既存技術に二重反転機関の前例皆無で本発明全部が二重反転機関関連のため、製造の過程で円筒内側動翼群60Cと円筒外側動翼群60Dを夫々別々に組立とし、夫々の両端には各種軸受を具備で運転時と同様に工作機械で回転や加工可能として、夫々を超高速回転でもバランス運転良好に加工後に分解本組立にする、全く新しい加工技術を中核とし、同一揚水量既存揚水発電の10〜100倍発電量や、同一燃料量での宇宙飛行全盛狙いや、同一燃料量10倍速度の飛行機や船舶等に挑戦して、無茶過ぎる既存最先端科学技術を実証します。
Since there is no example of a counter-rotating engine in the existing technology and the present invention is entirely related to the counter-rotating engine, the inner rotor blade group 60C and the outer cylinder rotor group 60D are separately assembled in the manufacturing process, Is equipped with various bearings and can be rotated and machined by machine tools in the same way as during operation, and each of them has a completely new machining technology, with the same amount of pumped water. Demonstrate the current state-of-the-art science and technology that is unreasonable by challenging the power generation capacity 10 to 100 times that of existing pumped-storage power generation, aiming at the prime of space flight with the same fuel amount, and planes and ships with the same fuel amount 10 times faster .
図1の重力発電建物12は、揚水発電水速度音速の1/7〜1/5を真空中の重力加速度+噴射速度マッハ1〜3とし、水銀3E速度マッハ3以上で発電して同一水銀3E質量揚水発電量の15倍以上狙いとして、落差を重力発電建物12で無限製造発電量無限増大狙いにし、重力発電建物12の最上部より比重大物質の水3Eを高速噴射して、真空度上昇中の重力加速度加速する過程で、円筒外側動翼群60D+円筒内側動翼群60Cに噴射し夫々を二重反転駆動して、竪型全動翼水重力タービン11A多数を次々に駆動するため、比重大物質上昇装置2Fによる比重大物質3Eや2Eの最上部までの運搬速度が重要です。そこで重力発電建物12の柱を柱管12B兼比重大物質上昇装置2Fとして、柱管12Bの管径を拡大して頑丈な柱にすると共に低速上昇速度で揚水電力僅少にし、継手に角フランジ12Dを鉄骨骨組12Aに合せて具備して、鉄骨骨組12Aの上下を角フランジ12Dにボルト締め組立てにし、重力発電建物12を構成柱管12Bの内部を比重大物質上昇装置2Fとして使用して、水銀3Eを最上部に上昇保存し、比重大物質加速器6Wでマッハ1〜3で噴射して、真空度上昇中の重力加速度加速にし、竪型全動翼比重大物質重力タービン11B発電にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。
In the gravity power generation building 12 of FIG. 1, 1/7 to 1/5 of pumped water generation water speed sound speed is gravity acceleration + injection speed Mach 1 to 3 in a vacuum, and power is generated at a mercury 3E speed Mach 3 or more to generate the same mercury 3E. Aiming at 15 times or more of the mass pumped-storage power generation, the drop is aimed to increase the infinite production power generation in the gravity power generation building 12, and the water 3E of a specific material is injected at a high speed from the top of the gravity power generation building 12 to increase the degree of vacuum In the process of accelerating the acceleration of gravity in the middle, the cylinder outer rotor blade group 60D + cylindrical inner rotor blade group 60C is sprayed and each of them is double-reversed to drive a large number of vertical all blade water gravity turbines 11A one after another. The transport speed to the top of the specific material 3E or 2E by the specific material rising device 2F is important. Therefore, the column of the gravitational power generation building 12 is used as the column tube 12B and the significant substance rising device 2F, and the diameter of the column tube 12B is enlarged to make it a sturdy column, and the pumping power is reduced at a low rate of rise. In accordance with the steel frame 12A, the upper and lower sides of the steel frame 12A are bolted and assembled to the square flange 12D, and the gravity power generation building 12 is used as a specific material rising device 2F inside the column tube 12B. 3E is stored at the top, and is injected by Mach 1 to 3 with a specific material accelerator 6W, and acceleration of gravity acceleration while raising the degree of vacuum is made, and a vertical type moving blade specific material gravity turbine 11B power generation is produced. Energy conservation cycle coalescence engine power generation and coalescence method power generation.
図2の竪型全動翼比重大物質重力タービン11B発電は、発電量がkg重m/秒に比例するため大重量直線超高速噴射対応の全動翼二重反転とし、夫々が二重反転する円筒内側動翼群60C兼内側軸装置60Aと、円筒外側動翼群60D兼外側軸装置60Bにして、夫々の両端には夫々最適軸受12Cを具備して夫々別々に組立後工作機械で加工可能にし、超高速バランス調整加工運転良好に加工後の夫々を分解精密本組立て等として、全く新しい加工組立技術により1組の竪型全動翼比重大物質重力タービン11Bを製造し、重力発電建物12の柱管12Bの高さに合わせて50〜100組等の組立として、柱管12B兼比重大物質上昇装置2Fにより水銀3E等を最上部に上昇保存し、比重大物質加速器6Wで比重大物質水銀3Eをマッハ2等で噴射比重大物質2Eを混合噴射して、既存蒸気タービン以上に真空度を上昇した中で真空中の重力加速度加速し、重力加速度直線加速の過程で、円筒内側動翼群60Cと円筒外側動翼群60Dを二重反転駆動して、比重大物質3E速度を理論最良で電気に変換する発電の過程で、例えば比重大物質3E速度5〜10倍速度も人類の知恵で再生可能であり、比重大物質3E落差5〜10倍も人類の知恵て再生可能等、既存最先端科学技術を大改良し、既存揚水発電の100倍発電量狙いにして、実験が必要ですが燃料費0で発電量を無限増大にし、利益率抜群世界一の地球温暖化防止にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。
The vertical all-blade ratio critical material gravity turbine 11B power generation shown in FIG. 2 has a power generation amount proportional to kg weight m / sec. The inner cylindrical blade group 60C and inner shaft device 60A and the outer cylindrical blade group 60D and outer shaft device 60B are respectively provided with optimum bearings 12C at both ends, and each is assembled and machined separately by a machine tool. Enables ultra-high-speed balance adjustment processing operation. After each processing is disassembled and precision assembling, etc., a set of vertical all-blade specific material gravity turbine 11B is manufactured by a completely new processing and assembly technology, gravity power building Ascend to 50-100 sets in accordance with the height of the 12 column pipes 12B, and store the mercury 3E etc. at the top by the column tube 12B and specific material rising device 2F. The substance mercury 3E The injection ratio critical substance 2E is mixed and injected at 2 etc., and the acceleration of gravity in the vacuum is accelerated while the degree of vacuum is higher than that of the existing steam turbine. In the process of linear acceleration of gravity acceleration, The outer blade group 60D is driven in reverse, and the specific critical material 3E speed is converted into electricity with the best theoretical theory. For example, the specific critical material 3E speed can be regenerated with the wisdom of humanity. There is a significant improvement in the existing state-of-the-art science and technology, such as the reproducibility of the 3E drop by 5-10 times with the wisdom of humanity. The power generation amount will be infinitely increased, and the world's best global warming prevention with the highest profit rate will be achieved.
図3の図2円筒内側動翼群60C兼内側軸装置60Aと、円筒外側動翼群60D兼外側軸装置60B夫々の、嵌合組立部9Mで最も重要な構成は超精密螺子組立固定等超精密加工として、何回も分解組立を繰り返しても超高速回転で回転バランスに変化が無い構成や精度とし、円筒内側動翼群60C兼内側軸装置60Aと、円筒外側動翼群60D兼外側軸装置60Bの二重反転にして、円筒外側動翼群60Dを外側動翼60dの外入口翼60eや、外側動翼60dの外中間翼60g複数〜多数や、外側動翼60dの外出口翼60kにし、円筒内側動翼群60Cを内側動翼60cの内入口翼60fや、内側動翼60cの内中間翼60h複数〜多数や、内側動翼60cの内出口翼60jとして、100組製造では夫々を100個製造落差800m使用等にし、部品数最少や全自動製造可能略全部に近付ける等として、最も困難で人類史上最大の貢献や超精密製造とし、同一揚水銀質量既存揚水発電の10〜100倍発電量狙いにして、実験が必要ですが燃料費0で発電量を無限増大し、利益率抜群世界一の地球温暖化防止にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。
The most important configuration in the fitting assembly portion 9M of the cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device 60B in FIG. As precision machining, the structure and accuracy are such that the rotation balance does not change even after repeated disassembly and assembly many times, and the cylindrical inner blade group 60C and inner shaft device 60A and the outer cylindrical blade group 60D and outer shaft By inverting the device 60B, the cylindrical outer rotor blade group 60D is changed into the outer inlet blade 60e of the outer rotor blade 60d, the plurality of outer intermediate blades 60g of the outer rotor blade 60d, or the outer outlet blade 60k of the outer rotor blade 60d. In the manufacturing of 100 sets, the cylindrical inner blade group 60C is used as the inner inlet blade 60f of the inner rotor blade 60c, a plurality of inner intermediate blades 60h of the inner rotor blade 60c, and the inner outlet blade 60j of the inner rotor blade 60c. 100 production head 800m It is the most difficult, the greatest contribution in human history and ultra-precision manufacturing, such as minimizing the number of parts and almost all possible automatic production, etc. Although experimentation is necessary, the amount of power generation is increased infinitely at zero fuel cost, and the world's best prevention of global warming is achieved.
