JP2014211146A - Various kind energy conservation cycle combination engine - Google Patents

Various kind energy conservation cycle combination engine Download PDF

Info

Publication number
JP2014211146A
JP2014211146A JP2013089030A JP2013089030A JP2014211146A JP 2014211146 A JP2014211146 A JP 2014211146A JP 2013089030 A JP2013089030 A JP 2013089030A JP 2013089030 A JP2013089030 A JP 2013089030A JP 2014211146 A JP2014211146 A JP 2014211146A
Authority
JP
Japan
Prior art keywords
blade
power generation
superheated steam
turbine
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013089030A
Other languages
Japanese (ja)
Inventor
谷川 浩保
Hiroyasu Tanigawa
浩保 谷川
和永 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013089030A priority Critical patent/JP2014211146A/en
Publication of JP2014211146A publication Critical patent/JP2014211146A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

PROBLEM TO BE SOLVED: To provide a various kind energy conservation cycle combination engine by which the most amount of producible energy on the earth with power generation can produce water 3E jetting speed, vacuum and difference in height infinitely with gravity acceleration in vacuum or difference in height of large specific gravity substance by virtue of human kind wisdom.SOLUTION: A column pipe 12B of a gravity power generation building 12 for producing a difference in height is used as a transverse total moving blade water gravity turbine 11C and a large-specific gravity substance raising device 2F which raises water 3E to the highest part, conserves and jets the water, and accelerates the water with gravity acceleration in vacuum to perform power generation. As a target 1,000 times power generation amount of the existing water elevation power generation by the use of the same water quantity, a simple gas engine 89 P+a vertical total moving blade steam turbine 11F is used. As a target 1,000 times power generation amount of the existing thermal power generation, steam expansion speed+gravity acceleration use in vacuum is used. As a target 10 times speed of air planes and ships and as a target 1/100 fuel expenses of automobiles, various kinds of engines such as 100 times rotation output+100 times jetting propulsion output are used. As a target 1/500,000 space arrival expenses, an airplane which has the best application profitability in the world capable of applying all products so as to permit a day's trip to everywhere in the world is used.

Description

本発明の横型全動翼水重力タービン11C発電電気製造物含有駆動は、最先端科学技術が敬遠の製造困難な全動翼二重反転機関を実用化し、揚水発電の揚水ポンプ入力が回転速度の3乗に比例するを、発電量が水速度の2乗に比例として速度の無限増大に挑戦する回転出力や噴射推進出力にして、断熱圧縮の空気温度が圧縮比8で13倍になるを極限まで利用する、太陽光加熱器21で加熱した空気28aを圧縮する圧縮空気熱交換器2Yにし、圧縮比80〜100狙い過熱蒸気5H製造量を同一燃料量既存ボイラーの100倍狙いにして、竪型全動翼蒸気タービン11F真空度上昇中の重力加速度+過熱蒸気5H膨張速度発電にし、同一熱量既存蒸気タービン発電の10倍速度100倍発電量狙いにして、想定外を含めた同一燃料量既存火力発電の1000倍発電量狙いにし、発電量が水質量×速度の2乗×落差に比例すると仮定して、重力発電建物12+比重大物質上昇装置2Fの高さや強度を最重要とし、柱管12Bを比重大物質上昇装置2Fとして使用して、管径を増大することで鉄骨骨組12Aの柱を強大とし、用途に合わせた高さの強大な高層建築物として、横型全動翼水重力タービン11C発電や竪型全動翼蒸気タービン11F発電とし、製造過程で最も重要な工程を超高速回転時の回転バランス調整加工として、内側軸装置60A+外側軸装置60B夫々の両端に各種軸受12Cを具備し、内側軸装置60Aと外側軸装置60B夫々を別々に仮組立てして、夫々の両端を工作機械で保持超高速回転バランス調整加工後に分解して本組立にし、前例の無い内側軸装置60A兼円筒内側動翼群60Cと、外側軸装置60B兼円筒外側動翼群60Dの二重反転にする、横型全動翼水重力タービン11C発電電気製造物含有駆動の、各種エネルギ保存サイクル合体機関や各種エネルギ保存合体方法の技術に関する。 The horizontal full-blade water gravity turbine 11C power generation electric product-containing drive of the present invention has practically used a full-rotation counter-rotating engine that is difficult to manufacture, with cutting-edge science and technology being avoided. Although it is proportional to the third power, the power generation amount is proportional to the square of the water speed, and the rotation output and the injection propulsion output that challenge the infinite increase in speed are set, and the adiabatic compression air temperature is 13 times the compression ratio of 8 The compressed air heat exchanger 2Y that compresses the air 28a heated by the solar heater 21 is used, and the production ratio of the superheated steam 5H with a compression ratio of 80 to 100 is aimed at 100 times that of the existing fuel boiler. Type full rotor blade steam turbine 11F Gravity acceleration while raising the vacuum degree + superheated steam 5H expansion speed power generation, the same heat amount 10 times the speed of existing steam turbine power generation 100 times power generation target, the same amount of fuel including the unexpected fire Assuming that the amount of power generation is 1000 times that of power generation and that the amount of power generation is proportional to the mass of water × square of speed × head, the height and strength of the gravity power generation building 12 + specific material rising device 2F are the most important, and the column 12B Is used as the specific material rising device 2F to increase the diameter of the steel frame 12A by increasing the tube diameter, and as a high-rise building with a height suitable for the application, the horizontal full-blade water gravity turbine 11C Various types of bearings 12C are provided at both ends of the inner shaft device 60A and the outer shaft device 60B, respectively, as power generation and vertical-type full blade steam turbine 11F power generation. Each of the inner shaft device 60A and the outer shaft device 60B is temporarily assembled separately, and both ends are held by a machine tool. Combined engine with various energy storage cycles driven by a horizontal full blade hydrogravity turbine 11C power generation electric product containing the A / cylindrical inner blade group 60C and the outer shaft device 60B / cylindrical outer blade group 60D. Further, the present invention relates to a technique for combining various energy conservation methods.

横型全動翼水重力タービン11C発電電気駆動機関や電気製造物含有駆動機関は、前記と略同様に最も重要な工程を超高速回転時の回転バランス調整加工として、内側軸装置60A+外側軸装置60B夫々の両端に各種軸受12Cを具備し、内側軸装置60Aと外側軸装置60B夫々を別々に仮組立てして、夫々の両端を工作機械で保持超高速回転バランス調整加工良好後に分解して本組立にし、前例の無い円筒内側動翼群60Cと円筒外側動翼群60Dの二重反転にする、液体酸素製造機89Aや、簡単多段圧縮機89Bや、簡単ガス機関89Cや、簡単空気噴射機関89Dや、簡単噴射機関89E駆動にして、駆動過程では過熱蒸気5H製造量を最も重要とし、圧縮空気熱交換器2Y圧縮比既存ガスタービン圧縮比30〜40を50〜100狙いにして、簡単ガス機関89C+竪型全動翼蒸気タービン11Fの火力真空重力発電や、簡単ガス機関自動車89Fや、簡単ガス機関船舶89Gや、簡単ガス機関飛行機89Hや、簡単空気噴射機関船舶89Iや、簡単噴射機関飛行機89Jや、回転翼飛行機89Kや、回転翼噴射飛行機89Lや、特大オスプレイ89Mや、大型オスプレイ89Nを駆動にし、船舶の駆動では、自然現象高速化2aとして海水に窒素や酸素やCO2を供給微生物や海草類増大して、食物連鎖等で魚類等人類の食料を大増大し、飛行機や自動車駆動ではCO2排気1/100や燃料費1/100や1/50万経費宇宙到達狙い、飛行機や船舶は10倍速度狙い、夫々で運用利益率抜群世界一永遠持続狙う、各種エネルギ保存サイクル合体機関や各種エネルギ保存合体方法の技術に関する。 In the horizontal type full-blade water gravity turbine 11C power generation electric drive engine and the electric product-containing drive engine, the inner shaft device 60A + the outer shaft device 60B is used as the rotational balance adjustment processing at the time of ultra-high speed rotation in the same manner as described above. Various bearings 12C are provided at both ends, the inner shaft device 60A and the outer shaft device 60B are each temporarily assembled separately, and both ends are held by a machine tool. And a liquid oxygen production machine 89A, a simple multistage compressor 89B, a simple gas engine 89C, and a simple air injection engine 89D, in which an unprecedented cylindrical inner blade group 60C and a cylindrical outer blade group 60D are double-reversed. Alternatively, the simple injection engine 89E is driven, and the production amount of the superheated steam 5H is most important in the driving process, and the compressed air heat exchanger 2Y compression ratio existing gas turbine compression ratio 30 to 40 is changed to 50 to 1. Aiming at zero, simple gas engine 89C + vertical moving blade steam turbine 11F thermal vacuum gravity power generation, simple gas engine car 89F, simple gas engine ship 89G, simple gas engine airplane 89H, simple air injection engine ship 89I, simple jet engine airplane 89J, rotary wing airplane 89K, rotary wing jet airplane 89L, extra large Osprey 89M and large Osprey 89N are driven. Oxygen and CO2 supply Microorganisms and seaweeds will increase, and food such as fish will greatly increase in the food chain, etc., and by plane and automobile drive, CO2 emissions will be 1/100, fuel costs will be 1/100, and 1 / 500,000 will reach the universe Aiming at 10x speed for airplanes and ships, each aiming to be the world's most eternally sustainable operating profit rate. It relates to a technique of formic save coalescence method.

既存最先端科学技術の、揚水発電の揚水入力が回転速度の3乗に比例する入力になるの実用化から、可変速モーターを採用のため発電量が水速度の3乗〜2乗に比例が想定され、怠慢過ぎる既存最先端科学技術の既存揚水発電の水速度がマッハ1/7やマッハ1/5等のため、ロシア落下隕石速度マッハ50の1/5のマッハ10で実験結果を予想では、既存揚水発電と同一水質量の水噴射速度マッハ3製造にして、真空度上昇中の重力加速度を製造使用してマッハ10にすると、既存揚水発電と同一水質量マッハ10÷1/5=50倍水速度=50倍×50倍発電量=2500倍発電量になり、マッハ3噴射の入力を差引後の発電量が1000倍前後になる背景技術があり、水質量速度の製造や落差の製造は建築技術や製造技術等により無限大に近く、実験結果が既存の2倍発電量以上で地球温暖化防止革命や、経済成長戦略革命や、運用利益率抜群世界一永遠革命等により、日本の財政赤字1000兆円を比較的短期間に0にする等が狙える背景技術がある。 From the practical use of the existing state-of-the-art science and technology, the pumping input of pumped-storage power generation becomes an input proportional to the cube of the rotational speed, so the power generation amount is proportional to the cube of the water speed to the square of the water speed by adopting a variable speed motor. Since the water speed of the existing pumped-storage power generation of the existing state-of-the-art science technology that is assumed to be too lazy is Mach 1/7 or Mach 1/5, the experimental result is not expected with Mach 10 that is 1/5 of Russian falling meteorite speed Mach 50 When the water injection speed Mach 3 having the same water mass as that of the existing pumped storage power generation is manufactured and the gravitational acceleration during the increase in the vacuum degree is manufactured and used as the Mach 10, the same water mass Mach 10 ÷ 1/5 = 50 as that of the existing pumped storage power generation is used. Double water velocity = 50 times × 50 times power generation amount = 2500 times power generation amount, and there is a background technology in which the power generation amount after subtracting the input of Mach 3 injection is about 1000 times, manufacturing the water mass rate and manufacturing the head Is infinite due to architectural and manufacturing technologies Japan's budget deficit of 1,000 trillion yen is relatively short due to the global warming prevention revolution, the economic growth strategy revolution, and the world's most eternal revolution with outstanding operational profit rate. There is a background technology that can aim at zero in between.

