotating all-blade steam turbine (11) to generate power (89C) to make rotary output and injection propulsion output more than four times that of existing gas turbines (89K) Various energy storage cycle coalescence engine and coalescence method capable of containing turbine (11B) power generation electric product drive. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの8倍以上の回転翼飛行機(89K)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Rotating blade steam turbine (11) is driven to generate power (89C), and the rotary power and injection propulsion power is more than 8 times that of the existing gas turbine. Various energy storage cycle coalescence engine and coalescence method capable of containing turbine (11B) power generation electric product drive. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの2倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの2倍以上の大型オスプレイ(89N)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotating blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) as the same fuel amount as that of existing boilers. Double-type full-blade ratio gravity material gravity turbine that drives all-blade steam turbine (11) to generate power (89C) and makes large output Osplay (89N) more than double the existing gas turbine (11B) Various energy storage cycle coalescing engines and coalescence methods that can be driven and contained in a power generation electric product. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの4倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの4倍以上の大型オスプレイ(89N)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount as the existing boiler 4 Double-type full-blade ratio critical material gravity turbine that drives all-blade steam turbines (11) to generate power (89C) and produces large-scale ospreys (89N) that is more than four times that of existing gas turbines. (11B) Various energy storage cycle coalescing engines and coalescence methods that can be driven and contained in a power generation electric product. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として全動翼蒸気タービン(11)を駆動発電し(89C)回転出力や噴射推進出力を既存ガスタービンの8倍以上の大型オスプレイ(89N)にする竪型全動翼比重大物質重力タービン(11B)発電電気製造物駆動含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Double-type full-blade specific gravity gravity turbine that drives all-blade steam turbine (11) to generate power (89C), and makes large-scale osprey (89N) more than 8 times that of existing gas turbines. (11B) Various energy storage cycle coalescing engines and coalescence methods that can be driven and contained in a power generation electric product.
JP2013047440A 2013-03-11 2013-03-11 Various energy conservation cycle combination engine Pending JP2014173506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013047440A JP2014173506A (en) 2013-03-11 2013-03-11 Various energy conservation cycle combination engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013047440A JP2014173506A (en) 2013-03-11 2013-03-11 Various energy conservation cycle combination engine

Publications (1)

Publication Number Publication Date
JP2014173506A true JP2014173506A (en) 2014-09-22

Family

ID=51695004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047440A Pending JP2014173506A (en) 2013-03-11 2013-03-11 Various energy conservation cycle combination engine

Country Status (1)

Country Link
JP (1) JP2014173506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108005618A (en) * 2017-12-07 2018-05-08 华南理工大学 A kind of gas hydrate exploitation device and method based on solar energy-sea water source heat pump combined heat technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108005618A (en) * 2017-12-07 2018-05-08 华南理工大学 A kind of gas hydrate exploitation device and method based on solar energy-sea water source heat pump combined heat technology
CN108005618B (en) * 2017-12-07 2023-09-26 华南理工大学 Natural gas hydrate exploitation device and method based on solar energy-seawater source heat pump combined heat supply technology

Similar Documents

Publication Publication Date Title
JP2014173506A (en) Various energy conservation cycle combination engine
JP2014211145A (en) Various kind energy conservation cycle combination engine
JP2015086695A (en) Various energy conservation cycle combined structure
JP2014211146A (en) Various kind energy conservation cycle combination engine
JP2013227891A (en) Various energy conservation cycle union engine
JP2014173505A (en) Various energy conservation cycle combination engine
JP2014173509A (en) Various energy conservation cycle combination engine
JP2014173507A (en) Various energy conservation cycle combination engine
JP2014101850A (en) Various energy storing cycle integrated mechanism
JP2014005749A (en) Various energy storing cycle integrated mechanism
JP2015004339A (en) Various energy conservation cycle united engine
JP2015086697A (en) Various energy conservation cycle combined structure
JP2015040530A (en) Various energy conservation cycle combined structure
JP2015086696A (en) Various energy conservation cycle combined structure
JP2014211142A (en) Various kind energy conservation cycle combination engine
JP2015086698A (en) Various energy conservation cycle combined structure
JP2014043844A (en) Various energy storage cycle jointing engine
JP2015040528A (en) Various energy conservation cycle combined structure
JP2015004338A (en) Various energy conservation cycle united engine
JP2015132223A (en) Various energy reservation cycle combined engine
JP2014211147A (en) Various kind energy conservation cycle combination engine
JP2014005748A (en) Various energy storing cycle integrated mechanism
JP2014005751A (en) Various energy storing cycle integrated mechanism
JP2015004341A (en) Various energy conservation cycle united engine
JP2015004340A (en) Various energy conservation cycle united engine