図4の太陽光加熱器21の熱製造は、空気20℃を断熱圧縮比4で160℃になるため、20MPa等超高圧圧縮に燃料噴射燃焼熱交換過熱蒸気5Hを製造して、同一燃料量の過熱蒸気5H製造量を、既存ボイラーの10〜100倍を狙う圧縮空気熱交換器2Yの吸入空気温度を最高にし、竪型全動翼比重大物質重力タービン11B燃料費0発電極端に安価電気駆動して、過熱蒸気5H最大製造+液体空気28a冷熱副産物の供給設備3Dにし、温熱利用全盛や冷熱利用全盛にするもので、太陽光加熱器21を水面に浮力を設け又は平地に円形鉄道を設けて具備し、太陽光を東から西に直角維持回転制御する図に無い水上装置や陸上装置として、太陽光加熱器21には回転支持部4fを設けて歯車装置4dやローラー4eを具備し、円筒回転部77Gとして太陽光を上下方向直角維持回転制御して、浮力や円形鉄道利用により東西方向直角維持回転制御する装置とし、太陽光を2方向直角維持回転制御して、加熱保存熱量最大狙う熱吸収管4H内空気温度を最高にする装置とし、地球最大熱量の太陽光を矩形長レンズ2dにより直線状に集めて、焦点距離付近に熱吸収管4H具備内部空気路28A空気28a温度を最高にして、外部空気路28A空気28a温度も上昇し、既存のレンズ断面を直線状に延長矩形の長レンズ2dとして、レンズ材質全部を使用可能とし、発泡プラスチック等の断熱材2cを円筒回転部77G等で囲って円筒等の長大な筒として、長大な長レンズ2dを継手80A+締付具80Bで密封上部を4H外部空気路28Aとし、2空気路28A選択吸入の1〜複数段熱ポンプ1Gとして吸入圧縮して、簡単多段圧縮機89B液体酸素製造機89A等を熱ポンプ1Gとして800〜1200℃複数回とし、1〜複数段圧縮空気熱交換器2Yで圧縮毎熱回収を繰返して、液体空気28a冷熱を液体酸素室5K+液体窒素室5Lに保存し、400℃前後24〜200MPa過熱蒸気5H温熱を高圧高温水蒸気室5Nに分割保存して、液体空気冷熱+過熱蒸気温熱供給設備3Dにし各種用途に使用して、電気駆動全盛や蓄電池駆動全盛にし、電気製造物の各種温熱利用全盛や各種冷熱利用全盛にする。
In the heat production of the solar heater 21 of FIG. 4, since air 20 ° C. becomes 160 ° C. with an adiabatic compression ratio 4, the fuel injection combustion heat exchange superheated steam 5H is produced by ultra high pressure compression such as 20 MPa, and the same fuel amount is produced. Of superheated steam 5H, the intake air temperature of the compressed air heat exchanger 2Y aiming at 10 to 100 times that of the existing boiler is maximized, and the vertical type moving blade ratio critical material gravity turbine 11B fuel cost 0 power generation extremely cheap electricity Drive to make the superheated steam 5H maximum production + liquid air 28a cooling by-product supply equipment 3D, and make the use of warm heat and prime use of cold heat, the solar heater 21 with buoyancy on the water surface or a circular railroad on the flat ground The solar heater 21 is provided with a rotation support portion 4f and a gear device 4d and a roller 4e as a floating device and a land device not shown in the drawing that maintain and rotate sunlight at right angles from east to west. , Cylindrical rotation 77G is a device that controls the vertical rotation of sunlight in the vertical direction by using buoyancy and circular rails, and controls the rotation of the west-west direction by using buoyancy and circular rails. A device that maximizes the air temperature in the 4H, collects sunlight with the largest amount of earth in a straight line by the rectangular long lens 2d, maximizes the temperature of the air 28a inside the air passage 28A equipped with the heat absorption tube 4H near the focal length, The temperature of the external air passage 28A air 28a also rises, and the entire lens material can be used as a rectangular long lens 2d extending linearly in the existing lens cross section, and the heat insulating material 2c such as foamed plastic is surrounded by a cylindrical rotating portion 77G or the like. As a long cylinder such as a cylinder, a long long lens 2d is connected to a joint 80A + fastener 80B and the sealed upper part is set to a 4H external air passage 28A. Compressed by suction as a multistage heat pump 1G, simple multistage compressor 89B, liquid oxygen producing machine 89A, etc. as heat pump 1G, 800-1200 ° C multiple times, and recovered heat per compression by 1-multistage compressed air heat exchanger 2Y The liquid air 28a cold heat is stored in the liquid oxygen chamber 5K + the liquid nitrogen chamber 5L, and the 24-hot air steam 5H around 24 to 200 ° C. is divided and stored in the high-pressure high-temperature steam chamber 5N, and the liquid air cold heat + superheated steam heat is stored. The supply equipment 3D is used for various purposes, and the electric drive prime and the storage battery drive prime are made, and the various warm use primes and various cold use primes of the electric product are made.
図5の液体酸素製造機89Aは、竪型全動翼比重大物質重力タービン11B燃料費0発電電気駆動にし、太陽光加熱器21で加熱した空気28aを超高圧圧縮して、圧縮空気熱交換器2Yで熱交換して過熱蒸気5H温熱+液体酸素5K冷熱+液体窒素5L冷熱大量生産狙いにし、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に組立後に工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転等とし、液体酸素5K+液体窒素5L+過熱蒸気5Hを製造では圧縮空気熱交換機2Y使用として、図4の太陽光加熱器21で加熱した空気28aを長大圧縮空気熱交換機2Yで熱交換し、過熱蒸気5H製造+精留塔排ガス冷却で低温超高圧圧縮空気28aを大量生産として、空気28aを断熱直線膨張の過程で外側出力翼8tと内側出力翼8sを二重反転し、竪型全動翼比重大物質重力タービン11B燃料費0発電極端に安価電気僅少での駆動として、過熱蒸気5H温熱大量製造でメタンハイドレートに注入メタンを回収する等温熱利用全盛にし、液体酸素5Kや液体窒素5Lは燃料燃焼用に使用することで、圧縮仕事率を21/60000や79/60000等超高圧燃焼部具備の各種機関にして、飛行機や船舶や自動車等を各種回転駆動や超高速噴射推進駆動にする、液体酸素製造機89Aにする。
The liquid oxygen producing machine 89A in FIG. 5 uses a vertical all-blade ratio critical material gravity turbine 11B with a fuel cost of 0 power generation electric drive, compresses the air 28a heated by the solar heater 21 by ultra-high pressure, and performs compressed air heat exchange. Heat exchange is performed in the vessel 2Y, and the mass of the superheated steam 5H + liquid oxygen 5K cold + liquid nitrogen 5L is targeted for mass production, and the cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device 60B. Bearings 12C are provided at the optimum positions at both ends, and both ends can be held and precisely processed by machine tools after assembling separately, ultra-high speed rotation balance adjustment processing is enabled, and the inner shaft device 60A and inner compression blade 8q and inner output are provided. As a manufacturing balance adjustment process for the blade 8s, the outer shaft device 60B, the outer compression blade 8r, and the outer output blade 8t, the assembly of the inner shaft device 60A and the outer shaft device 60B can be performed at a very high speed. In the production of liquid oxygen 5K + liquid nitrogen 5L + superheated steam 5H, the compressed air heat exchanger 2Y is used, and the air 28a heated by the solar heater 21 in FIG. 4 is heat-exchanged by the long compressed air heat exchanger 2Y to produce the superheated steam 5H. + Mass production of low temperature ultra high pressure compressed air 28a by rectifying tower exhaust gas cooling, air 28a in the process of adiabatic linear expansion, the outer output blades 8t and the inner output blades 8s are double-reversed, and the major material ratio of the vertical blades Gravity turbine 11B Fuel cost 0 Power generation Extremely cheap Electricity As a drive with very little electricity, it is the prime use of isothermal heat that recovers methane injected into methane hydrate by mass production of superheated steam 5H, liquid oxygen 5K and liquid nitrogen 5L are for fuel combustion By using it for various engines equipped with ultrahigh pressure combustion parts such as 21/60000 and 79/60000, it is possible to drive various airplanes, ships, automobiles, etc. To high-speed jet propulsion drive, to liquid oxygen making machine 89A.
図6の簡単多段圧縮機89Bは、各種機関に連結して超高圧圧縮空気28aを製造するもので、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に組立後に工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや、外側軸装置60B兼外側圧縮翼8rの複数を製造やバランス調整加工として、夫々を本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転とし、外箱翼6Gより吸入の空気28aを超高圧圧縮して、圧縮空気熱交換機2Yで熱交換過熱蒸気5Hを製造する2回圧縮や3回圧縮等とし、最適温度の高圧圧縮空気28aを製造する簡単多段圧縮機89Bとして、各種機関に連結して液体酸素製造機89Aや簡単ガス機関89Cや、簡単空気噴射機関89Dや簡単噴射機関89E等を駆動し、回転出力や噴射推進出力を発生して、飛行機や船舶や自動車等を各種回転駆動や超高速噴射推進駆動にする、マイクロ超高速簡単多段圧縮機89Bを含む簡単多段圧縮機89B各種連結駆動にする。
A simple multistage compressor 89B shown in FIG. 6 is connected to various engines to produce ultra-high pressure compressed air 28a. The cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device are used. The bearings 12C are provided at the optimum positions on both ends of each of the 60B, and both ends can be precisely processed by a machine tool after assembling separately, and ultra-high speed rotation balance adjustment processing is enabled, the inner shaft device 60A and the inner compression blade 8q, A plurality of outer shaft devices 60B and outer compression blades 8r are manufactured and balance-adjusted, and each is assembled into a super-high-speed double reversal of the inner shaft device 60A and the outer shaft device 60B. A simple multi-stage compressor 89 for producing high-pressure compressed air 28a at an optimum temperature by compressing the air 28a with ultra-high pressure and using the compressed air heat exchanger 2Y to produce heat exchange superheated steam 5H, such as twice compression or three times compression. Connected to various engines to drive a liquid oxygen production machine 89A, a simple gas engine 89C, a simple air injection engine 89D, a simple injection engine 89E, etc. A simple multi-stage compressor 89B including a micro ultra-high speed simple multi-stage compressor 89B is used for various rotational drives and ultra-high-speed jet propulsion drives.