既存最先端科学技術の火力発電のボイラーは、大気圧燃料燃焼で過熱蒸気を製造、蒸気タービンでの発電ですが、断熱圧縮の温度上昇は空気温度20℃が圧縮比8で13倍の260℃になり、怠慢過ぎる既存最先端科学技術のため、簡単ガス機関89Pとして、圧縮比8の10倍狙いの圧縮比80〜100狙いの圧縮空気熱交換器2Yとし、燃料噴射燃焼熱交換過熱蒸気5H製造にすると、燃焼温度が130倍前後となり、実験が必要な同一燃料量既存ボイラーの130倍前後の過熱蒸気5H製造量になる可能性があり、既存火力発電の蒸気タービン発電は、静翼と動翼を交互に夫々20前後具備して、蒸気速度を静翼で20回前後堰き止め方向転換噴射を繰り返す無茶膨張にし、蒸気速度を1/10等として回転出力を発生しない静翼としているため、静翼を全廃した全動翼二重反転の竪型全動翼蒸気タービン11Fとして、蒸気膨張速度+真空度上昇中の重力加速度製造使用で、既存蒸気タービン発電の100倍発電量狙いにし、過熱蒸気5H製造量や想定外を含めて同一燃料量既存火力発電の1000倍発電量を狙う、簡単ガス機関89P+竪型全動翼蒸気タービン11F発電として、実験結果が既存の2倍発電量以上で地球温暖化防止革命や、経済成長戦略革命や、運用利益率抜群世界一永遠革命等により、日本の財政赤字1000兆円を比較的短期間に0にする等が狙える背景技術がある。   The boiler of thermal power generation of the existing state-of-the-art technology produces superheated steam by atmospheric pressure fuel combustion and power generation by steam turbine, but the temperature rise of adiabatic compression is 260 ° C which is 13 times the air temperature 20 ° C and the compression ratio 8 Because of the existing state-of-the-art science and technology that is too lazy, as a simple gas engine 89P, a compressed air heat exchanger 2Y aimed at a compression ratio 80 to 100 aimed at 10 times the compression ratio 8, and a fuel injection combustion heat exchange superheated steam 5H When manufactured, the combustion temperature becomes about 130 times, and the same fuel amount that needs experimentation may become about 130 times the amount of superheated steam 5H production of existing boilers. The rotor blades are alternately provided about 20 each, and the steam speed is set to brown-free expansion that repeats damming direction change injection about 20 times with the stationary blades, and the stationary speed blades that do not generate rotational output with the steam speed set to 1/10, etc. Therefore, aiming at 100 times the power generation of existing steam turbine power generation by using gravity moving acceleration production while steam expansion speed + vacuum degree increase as a fully-rotating double-rotating vertical all-blade steam turbine 11F that completely abolished stationary blades As a simple gas engine 89P + vertical all-blade steam turbine 11F power generation, aiming to generate the same fuel amount 1000 times that of the existing thermal power generation, including the amount of superheated steam 5H produced and unexpected, the result of the experiment is the existing double power generation There are background technologies that can aim to reduce Japan's fiscal deficit of 1,000 trillion yen to 0 in a relatively short period of time due to the global warming prevention revolution, economic growth strategy revolution, and the world's most eternal revolution with a high return on investment. .

既存最先端科学技術の飛行機や船舶のガスタービンは、静翼と動翼を交互に具備して、圧縮機では圧縮空気を静翼で堰き止め方向転換繰り返す無茶圧縮にし、タービンでは燃焼ガスを静翼で堰き止め方向転換を繰り返す無茶膨張にして、仕事皆無の静翼を動翼と交互に半数具備し、夫々で回転出力や噴射推進出力を1/100等、怠慢過ぎる既存最先端科学技術にして、飛行機速度や船舶速度を1/10等にしているため、圧縮比50〜100狙いの圧縮空気熱交換器2Yの過熱蒸気5H製造にし、燃焼温度30倍〜50倍等の熱交換として、同一燃料量既存ボイラーの30倍〜50倍の過熱蒸気5H製造量にする、全動翼二重反転の簡単ガス機関89Cや簡単空気噴射機関89Dや簡単噴射機関89E等とし、回転出力や噴射推進出力を既存ガスタービンの100〜1000倍狙いにして、飛行機や船舶は10倍速度狙い飛行機は宇宙飛行全盛狙いにし、宇宙到達費用1/50万や1日に地球を16周する等として、経済成長戦略革命や、運用利益率抜群世界一永遠革命等により、日本の財政赤字1000兆円を比較的短期間に0にする等が狙える背景技術がある。 Existing state-of-the-art science and technology airplanes and marine gas turbines are equipped with alternating stationary blades and moving blades. The wings are swelled repeatedly by changing the direction of damming, and half of the stationary blades with no work are alternately provided with the moving blades. Since the airplane speed and ship speed are reduced to 1/10, etc., the superheated steam 5H of the compressed air heat exchanger 2Y aimed at a compression ratio of 50 to 100 is manufactured, and heat exchange such as a combustion temperature of 30 times to 50 times is performed. A simple gas engine 89C, a simple air injection engine 89D, a simple injection engine 89E, etc., with the same fuel amount and 30 to 50 times the superheated steam 5H production amount of the existing boiler, with all rotor blades counter-rotating. Output already Aiming for 100 to 1000 times the speed of gas turbines, aiming for 10 times the speed of airplanes and ships, aiming for the prime of space flight, the space arrival cost 1 / 500,000, orbiting the earth 16 times a day, etc. There is also a background technology that can aim to reduce Japan's budget deficit of 1,000 trillion yen to 0 in a relatively short time due to the world's most eternal revolution.

日本国特許1607151号、特許1609617号、特許1645350号、特許1924889号、特許1912522号、特許1959305号、特許1986119号、特許2604636号、1992年米国特許5133305号、1993年米国特許5230307号、1995年米国特許5429078号、1997年米国特許5701864号、PCT国際出願番号PCT/JP97/01814号・米国特許第6119650号、中国特許第8818号、EU英国特許902175号、PCT国際出願番号PCT/JP97/02250号・米国特許第6263664号がある。Japanese Patent No. 1607151, Patent No. 1609617, Patent No. 1645350, Patent No. 1924889, Patent No. 1912522, Patent No. 1959305, Patent No. 11986119, Patent No. 2646636, 1992 U.S. Pat. No. 5,133,305, 1993 U.S. Pat. US Pat. No. 5,429,078, 1997 US Pat. No. 5,701,864, PCT International Application No. PCT / JP97 / 01814, US Pat. No. 6,119,650, Chinese Patent No. 8818, EU British Patent No. 902175, PCT International Application No. PCT / JP97 / 02250 No. 6,263,664.

PCT国際出願公開NO.WO 2010/101017 PCT/JP2010/052171の出願があり、特願2007−179204提出日:平成19年7月9日より特願2007−265115提出日:平成19年10月11日まで5個の出願があり、特願2008−006612提出日:平成20年1月16日より特願2008−327045提出日:平成20年12月24日まで45個の出願があり、特願2009−011656提出日:平成21年1月22日より特願2009−298004提出日:平成21年12月28日まで322個の出願があり、特願2010−000841提出日:平成22年1月6日より特願2010−033224提出日:平成22年2月18日まで32個の出願があり、特願2011−055078提出日:平成23年3月14日より特願2011−267508提出日平成23年12月7日まで22個の出願があり、特願2012−032245提出日:平成24年2月17日より特願2012−271035提出日:平成24年12月12日まで29個の出願があり、特願2013−7975提出日:平成25年1月21日より特願2013−59199提出日:平成25年3月22日まで6個の出願があります。PCT International Application Publication No. There are applications of WO 2010/101017 PCT / JP2010 / 052171, and the filing date of Japanese Patent Application 2007-179204: July 9, 2007 to the filing date of Japanese Patent Application 2007-265115: October 11, 2007 No. 2008-006612 filing date: January 16, 2008 to No. 2008-327045 filing date: There are 45 applications from December 24, 2008, filing date of Japanese Patent Application No. 2009-011656: From January 22, 2009, the filing date of the Japanese Patent Application 2009-298004: There were 322 applications until December 28, 2009, and the filing date of the Japanese Patent Application 2010-000841: the Japanese Patent Application 2010 from January 6, 2010 -0332424 Submission date: There were 32 applications until February 18, 2010, and Japanese Patent Application No. 2011-055078 submission date: 2011 There are 22 applications from March 14 to the date of submission of the Japanese Patent Application 2011-267508 to December 7, 2011, the date of submission of the Japanese Patent Application 2012-032245: the date of submission of the Japanese Patent Application 2012-271355 from February 17, 2012 : There are 29 applications until December 12, 2012, and the filing date of Japanese Patent Application 2013-7975: From January 21, 2013, the filing date of Japanese Patent Application 2013-59199: six until March 22, 2013 There is an application.

既存最先端科学技術の揚水発電の発電部分では、位置エネルギーのみ使用で揚水電力以下の発電にする等、仕事率kg重m/秒の単位符号違反が明白で、怠慢過ぎる既存最先端科学技術の発電量増大の意志皆無等、無茶過ぎる点を同一水質量1000倍発電量狙いに改良し、怠慢過ぎる既存最先端科学技術の火力発電は、圧縮空気熱交換器2Y+竪型全動翼蒸気タービン11Fにより、同一燃料量1000倍発電量狙いに改良して、飛行機や船舶を駆動するガスタービンの圧縮機やタービンの改良点は、静翼と動翼を交互に具備し、圧縮機では圧縮空気を静翼で堰き止め繰り返しで無茶圧縮して、タービンではガス速度を静翼で堰き止め反転噴射を繰り返し、全く仕事をしない静翼でガス速度の殆どを消費する等、既存最先端科学技術の無茶過ぎる点を改良して、1000倍回転出力や噴射推進出力狙いにする課題がある。   In the power generation part of the existing state-of-the-art science and technology, the unit code violation of the work load kg weight m / sec is obvious, such as using only potential energy and generating less than the pumped power. The power generation increase is nothing, and the point that is too unreasonable is improved with the same water mass 1000 times aiming at the power generation amount, the thermal power generation of the existing state-of-the-art technology that is too lazy is the compressed air heat exchanger 2Y + vertical moving blade steam turbine 11F Therefore, the improvement of the compressor and turbine of the gas turbine that drives airplanes and ships by improving the target fuel generation by 1000 times the same fuel amount is provided with alternating stationary blades and moving blades, and the compressor uses compressed air. Repeated damming with stationary blades and repeated unreserved compression, turbines repeatedly damped with stationary blades and reversing injection, consuming almost all of gas velocity with stationary blades that do not work at all, etc. To improve the Gil point, there is a problem that the 1000-fold rotational output and the injection propulsion output aimed.

水噴射速度製造+真空中の重力加速度製造+落差製造して、同一水質量既存揚水発電の1000倍発電量狙う横型全動翼水重力タービン11C発電とし、該電気駆動の例えば液体酸素製造機89Aで製造の液体酸素駆動を含有として、圧縮仕事率を空気圧縮の21/60000容積圧縮仕事率にし、太陽光加熱器21+圧縮空気熱交換器2Y含む簡単ガス機関89C+竪型全動翼蒸気タービン11Fによる、火力真空重力発電に含めて、同一燃料量既存火力発電の1000倍発電量狙いにして、簡単多段圧縮機89B連結可能な、簡単ガス機関89Cや、簡単空気噴射機関89Dや、簡単噴射機関89E駆動とし、既存ガスタービンの1000倍回転出力や噴射推進出力狙いの、自動車等車両類や船舶類や飛行機類を回転力駆動や噴射推進駆動にして、飛行機は既存最高飛行高度付近より過熱蒸気ロケット噴射し、宇宙到達費用既存飛行機の燃料費程度とした既存宇宙到達費用の1/50万前後として、宇宙飛行全盛狙いや1日に地球を16周する等とし、地球上何処でも日帰り旅行や大気中はCO2排気僅少飛行狙いとして、世界規模100%独占して極秘製造極秘運用する発電や船舶や飛行機や自動車等とし、既存最先端科学技術の無茶過ぎる点を改良既存の2〜1000倍出力の大革命にして、製造物全部運用の運用利益率抜群の世界一永遠狙いや新規雇用抜群の世界一にし、地球温暖化防止する。 Water injection speed production + gravity acceleration production in vacuum + head production, horizontal water turbine 11C power generation with the same water mass aiming at 1000 times the power generation capacity of existing pumped storage power generation, for example, liquid oxygen production machine 89A of this electric drive A simple gas engine 89C including a solar heater 21 + compressed air heat exchanger 2Y, and a vertical all blade steam turbine 11F including a liquid oxygen drive manufactured in the above, and a compression work rate of 21/60000 volumetric compression work rate of air compression. The simple gas engine 89C, the simple air injection engine 89D, and the simple injection engine that can be connected to the simple multi-stage compressor 89B with the aim of generating the same fuel amount 1000 times that of the existing thermal power generation. The 89E drive is used to drive vehicles such as automobiles, ships, and airplanes that are 1000 times the rotation output and injection propulsion output of existing gas turbines. Then, the plane will inject superheated steam rockets from around the existing highest flight altitude, and the space arrival cost will be about 1 / 500,000 of the existing space arrival cost, which is about the fuel cost of the existing aircraft, aiming at the prime of space flight and the earth on the day 16 laps, etc. A day trip anywhere on the earth and CO2 exhaust in the atmosphere aiming for a little flight, 100% world-wide monopolized power generation, ships, airplanes, automobiles, etc. Improve the unreasonable point of power. Make it a revolution of 2 to 1000 times the existing output, make it the world's most eternal aim with outstanding operating profit rate for all product operations and the world's best for new employment, and prevent global warming.

実験結果が待望ですが、既存の揚水発電の発電部分に真空中の重力加速度製造+噴射速度製造+落差製造を追加すると、同一揚水量同一落差の発電量を既存揚水発電の10倍以上発電量の大革命に出来る効果が大きく、横型全動翼水重力タービン11C燃料費0安価発電の、電気駆動液体酸素製造機89Aで太陽光加熱器21で加熱した空気を圧縮する熱製造にすると、燃料費0で無限大に近い過熱蒸気5H温熱製造+液体酸素5K冷熱製造+液体窒素5L冷熱製造として、例えば日本近海のメタン回収等の熱利用に出来る効果も大きく、副産物の液体窒素や液体酸素も膨大な量になるため、液体窒素は氷の製造等各種冷熱として使用出来る大きな効果があり、液体酸素を空気圧縮に換えて使用すると圧縮仕事率を空気圧縮の21/60000容積圧縮仕事率にし、簡単ガス機関89Cや簡単空気噴射機関89Dや簡単噴射機関89E等を駆動にして、自動車等車両類や船舶類や飛行機類を回転力駆動や噴射推進駆動するため、1/10燃料費や10倍速度を狙える大きな効果や、宇宙到達費用を既存ロケットの1/50万前後にする効果も大きく、地球温暖化防止革命にする効果がある。 The experimental result is long-awaited, but when adding gravity acceleration production + injection velocity production + head production in vacuum to the power generation part of the existing pumped storage power generation, the power generation amount with the same head and the same head is more than 10 times that of the existing pumped power generation If the heat production that compresses the air heated by the solar heater 21 in the electrically driven liquid oxygen production machine 89A with the low cost power generation of the horizontal all-blade water gravity turbine 11C, the fuel cost is great. Superheated steam 5H thermal production + 0% near infinity + liquid oxygen 5K cold production + liquid nitrogen 5L cold production, for example, has a great effect on heat utilization such as methane recovery in the sea near Japan, and by-product liquid nitrogen and liquid oxygen are also enormous Therefore, liquid nitrogen has a great effect that it can be used as various types of cold heat such as ice production. When liquid oxygen is used instead of air compression, the compression work rate is 21/6000 of air compression. In order to drive the volumetric compression power, drive the simple gas engine 89C, the simple air injection engine 89D, the simple injection engine 89E, and the like to drive the vehicles such as automobiles, ships, and airplanes by rotational force driving and jet driving, It has a great effect of targeting 10 fuel costs and 10 times the speed, and an effect of reducing the space arrival cost to about 1 / 500,000 of existing rockets, and has the effect of making a global warming prevention revolution.

圧縮空気熱交換器2Y+全動翼二重反転超高圧圧縮空気に燃料噴射燃焼熱交換過熱蒸気5H製造では、断熱圧縮の空気温度が圧縮比8で13倍になるため、圧縮比50〜100狙いの過熱蒸気5H製造にすると、同一燃料量の過熱蒸気5H製造量を既存ボイラーの100倍に近付ける効果があり、更に理論空燃比まで燃料燃焼質量を既存ガスタービンの4倍等に出来るため、燃焼ガス49の回転出力や噴射推進出力を全動翼二重反転以外で4倍に近付ける効果があり、全動翼二重反転火力発電では、簡単ガス機関89Pの太陽光加熱器21で加熱した空気を圧縮する、圧縮空気熱交換器2Yで燃料噴射燃焼により過熱蒸気5Hを製造するため、同一燃料量既存ボイラーの100倍過熱蒸気5H製造量にする大きな効果があり、全動翼二重反転の竪型全動翼蒸気タービン11Fにより、蒸気膨張速度+真空度上昇中の重力加速度で加速して回転出力発生のため、過熱蒸気速度を既存蒸気タービンの10倍に近付ける効果があり、過熱蒸気5H製造量を含めて同一燃料量既存火力発電の1000倍発電量に近付ける大きな効果がある。   Compressed air heat exchanger 2Y + all-blade counter-rotating ultra-high pressure compressed air Injecting combustion heat exchange superheated steam 5H, the adiabatic compression air temperature is 13 times the compression ratio 8, so the compression ratio is 50-100 The production of superheated steam 5H has the effect of bringing the amount of superheated steam 5H produced with the same fuel amount closer to 100 times that of existing boilers, and the fuel combustion mass can be made four times that of existing gas turbines to the stoichiometric air-fuel ratio. This has the effect of bringing the rotational output and injection propulsion output of the gas 49 closer to four times other than full rotor blade reversal. In full rotor blade reversal thermal power generation, air heated by the solar heater 21 of the simple gas engine 89P Because the superheated steam 5H is produced by the fuel injection combustion in the compressed air heat exchanger 2Y, the same fuel amount has a great effect on the production quantity of the superheated steam 5H that is 100 times that of the existing boiler. The vertical all blade steam turbine 11F accelerates by the gravitational acceleration while the steam expansion speed + the degree of vacuum rises, and produces a rotational output. This has the effect of bringing the superheated steam speed closer to 10 times that of the existing steam turbine. The same amount of fuel, including the production amount, has the great effect of bringing it closer to 1000 times the amount of electricity generated by existing thermal power generation.

重力発電建物12の説明図(実施例1)Illustration of gravity power building 12 (Example 1) 横型全動翼水重力タービン11Cの説明図(実施例2)Explanatory drawing of a horizontal type full-blade water gravity turbine 11C (Example 2) 横型全動翼水重力タービン11C軸受12Cの説明図(実施例3)Explanatory drawing of the horizontal type full-blade water gravity turbine 11C bearing 12C (Example 3) 太陽光加熱器21の説明図(実施例4)Explanatory drawing of the solar heater 21 (Example 4) 液体酸素製造機89Aの説明図(実施例5)Explanatory drawing of liquid oxygen production machine 89A (Example 5) 簡単多段圧縮機89Bの説明図(実施例6)Explanatory drawing of simple multistage compressor 89B (Example 6) 簡単ガス機関89Cの説明図(実施例7)Illustration of simple gas engine 89C (Example 7) 圧縮空気熱交換器2Yの展開説明図(実施例8)Explanatory drawing of compressed air heat exchanger 2Y (Example 8) 竪型全動翼蒸気タービン11Fの説明図(実施例9)Explanatory drawing of vertical all blade steam turbine 11F (Example 9) 簡単空気噴射機関89Dの説明図(実施例10)Explanatory drawing of simple air injection engine 89D (Example 10) 簡単噴射機関89Eの説明図(実施例11)Explanatory drawing of the simple injection engine 89E (Example 11) 簡単ガス機関自動車89Fの説明図(実施例12)Illustration of simple gas locomotive 89F (Example 12) 簡単ガス機関船舶89Gの説明図(実施例13)Explanatory drawing of simple gas engine ship 89G (Example 13) 簡単ガス機関飛行機89Hの説明図(実施例14)Explanatory drawing of simple gas engine airplane 89H (Example 14) 簡単空気噴射機関船舶89Iの説明図(実施例15)Explanatory drawing of the simple air injection engine ship 89I (Example 15) 簡単噴射機関飛行機89Jの説明図(実施例16)Explanatory drawing of simple injection engine airplane 89J (Example 16) 回転翼飛行機89Kの説明図(実施例17)Explanatory drawing of rotary wing airplane 89K (Example 17) 回転翼噴射飛行機89Lの説明図(実施例18)Explanatory drawing of rotary wing jet airplane 89L (Example 18) 特大オスプレイ89Mの説明図(実施例19)Illustration of oversized Osprey 89M (Example 19) 大型オスプレイ89Nの説明図(実施例20)Illustration of Large Osprey 89N (Example 20)

既存技術に二重反転機関の前例皆無で、対向噛合い回転を除く本発明略全部が二重反転機関関連のため、製造の過程で円筒内側動翼群60Cと円筒外側動翼群60Dを夫々別々に仮組立とし、夫々の両端には各種軸受12Cを具備で運転時と同様に工作機械で回転や加工可能として、夫々を超高速回転でもバランス運転良好に加工後に分解本組立にする、全く新しい加工技術を中核とし、同一揚水量既存揚水発電の1000倍発電量狙いや、同一燃料量既存火力発電の1000倍発電量狙いや、同一燃料量宇宙到達費用既存ロケットの1/50万狙いでの宇宙飛行全盛狙いや、同一燃料量10倍速度の飛行機や船舶等に挑戦して、無茶過ぎる既存最先端科学技術を実験で実証します。   Since there is no precedent of counter-rotating engines in the existing technology, and almost all of the present invention except counter meshing rotation is related to counter-rotating engines, the cylindrical inner rotor blade group 60C and the cylindrical outer rotor blade group 60D are respectively connected in the manufacturing process. Separately tentatively assembled, equipped with various bearings 12C at both ends, which can be rotated and machined with machine tools in the same way as during operation, and each of them can be disassembled and assembled after processing with good balance operation even at ultra-high speed rotation. Focusing on new processing technology, aiming to generate 1000 times the same amount of pumped power as existing pumped power generation, aiming to generate 1,000 times the same amount of fuel as existing thermal power generation, and aiming for 1 / 500,000 of the same fuel amount to reach the space We will try to demonstrate the latest state-of-the-art science technology that is too unreasonable by experimenting with the aim of astronautics in spaceflight and planes and ships with 10 times the same amount of fuel.

図1の重力発電建物12は、揚水発電水速度音速の1/7〜1/5を、真空中の重力加速度製造+噴射速度マッハ1〜3製造とし、水3E速度マッハ10同一落差発電で計算して、同一水3E質量揚水発電の10÷1/5=50倍速度=50×50発電量=2500発電量とし、噴射速度製造の入力増大や想定外を含めて1000倍発電量狙いにして、落差を重力発電建物12で無限製造発電量無限増大狙いにし、重力発電建物12の最上部より比重大物質の水3Eを高速噴射して、真空度上昇中の重力加速度加速する過程で、円筒外側動翼群60D+円筒内側動翼群60Cに噴射し夫々を二重反転駆動して、横型全動翼水重力タービン11C多数を次々に駆動するため、比重大物質上昇装置2Fによる比重大物質3Eや2Eの最上部までの運搬速度が重要です。そこで重力発電建物12の柱を柱管12B兼比重大物質上昇装置2Fとして、柱管12Bの管径を拡大して頑丈な柱にすると共に低速上昇速度で揚水電力僅少にし、継手に角フランジ12Dを鉄骨骨組12Aに合せて具備して、鉄骨骨組12Aの上下を角フランジ12Dにボルト締め組立てにし、重力発電建物12を構成柱管12Bの内部を比重大物質上昇装置2Fとして使用して、水3Eを最上部に上昇保存し、比重大物質加速器6Wでマッハ1〜3で噴射して、真空度上昇中の重力加速度加速にし、横型全動翼水重力タービン11C発電にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 The gravity power generation building 12 in FIG. 1 calculates 1/7 to 1/5 of pumped water generation water speed sound speed as gravity acceleration production in vacuum + injection speed Mach 1 to 3 production, and water 3E speed Mach 10 is calculated with the same head power generation. The same water 3E mass pumped-storage power generation 10 ÷ 1/5 = 50 times speed = 50 × 50 power generation amount = 2500 power generation amount, aiming at 1000 times power generation amount including the increase in injection speed input and unexpected In the process of accelerating the gravitational acceleration while raising the vacuum degree, aiming at the infinite production power generation amount infinite increase in the gravitational power generation building 12, the water 3E of a specific critical material is jetted at high speed from the top of the gravitational power generation building 12 In order to drive the outer blade group 60D + cylindrical inner blade group 60C by inversion and driving each of the horizontal all blade water gravity turbines 11C one after another, the specific material 3E by the specific material raising device 2F And luck to the top of 2E The carrying speed is important. Therefore, the column of the gravitational power generation building 12 is used as the column tube 12B and the significant substance rising device 2F, and the diameter of the column tube 12B is enlarged to make it a sturdy column, and the pumping power is reduced at a low rate of rise. In accordance with the steel frame 12A, the upper and lower sides of the steel frame 12A are bolted and assembled to the square flange 12D, and the gravity power generation building 12 is used inside the column tube 12B as the specific material raising device 2F. 3E is stored at the top, and is injected with Mach 1 to 3 by the specific material accelerator 6W to make the acceleration of gravity acceleration while raising the degree of vacuum to produce a horizontal all blade hydrogravity turbine 11C power generation. Combined engine power generation and combined method power generation.