図7の簡単ガス機関89Cは,圧縮空気熱交換器2Yで過熱蒸気5H製造を超高圧環境での燃焼熱交換として、同一燃料量既存ボイラーの13〜20倍前後過熱蒸気5H製造量等とし、過熱蒸気5Hで先の出願の全動翼蒸気タービン11を真空まで膨張駆動して、既存火力発電の20倍発電量狙いし、簡単ガス機関89Cでは全動翼により、既存ガスタービンの10倍回転出力+10倍噴射推進出力等として、円筒内側動翼群60C兼内側軸装置60A及び円筒外側動翼群60D兼外側軸装置60Bとし、夫々の両端最適位置に軸受12C具備して、夫々別々に組立後に工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転空気圧縮とし、同一燃料量で過熱蒸気5H製造量既存ボイラーの20倍狙う、圧縮空気熱交換器2Yの過熱蒸気5H製造として、超高圧圧縮空気28aに燃料噴射燃焼+過熱蒸気5H製造簡単ガス機関89C駆動とし、竪型全動翼比重大物質重力タービン11B発電電気製造物駆動を含めて、入口を閉止した長大な圧縮空気熱交換機2Y使用の過程では、酸素窒素噴射ノズル6Mより液体酸素5Hや液体窒素5Lを噴射して、燃料噴射ノズル6Xより燃料噴射燃焼し、通常燃焼と合体の過熱蒸気5H大量生産で全動翼蒸気タービン駆動火力発電等として、火力発電では図4の太陽光加熱器21で加熱した空気28aを圧縮燃料噴射燃焼し、長大圧縮空気熱交換機2Yで熱交換して、理論空燃比燃焼で既存ガスタービンの4倍燃焼量にし、超高圧燃焼で過熱蒸気5H製造量を既存ボイラーの10倍狙い発電として、液体酸素5Kや液体窒素5Lを燃料燃焼用に使用の場合は、圧縮仕事率を21/60000や79/60000等超高圧燃焼部具備の各種機関にして、同一燃料量既存の10倍発電量や10倍速度や1/10燃料費を狙う、発電や飛行機や船舶や自動車等とし、各種回転駆動や超高速噴射推進駆動にする、簡単ガス機関89Cにする。
The simple gas engine 89C in FIG. 7 uses the compressed air heat exchanger 2Y to produce superheated steam 5H as combustion heat exchange in an ultra-high pressure environment, and produces the same amount of superheated steam 5H around 13 to 20 times that of an existing boiler. The superheated steam 5H is used to expand and drive the entire rotor blade steam turbine 11 of the previous application to a vacuum, aiming for a power generation amount 20 times that of the existing thermal power generation, and the simple gas engine 89C rotates 10 times the existing gas turbine by all the rotor blades. As the output +10 times propulsion propulsion output, etc., the cylinder inner rotor blade group 60C and inner shaft device 60A and the cylindrical outer rotor blade group 60D and outer shaft device 60B are provided. It is possible to perform both-end holding precision machining with a machine tool later, ultra-high-speed rotation balance adjustment processing, inner shaft device 60A and inner compression blade 8q, inner output blade 8s, outer shaft device 60B and outer compression blade 8 As a manufacturing balance adjustment process of r and the outer output blade 8t, the superassembly of the inner shaft device 60A and the outer shaft device 60B is carried out by this assembly, and the superheated steam 5H is produced with the same fuel amount. Aiming to double, as superheated steam 5H production of compressed air heat exchanger 2Y, fuel injection combustion to superhigh pressure compressed air 28a + superheated steam 5H production Simple gas engine 89C drive, vertical type moving blade ratio critical material gravity turbine 11B power generation electric In the process of using the long compressed air heat exchanger 2Y with the inlet closed, including product driving, liquid oxygen 5H and liquid nitrogen 5L are injected from the oxygen nitrogen injection nozzle 6M, and fuel injection combustion is performed from the fuel injection nozzle 6X. In the mass production of superheated steam 5H combined with normal combustion, as the all blade blade turbine driven thermal power generation, etc., in the thermal power generation, the air 28 heated by the solar heater 21 in FIG. Compressed fuel injection combustion, heat exchange with the long compressed air heat exchanger 2Y, the theoretical air-fuel ratio combustion to 4 times the combustion amount of the existing gas turbine, super high pressure combustion to aim the production amount of superheated steam 5H 10 times that of the existing boiler For power generation, when liquid oxygen 5K or liquid nitrogen 5L is used for fuel combustion, the compression work rate is set to various engines equipped with ultra-high pressure combustion parts such as 21/60000 and 79/60000, and the same fuel amount is 10 times that of existing ones. A simple gas engine 89C is used for power generation, airplanes, ships, automobiles, etc., aiming for power generation, 10 times speed and 1/10 fuel cost, and various rotational driving and ultra-high speed injection propulsion driving.
図8の簡単空気噴射機関89Dは、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に組立後に工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転空気圧縮とし、同一燃料量で過熱蒸気5H製造量既存ボイラーの10倍狙う、圧縮空気熱交換器2Yの過熱蒸気5H製造として、超高圧圧縮空気28aに燃料噴射燃焼+過熱蒸気5H製造簡単空気噴射機関89D駆動とし、超高圧圧縮空気28a質量増大の燃料噴射燃焼にして、回転出力発生+過熱蒸気5Hを製造ロケット外箱77B内に噴射し、空気吸引噴射で10倍速度を狙う過程では外周からも空気吸引噴射して、竪型全動翼比重大物質重力タービン11B発電電気製造物駆動を含めて、長大な圧縮空気熱交換機2Y使用の過程で入口を閉止し、酸素窒素噴射ノズル6Mより液体酸素5Hや液体窒素5Lを噴射して、燃料噴射ノズル6Xより燃料噴射燃焼し、通常燃焼と合体の過熱蒸気5H大量生産として、通常燃焼でも理論空燃比燃焼で過熱蒸気5Hを通常の4倍燃焼量で製造の大量生産とし、液体酸素5Kや液体窒素5Lは燃料燃焼用に使用して、圧縮仕事率を21/60000や79/60000等超高圧燃焼部具備にし、10倍速度や1/10燃料費を狙う、船舶等を超高速噴射推進駆動にする、簡単空気噴射機関89Dにする。
The simple air injection engine 89D of FIG. 8 includes bearings 12C at the optimum positions at both ends of the cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device 60B, and is assembled separately. It is possible to perform both-end holding precision machining with a machine tool later, ultra-high-speed rotational balance adjustment processing, inner shaft device 60A and inner compression blade 8q and inner output blade 8s, outer shaft device 60B and outer compression blade 8r and outer output. As the manufacturing balance adjustment process of the blade 8t, the main assembly makes the ultra-high-speed counter-rotating air compression of the inner shaft device 60A and the outer shaft device 60B, and the target amount is 10 times that of the existing boiler. As superheated steam 5H production of air heat exchanger 2Y, fuel injection combustion + superheated steam 5H production simple air injection engine 89D drive to ultrahigh pressure compressed air 28a, ultrahigh pressure compressed air 28a quality In the process of increasing fuel injection combustion, generating rotational output + superheated steam 5H into the production rocket outer box 77B, and in the process of aiming for 10 times speed by air suction injection, air suction injection is also performed from the outer periphery, and vertical full motion Including the blade ratio critical material gravity turbine 11B power generation electrical product drive, the inlet is closed in the process of using the long compressed air heat exchanger 2Y, liquid oxygen 5H and liquid nitrogen 5L are injected from the oxygen nitrogen injection nozzle 6M, Fuel injection combustion from the fuel injection nozzle 6X, mass production of superheated steam 5H combined with normal combustion, mass production of superheated steam 5H with the theoretical air-fuel ratio combustion even with normal combustion and four times the normal combustion amount, and liquid oxygen 5K And 5L of liquid nitrogen is used for fuel combustion, has a compression work rate of 21/60000 and 79/60000, etc., and has an ultra-high pressure combustion part, aiming for 10 times speed and 1/10 fuel cost, super high speed for ships etc. To injection propulsion drive, to simplify air injection engine 89D.
図9の簡単噴射機関89Eは、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に組立後に工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転空気圧縮とし、同一燃料量で過熱蒸気5H製造量既存ボイラーの10倍狙う、圧縮空気熱交換器2Yの過熱蒸気5H製造として、超高圧圧縮空気28aに燃料噴射燃焼+過熱蒸気5H製造簡単噴射機関89E駆動とし、超高圧圧縮空気28a質量増大の燃料噴射燃焼にして、回転出力発生+過熱蒸気5Hを製造ロケット外箱77B内に噴射空気吸引噴射では、竪型全動翼比重大物質重力タービン11B発電電気製造物駆動を含めて、長大な圧縮空気熱交換機2Y使用の過程で入口を閉止し、酸素窒素噴射ノズル6Mより液体酸素5Hや液体窒素5Lを噴射して、燃料噴射ノズル6Xより燃料噴射燃焼し、通常燃焼と合体の過熱蒸気5H大量生産として、通常燃焼でも理論空燃比燃焼で過熱蒸気5H通常の4倍燃焼量製造の大量生産とし、液体酸素5Kや液体窒素5Lは燃料燃焼用に使用して、圧縮仕事率を21/60000や79/60000等超高圧燃焼部具備にし、10倍速度や1/10燃料費を狙う、飛行機や船舶等を回転駆動や超高速噴射推進駆動にする、簡単噴射機関89Eにする。
The simple injection engine 89E of FIG. 9 has bearings 12C at the optimum positions at both ends of the cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device 60B, respectively, and is assembled separately. The machine tool enables both-end holding precision machining, ultra-high speed rotation balance adjustment machining, inner shaft device 60A, inner compression blade 8q, inner output blade 8s, outer shaft device 60B, outer compression blade 8r, and outer output blade. 8t production balance adjustment processing, this assembly will make the ultra-high speed counter-rotating air compression of the inner shaft device 60A and the outer shaft device 60B, the compressed air aiming 10 times the amount of superheated steam 5H production amount with the same fuel amount As superheated steam 5H production of heat exchanger 2Y, fuel injection combustion to superhigh pressure compressed air 28a + superheated steam 5H production Simple injection engine 89E drive, supermass high pressure compressed air 28a mass increase Rotating power generation + superheated steam 5H is injected into the rocket outer box 77B for injection injection combustion, and a large compression including a vertical full blade ratio material gravity turbine 11B power generation electric product drive In the process of using the air heat exchanger 2Y, the inlet is closed, liquid oxygen 5H or liquid nitrogen 5L is injected from the oxygen nitrogen injection nozzle 6M, fuel injection combustion is performed from the fuel injection nozzle 6X, and a large amount of superheated steam 5H combined with normal combustion As the production, the mass production of the combustion of the superheated steam 5H, which is four times the normal combustion ratio of the theoretical air-fuel ratio combustion in the normal combustion, and the liquid oxygen 5K and the liquid nitrogen 5L are used for fuel combustion, and the compression work rate is 21/60000. Use simple injection engine 89E with ultra-high pressure combustion part such as 79/60000, aiming for 10 times speed and 1/10 fuel cost, turning airplane or ship to rotational drive or ultra-high speed injection propulsion drive
図10の簡単ガス機関自動車89Fは、既存マイクロガスタービン自動車の改良発明の簡単ガス機関89C駆動とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として既存ガスタービンの10倍回転出力にし、同一燃料量既存火力発電の10倍発電量狙う簡単ガス機関89C発電として、簡単ガス機関89Cで、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼し、夫々過熱蒸気5Hを製造30MPa等で噴射して、夫々で燃焼ガス49を吸引噴射し、同一燃料量既存マイクロガスタービンの10倍回転出力等として、発電機1を駆動して蓄電池1Aに蓄電し、蓄電池駆動車輪4Jを回転して通常の自動車運転にして、燃料費を既存自動車の1/10狙い簡単ガス機関自動車89Fにし、バスやタクシーでの運用利益率を抜群世界一の地球温暖化防止にする。
The simple gas engine vehicle 89F in FIG. 10 is driven by the simple gas engine 89C, which is an improved invention of the existing micro gas turbine vehicle, and requires experimentation, but the amount of superheated steam 5H produced is 10 times that of the existing boiler, or the total moving blade + superheated steam 5H As a simple gas engine 89C power generation aiming at 10 times the output of the existing gas turbine as production and the same fuel amount as 10 times the existing thermal power generation, in the simple gas engine 89C, normal air compression fuel injection combustion and liquid oxygen liquid nitrogen Fuel injection combustion is performed in compression injection, superheated steam 5H is produced at 30MPa, respectively, and combustion gas 49 is sucked and injected at each, and the generator 1 is used as a 10 times rotational output of an existing micro gas turbine with the same fuel amount. Drive and store electricity in the storage battery 1A, rotate the storage battery driving wheel 4J to normal vehicle operation, and aim for 1/10 of the existing vehicle with a simple gas machine The automobile 89F, to the preeminent world of global warming prevention operating profit margin by bus or taxi.