図2の横型全動翼水重力タービン11C発電は、発電量が速度の2乗に比例すると考えて大重量直線超高速噴射対応の対向噛合い回転を可能にする、対向同期歯車4C4Cを具備して、直列同回転歯車4Dにより回転数を統一発電機1の取り付け軸多数とし、発電機1の取り付け高さに合せた重力発電建物12の柱管12Bの高さにして、50〜100組等の鉄骨骨組12A組立用角フランジ12D具備の柱管12Bも具備し、柱管12B兼比重大物質上昇装置2Fにより水3Eを最上部に可変速モーターで上昇保存して、揚水入力が回転速度の3乗に比例に対応し、比重大物質加速器6Wで水3Eをマッハ3等で噴射し、既存蒸気タービン以上に真空度を上昇した真空中の重力加速度加速にして、マッハ10で直線加速の計算では既存揚水発電と同一水質量マッハ10÷1/5=50倍水速度として、50倍×50倍発電量=2500倍発電量にし、マッハ3噴射の入力を差引後の発電量を1000倍狙いにし、横型全動翼水重力タービン11C直列対向噛合い回転駆動して、水3E速度も水3E落差も無限製造して既存最先端科学技術を大改良し、同一揚水量既存揚水発電の2倍で良いを1000倍発電量狙いにして、実験が必要ですが燃料費0で発電量を無限増大にし、利益率抜群世界一の地球温暖化防止にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 The horizontal full-blade hydrogravity turbine 11C power generation of FIG. 2 includes a counter synchronous gear 4C4C that enables counter meshing rotation corresponding to heavy-weight linear ultra-high-speed injection, assuming that the amount of power generation is proportional to the square of the speed. Thus, the number of rotation shafts of the unified generator 1 is increased by the series rotation gear 4D, and the column pipe 12B of the gravity power generation building 12 is adjusted to the height of the generator 1, and 50 to 100 sets, etc. The column tube 12B having the square flange 12D for assembling the steel frame 12A is also provided, and the column tube 12B and the significant substance raising device 2F is used to store the water 3E at the top by a variable speed motor, and the pumping input is the rotational speed. Corresponding to the third power, water 3E is injected by Mach 3 etc. with a specific material accelerator 6W, and the acceleration of gravity in vacuum is increased to a higher degree of vacuum than the existing steam turbine. In the existing pumping Same water mass as electricity Mach 10 ÷ 1/5 = 50 times water speed, 50 times × 50 times power generation amount = 2500 times power generation amount, Mach 3 injection input after subtracting power generation amount after 1000 times, horizontal type Fully bladed water gravity turbine 11C series intermeshing mesh rotation drive, water 3E speed and water 3E head are infinitely manufactured, greatly improve the existing state-of-the-art science and technology, and the same pumping amount can be double that of existing pumping power generation Experiments are required to aim for 1000 times the amount of power generation, but the power generation amount is infinitely increased at zero fuel cost, making it the best in the world to prevent global warming, making the energy conservation cycle coalescence engine power generation and coalescence method power generation .

図3の横型全動翼水重力タービン11C製造や駆動は、発電量が速度の2乗に比例すると考えて大重量直線超高速速度に対応とし、夫夫が超高速で対向噛合い回転する円筒タービン翼群8A+円筒タービン翼群8Aにして、夫々の両端には夫々最適軸受12Cや水平軸板16や水平軸16Aを具備し、製造段階では円筒タービン翼群8Aの内径面やフランジ12Eを先ず精密仕上げして、水平軸板16や水平軸16Aを精密仕上げボルト締め固着等とし、両端に軸受12C具備することで、工作機械で両端を保持工作機械でタービン翼8bの加工や超高速回転バランス加工として、超高速バランス調整加工運転良好に加工後の夫々を分解精密本組立て等とし、全く新しい組立加工技術や組立技術で記録的に長大な円筒タービン翼群8Aにして、柱管12B兼比重大物質上昇装置2Fにより、水3Eを最上部に上昇保存して、タービン外箱77aの比重大物質加速器6Wで水3Eをマッハ3等で噴射し、2個で1組の横型全動翼水重力タービン11Cを製造や駆動にして、重力発電建物12により100組前後や落差800m前後や無限箇所建設を狙う発電にし、利益率抜群世界一の地球温暖化防止にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 The horizontal full-blade hydrogravity turbine 11C shown in FIG. 3 is manufactured and driven so that the amount of power generation is proportional to the square of the speed, so that it corresponds to a heavy-weight linear ultra-high speed, and the husband rotates counter-meshing at ultra-high speed. The turbine blade group 8A + cylindrical turbine blade group 8A is provided with an optimum bearing 12C, a horizontal shaft plate 16 and a horizontal shaft 16A at both ends, respectively. Precisely finish, the horizontal shaft plate 16 and the horizontal shaft 16A are fixed with precision finish bolting, etc., and bearings 12C are provided at both ends, so that both ends are held by a machine tool. As the processing, each of the high-speed balance adjustment processing operation after good processing is disassembled and precision main assembly, etc., and a completely long cylindrical turbine blade group 8A is recorded with completely new assembly processing technology and assembly technology. The column pipe 12B and the specific material rising device 2F store the water 3E in the uppermost position and inject the water 3E with the specific material accelerator 6W of the turbine outer box 77a by the Mach 3 or the like. Manufacturing and driving the horizontal full-blade water gravity turbine 11C, the power generation aiming to construct around 100 sets, around 800m drop and infinite places with the gravity power generation building 12, and the world's most profitable prevention of global warming Energy conservation cycle coalescence engine power generation and coalescence method power generation.

図4の太陽光加熱器21の熱製造は、空気20℃を断熱圧縮比8で260℃になるため、簡単ガス機関89Pで太陽光加熱器21で加熱した空気28aを20MPa等超高圧圧縮し、圧縮空気熱交換器2Yで燃料噴射燃焼熱交換過熱蒸気5Hを製造して、同一燃料量の過熱蒸気5H製造量を既存ボイラーの100倍狙いにし、竪型全動翼蒸気タービン11Fを駆動同一燃料量既存火力発電の1000倍発電量狙いにして、液体酸素製造機89Aを同様に駆動では、過熱蒸気5H温熱+液体空気28a冷熱製造し、電気+液体空気冷熱+過熱蒸気温熱供給設備3Dにして、温熱利用全盛や冷熱利用全盛にするもので、太陽光加熱器21を水面に浮力を設け又は平地に円形鉄道を設けて具備し、太陽光を東から西に直角維持回転制御する図に無い水上装置や陸上装置として、太陽光加熱器21には回転支持部4fを設けて歯車装置4dやローラー4eを具備し、円筒回転部77Gとして太陽光を上下方向直角維持回転制御して、浮力や円形鉄道利用により東西方向直角維持回転制御する装置とし、太陽光を2方向直角維持回転制御して、加熱保存熱量最大狙う熱吸収管4H内空気温度を最高にする装置とし、地球最大熱量の太陽光を矩形長レンズ2dにより直線状に集めて、焦点距離付近に熱吸収管4H具備内部空気路28A空気28a温度を最高にして、外部空気路28A空気28a温度も上昇し、既存のレンズ断面を直線状に延長矩形の長レンズ2dとして、レンズ材質全部を使用可能とし、発泡プラスチック等の断熱材2cを円筒回転部77G等で囲って円筒等の長大な筒として、長大な長レンズ2dを継手80A+締付具80Bで密封し、上部を外部空気路28Aとし熱吸収管4H内部を内部空気路28Aとして、2空気路28A選択吸入の太陽光加熱器21にする。 Since the heat production of the solar heater 21 in FIG. 4 is 260 ° C. with an adiabatic compression ratio of 8 at 20 ° C., the air 28a heated by the solar heater 21 with a simple gas engine 89P is compressed to an ultrahigh pressure such as 20 MPa. , The fuel injection combustion heat exchange superheated steam 5H is produced by the compressed air heat exchanger 2Y, and the superheated steam 5H production amount of the same fuel amount is aimed at 100 times that of the existing boiler, and the vertical all blade steam turbine 11F is driven identically. Aiming at a power generation amount 1000 times that of the existing thermal power generation, when the liquid oxygen producing machine 89A is driven in the same manner, the superheated steam 5H heat + liquid air 28a is produced cold, and the electricity + liquid air cold heat + superheated steam heat supply equipment 3D is produced. In this figure, the solar heater 21 is provided with buoyancy on the water surface or a circular railroad on the flat surface, and the solar light is maintained at right angles from the east to the west. No As an upper device or a land device, the solar heater 21 is provided with a rotation support portion 4f and is equipped with a gear device 4d and a roller 4e. A device that controls rotation at right angles in the east-west direction by using a circular railroad, and that controls the rotation of sunlight at two angles at right angles to maximize the air temperature in the heat absorption tube 4H that is aimed at the maximum amount of heat stored and preserved. The light is collected in a straight line by the rectangular long lens 2d, the heat absorption tube 4H is provided near the focal length, the internal air passage 28A air 28a temperature is maximized, the external air passage 28A air 28a temperature rises, As the long lens 2d that extends linearly, the entire lens material can be used, and the heat insulating material 2c such as foamed plastic is surrounded by a cylindrical rotating portion 77G or the like as a long cylinder such as a cylinder. The long length lens 2d and sealed with joint 80A + fasteners 80B, the external air passage 28A the internal heat absorbing tube 4H top as an internal air passage 28A, to solar heater 21 of second air passage 28A selection inhalation.

図5の液体酸素製造機89Aは、横型全動翼水重力タービン11C燃料費0発電電気駆動や竪型全動翼蒸気タービン11F発電電気駆動にし、太陽光加熱器21で加熱した空気28aを、簡単多段圧縮機89B連結や水噴射冷却圧縮の選択を含めて簡単圧縮機3sで超高圧圧縮して、圧縮空気熱交換器2Y水管52B+低温空気熱交換器2wアルコール管52Cで熱回収し、100℃等の水52A製造+アルコール52C−100℃前後で冷却の空気28aとして、空気タービン3t駆動断熱膨張衝動駆動の過程で、タービン翼段落毎の衝動圧や液化温度に合わせて液体酸素5Kや液体窒素5L液化噴射にし、段落毎の外周下部より夫々に分割して液体酸素5Kや液体窒素5L等で回収して、絶対0度に近付く空気タービン3t排気と熱交換する低温排気熱交換器2V具備駆動とし、低温排気熱交換器2Vアルコール管52Cで熱交換アルコール52Cを−100℃前後として、アルコール管52Cを低温空気熱交換器2wに延長して圧縮空気28aを冷却可能な最低温度にし、空気タービン3t排気温度を絶対0度に近付ける循環にして、液体酸素5K+液体窒素5L冷熱大量製造狙いとし、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に嵌合組立部9M螺子組立螺子固定や圧入螺子固定等本組立同様に仮組立後に、、工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転等とし、水52A温熱大量製造でメタンハイドレートに注入メタンを回収する等温熱利用全盛にして、液体酸素5Kや液体窒素5Lは各種機関で使用し、圧縮仕事率を21/60000や79/60000等超高圧燃焼部選択駆動の各種機関にして、飛行機や船舶や自動車等を各種回転駆動や超高速噴射推進駆動にする、液体酸素製造機89Aにする。   The liquid oxygen producing machine 89A in FIG. 5 uses the horizontal full-blade water gravity turbine 11C fuel cost 0 power generation electric drive and the vertical full-rotor blade steam turbine 11F power generation electric drive, and the air 28a heated by the solar heater 21 is Including simple multi-stage compressor 89B connection and water jet cooling compression selection, ultra-high pressure compression is performed by simple compressor 3s, and heat is recovered by compressed air heat exchanger 2Y water pipe 52B + low temperature air heat exchanger 2w alcohol pipe 52C, 100 Water 52A production such as ° C. + alcohol 52C—cooling air 28a around 100 ° C. In the process of air turbine 3t drive adiabatic expansion impulse drive, liquid oxygen 5K and liquid according to the impulse pressure and liquefaction temperature of each turbine blade stage Nitrogen 5L liquefied injection, divided from the lower outer periphery of each paragraph, recovered with liquid oxygen 5K, liquid nitrogen 5L, etc., and heat exchange with air turbine 3t exhaust approaching absolute 0 degree The low-temperature exhaust heat exchanger 2V is driven, the low-temperature exhaust heat exchanger 2V alcohol pipe 52C is set to about -100 ° C., the alcohol pipe 52C is extended to the low-temperature air heat exchanger 2w, and the compressed air 28a is supplied. The temperature is set to the lowest possible cooling, and the exhaust temperature of the air turbine 3t is made to circulate close to absolute 0 °, and the mass production of liquid oxygen 5K + liquid nitrogen 5L is aimed at mass production. Bearings 12C are provided at the optimum positions on both ends of each of the blade group 60D and the outer shaft device 60B. Enables holding precision processing, enables ultra-high speed rotation balance adjustment processing, and also serves as inner shaft device 60A, inner compression blade 8q, inner output blade 8s, and outer shaft device 60B. As a manufacturing balance adjustment process for the side compressor blades 8r and the outer output blades 8t, the main shaft device 60A and the outer shaft device 60B are super-high-speed double-reversed by this assembly and injected into methane hydrate by mass production of water 52A. By making the best use of isothermal heat to recover methane, liquid oxygen 5K and liquid nitrogen 5L are used in various engines, and the compression work rate is set to various engines of selective driving of ultra-high pressure combustion parts such as 21/60000 and 79/60000. A liquid oxygen production machine 89A is used for driving various types of rotation or ultra-high-speed jet propulsion to a ship or a car.