図11の簡単ガス機関船舶89Gは、既存ガスタービン船舶の改良発明の簡単ガス機関89C駆動の船舶として、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として既存ガスタービンの10倍回転出力の簡単ガス機関89Cにし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを駆動スクリュウ7C駆動して、その排気を超高速噴射して推進力を発生その外周でも空気吸引噴射し、同一燃料量既存ガスタービンの10倍回転出力+10倍噴射推進出力等として、平坦な海上を空気浮上過熱蒸気浮上飛行機越えや接近の超高速噴射推進にし、同一燃料量既存船舶の10倍速度に近付けることで、簡単ガス機関船舶89Gの運用利益率を抜群世界一の地球温暖化防止にする。
The simple gas engine ship 89G shown in FIG. 11 needs to be tested as a simple gas engine 89C driven ship that is an improved invention of the existing gas turbine ship, but the amount of superheated steam 5H produced is 10 times that of the existing boiler, or the total moving blade + superheated steam. 5H production is a simple gas engine 89C with 10 times the rotational output of the existing gas turbine, and fuel injection combustion is performed in normal air compression fuel injection combustion and compression injection of liquid oxygen liquid nitrogen, respectively, and superheated steam 5H is produced at 30 MPa or more, respectively. High-speed injection, suction and injection of each combustion gas 49 and drive the simple gas engine 89C to drive the screw 7C, the exhaust gas is injected at ultra-high speed to generate propulsion force, air suction injection at the outer periphery, the same fuel amount existing As the gas turbine's 10 times rotation output + 10 times injection propulsion output, etc., the flat sea is made to be super high speed injection propulsion beyond the air flotation superheated steam flotation airplane and approach, and the same fuel By close to 10 times the degree of existing vessels, the operating profit margin of simple gas engine ship 89G to the preeminent world of global warming prevention.
図12の簡単ガス機関飛行機89Hは、既存ターボブロップエンジンの改良発明の簡単ガス機関89C駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単ガス機関89Cにし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを駆動プロペラ7A駆動して、その排気を超高速噴射して推進力を発生し、同一燃料量既存ターボブロップエンジンの10倍回転出力+10倍噴射推進出力等として、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大し、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮噴射と燃料噴射燃焼して、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張にし、簡単ガス機関89C駆動直線排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、簡単ガス機関飛行機89Hの運用利益率を抜群世界一の地球温暖化防止にする。
The simple gas engine airplane 89H in FIG. 12 is a simple gas engine 89C driven airplane that is an improved invention of the existing turbo flop engine, and requires experimentation, but the amount of superheated steam 5H produced is 10 times that of the existing boiler, or the total moving blade + superheated steam 5H production is a simple gas engine 89C with 10 times rotational output or 10 times injection propulsion output of an existing gas turbine, and fuel injection combustion is performed for normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively, and superheated steam, respectively. 5H is manufactured at a high speed of 30 MPa, etc., each combustion gas 49 is sucked and injected, the simple gas engine 89C is driven by the driving propeller 7A, the exhaust is injected at a high speed to generate a propulsive force, and the same fuel amount Produces superheated steam 5H by normal air-compressed fuel-injection combustion when flying in the atmosphere as 10 times rotation output + 10 times injection propulsion output of an existing turbo flop engine The combustion gas 49 is compressed and injected with 30MPa superheated steam 5H and compressed and linearly expanded with a 30MPa superheated steam 5H. By making exhaust injection, the space arrival cost is 1 / 500,000, etc., and the space arrival cost is about the same as the existing airplane, making the operating profit rate of the simple gas engine airplane 89H the world's best global warming prevention.
図13の簡単空気噴射機関船舶89Iは、既存ガスタービン船舶の改良発明の簡単空気噴射機関89D駆動の船舶とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単空気噴射機関89Dとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼として、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、前方の空気28aを吸引船底に噴射の過程で、外周でも再度空気吸引噴射既存ガスタービン船舶の10倍前後噴射推進にして、夫々の燃焼ガス49で簡単空気噴射機関89Dを回転駆動後に排気噴射前方の空気を吸引噴射し、同一燃料量既存ガスタービン船舶の10倍噴射推進出力以上等として、平坦な海上を燃焼ガス49浮上+過熱蒸気5H浮上飛行機越えや接近の超高速噴射推進し、同一燃料量既存船舶の10倍速度以上狙うことで、簡単空気噴射機関船舶89Iの運用利益率を抜群世界一の地球温暖化防止にする。
The simple air-injection engine ship 89I in FIG. 13 is a modified air-injection engine 89D-driven ship that is an improved invention of the existing gas turbine ship, and requires experimentation, but the amount of superheated steam 5H produced is 10 times that of the existing boiler, As superheated steam 5H production, a simple air injection engine 89D with 10 times rotational output and 10 times injection propulsion output of an existing gas turbine is used, and fuel injection combustion is used for normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively. The superheated steam 5H is injected into the rocket outer box 77B at a manufacturing pressure of 30 MPa, etc., and the front air 28a is injected into the bottom of the suction ship, and the outer periphery is again propelled about 10 times as much as the existing gas turbine ship. After the simple air injection engine 89D is rotationally driven with the combustion gas 49, the air in front of the exhaust injection is sucked and injected, and the same fuel amount is injected 10 times that of the existing gas turbine ship. A simple air-injection engine ship 89I, aiming at over 10 times the speed of the existing ship with the same fuel amount by propelling over the flat sea with combustion gas 49 levitation + superheated steam 5H levitation plane over and close approach Is the world's best global warming prevention.
図14の簡単噴射機関飛行機89Jは、既存ジェットエンジンの改良発明の簡単噴射機関89E駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単噴射機関89Eとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、前方の空気28aを吸引噴射既存ジェット機の10倍前後噴射推進にして、夫々の燃焼ガス49で簡単噴射機関89Eを回転駆動後に排気噴射前方の空気を吸引噴射し、同一燃料量既存ジェット機の10倍噴射推進出力狙いとして、燃焼ガス49+過熱蒸気5H超高速噴射推進し、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大して、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼にし、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、簡単噴射機関飛行機89Jの運用利益率を抜群世界一の地球温暖化防止にする。
The simple injection engine airplane 89J in FIG. 14 is a simple injection engine 89E driven airplane that is an improvement invention of the existing jet engine, and requires experimentation, but the amount of superheated steam 5H produced is 10 times that of the existing boiler, or the total moving blade + superheated steam 5H As a manufacture, a simple injection engine 89E having a 10 times rotational output or 10 times injection propulsion output of an existing gas turbine is used, and fuel injection combustion is performed for normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively, and superheated steam 5H Is injected into the outer rocket box 77B at 30MPa, etc., and the forward air 28a is propelled about 10 times as much as that of the existing suction jet, and the simple injection engine 89E is driven to rotate by the respective combustion gases 49 before the exhaust injection forward. Air is sucked and injected, with the same fuel amount as 10x injection propulsion output of existing jets, combustion gas 49 + superheated steam 5H super high speed injection propulsion, large During the flight, the superheated steam 5H is produced and stored in a normal air-compressed fuel injection combustion, and compression and fuel injection combustion of liquid oxygen liquid nitrogen fuel 30MPa and the like from the vicinity of the highest flight altitude is usually performed. By using the superheated steam 5H for suction injection linear expansion exhaust injection, the space arrival cost is 1 / 500,000, etc., and the space arrival cost is about the same as the existing aircraft, making the operating profit rate of the simple injection engine airplane 89J the best in the world Prevent global warming.
図15の回転翼飛行機89Kは、既存ヘリコプターの改良発明の簡単ガス機関89C駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単ガス機関89Cとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを直線膨張の駆動として、その排気を超高速噴射して推進力を発生し、同一燃料量既存ヘリコプターの10倍回転出力狙いで回転翼7Bを回転駆動して、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大し、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼して、その燃焼ガス49排気を30MPa過熱蒸気5Hで吸引噴射直線膨張にし、簡単ガス機関89C駆動直線排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、回転翼飛行機89Kの運用利益率を抜群世界一の地球温暖化防止にする。
The rotary wing airplane 89K in FIG. 15 is a simple gas engine 89C driven airplane that is an improved invention of the existing helicopter and requires experimentation, but the production amount of superheated steam 5H is 10 times that of the existing boiler, or the production of all rotor blades + superheated steam 5H. A simple gas engine 89C with 10 times rotational output and 10 times injection propulsion output of an existing gas turbine is used to produce superheated steam 5H by fuel injection combustion in normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively. Super-high-speed injection at 30 MPa, etc., each combustion gas 49 is sucked and injected, the simple gas engine 89C is driven for linear expansion, its exhaust is injected at high speed to generate propulsion, and the same fuel amount of the existing helicopter 10 The rotary blade 7B is driven to rotate with the aim of doubling the rotation output. When flying in the atmosphere, the superheated steam 5H is produced and stored and increased by the normal air-compressed fuel injection combustion. Combustion compression and fuel injection combustion of liquid oxygen liquid nitrogen fuel 30MPa etc. from near, and the combustion gas 49 exhaust gas is suction injection linear expansion with 30MPa superheated steam 5H, simple gas engine 89C drive linear exhaust injection, space arrival cost By setting the cost to reach space to 1 / 500,000, the same as the existing airplane, the operating profit rate of the rotary wing airplane 89K will be the best global warming prevention in the world.