図6の簡単多段圧縮機89Bは、各種機関に連結し水噴射冷却圧縮の選択を含めて超高圧圧縮空気28aを製造するもので、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に嵌合組立部9M螺子組立螺子固定や圧入螺子固定等本組立同様に仮組立後に、工作機械で両端保持精密加工や超高速回転バランス調整加工等にし、内側軸装置60A兼内側圧縮翼8qや、外側軸装置60B兼外側圧縮翼8rの複数を製造やバランス調整加工として、夫々を分解して本組立てにすることで、内側軸装置60Aと外側軸装置60Bの超高速二重反転良好とし、外箱翼6Gより吸入の空気28aを超高速回転超高圧圧縮して、圧縮空気熱交換機2Yで熱交換過熱蒸気5Hを製造する2回圧縮や3回圧縮等とし、最適温度の高圧圧縮空気28aを製造する簡単多段圧縮機89Bとして、各種機関に連結して液体酸素製造機89Aや簡単ガス機関89Cや、簡単空気噴射機関89Dや簡単噴射機関89E等を駆動し、回転出力や噴射推進出力を発生して、飛行機や船舶や自動車等を各種回転駆動や超高速噴射推進駆動にする、マイクロ超高速簡単多段圧縮機89Bを含む簡単多段圧縮機89B各種連結駆動にする。 A simple multi-stage compressor 89B shown in FIG. 6 is connected to various engines to produce ultra-high pressure compressed air 28a including selection of water jet cooling compression, and includes a cylindrical inner blade group 60C and inner shaft device 60A and a cylindrical outer side. Bearings 12C are provided at the optimum positions at both ends of the blade group 60D and the outer shaft device 60B, respectively. For precision holding processing, ultra-high-speed rotation balance adjustment processing, etc., a plurality of inner shaft devices 60A and inner compression blades 8q and outer shaft devices 60B and outer compression blades 8r are manufactured and balanced, and each is disassembled and assembled. In this way, the inner shaft device 60A and the outer shaft device 60B have excellent ultra-high speed double reversal, and the air 28a sucked from the outer casing blade 6G is compressed by ultra-high speed rotation and ultra-high pressure, and heat exchange is performed by the compressed air heat exchanger 2Y. Excessive As a simple multistage compressor 89B for producing high-pressure compressed air 28a at an optimum temperature, such as two-time compression or three-time compression for producing steam 5H, it is connected to various engines, a liquid oxygen production machine 89A, a simple gas engine 89C, Micro super high speed simple multi-stage that drives simple air injection engine 89D, simple injection engine 89E, etc. to generate rotation output and injection propulsion output to make various rotation drive and ultra high speed injection propulsion drive for airplanes, ships, automobiles, etc. A simple multistage compressor 89B including the compressor 89B is connected in various ways.

図7の簡単ガス機関89C実験結果予想や製造方法は、外箱噴口6Gより吸入の空気28aを外側圧縮翼8r内側圧縮翼8qで圧縮し、水噴射冷却圧縮選択可能として過熱蒸気用水製造として、圧縮空気熱交換器2Yでの過熱蒸気5H製造を、既存ガスタービンの圧縮比30〜40以上の50〜100狙いの燃焼熱交換として、同一燃料量既存ボイラーの30倍〜50倍の過熱蒸気5H製造量狙いとし、燃焼ガス49+過熱蒸気5Hを外側出力翼8t内側出力翼8sに噴射して、全動翼二重反転直線膨張駆動+過熱蒸気5H製造量増大により、既存ガスタービンの1000倍回転出力や噴射推進出力狙いにし、製造方法は円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備し、夫々別々に嵌合組立部9M螺子組立螺子固定や圧入螺子固定等本組立同様に仮組立後に、工作機械で両端保持精密加工として、超高速回転バランス調整加工で良好にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、分解して本組立てにすることで、内側軸装置60Aと外側軸装置60Bの超高速二重反転空気圧縮や回転出力発生とし、横型全動翼水重力タービン11C発電電気製造物の、液体酸素5K+液体窒素5L駆動を含めた、入口を閉止した長大な圧縮空気熱交換機2Y使用の過程では、酸素窒素噴射ノズル6Mより液体酸素5Hや液体窒素5Lを噴射して、燃料噴射ノズル6Xより燃料噴射燃焼し、圧縮仕事率を21/60000+79/60000の超高圧燃焼にして、同一燃料量既存ガスタービンの1000倍回転出力や噴射推進出力狙いにし、10倍速度や1/100燃料費を狙う飛行機や船舶や自動車等として、各種回転駆動や超高速噴射推進駆動にする、簡単ガス機関89Cにする。 In the simple gas engine 89C experimental result prediction and manufacturing method of FIG. 7, the air 28a sucked from the outer box nozzle 6G is compressed by the outer compression blades 8r and the inner compression blades 8q. The production of superheated steam 5H in the compressed air heat exchanger 2Y is a combustion heat exchange aimed at 50-100 with a compression ratio of 30-40 or more of the existing gas turbine. Aiming for production volume, combustion gas 49 + superheated steam 5H is injected into the outer output blade 8t and the inner output blade 8s, and the entire rotor blade double reversal linear expansion drive + superheated steam 5H production volume increases, resulting in 1000 times rotation of the existing gas turbine. Aiming at the output and the jet propulsion output, the manufacturing method is as follows. The bearing 1 is located at the optimum positions at both ends of the cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device 60B. C, and each of the assembly assembly parts 9M screw assembly screw fixing and press-fitting screw fixing, etc. after temporary assembly in the same way as in this assembly, both ends are precision-machined with machine tools, and ultra-high-speed rotation balance adjustment processing is performed well. As a manufacturing balance adjustment process for the device 60A, the inner compression blade 8q, the inner output blade 8s, the outer shaft device 60B, the outer compression blade 8r, and the outer output blade 8t, the inner shaft device 60A Long-distance compression of the outer shaft device 60B with closed inlet, including ultra-high-speed counter-rotating air compression and rotational output generation, including the drive of liquid oxygen turbine 5C + liquid nitrogen 5L of horizontal full-blade water gravity turbine 11C In the process of using the air heat exchanger 2Y, liquid oxygen 5H or liquid nitrogen 5L is injected from the oxygen / nitrogen injection nozzle 6M, and fuel is injected and combusted from the fuel injection nozzle 6X. 0000 + 79/60000 Ultra high-pressure combustion, aiming at 1000 times rotation output and injection propulsion output of existing gas turbine with the same fuel amount Various types of rotation drive as airplanes, ships and automobiles aiming for 10 times speed and 1/100 fuel cost Or a simple gas engine 89C, which is driven by ultra-high speed injection propulsion.

図8の圧縮空気熱交換器2Yの多種使用例を示す展開図は、断熱圧縮の温度上昇は空気温度20℃が圧縮比8で13倍の260℃になるを実験結果とし、圧縮空気熱交換器2Yで極限まで利用することで宇宙到達費用を1/50万等として、空気抵抗0の宇宙利用全盛狙いや、燃料消費量を既存最先端科学技術の1/1000に近付ける、火力発電や飛行機類や船舶類や車両類にし、地球温暖化防止して上限の無い異常気象や地震津波の巨大化を阻止して、人類絶滅阻止が目的のため無限に近い使用例の一部分とし、液体酸素5K等横型全動翼水重力タービン11C発電電気製造物駆動含有では、油圧や螺子回転などで開閉する開閉弁1Q具備として、圧縮空気熱交換器2Y入口と出口の開閉弁1Qを閉止して使用の場合は、液体圧縮により圧縮仕事率を1/600以下狙いの、酸素窒素噴射ノズル6Mや酸素噴射ノズル6L等液体酸素5K噴射や、燃料噴射ノズル6X液体燃料噴射燃焼含有とし、超高圧燃焼により圧力容器の耐圧限界に挑戦として、簡単ガス機関89Cや簡単空気噴射機関89Dや簡単噴射機関89E駆動とし、燃焼ガス噴射ノズル6Yより燃焼ガス49をロケット外箱77B内に噴射して、過熱蒸気ロケット噴口6Aより過熱蒸気5Hをロケット外箱77B内に噴射し、大気中では前方の空気を吸引噴射し真空中ではロケット噴射噴射推進にして、入口や出口の開閉弁1Q全開で使用や各種開度で使用の場合は開閉弁1Q無しと同様や、燃焼ガス噴射ノズル6Yと過熱蒸気ロケット噴口6Aと過熱蒸気噴射ノズル6Zの各種開度噴射を選択可能とし、同一燃料量既存ボイラーの30倍〜50倍の過熱蒸気5H製造量狙いの、圧縮空気熱交換器2Yにする。   FIG. 8 is a developed view showing various usage examples of the compressed air heat exchanger 2Y. The experimental result shows that the temperature rise in adiabatic compression is 260 ° C., which is 13 times the air temperature 20 ° C. with a compression ratio of 8. Thermal power generation and airplanes that make space use costs 1 / 500,000, etc. by using the vessel 2Y to the utmost, aiming for space use with zero air resistance, and fuel consumption close to 1/1000 of the existing state-of-the-art science and technology Liquid oxygen 5K as a part of an infinite use case for the purpose of preventing the extinction of extreme weather and earthquake tsunami, preventing global warming and preventing the extinction of humankind. In the case of the drive containing the horizontal horizontal bladed water gravity turbine 11C power generation electrical product, the open / close valve 1Q that opens and closes by hydraulic pressure, screw rotation, etc. is used, and the open / close valve 1Q at the inlet and outlet of the compressed air heat exchanger 2Y is closed. If by liquid compression Oxygen / nitrogen injection nozzle 6M and oxygen injection nozzle 6L, such as oxygen nitrogen injection nozzle 6M and oxygen injection nozzle 6L aiming at a reduction work rate of 1/600 or less, and fuel injection nozzle 6X including liquid fuel injection combustion, challenge the pressure limit of the pressure vessel by ultra high pressure combustion The simple gas engine 89C, the simple air injection engine 89D, and the simple injection engine 89E are driven, the combustion gas 49 is injected into the rocket outer box 77B from the combustion gas injection nozzle 6Y, and the superheated steam 5H is supplied from the superheated steam rocket nozzle 6A. Injected into the rocket outer box 77B, sucked and injected forward air in the atmosphere and propelled into rocket injection injection in the vacuum. As with the case without 1Q, various opening injections of the combustion gas injection nozzle 6Y, the superheated steam rocket nozzle 6A, and the superheated steam injection nozzle 6Z can be selected, and the same fuel Superheated steam 5H production volume aim of 30 to 50 times the existing boiler, to the compressed air heat exchanger 2Y.

図9の竪型全動翼蒸気タービン11Fは、太陽光加熱器21で加熱した空気を吸入圧縮して、水噴射冷却圧縮して過熱蒸気用水製造する簡単ガス機関89P使用とし、圧縮空気熱交換器2Yでの過熱蒸気5H製造量を、既存ガスタービンの圧縮比30〜40以上の50〜100狙いの燃焼熱交換として、同一燃料量既存ボイラーの50倍以上の過熱蒸気5H製造量狙いとし、簡単ガス機関89Pでは全動翼二重反転空気圧縮や燃焼ガス49噴射出力駆動として、既存蒸気タービンの100倍回転出力狙い竪型全動翼蒸気タービン11Fを、過熱蒸気5H膨張速度+水速度製造+真空度上昇中の重力加速度で加速駆動し、既存蒸気タービンの10倍速度マッハ10等で駆動の過程では、水吸引噴射や水噴射選択で噴射質量増大や飽和蒸気液化量最大狙いにし、低圧部の蒸気容積最少の設計容易な水出力最大として、同一過熱蒸気熱量100倍発電量狙いにし、過熱蒸気製造量や想定外を含めた発電量を、同一燃料量既存火力発電の1000倍発電量狙いして、製造法は円筒内側動翼群60C兼内側軸装置60A及び円筒外側動翼群60D兼外側軸装置60Bとし、夫々の両端最適位置に軸受12C具備して、夫々別々に嵌合組立部9M螺子組立螺子固定や圧入螺子固定等本組立同様に仮組立後に、工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60Aや外側軸装置60Bのバランス調整加工を良好として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転良好とし、竪型全動翼蒸気タービン11F重力加速度発電所建設の過程では、落差を製造する重力発電建物12を設けて柱管12Bを過熱蒸気管5H兼用として、図1の説明と略同様に最上部の開閉弁1Qを解放して過熱蒸気5Hを噴射し、円筒外側動翼群60Dと円筒内側動翼群60Cを二重反転駆動して、最終翼駆動の水出力最大の蒸気容積最少狙いにし、既存技術と同様に真空にして復水器2hで水にして復水ポンプ2iで送水する、竪型全動翼蒸気タービン11Fにする。 The vertical all blade steam turbine 11F in FIG. 9 uses a simple gas engine 89P that sucks and compresses air heated by the solar heater 21 and produces water for superheated steam by water jet cooling and compression. The amount of superheated steam 5H produced in the reactor 2Y is set as a target for 50 to 100 combustion heat exchange with an existing gas turbine compression ratio of 30 to 40 or more, and the amount of superheated steam 5H more than 50 times that of an existing boiler In the simple gas engine 89P, a vertical all-blade steam turbine 11F aiming at 100-fold rotation output of an existing steam turbine is used for full-rotation counter-rotating air compression and combustion gas 49 injection output drive, superheated steam 5H expansion speed + water speed production + In the process of acceleration driven by gravitational acceleration while the degree of vacuum is rising, and driving with 10 times speed Mach 10 etc. of existing steam turbine, injection mass increase or saturated steam liquefaction amount by water suction injection or water injection selection Aiming at a large target, with a minimum steam volume in the low-pressure part and an easy design of maximum water output, aiming to generate the same amount of superheated steam with 100 times the amount of heat generated, and using the same amount of fuel to generate power including the amount of superheated steam and unexpected power generation The production method is a cylindrical inner rotor blade group 60C / inner shaft device 60A and a cylindrical outer rotor blade group 60D / outer shaft device 60B. Separately fitting assembly part 9M screw assembly Screw fixing, press-fitting screw fixing, etc. After temporary assembly as in the main assembly, both ends can be precisely processed with a machine tool, ultra-high-speed rotation balance adjustment processing is enabled, the inner shaft device 60A The balance adjustment processing of the outer shaft device 60B is made good, and this assembly makes the ultra-high speed double reversal of the inner shaft device 60A and the outer shaft device 60B good. In the process of construction, the gravity power generation building 12 for producing the head is provided, the column pipe 12B is also used as the superheated steam pipe 5H, and the upper on-off valve 1Q is released in a manner similar to the description of FIG. The cylinder outer rotor blade group 60D and the cylinder inner rotor blade group 60C are driven in a reverse rotation, aiming at the minimum steam volume with the maximum water output of the final blade drive, and evacuating the condenser 2h in the same manner as the existing technology. In this way, a vertical all-blade steam turbine 11F that is converted into water and fed by the condensate pump 2i is used.

図10の簡単空気噴射機関89Dは、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に嵌合組立部9M螺子組立螺子固定や圧入螺子固定等本組立同様に仮組立後に、工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転空気圧縮とし、同一燃料量で過熱蒸気5H製造量既存ボイラーの100倍狙う、圧縮空気熱交換器2Yの過熱蒸気5H製造として、超高圧圧縮空気28aに燃料噴射燃焼+過熱蒸気5H製造簡単空気噴射機関89D駆動とし、超高圧圧縮空気28a質量増大の燃料噴射燃焼にして、回転出力発生+過熱蒸気5Hを製造ロケット外箱77B内に噴射し、空気吸引噴射で10倍速度を狙う過程では外周からも空気吸引噴射して、横型全動翼水重力タービン11C発電電気製造物駆動を含めて、長大な圧縮空気熱交換機2Y使用の過程で入口を閉止し、酸素窒素噴射ノズル6Mより液体酸素5Hや液体窒素5Lを噴射して、燃料噴射ノズル6Xより燃料噴射燃焼し、通常燃焼と合体の過熱蒸気5H大量生産として、通常燃焼でも理論空燃比燃焼で過熱蒸気5Hを通常の4倍燃焼量で製造の大量生産とし、液体酸素5Kや液体窒素5Lは燃料燃焼用に使用して、圧縮仕事率を21/60000や79/60000等超高圧燃焼部具備にし、10倍速度や1/100燃料費を狙う、船舶等を超高速噴射推進駆動にする、簡単空気噴射機関89Dにする。 The simple air injection engine 89D shown in FIG. 10 has bearings 12C at the optimum positions at both ends of the cylindrical inner blade group 60C and inner shaft device 60A and the cylindrical outer blade group 60D and outer shaft device 60B. Joint assembly part 9M Screw assembly Screw fixing, press-fitting screw fixing, etc. After temporary assembly as in this assembly, it is possible to hold both ends with precision machining with machine tools, enable ultra-high speed rotation balance adjustment processing, inner shaft device 60A and inner compression blade 8q, the inner output blade 8s, the outer shaft device 60B, the outer compression blade 8r, and the outer output blade 8t are manufactured by adjusting the ultra-high-speed counter-rotating air of the inner shaft device 60A and the outer shaft device 60B. Compressed, superheated steam 5H production with the same amount of fuel As the superheated steam 5H production of the compressed air heat exchanger 2Y, aiming 100 times that of the existing boiler, fuel injection combustion + superheated to the super high pressure compressed air 28a 5H production simple air injection engine 89D drive, fuel injection combustion of mass increase of ultra high pressure compressed air 28a, rotation output generation + superheated steam 5H is injected into the production rocket outer box 77B, 10 times speed by air suction injection In the process of aiming at the air, air suction is also injected from the outer periphery, and the inlet is closed in the process of using the long compressed air heat exchanger 2Y including the drive of the horizontal full-blade water gravity turbine 11C power generation electric product, and the oxygen nitrogen injection nozzle Liquid oxygen 5H and liquid nitrogen 5L are injected from 6M, fuel is injected and burned from the fuel injection nozzle 6X, and the superheated steam 5H is produced as a mass production of superheated steam 5H combined with normal combustion. Mass production of production with 4 times combustion amount, liquid oxygen 5K and liquid nitrogen 5L are used for fuel combustion, compression work rate is 21/60000, 79/60000, etc. ultra high pressure combustion To comprise, aiming to 10 double speed or 1/100 fuel costs, the vessel or the ultra high-speed jet propulsion drive, to simplify the air injection engine 89D.

図11の簡単噴射機関89Eは、円筒内側動翼群60C兼内側軸装置60A及び、円筒外側動翼群60D兼外側軸装置60B夫々の両端最適位置に軸受12C具備して、夫々別々に嵌合組立部9M螺子組立螺子固定や圧入螺子固定等本組立同様に仮組立後に、工作機械で両端保持精密加工を可能に、超高速回転バランス調整加工を可能にし、内側軸装置60A兼内側圧縮翼8qや内側出力翼8sや、外側軸装置60B兼外側圧縮翼8rや外側出力翼8tの製造バランス調整加工として、本組立てすることで内側軸装置60Aと外側軸装置60Bの超高速二重反転空気圧縮とし、同一燃料量で過熱蒸気5H製造量既存ボイラーの100倍狙う、圧縮空気熱交換器2Yの過熱蒸気5H製造として、超高圧圧縮空気28aに燃料噴射燃焼+過熱蒸気5H製造簡単噴射機関89E駆動とし、超高圧圧縮空気28a質量増大の燃料噴射燃焼にして、回転出力発生+過熱蒸気5Hを製造ロケット外箱77B内に噴射空気吸引噴射では、横型全動翼水重力タービン11C発電電気製造物駆動を含めて、長大な圧縮空気熱交換機2Y使用の過程で入口を閉止し、酸素窒素噴射ノズル6Mより液体酸素5Hや液体窒素5Lを噴射して、燃料噴射ノズル6Xより燃料噴射燃焼し、通常燃焼と合体の過熱蒸気5H大量生産として、通常燃焼でも理論空燃比燃焼で過熱蒸気5H通常の4倍燃焼量製造の大量生産とし、液体酸素5Kや液体窒素5Lは燃料燃焼用に使用して、圧縮仕事率を21/60000や79/60000等超高圧燃焼部具備にし、10倍速度や1/100燃料費を狙う、飛行機や船舶等を回転駆動や超高速噴射推進駆動にする、簡単噴射機関89Eにする。 The simple injection engine 89E of FIG. 11 includes bearings 12C at the optimum positions at both ends of the cylindrical inner rotor blade group 60C and inner shaft device 60A and the cylindrical outer rotor blade group 60D and outer shaft device 60B. Assembly part 9M Screw assembly Screw fixing, press-fitting screw fixing, etc. After temporary assembly, both ends can be precisely processed by machine tools, ultra-high speed rotation balance adjustment processing is possible, and inner shaft device 60A and inner compression blade 8q As a manufacturing balance adjustment process for the inner output blade 8s, the outer shaft device 60B and the outer compression blade 8r, and the outer output blade 8t, ultra-high-speed counter-rotating air compression of the inner shaft device 60A and the outer shaft device 60B is achieved by assembling the main assembly. As the superheated steam 5H production of the compressed air heat exchanger 2Y, aiming 100 times the amount of superheated steam 5H production with the same fuel amount as the existing boiler, fuel injection combustion + superheated steam into the super high pressure compressed air 28a The H-type simple injection engine 89E is driven, fuel injection combustion is performed with an increase in the mass of the ultra-high pressure compressed air 28a, and rotational output generation + superheated steam 5H is injected into the production rocket outer box 77B. The inlet is closed in the process of using the long compressed air heat exchanger 2Y including the turbine 11C power generation electric product drive, and the liquid oxygen 5H and liquid nitrogen 5L are injected from the oxygen nitrogen injection nozzle 6M, and the fuel injection nozzle 6X. Fuel injection combustion, mass production of superheated steam 5H combined with normal combustion, mass production of 4 times combustion amount of superheated steam 5H normal combustion with theoretical air-fuel ratio combustion even with normal combustion, liquid oxygen 5K and liquid nitrogen 5L are fuel combustion Use it for aircraft, ships, etc. aiming at 10 times speed and 1/100 fuel cost with compression work rate of 21/60000 and 79/60000 etc. Rolling to drive and ultra-high-speed jet propulsion drive, to simplify injection engine 89E.