図16の回転翼噴射飛行機89Lは、既存ヘリコプターの改良発明の簡単噴射機関89E駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単噴射機関89Eとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、上方の空気28aと燃焼ガス49を吸引噴射既存ジェット機の10倍前後噴射推進にして、夫々の燃焼ガス49で簡単噴射機関89Eを回転し、回転翼7B駆動後に排気噴射上方の空気と燃焼ガス49を吸引噴射し、同一燃料量既存ジェット機の10倍噴射推進出力狙いとして、燃焼ガス49+過熱蒸気5H超高速噴射推進にし、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大して、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼にし、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機燃料費程度にすることで、回転翼噴射飛行機89Lの運用利益率を抜群世界一の地球温暖化防止にする。
The rotor-blade jet airplane 89L in FIG. 16 is an airplane driven by a simple injection engine 89E, which is an improved invention of an existing helicopter, and requires experimentation, but the amount of superheated steam 5H produced is 10 times that of an existing boiler, or all rotor blades + superheated steam 5H are produced. As a simple injection engine 89E with 10 times rotational output or 10 times injection propulsion output of an existing gas turbine, fuel injection combustion is performed for normal air compression fuel injection combustion and compression injection of liquid oxygen liquid nitrogen, and superheated steam 5H is respectively produced. Injected into the rocket outer box 77B at a production of 30 MPa, etc., the upper air 28a and the combustion gas 49 are propelled by about 10 times that of the existing jet jet, and the simple injection engine 89E is rotated by each combustion gas 49 to rotate. After driving the blades 7B, the air above the exhaust injection and the combustion gas 49 are sucked and injected, and the same fuel amount as the target of 10 times injection propulsion output of the combustion gas 4 + Superheated steam 5H super-high speed injection propulsion, when flying in the atmosphere, increase the production and storage of superheated steam 5H by normal air compression fuel injection combustion, compression of liquid oxygen liquid nitrogen fuel 30MPa etc. from the vicinity of the normal maximum flight altitude The fuel injection combustion is performed, and the combustion gas 49 is changed to suction injection linear expansion exhaust injection with 30 MPa superheated steam 5H, the space arrival cost is reduced to 1 / 500,000, etc., and the space arrival cost is reduced to the existing airplane fuel cost. Make the operating profit rate of the wing jet airplane 89L the world's best global warming prevention.
図17の特大オスプレイ89Mは、既存オスプレイの改良発明の簡単噴射機関89E駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単噴射機関89Eとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、上方の空気28aと燃焼ガス49を吸引噴射既存ジェット機の10倍前後噴射推進にして、夫々の燃焼ガス49直線噴射で簡単噴射機関89Eを回転し、プロペラ7A駆動後に排気噴射上方の空気と燃焼ガス49を吸引噴射し、同一燃料量既存ジェット機の10倍噴射推進出力狙いとして、燃焼ガス49+過熱蒸気5H超高速噴射推進にし、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大して、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼にし、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機燃料費程度にすることで、回転翼噴射飛行機89Lの運用利益率を抜群世界一の地球温暖化防止にする。
The oversized Osprey 89M in FIG. 17 is an airplane driven by the simple injection engine 89E of the improved invention of the existing Osprey and requires experimentation, but the production amount of superheated steam 5H is 10 times that of the existing boiler, A simple injection engine 89E with 10 times rotational output and 10 times injection propulsion output of an existing gas turbine is used to produce superheated steam 5H by performing fuel injection combustion in normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively. Is injected into the outer casing 77B of the rocket, and the upper air 28a and the combustion gas 49 are propelled about 10 times as much as the existing jets of suction injection, and the simple injection engine 89E is rotated by each combustion gas 49 linear injection, and the propeller After driving 7A, the air above the exhaust injection and the combustion gas 49 are sucked and injected, and the same fuel amount is burned as the target of 10 times the injection propulsion output of the existing jet 49+ superheated steam 5H super-high-speed injection propulsion, superheated steam 5H is produced and increased by normal air compressed fuel injection combustion when flying in the atmosphere, and usually compressed by liquid oxygen liquid nitrogen fuel 30MPa etc. from around the highest flight altitude By making the combustion gas 49 into a suction injection linear expansion exhaust injection with 30 MPa superheated steam 5H, the space arrival cost is 1 / 500,000 etc., and the space arrival cost is about the same as the existing airplane fuel cost, The operating profit rate of the rotary wing jet airplane 89L will be the world's best global warming prevention.
図18の大型オスプレイ89Nは、既存オスプレイの改良発明の簡単ガス機関89C駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの10倍や、全動翼+過熱蒸気5H製造として、既存ガスタービンの10倍回転出力や10倍噴射推進出力の簡単ガス機関89Cとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを直線膨張の駆動として、その排気を超高速噴射して噴射推進出力を発生し、同一燃料量既存ヘリコプターの10倍回転出力狙いでプロペラ7Aを回転駆動して、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大し、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼して、その燃焼ガス49排気を30MPa過熱蒸気5Hで吸引噴射直線膨張にし、簡単ガス機関89C駆動直線排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、回転翼飛行機89Kの運用利益率を抜群世界一の地球温暖化防止にする。
The large Osprey 89N shown in FIG. 18 is a simple gas engine 89C driven airplane that is an improved invention of the existing Osprey, and requires experimentation, but the production amount of superheated steam 5H is 10 times that of the existing boiler, A simple gas engine 89C with 10 times rotational output or 10 times injection propulsion output of an existing gas turbine is used to produce superheated steam 5H by performing fuel injection combustion in normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively. Etc., each of the combustion gases 49 is sucked and injected, the simple gas engine 89C is driven for linear expansion, its exhaust is injected at a high speed to generate an injection propulsion output, and the same fuel amount of the existing helicopter 10 The propeller 7A is driven to rotate with the aim of double-rotation output. When flying in the atmosphere, the superheated steam 5H is produced and stored and increased by normal air-compressed fuel injection combustion. Combustion and fuel injection combustion of liquid oxygen liquid nitrogen fuel 30MPa and the like from around the row altitude, the combustion gas 49 exhaust is made into a suction injection linear expansion with 30MPa superheated steam 5H, a simple gas engine 89C drive linear exhaust injection is made, By setting the arrival cost to 1 / 500,000 and making the space arrival cost comparable to that of existing airplanes, the operating profit rate of the rotary wing airplane 89K will be the world's best global warming prevention.
0:各種エネルギ保存サイクル合体機関、 0:各種エネルギ保存サイクル合体機関及び合体方法、 1:発電機、 1A:蓄電池、 1B:圧力機関(酸素圧力歯車機関・酸素圧力往復機関・水圧力歯車機関・水圧力往復機関等) 1C:アルコール、 1D:燃料噴射ポンプ、 1F:復水ポンプ、 1G:1〜複数段熱ポンプ(熱エネルギを空気温度とし熱ポンプ(各種空気圧縮機)で複数回圧縮2Cの2X2Y2Zで複数回熱回収温熱50+冷熱28aで分割保存) 1K:液体燃料制御弁、 1L:燃料加熱管、 1Q:開閉弁、 1Y:複数段燃焼室、 1b:燃料(液体燃料+液化可能気体燃料) 1b:燃料管(燃料噴射温度が最適温度になるように具備する) 1c:液体燃料、 1d:水銀、 1g:重力加速部、 1h:横軸(外側軸装置と内側軸装置の回転方向交互にする軸) 2:太陽光加熱器(長レンズで太陽光を直線状に集めて高温部形成吸入空気を加熱) 2a:自然現象高速化(空気中では変化略0の残飯類が近くの川に移動すると一夜で0に近付く膨大な微生物量を人類の食糧増大に利用) 2a:自然現象高速化(発電では海水に冷熱28aを混合自然現象高速化した海水を海底に供給窒素や酸素やCO2等の栄養分を供給微生物増大して魚類やコンブ等食糧大増大する装置) 2a:自然現象高速化(船舶では海中に窒素や酸素やCO2等の栄養分を供給微生物の消化能力を森林の数万倍狙い植物プランクトンや海草等を増殖食物連鎖等により魚類やコンブ類等人類の食糧を増大) 2b:水抵抗僅少(船底に空気や燃焼ガスや過熱蒸気等を高速噴射して水抵抗僅少にする) 2c:断熱材、 2d:長レンズ(凸レンズ断面を直線状に延長矩形とし、複数使用で焦点距離最短レンズ幅最大狙う) 2e:水面、 2g:比重大物質加速方向、 2A:耐熱材、 2B:熱吸収材、 2C:1〜複数段圧縮熱回収器(熱エネルギを空気温度とし熱ポンプで複数回圧縮熱交換器で複数回熱回収して残りを温熱50+液体冷熱28aに分割保存) 2E:比重大物質(合金含む、白金球・金球・タングステン合金粉末焼結球・銀球・銅球・錫球・鉛球・亜鉛球・アルミニウム球・インジウム・カドミウム・ガリウム・タリウム・ビスマス等比重の大きい物質) 2E:比重大物質(製造法は小径程衝撃エネルギが低減するため例えば溶融鋼を空気中に噴射高速衝突粉砕空気冷却水冷却で超小径鋼球等製造) 2E:比重大物質(シリコン樹脂被覆やケイ素樹脂被覆の、被覆白金合金球・被覆金合金球・被覆タングステン合金粉末焼結球・被覆銀合金球・被覆ビスマス合金球・被覆銅合金球・被覆錫合金球・被覆鉛合金球・被覆亜鉛合金球・被覆アルミニウム合金球) 2F:比重大物質上昇装置(重力エネルギを上昇保存) 2H:冷熱海水混合器、 2X:空気熱交換器 2Y:圧縮空気熱交換器(液体空気冷熱+温熱製造する) 2Z:比重大物質熱交換器(500度以下液体金属の温度管理等で使用) 3a:撥水鍍金、 3i:簡単多段圧縮機、 3s:簡単圧縮機、 3u:タービン、 3A:撥水コーティング、 3B:水圧力往復機関、 3D:電気+液体空気冷熱+過熱蒸気温熱供給設備(重力発電電気で冷熱+温熱製造し、液体酸素や液体窒素を供給自動車や船舶や飛行機を駆動や過熱蒸気で供給メタンハイドレートに注入メタンを回収等電気+冷熱+温熱利用全盛にする) 3E:比重大物質(水銀や水等常温で液体の比重大物質) 3E:比重大物質(低融点合金の500度以下液体で安定高温液体合金) 3F:酸素圧力往復機関、 3G:理論燃焼歯車機関、 3H:往復ピストン、 3J:理論燃焼往復機関、 3K:外接歯車 3L:複数段燃焼室、 3M:水蒸気圧力往復機関、 3N:水蒸気圧力歯車機関 3P:理論膨張機関(気体の体積は圧力に反比例する理論で最良機関+酸素水素増大燃焼狙う) 3Q:理論膨張機関(ボイルの法則で最良機関+真空中の最高加速駆動狙う) 3R:理論ガスタービン(気体の体積は圧力に反比例対応の理論最良ガスタービン) 3S:理論蒸気タービン(気体の体積は圧力に反比例対応の理論最良蒸気タービン) 3T:理論気体圧縮機(気体の体積は圧力に反比例対応の理論最良気体圧縮機) 3U:理論タービン、 3V:ポンプ機関(既存各種ポンプをエンジンで使用) 3X:圧縮機機関(既存各種圧縮機をエンジンで使用) 3Y:二重反転機関(気体の体積は圧力に反比例対応のエンジン) 3Z:酸素圧力歯車機関、 3a:撥水鍍金、 3b:撥水コーティング、 4F:燃焼ガス往復機関、 4H:熱吸収管(長レンズ2dで太陽光を熱吸収管に直線状に集めて管内空気温度を最高に加熱して菅外空気温度も上昇する) 4J:蓄電池駆動車輪、 4K:理論膨張機関自動車、 4Q:理論燃焼室(過熱蒸気製造で理論空燃比燃焼既存の4倍燃焼量等や20倍圧力過熱蒸気噴射狙う燃焼室)、 4W:理論圧縮室、 4Y:理論燃焼室(水蒸気の中で高温燃焼して水の熱分解電気分解燃焼狙い化合物0狙い燃焼室) 4Z:燃焼ガス歯車機関、 4X:タービン翼断面(断面積を拡大表面積増大) 4a:液体燃料ポンプ、 4b:液体酸素ポンプ、 4c:水ポンプ、 4d:歯車装置、 4e:ローラー、 4f:回転支持部、 5:空気噴射ノズル、 5a:高圧高温燃焼ガス制御弁、 5b:圧縮吸入空気路、 5d:燃焼流内壁、 5e:超高圧酸素、 5h:精留塔排ガス、 5h:精留塔排ガス管、 5A:給気弁、 5B:冷却ヒレ、 5C:排気室、 5D:排気弁、 5E:給気室、 5F:酸素加熱管、 5G:水蒸気加熱管、 5G:高圧高温水加熱管、 5H:過熱蒸気、 5H:高圧高温過熱蒸気管、 5K:液体酸素、 5K:液体酸素室、 5L:液体窒素、 5L:液体窒素室、 5M:高圧高温燃焼室、 5M:高圧高温燃焼ガス室、 5N:高圧高温水蒸気室、 5N:高圧高温水蒸気、 5P:水蒸気制御弁、 5Q:水制御弁、 5R:過熱蒸気制御弁、 5S:圧縮空気加熱管、 5T:液体酸素制御弁、 6:最終圧縮翼、 6A:過熱蒸気ロケット噴口、 6B:圧縮空気噴射ノズル、 6C:燃焼ガス水蒸気ノズル、 6E:比重大物質噴射ノズル、 6F:水噴射ノズル、 6G:静翼、 6H:排水管、 6L:酸素噴射ノズル、 6M:酸素窒素噴射ノズル、 6W:比重大物質加速機(液体比重大物質3E圧力と比重差利用して比重大物質3Eや2E混合噴射) 6X:燃料噴射ノズル、6X:アフターバーナー(吸引空気流に燃料噴射冷熱28a燃焼流6Yに合流燃焼して燃料燃焼量大増大で宇宙上昇) 6Y:燃焼ガス噴射ノズル(冷熱28a燃焼流) 6Z:過熱蒸気噴射ノズル、 7A:プロペラ、 7B:回転翼、 7C:スクリュー、 7I:簡単ガス機関自動車、 7J:簡単ガス機関船舶、 7K:簡単ガス機関飛行機、 7L:簡単空気噴射機関船舶、 7M:簡単噴射機関飛行機、 7N:回転翼飛行機、 7O:回転翼噴射飛行機、 7P:特大オスプレイ、 7Q:大型オスプレイ、 8a:タービン翼(サイクル数や比重大物質性質仕事速度や周速度に合せた角度や曲線や回転半径二重反転としたタービン翼) 8c:タービン翼(内側と外側動翼群夫々を内側と外側軸装置の円筒部に夫々嵌合組立固定する全自動製造加工狙うタービン翼) 8d:上側膨張翼群、 8e:下側膨張翼群、 8f:組立タービン翼群、 8g:上側圧縮翼群、 8h:下側圧縮翼群、 8j:組立圧縮翼群、 8k:内側圧縮翼、 8m:外側圧縮翼、 8n:内側出力翼、 8p:外側出力翼、 8q:内側圧縮翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした圧縮翼) 8r:外側圧縮翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした圧縮翼) 8s:内側出力翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした出力翼) 8t:外側出力翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした出力翼) 8B:横型全動翼水重力タービン、 8C:横型全動翼比重大物質重力タービン、 8D:横型全動翼水重力タービン、 8E:横型全動翼比重大物質重力タービン、 8V:竪型全動翼水重力タービン、 8W:竪型全動翼比重大物質重力タービン、 8X:竪型全動翼水重力タービン、 8Y:竪型全動翼比重大物質重力タービン、 9:耐摩耗環状組立(8cを含む比重大物質流路のみ超硬合金で環状製造軽量化する嵌合組立方法) 9b:上吸引下反発磁石、 9A:円筒環状組立(耐摩耗円筒環状組立て動翼群タービン翼(8a)6種類逆回転用6種類にすることで構造簡単や部品数僅少や全自動加工容易や組立容易や軽量化容易等にする) 9A:円筒環状組立(外入口翼60e+外中間翼60g+外出口翼60k嵌合で外側動翼60dを構成し、内入口翼60f+内中間翼60h+内出口翼60j嵌合で内側動翼60cを構成する円筒部) 9B:反発永久磁石、 9C:吸引永久磁石、 9D:圧縮空気部、 9E:真空部、 9M:嵌合組立部、 9Q:垂直平行板(噴射空気を保存船尾に誘導する垂直平行の板) 10:船体、 10A:船室、 10b:操縦室、 10c:制御室、 10d:客室、 10e:貨物室、 11:全動翼蒸気タービン、 11A:竪型全動翼水重力タービン、 11B:竪型全動翼比重大物質重力タービン、 11C:横型全動翼水重力タービン、 11D:気体専用冷却室、 11E:横型全動翼比重大物質重力タービン、 12:重力発電建物、 12A:鉄骨骨組、 12B:柱管、 12C:軸受、 12D:角フランジ、 16B:垂直軸、 21:太陽光加熱器(吸入空気路を熱吸収管4H内にも設けて主使用する) 24:燃焼ガス制御弁、 24A:圧縮空気制御弁、 24B:液体酸素制御弁、 24C:液体窒素制御弁、 24D:酸素制御弁、 24E:窒素制御弁、 25:過熱蒸気制御弁、 25b:燃料制御弁、 25c:燃料管、 28a:空気、 28a:冷熱(空気28aを熱ポンプで圧縮して圧縮空気熱量の過熱蒸気50温熱+液体酸素や液体窒素を含む圧縮空気28a冷熱に分割保存) 28b:圧縮空気熱量、 28A:吸入空気路、 28B:空気路入口、 38:回転案内具、 38a:飛行胴、 38b:飛行翼、 38c:飛行尾翼、 38d:垂直翼、 38e:翼前縁心、 38g:水上翼、 38h:浮上艇、 38B:空気吸引噴射船舶(79S79T79Y79Z具備) 38C:水吸引噴射船舶(79U79X具備) 38H:理論スクリュウ船舶、 38J:理論噴射船舶、 38T:理論噴射飛行機、 38U:理論プロペラ飛行機、 39A:太陽熱重力飛行機、 39B:太陽熱重力回転飛行機、 39C:太陽熱重力ヘリコプター、 39D:スクリュー船舶、 39G:太陽熱重力飛行船舶、 39H:酸素合体スクリュー船舶、 39J:酸素合体噴射船舶、 39K:酸素合体スクリュー噴射船舶、 39L:酸素合体噴射飛行機、 39M:酸素合体プロペラ飛行機、 39N:酸素合体プロペラ噴射飛行機、 39P:酸素合体回転翼飛行機、 39Q:酸素合体スクリュー船舶、 39R:酸素合体噴射船舶、 39S:酸素合体スクリュー噴射船舶、 39T:酸素合体噴射飛行機、 39U:酸素合体プロペラ飛行機、 40A:方向舵、 49:燃焼ガス、 50:過熱蒸気、 50:過熱蒸気室、 50:温熱(空気28aを熱ポンプで圧縮して圧縮空気熱量の過熱蒸気50温熱+圧縮空気28a冷熱に分割保存) 50A:水蒸気、 50a:過熱蒸気噴射管、 51:空気抽出器、 51:合流抽出器(合流するための抽出器) 51A:空気抽出室、 52a:高温水52a:海洋深層水、 52b:高温水、 52d:温熱(50から変化) 52e:冷熱(28aから変化) 55B:変速装置、 60:円筒動翼群、 60A:内側軸装置(タービン翼具備装置) 60B:外側軸装置(タービン翼具備装置) 60C:円筒内側動翼群(耐摩耗円筒環状組立固定動翼群を含めて全自動加工容易組立容易にする) 60D:円筒外側動翼群(耐摩耗円筒環状組立固定動翼群を含めて全自動加工容易組立容易にする) 60E:入口固定外翼(外側動翼群
を環状組立固定する入口翼) 60F:入口固定内翼(内側動翼群を環状組立固定する入口翼) 60G:外側環状翼(外側動翼群を環状組立する中間翼) 60H:内側環状翼(内側動翼群を環状組立する中間翼) 60J:出口固定外翼(外側動翼群を環状組立固定する出口翼) 60K:出口固定内翼(内側動翼群を環状組立固定する出口翼) 60c:内側動翼、 60d:外側動翼、 60e:外入口翼、 60f:内入口翼、 60g:外中間翼、 60h:内中間翼、 60j:内出口翼、 60k:外出口翼、 76:歯車装置(磁気摩擦動力伝達装置を含む) 77B:ロケット外箱、 77C:二重反転機外箱、 77F:噴射部外箱、 77G:円筒回転部、 77a:タービン外箱、 77b:圧縮機外箱、 80:軸受(磁気軸受+空気軸受含) 80a:推力軸受(磁気軸受+空気軸受含) 80A:継手、 80B:締付具、 80Y:液体空気吸引ウォータージェット(高圧高温燃焼室5M高圧高温水蒸気室5Nを受給して5Mに複数回燃料噴射燃焼して5Nを内周と内周外周から複数回加熱して噴射し、空気吸引噴射して水を吸引噴射する) 80Z:液体空気吸引ウォータージェット(高圧高温燃焼室5M高圧高温水蒸気室5Nを受給して5Mに複数回燃料噴射燃焼して5Nを内周と内周外周から複数回加熱して噴射し、空気吸引流複数か所にも燃料噴射燃焼噴射して、空気吸引噴射して水を吸引噴射する) 84:二重反転磁気摩擦装置(固定部具備内側動翼群と外側動翼群を略同速度反対回転にする装置) 84Y:二重反転歯車装置(既存技術で二重反転する装置) 85:二重反転磁気装置(磁石利用歯車高さ僅少から無接触にし横軸1h歯車により相互逆回転にする) 85Y:二重反転歯車装置(既存横軸1h歯車により相互逆回転にする) 88p:液体酸素製造機、 88q:簡単ガス機関、 88r:簡単空気噴射機関、 88s:簡単噴射機関、 88A:酸素合体空気噴射部(ロケット燃焼+ジェット燃焼+水蒸気噴射等と合体噴射) 88B:酸素合体空気噴射部(超高圧ロケット燃焼+ジェット燃焼+過熱蒸気噴射吸引) 88C:理論空気噴射部、 88M:理論水噴射部、 88K:酸素合体水噴射部(ロケット燃焼+ジェット燃焼+水蒸気噴射等と合体噴射) 88L:酸素合体水噴射部(超高圧ロケット燃焼+ジェット燃焼+過熱蒸気噴射吸引) 89A:液体酸素製造機、 89B:簡単多段圧縮機、 89C:簡単ガス機関、 89D:簡単空気噴射機関、 89E:簡単噴射機関、 89F:簡単ガス機関自動車、 89G:簡単ガス機関船舶、 89H:簡単ガス機関飛行機、 89I:簡単空気噴射機関船舶、 89J:簡単噴射機関飛行機、 89K:回転翼飛行機、 89L:回転翼噴射飛行機、 89M:特大オスプレイ、 89N:大型オスプレイ、 95a:燃焼ガス溜、 95b:圧縮空気溜、 95c:過熱蒸気溜、 103:冷熱回収器、
0: Various energy storage cycle coalescence engine, 0: Various energy conservation cycle coalescence engine and coalescence method, 1: Generator, 1A: Storage battery, 1B: Pressure engine (oxygen pressure gear engine, oxygen pressure reciprocating engine, water pressure gear engine, 1C: alcohol, 1D: fuel injection pump, 1F: condensate pump, 1G: 1 to multistage heat pump (heat energy is air temperature and compressed multiple times with heat pump (various air compressors) 2C 1K: Liquid fuel control valve, 1L: Fuel heating pipe, 1Q: On-off valve, 1Y: Multistage combustion chamber, 1b: Fuel (liquid fuel + liquefiable gas) 2X2Y2Z Fuel) 1b: Fuel pipe (provided so that the fuel injection temperature becomes the optimum temperature) 1c: Liquid fuel, 1d: Mercury, 1g: Gravity accelerating unit, 1h: Horizontal shaft (outer shaft device and inner 2) Sunlight heater (collects sunlight in a straight line with a long lens and heats the high-temperature portion forming intake air) 2a: Speeds up the natural phenomenon (change in air is almost zero) When the leftovers move to a nearby river, a huge amount of microorganisms that approaches zero overnight will be used to increase food for humans. Equipment that increases the supply of nutrients such as nitrogen, oxygen, and CO2 and increases foods such as fish and kombu. 