図12の簡単ガス機関自動車89Fは、既存マイクロガスタービン自動車の改良発明の簡単ガス機関89C駆動とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの50倍狙いや、、全動翼+過熱蒸気5H製造として既存ガスタービンの100倍回転出力狙いにし、、同一燃料量既存火力発電の100倍発電量狙う簡単ガス機関89C発電として、簡単ガス機関89Cで、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼し、夫々過熱蒸気5Hを製造30MPa等で噴射して、夫々で燃焼ガス49を吸引噴射し、同一燃料量既存マイクロガスタービンの10倍回転出力等として、発電機1を駆動して蓄電池1Aに蓄電し、蓄電池駆動車輪4Jを回転して通常の自動車運転にして、燃料費を既存自動車の1/100狙い簡単ガス機関自動車89Fにし、バスやタクシーでの運用利益率を抜群世界一の地球温暖化防止にする。 The simple gas engine car 89F in FIG. 12 is driven by the simple gas engine 89C, which is an improved invention of the existing micro gas turbine car. Experiments are required, but the production amount of superheated steam 5H is 50 times that of the existing boiler. As a simple gas engine 89C power generation aiming at 100 times rotation output of the existing gas turbine as steam 5H production and 100 times the same fuel amount as the existing thermal power generation, the simple gas engine 89C uses ordinary air compression fuel injection combustion and liquid Fuel injection combustion to compression injection of oxygen liquid nitrogen, respectively, superheated steam 5H is injected at 30MPa, etc., combustion gas 49 is sucked and injected respectively, and the same fuel amount as a 10 times rotational output of existing micro gas turbine, etc. The generator 1 is driven to store electricity in the storage battery 1A, and the storage battery driving wheel 4J is rotated to make a normal automobile operation. 0 aim to simplify gas engine automobile 89F, the operating profit margin by bus or taxi to the prevention preeminent world of global warming.

図13の簡単ガス機関船舶89Gは、既存ガスタービン船舶の改良発明の簡単ガス機関89C駆動の船舶として、実験が必要ですが過熱蒸気5H製造量既存ボイラーの50倍狙いや、、全動翼+過熱蒸気5H製造として既存ガスタービンの100倍回転出力狙いの簡単ガス機関89Cにし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを駆動スクリュウ7C駆動して、その排気を超高速噴射して推進力を発生その外周でも空気吸引噴射し、同一燃料量既存ガスタービンの100倍回転出力や100倍噴射推進出力狙いとして、平坦な海上を空気浮上過熱蒸気浮上飛行機越えや接近の超高速噴射推進にし、同一燃料量既存船舶の10倍速度に近付けることで、簡単ガス機関船舶89Gの運用利益率を抜群世界一の地球温暖化防止にする。 The simple gas engine ship 89G shown in FIG. 13 is an improved gas turbine ship driven by the simple gas engine 89C of the existing gas turbine ship. Although it requires experiments, the amount of superheated steam 5H produced is 50 times that of the existing boiler. The superheated steam 5H is produced by a simple gas engine 89C aiming at a 100-fold rotation output of the existing gas turbine, and the fuel is injected and burned into the normal air compression fuel injection combustion and the liquid oxygen liquid nitrogen compression injection to produce the superheated steam 5H, respectively. Etc., the respective combustion gases 49 are sucked and injected, the simple gas engine 89C is driven by the drive screw 7C, the exhaust gas is injected at a high speed to generate a propulsive force, and the air suction and injection is also performed on the outer periphery. Fuel amount Ultra-high-speed injection over and over approaching air-floating superheated steam levitation airplanes on a flat sea as a target for 100-times rotation output and 100-times injection propulsion output of existing gas turbines To proceed, by close to 10 times speed of the same amount of fuel existing vessels, the operating margins of the simple gas engine vessels 89G to outstanding world global warming.

図14の簡単ガス機関飛行機89Hは、既存ターボブロップエンジンの改良発明の簡単ガス機関89C駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの50倍狙いや、、全動翼+過熱蒸気5H製造として、既存ガスタービンの100倍回転出力や100倍噴射推進出力の簡単ガス機関89Cにし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを駆動プロペラ7A駆動して、その排気を超高速噴射して推進力を発生し、同一燃料量既存ターボブロップエンジンの100倍回転出力や100倍噴射推進出力狙いとして、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大し、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮噴射と燃料噴射燃焼して、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張にし、簡単ガス機関89C駆動直線排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、簡単ガス機関飛行機89Hの運用利益率を抜群世界一の地球温暖化防止にする。 The simple gas engine airplane 89H in FIG. 14 is a simple gas engine 89C-driven airplane that is an improvement invention of the existing turbo flop engine, and requires experimentation, but the amount of superheated steam 5H produced is 50 times the target of the existing boiler, As superheated steam 5H production, a simple gas engine 89C with 100 times rotational output and 100 times injection propulsion output of an existing gas turbine is used, and fuel injection combustion is performed for normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively. Superheated steam 5H is produced at an ultra-high speed injection of 30 MPa, etc., each combustion gas 49 is sucked and injected, the simple gas engine 89C is driven by the driving propeller 7A, and the exhaust gas is injected at an ultra-high speed to generate a propulsive force. Fuel amount As a target of 100 times rotation output and 100 times injection propulsion output of existing turbo flop engines, normal air-compressed fuel injection combustion is required when flying in the atmosphere. Increase the production and storage of steam 5H, and normally perform compression injection and fuel injection combustion of liquid oxygen liquid nitrogen fuel 30MPa, etc. from around the highest flight altitude, and make the combustion gas 49 into a suction injection linear expansion with 30MPa superheated steam 5H, simple gas By making the engine 89C drive straight exhaust injection, the space arrival cost is 1 / 500,000, etc., and the space arrival cost is about the same as the existing airplane, the operating profit rate of the simple gas engine airplane 89H is outstanding and the world's best global warming prevention To.

図15の簡単空気噴射機関船舶89Iは、既存ガスタービン船舶の改良発明の簡単空気噴射機関89D駆動の船舶とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの50倍狙いや、、全動翼+過熱蒸気5H製造として、既存ガスタービンの100倍回転出力や100倍噴射推進出力の簡単空気噴射機関89Dとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼として、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、前方の空気28aを吸引船底に噴射の過程で、外周でも再度空気吸引噴射既存ガスタービン船舶の100倍噴射推進出力狙いにして、夫々の燃焼ガス49で簡単空気噴射機関89Dを回転駆動後に排気噴射前方の空気を吸引噴射し、同一燃料量既存ガスタービン船舶の10倍噴射推進出力以上等として、平坦な海上を燃焼ガス49浮上+過熱蒸気5H浮上飛行機越えや接近の超高速噴射推進し、同一燃料量既存船舶の10倍速度以上狙うことで、簡単空気噴射機関船舶89Iの運用利益率を抜群世界一の地球温暖化防止にする。 The simple air-injection engine ship 89I in FIG. 15 is a simple air-injection engine 89D-driven ship that is an improved invention of an existing gas turbine ship. Experiments are required, but the amount of superheated steam 5H production is 50 times that of an existing boiler, As a manufacture of blades + superheated steam 5H, a simple air injection engine 89D with 100 times rotation output and 100 times injection propulsion output of an existing gas turbine is used as fuel injection combustion for normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection In the process of injecting the superheated steam 5H into the rocket outer box 77B at a production of 30 MPa, etc., and injecting the air 28a forward to the bottom of the suction vessel, the air suction injection is again aimed at the 100 times injection propulsion output of the existing gas turbine ship. Then, after rotating and driving the simple air injection engine 89D with each combustion gas 49, the air in front of the exhaust injection is sucked and injected, and an existing gas turbine with the same fuel amount Easier by aiming at 10 times the speed of an existing ship with the same amount of fuel by propelling over a flat surface of the sea with combustion gas 49 levitation + superheated steam 5H levitation plane over and approaching ultra high speed injection, etc. The operating profit rate of the air jet engine ship 89I is the world's best global warming prevention.

図16の簡単噴射機関飛行機89Jは、既存ジェットエンジンの改良発明の簡単噴射機関89E駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの50倍狙いや、、全動翼+過熱蒸気5H製造として、既存ガスタービンの100倍回転出力や100倍噴射推進出力の簡単噴射機関89Eとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、前方の空気28aを吸引噴射既存ジェット機の100倍噴射推進狙いにして、夫々の燃焼ガス49で簡単噴射機関89Eを回転駆動後に排気噴射前方の空気を吸引噴射し、同一燃料量既存ジェット機の100倍噴射推進出力狙いとして、燃焼ガス49+過熱蒸気5H超高速噴射推進し、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大して、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼にし、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、簡単噴射機関飛行機89Jの運用利益率を抜群世界一の地球温暖化防止にする。 The simple injection engine airplane 89J in FIG. 16 is a simple injection engine 89E driven airplane that is an improvement invention of the existing jet engine, and requires experimentation, but the amount of superheated steam 5H produced is 50 times the target of the existing boiler, or the entire blade + superheat For steam 5H production, a simple injection engine 89E with 100 times rotation output and 100 times injection propulsion output of an existing gas turbine is used, and fuel injection combustion is performed for normal air compression fuel injection combustion and liquid oxygen liquid nitrogen compression injection, respectively. Steam 5H is manufactured and injected into the rocket outer box 77B at 30MPa, etc., and the air 28a in the front is aimed at 100-times injection promotion of the existing jet aircraft by suction injection, and the exhaust gas is injected after rotating the simple injection engine 89E with each combustion gas 49 The front air is sucked and injected, and the same amount of fuel is used, aiming at 100 times the injection propulsion output of the existing jet, combustion gas 49 + superheated steam 5H super high speed Propellation propulsion, increase the production and storage of superheated steam 5H by normal air compression fuel injection combustion when flying in the atmosphere, usually compression and fuel injection combustion of liquid oxygen liquid nitrogen fuel 30MPa etc. from near the highest flight altitude, By making the combustion gas 49 into 30MP superheated steam 5H by suction injection linear expansion exhaust injection, the space arrival cost is 1 / 500,000, etc., and the space arrival cost is about the same as the existing aircraft, the operating profit rate of the simple injection engine airplane 89J Is the best global warming prevention in the world.

図17の回転翼飛行機89Kは、既存ヘリコプターの改良発明の簡単ガス機関89C駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの50倍狙いや、、全動翼+過熱蒸気5H製造として、既存ガスタービンの100倍回転出力や100倍噴射推進出力の簡単ガス機関89Cとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを直線膨張の駆動として、その排気を超高速噴射して推進力を発生し、同一燃料量既存ヘリコプターの100倍回転出力狙いで回転翼7Bを回転駆動して、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大し、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼して、その燃焼ガス49排気を30MPa過熱蒸気5Hで吸引噴射直線膨張にし、簡単ガス機関89C駆動直線排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、回転翼飛行機89Kの運用利益率を抜群世界一の地球温暖化防止にする。 The rotary wing airplane 89K shown in FIG. 17 is a simple gas engine 89C driven airplane that is an improved invention of the existing helicopter, and requires experimentation, but the amount of superheated steam 5H produced is 50 times the target of the existing boiler, or the total moving blade + superheated steam 5H As a manufacture, a simple gas engine 89C with 100 times rotational output or 100 times injection propulsion output of an existing gas turbine is used, and fuel injection combustion is performed for normal air compression fuel injection combustion and compression injection of liquid oxygen liquid nitrogen, respectively, and superheated steam 5H Is produced at a high speed of 30 MPa, the respective combustion gases 49 are sucked and injected, the simple gas engine 89C is driven for linear expansion, the exhaust is injected at a high speed to generate a propulsive force, and the same fuel amount of the existing helicopter The rotary blade 7B is driven to rotate with the aim of 100 times rotation output, and the superheated steam 5H is produced and increased by normal air compression fuel injection combustion when flying in the atmosphere. Compression and fuel injection combustion of liquid oxygen liquid nitrogen fuel 30MPa etc. from near high flight altitude, the combustion gas 49 exhaust is made into suction injection linear expansion with 30MPa superheated steam 5H, simple gas engine 89C drive linear exhaust injection, By making the space arrival cost 1 / 500,000, etc., and making the space arrival cost comparable to that of existing airplanes, the operating profit rate of the rotary wing airplane 89K will be the world's best global warming prevention.