2a: Speeds up natural phenomena (in ships, the supply of nutrients such as nitrogen, oxygen, and CO2 into the sea makes it possible to digest microorganisms. Phytoplankton, seaweed, etc. aiming for tens of thousands of forests, increasing food for fish such as fish and kombu by increasing the food chain, etc. 2b: Low water resistance (by injecting air, combustion gas, superheated steam, etc. at the bottom of the ship at high speed) Minimize water resistance ) 2c: heat insulating material, 2d: long lens (convex lens cross-section extended into a straight line, a plurality of uses aiming at the shortest focal length lens width) 2e: water surface, 2g: specific material acceleration direction, 2A: heat-resistant material, 2B : Heat absorbing material, 2C: 1 to multi-stage compression heat recovery device (heat energy is air temperature, heat recovery is performed multiple times with a heat pump multiple times with a compression heat exchanger, and the remainder is divided and stored as warm 50 + liquid cold 28a) 2E : Specific material (including alloy, platinum sphere, gold sphere, tungsten alloy powder sintered sphere, silver sphere, copper sphere, tin sphere, lead sphere, zinc sphere, aluminum sphere, indium, cadmium, gallium, thallium, bismuth, etc. Substance) 2E: Specific critical substance (Since the manufacturing method reduces impact energy as the diameter decreases, for example, molten steel is injected into the air to produce ultra-small diameter steel balls by high-speed collision pulverization air cooling water cooling) 2E: Specific critical substance (Siri Covered platinum alloy balls, coated gold alloy balls, coated tungsten alloy powder sintered balls, coated silver alloy balls, coated bismuth alloy balls, coated copper alloy balls, coated tin alloy balls, coated lead alloy balls -Coated zinc alloy sphere-Coated aluminum alloy sphere 2F: Specific critical substance elevating device (gravity energy is increased and stored) 2H: Cold seawater mixer, 2X: Air heat exchanger 2Y: Compressed air heat exchanger (liquid air cold heat + 2Z: Specific heat exchanger (used for temperature control of liquid metal below 500 degrees) 3a: Water repellent plating, 3i: Simple multistage compressor, 3s: Simple compressor, 3u: Turbine, 3A: Water repellent coating, 3B: Water pressure reciprocating engine, 3D: Electricity + liquid air cold heat + superheated steam heat supply equipment (cooling + heat production with gravity power generation electricity, supplying liquid oxygen and liquid nitrogen Car, ship and flight Methane is injected into the methane hydrate supplied with overheated steam or superheated steam, etc. Recovery of methane, etc. Electricity + cold heat + warm use intensive 3E: Specific critical substances (specific critical liquid substances such as mercury and water at room temperature) 3E: Specific critical substances ( 3F: oxygen pressure reciprocating engine, 3G: theoretical combustion gear engine, 3H: reciprocating piston, 3J: theoretical combustion reciprocating engine, 3K: external gear 3L: multistage combustion chamber 3M: Steam pressure reciprocating engine, 3N: Steam pressure gear engine 3P: Theoretical expansion engine (the gas volume is the inversely proportional to the pressure, the best engine + oxygen hydrogen increase combustion aim) 3Q: Theoretical expansion engine (Best by Boyle's law) 3R: Theoretical gas turbine (theoretical best gas turbine whose gas volume is inversely proportional to the pressure) 3S: Theoretical steam turbine (the gas volume is pressure) 3T: Theoretical gas compressor (Theoretical best gas compressor whose gas volume is inversely proportional to the pressure) 3U: Theoretical turbine, 3V: Pump engine (Use existing pumps in the engine) 3X: Compressor engine (uses various existing compressors in the engine) 3Y: Counter-reversal engine (engine whose gas volume is inversely proportional to pressure) 3Z: Oxygen pressure gear engine, 3a: Water repellent plating, 3b: Water repellent Coating, 4F: Combustion gas reciprocating engine, 4H: Heat absorption tube (The long lens 2d collects sunlight into the heat absorption tube in a straight line, and the air temperature inside the tube is heated to the maximum to increase the outside air temperature) 4J: Battery drive wheel, 4K: Theoretical expansion engine vehicle, 4Q: Theoretical combustion chamber (theoretical air-fuel ratio combustion in the superheated steam production, the combustion chamber aiming at 20 times pressure superheated steam injection, etc.), 4W: Theoretical compression 4Y: Theoretical combustion chamber (combustion chamber for high-temperature pyrolysis electrolysis combustion of water by steam in steam) 0Z: Combustion gas gear engine, 4X: Turbine blade cross section (increase cross-sectional area and increase surface area) 4a : Liquid fuel pump, 4b: Liquid oxygen pump, 4c: Water pump, 4d: Gear device, 4e: Roller, 4f: Rotation support part, 5: Air injection nozzle, 5a: High-pressure high-temperature combustion gas control valve, 5b: Compression suction Air path, 5d: Combustion flow inner wall, 5e: Ultra high pressure oxygen, 5h: Rectification tower exhaust gas, 5h: Rectification tower exhaust pipe, 5A: Supply valve, 5B: Cooling fin, 5C: Exhaust chamber, 5D: Exhaust valve 5E: Air supply chamber, 5F: Oxygen heating tube, 5G: Steam heating tube, 5G: High pressure high temperature water heating tube, 5H: Superheated steam, 5H: High pressure high temperature superheated steam tube, 5K: Liquid oxygen, 5K: Liquid oxygen chamber 5L: Liquid nitrogen, 5L: liquid nitrogen chamber, 5M: high pressure high temperature combustion chamber, 5M: high pressure high temperature combustion gas chamber, 5N: high pressure high temperature steam chamber, 5N: high pressure high temperature steam, 5P: steam control valve, 5Q: water control valve, 5R: superheated steam Control valve, 5S: Compressed air heating pipe, 5T: Liquid oxygen control valve, 6: Final compression blade, 6A: Superheated steam rocket nozzle, 6B: Compressed air injection nozzle, 6C: Combustion gas water vapor nozzle, 6E: Specific critical material injection Nozzle, 6F: Water injection nozzle, 6G: Stator blade, 6H: Drain pipe, 6L: Oxygen injection nozzle, 6M: Oxygen nitrogen injection nozzle, 6W: Specific critical material accelerator (Liquid specific material 3E pressure and specific gravity difference 6X: Fuel injection nozzle, 6X: After burner (combustion of the fuel injection cold heat 28a and the combustion flow 6Y into the suction air flow, and the increase in the amount of fuel combustion increases the universe. 6Y: Combustion gas injection nozzle (cooling 28a combustion flow) 6Z: Superheated steam injection nozzle, 7A: Propeller, 7B: Rotary blade, 7C: Screw, 7I: Simple gas engine vehicle, 7J: Simple gas engine ship, 7K: Simple gas Engine airplane, 7L: Simple air injection engine ship, 7M: Simple injection engine airplane, 7N: Rotary wing airplane, 7O: Rotary wing injection airplane, 7P: Extra large osprey, 7Q: Large osprey, 8a: Turbine wing (cycle number and specific gravity) Large material properties Turbine blades with angle, curve and rotational radius double reversal according to work speed and peripheral speed 8c: Turbine blades (inner and outer rotor blade groups are fitted to the inner and outer shaft device cylinders respectively) 8d: upper expansion blade group, 8e: lower expansion blade group, 8f: assembly turbine blade group, 8g: upper compression blade group, h: Lower compression blade group, 8j: Assembly compression blade group, 8k: Inner compression blade, 8m: Outer compression blade, 8n: Inner output blade, 8p: Outer output blade, 8q: Inner compression blade (rotational speed and peripheral speed) 8r: Outer compression blade (compression blade with angle, curve and rotation radius doubly reversed according to rotational speed and peripheral speed) 8s: Inner output blade (An output blade with an angle, a curve, and a rotational radius double reversal according to the rotational speed and peripheral speed) 8t: Outer output blade (an output blade with an angle, a curve, and a rotational radius double according to the rotational speed and the peripheral speed) 8B: Horizontal all-blade hydrogravity turbine, 8C: Horizontal all-blade specific material gravity turbine, 8D: Horizontal all-blade water gravity turbine, 8E: Horizontal all-blade material gravity turbine, 8V: All-type turbine Rotor Water Gravity Turbine, 8W Bin, 8X: Vertical all blade hydrogravity turbine, 8Y: Vertical all blade specific material gravity turbine, 9: Wear resistant annular assembly 9b: Upper attractive lower repulsion magnet 9A: Cylindrical ring assembly (wear resistant cylindrical ring assembly blade group turbine blade (8a) 6 types 6 types for reverse rotation, simple structure and few parts 9A: Cylindrical ring assembly (outer inlet blade 60e + outer intermediate blade 60g + outer outlet blade 60k is fitted to form outer rotor blade 60d, inner inlet blade 60f + inner 9B: Repulsive permanent magnet, 9C: Suction permanent magnet, 9D: Compressed air part, 9E: Vacuum part, 9M: Fitting assembly part, Intermediate blade 60h + Inner outlet blade 60j 9Q: Vertical parallel plate (preserves blast air 10: hull, 10A: cabin, 10b: cockpit, 10c: control room, 10d: cabin, 10e: cargo compartment, 11: full-blade steam turbine, 11A: vertical full motion Blade Water Gravity Turbine, 11B: Vertical Type Whole Blade Ratio Material Gravity Turbine, 11C: Horizontal Type Whole Blade Water Gravity Turbine, 11D: Gas Cooling Chamber, 11E: Horizontal Type Whole Blade Ratio Material Gravity Turbine, 12: Gravity Power generation building, 12A: Steel frame, 12B: Column tube, 12C: Bearing, 12D: Square flange, 16B: Vertical shaft, 21: Solar heater (mainly used with the intake air path provided in the heat absorption tube 4H) 24) Combustion gas control valve, 24A: Compressed air control valve, 24B: Liquid oxygen control valve, 24C: Liquid nitrogen control valve, 24D: Oxygen control valve, 24E: Nitrogen control valve, 25: Superheated steam control valve, 25 : Fuel control valve, 25c: Fuel pipe, 28a: Air, 28a: Cold heat (compressed air 28a is compressed with a heat pump and compressed air is heated to 50 warm heat + compressed air 28a cold containing liquid oxygen and liquid nitrogen) 28b: Calorific value of compressed air, 28A: Intake air passage, 28B: Air passage inlet, 38: Rotation guide, 38a: Flight trunk, 38b: Flight wing, 38c: Flight tail, 38d: Vertical wing, 38e: Wing leading edge 38H: Air suction jet ship (with 79S79T79Y79Z) 38C: Water suction jet ship (with 79U79X) 38H: Theoretical screw ship, 38J: Theoretical jet ship, 38T: Theoretical jet airplane, 38U: theoretical propeller airplane, 39A: solar thermal gravity airplane, 39B: solar thermal gravity rotating airplane, 39C: solar thermal gravity helicopter , 39D: screw ship, 39G: solar thermal gravity ship, 39H: oxygen coalescence screw ship, 39J: oxygen coalescence injection ship, 39K: oxygen coalescence screw injection ship, 39L: oxygen coalescence jet airplane, 39M: oxygen coalescence propeller airplane, 39N: oxygen coalescence propeller jet plane, 39P: oxygen coalescence rotorcraft, 39Q: oxygen coalescence screw ship, 39R: oxygen coalescence jet ship, 39S: oxygen coalescence screw jet ship, 39T: oxygen coalescence jet airplane, 39U: oxygen coalescence propeller Airplane, 40A: Rudder, 49: Combustion gas, 50: Superheated steam, 50: Superheated steam chamber, 50: Heat (compressed air 28a with a heat pump and divided into 50 heat of compressed air calorie heat + compressed air 28a cold) 50A: Water vapor, 50a: Superheated steam injection pipe, 51: Empty Extractor 51: Combined extractor (extractor for joining) 51A: Air extraction chamber 52a: Hot water 52a: Deep sea water 52b: Hot water 52d: Hot (change from 50) 52e: Cold (28a) 55B: Transmission, 60: Cylindrical blade group, 60A: Inner shaft device (equipment with turbine blades) 60B: Outer shaft device (equipment with turbine blades) 60C: Cylindrical inner blade group (wear-resistant cylindrical annular assembly) 60D: Cylindrical outer rotor blade group (Wear resistant cylindrical annular assembly including fixed rotor blade group facilitates easy assembly) 60E: Outlet fixed outside Blade (inlet blade for annular assembly fixing outer rotor blade group) 60F: inlet fixed inner blade (inlet blade for annular assembly fixing inner rotor blade group) 60G: outer annular blade (intermediate blade for annular assembly of outer rotor blade group) 60H: Inner ring Blade (intermediate blade for annular assembly of inner blade group) 60J: Outlet fixed outer blade (exit blade for annular assembly fixing outer blade group) 60K: Outlet fixed inner blade (exit blade for annular assembly fixing of inner blade group) ) 60c: inner blade, 60d: outer blade, 60e: outer inlet blade, 60f: inner inlet blade, 60g: outer intermediate blade, 60h: inner intermediate blade, 60j: inner outlet blade, 60k: outer outlet blade, 76 : Gear device (including magnetic frictional power transmission device) 77B: Rocket outer box, 77C: Counter-rotating machine outer box, 77F: Injection section outer box, 77G: Cylindrical rotating section, 77a: Turbine outer box, 77b: Compressor Outer box, 80: Bearing (including magnetic bearing + air bearing) 80a: Thrust bearing (including magnetic bearing + air bearing) 80A: Joint, 80B: Fastener, 80Y: Liquid air suction water jet (high pressure high temperature combustion chamber 5M high pressure High temperature steam room 5N Received and injected and burned multiple times at 5M and heated and injected 5N multiple times from the inner and outer peripheries, sucked and injected by air suction and injected) 80Z: Liquid air suction water jet (high pressure and high temperature) Combustion chamber 5M Receives high-pressure high-temperature steam chamber 5N, and injects and burns fuel 5M multiple times and heats and injects 5N multiple times from the inner and outer peripheries. 84: Counter-rotating magnetic friction device (device that rotates the inner rotor blade group and the outer rotor blade group at the same speed in the opposite direction) 84Y: Counter-rotating Gear device (device that double-reverses with existing technology) 85: Double-reverse magnetic device (magnet-utilized gear height is slight to non-contact and reciprocally rotates with a horizontal shaft 1h gear) 85Y: Double-reverse gear device (existing (Reverse rotation by 1h gear on the horizontal axis) 8p: Liquid oxygen production machine, 88q: Simple gas engine, 88r: Simple air injection engine, 88s: Simple injection engine, 88A: Oxygen combined air injection unit (rocket combined with jet combustion + steam injection, etc.) 88B: Oxygen Combined air injection unit (ultra-high pressure rocket combustion + jet combustion + superheated steam injection suction) 88C: theoretical air injection unit, 88M: theoretical water injection unit, 88K: oxygen combined water injection unit (rocket combustion + jet combustion + water vapor injection, etc. 88L: oxygen combined water injection unit (super high pressure rocket combustion + jet combustion + superheated steam injection suction) 89A: liquid oxygen production machine, 89B: simple multistage compressor, 89C: simple gas engine, 89D: simple air injection engine 89E: simple injection engine, 89F: simple gas engine vehicle, 89G: simple gas engine ship, 89H: simple gas engine airplane, 89I: simple air injection engine ship, 89J: simple injection engine airplane, 89K: rotary wing airplane, 89L: rotary wing injection airplane, 89M: extra large Osprey, 89N: large Osprey, 95a: combustion gas reservoir, 95b: compressed air reservoir, 95c: Superheated steam reservoir, 103: Cold heat recovery device,