図18の回転翼噴射飛行機89Lは、既存ヘリコプターの改良発明の簡単噴射機関89E駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの50倍狙いや、、全動翼+過熱蒸気5H製造として、既存ガスタービンの100倍回転出力や100倍噴射推進出力の簡単噴射機関89Eとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、上方の空気28aと燃焼ガス49を吸引噴射既存ジェット機の100倍噴射推進狙いにして、夫々の燃焼ガス49で簡単噴射機関89Eを回転し、回転翼7B駆動後に排気噴射上方の空気と燃焼ガス49を吸引噴射し、同一燃料量既存ジェット機の100倍噴射推進出力狙いとして、燃焼ガス49+過熱蒸気5H超高速噴射推進にし、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大して、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼にし、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機燃料費程度にすることで、回転翼噴射飛行機89Lの運用利益率を抜群世界一の地球温暖化防止にする。 The rotary wing jet airplane 89L in FIG. 18 is a simple jet engine 89E driven airplane that is an improved invention of the existing helicopter and requires experimentation, but the amount of superheated steam 5H produced is 50 times the target of the existing boiler. As 5H production, a simple injection engine 89E with 100 times rotation output and 100 times injection propulsion output of an existing gas turbine is used, and fuel injection combustion is performed for normal air compression fuel injection combustion and compression injection of liquid oxygen liquid nitrogen, respectively, and superheated steam, respectively. 5H is manufactured and injected into the rocket outer box 77B at 30MPa, etc., and the upper air 28a and the combustion gas 49 are aimed at 100-times injection propulsion of the suction jet existing jet, and the simple injection engine 89E is rotated by each combustion gas 49. , After driving the rotor blade 7B, the air above the exhaust injection and the combustion gas 49 are sucked and injected, and the same fuel amount is aimed at 100 times injection propulsion output of the existing jet Combustion gas 49 + superheated steam 5H super-high speed injection propulsion, and superheated steam 5H is produced and increased by normal air compression fuel injection combustion when flying in the atmosphere, usually liquid oxygen liquid nitrogen fuel 30MPa from around the highest flight altitude etc. Compression and fuel injection combustion, the combustion gas 49 is suction-expanded linear expansion exhaust injection with 5MPa superheated steam 5H, the space arrival cost is 1 / 500,000, etc., and the space arrival cost is about the same as the existing airplane fuel cost Therefore, the operating profit rate of the rotary wing jet airplane 89L will be the world's best global warming prevention.

図19の特大オスプレイ89Mは、既存オスプレイの改良発明の簡単噴射機関89E駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの50倍狙いや、、全動翼+過熱蒸気5H製造として、既存ガスタービンの100倍回転出力や100倍噴射推進出力の簡単噴射機関89Eとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等でロケット外箱77B内に噴射し、上方の空気28aと燃焼ガス49を吸引噴射既存ジェット機の100倍噴射推進狙いにして、夫々の燃焼ガス49直線噴射で簡単噴射機関89Eを回転し、プロペラ7A駆動後に排気噴射上方の空気と燃焼ガス49を吸引噴射し、同一燃料量既存ジェット機の100倍噴射推進出力狙いとして、燃焼ガス49+過熱蒸気5H超高速噴射推進にし、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大して、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼にし、その燃焼ガス49を30MPa過熱蒸気5Hで吸引噴射直線膨張排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機燃料費程度にすることで、特大オスプレイ89Mの運用利益率を抜群世界一の地球温暖化防止にする。 The oversized Osprey 89M in FIG. 19 is an airplane driven by the simple injection engine 89E, which is an improved invention of the existing Osprey, and requires experimentation, but the production amount of superheated steam 5H is aimed at 50 times that of the existing boiler, and all rotor blades + superheated steam 5H are produced. As a simple injection engine 89E with 100 times rotation output and 100 times injection propulsion output of an existing gas turbine, fuel injection combustion is performed for normal air compression fuel injection combustion and compression injection of liquid oxygen liquid nitrogen, and superheated steam 5H is respectively produced. Inject into the rocket outer box 77B at 30MPa, etc., and rotate the simple injection engine 89E with each combustion gas 49 linear injection with the aim of 100% injection propulsion of the upper air 28a and the combustion gas 49 of the existing jet aircraft. , After driving the propeller 7A, the air above the exhaust injection and the combustion gas 49 are sucked and injected, aiming at 100 times the injection propulsion output of the existing jet with the same fuel amount The combustion gas 49 + superheated steam 5H super-high speed injection propulsion, the superheated steam 5H is produced and increased by normal air compressed fuel injection combustion when flying in the atmosphere, and normally liquid oxygen liquid nitrogen fuel 30MPa from around the highest flight altitude Compression and fuel injection combustion, etc., the combustion gas 49 is made into a suction injection linear expansion exhaust injection with 30MPa superheated steam 5H, the space arrival cost is 1 / 500,000, etc., and the space arrival cost is about the same as the existing airplane fuel cost In this way, we will make the operating profit rate of the oversized Osprey 89M the best global warming prevention in the world.

図20の大型オスプレイ89Nは、既存オスプレイの改良発明の簡単ガス機関89C駆動の飛行機とし、実験が必要ですが過熱蒸気5H製造量既存ボイラーの50倍狙いや、、全動翼+過熱蒸気5H製造として、既存ガスタービンの100倍回転出力や100倍噴射推進出力の簡単ガス機関89Cとし、通常の空気圧縮燃料噴射燃焼と液体酸素液体窒素の圧縮噴射に燃料噴射燃焼して、夫々過熱蒸気5Hを製造30MPa等で超高速噴射し、夫々の燃焼ガス49を吸引噴射して簡単ガス機関89Cを直線膨張の駆動として、その排気を超高速噴射して噴射推進出力を発生し、同一燃料量既存ヘリコプターの100倍回転出力狙いでプロペラ7Aを回転駆動して、大気中を飛行時には通常の空気圧縮燃料噴射燃焼で過熱蒸気5Hを製造貯蔵増大し、通常最高飛行高度付近からの液体酸素液体窒素燃料30MPa等の圧縮と燃料噴射燃焼して、その燃焼ガス49排気を30MPa過熱蒸気5Hで吸引噴射直線膨張にし、簡単ガス機関89C駆動直線排気噴射にして、宇宙到達費用1/50万等とし、宇宙到達費用を既存の飛行機程度にすることで、大型オスプレイ89Nの運用利益率を抜群世界一の地球温暖化防止にする。 The large Osprey 89N shown in Fig. 20 is a simple gas engine 89C-driven airplane that is an improved invention of the existing Osprey, and requires experimentation, but the amount of superheated steam 5H produced is 50 times the target of the existing boiler, and all blades + superheated steam 5H are produced. As a simple gas engine 89C with 100 times rotation output and 100 times injection propulsion output of an existing gas turbine, fuel injection combustion is performed for normal air compression fuel injection combustion and compression injection of liquid oxygen liquid nitrogen, and superheated steam 5H is respectively produced. Manufacturing Ultra-high-speed injection at 30 MPa, etc., sucking and injecting each combustion gas 49 to drive the simple gas engine 89C to drive linear expansion, generating ultra-high-speed injection of its exhaust to generate injection propulsion output, and the same fuel amount existing helicopter The propeller 7A is driven to rotate with the aim of 100 times rotation output, and the superheated steam 5H is produced and stored in the normal air compressed fuel injection combustion when flying in the atmosphere. Usually, compression and fuel injection combustion of liquid oxygen liquid nitrogen fuel 30MPa etc. from the vicinity of the highest flight altitude is performed, and the combustion gas 49 exhaust is made into suction injection linear expansion with 30MPa superheated steam 5H, and simple gas engine 89C drive linear exhaust injection is made. By making the space arrival cost 1 / 500,000, etc., and making the space arrival cost comparable to that of existing airplanes, the operating profit rate of the large Osprey 89N will be the world's best global warming prevention.

既存最先端科学技術の揚水発電は洗脳で長期間改良皆無のため、洗脳皆無の小学校理科で理解可能なインターネット検索の計算では、水噴射速度マッハ3製造+真空中の重力加速度製造+落差製造にし、横型全動翼水重力タービン11C発電にして、既存揚水発電と比較説明すると、水速度マッハ10製造では既存揚水発電の50倍水速度となり、発電量が水速度比例の場合では同一水質量既存揚水発電の50倍発電量となり、発電量が水速度の2乗に比例では同一水質量既存揚水発電の2500倍発電量になるため、既存の水力発電全部を竪型全動翼水重力タービン11A新型揚水発電無限増大にすると、既存世界の火力発電や原子力発電を全廃して、新型揚水発電全部になる可能性がある。 Since there is no brainwashing and long-term improvement of the existing state-of-the-art science and technology, in the calculation of internet search that can be understood by elementary school science without brainwashing, water injection speed Mach 3 production + gravity acceleration production in vacuum + head production When the horizontal full-blade water gravity turbine 11C power generation is compared with the existing pumped-storage power generation, the water speed Mach 10 production is 50 times faster than the existing pumped-power generation, and the same water mass is existing when the power generation is proportional to the water speed. Since the amount of power generation is 50 times that of pumped-storage power generation, and the amount of power generation is proportional to the square of the water speed, the same water mass is 2500 times the amount of power generation of existing pumped-power generation. If the new pumped storage power generation is infinitely increased, there is a possibility that the existing world thermal power generation and nuclear power generation will be abolished and the new pumped storage power generation will become all.

既存最先端科学技術火力発電のボイラーは洗脳で長期間改良皆無のため、断熱圧縮の温度上昇は空気温度20℃が圧縮比8で13倍の260℃になるを利用して、太陽光加熱器21で加熱して可能な限り高温とした空気28aを圧縮熱回収利用する、簡単ガス機関89Pによる全動翼二重反転圧縮にして圧縮比80〜100にし、空気温度100倍狙い環境で圧縮空気熱交換器2Y燃料噴射燃焼過熱蒸気5H製造するため、同一燃料燃焼量の過熱蒸気5H製造量が既存ボイラーの100倍狙いになる可能性があり、既存世界の火力発電ボイラーを全廃して、簡単ガス機関89P圧縮空気熱交換器2Yによる過熱蒸気5H製造全部になる可能性がある。 The existing state-of-the-art science and technology thermal power generation boilers are brainwashed and have not been improved for a long time, so the temperature rise of adiabatic compression takes advantage of the fact that the air temperature is 20 ° C and the compression ratio is 8 times 13 times 260 ° C. The air 28a heated at 21 and made as hot as possible is compressed and recovered by heat, and the entire blade is double-reversed by a simple gas engine 89P to obtain a compression ratio of 80 to 100, and the compressed air is used in an environment where the air temperature is 100 times. Because the heat exchanger 2Y fuel injection combustion superheated steam 5H is manufactured, the amount of superheated steam 5H produced with the same fuel combustion amount may be 100 times the target of existing boilers. There is a possibility that the superheated steam 5H is entirely produced by the gas engine 89P compressed air heat exchanger 2Y.

既存最先端科学技術火力発電の蒸気タービン発電は洗脳で長期間改良皆無のため、揚水発電の揚水ポンプ入力が回転速度の3乗に比例するを、発電量が水速度や過熱蒸気5H速度に比例や2乗に比例するとし、過熱蒸気5H膨張速度に真空中の重力加速度を追加して、マッハ10等超高速の過熱蒸気5H速度で発電する竪型全動翼蒸気タービン11F発電にし、発電量が過熱蒸気速度に比例の場合は、同一過熱蒸気熱量既存蒸気タービンの10倍発電となり、発電量が過熱蒸気速度の2乗に比例では、同一過熱蒸気熱量既存蒸気タービンの100倍発電量になるため、既存世界の蒸気タービン発電を全廃して、竪型全動翼蒸気タービン11F発電全部になる可能性がある。   Steam turbine power generation of the existing state-of-the-art science and technology thermal power generation is brainwashed and there is no improvement for a long time, so the pumping pump input of pumped storage power generation is proportional to the cube of the rotational speed, but the power generation amount is proportional to the water speed and superheated steam 5H speed In addition, the gravity acceleration in the vacuum is added to the superheated steam 5H expansion speed to make it a vertical type full-blade steam turbine 11F power generation with superheated steam 5H speed such as Mach 10 Is proportional to the superheated steam velocity, the same superheated steam heat amount is 10 times that of the existing steam turbine, and if the generated power is proportional to the square of the superheated steam velocity, the same superheated steam heat amount is 100 times that of the existing steam turbine. For this reason, there is a possibility that the steam turbine power generation in the existing world will be completely abolished, and all the vertical blade moving steam turbine 11F power generation will be performed.

既存最先端科学技術のガスタービンは過熱蒸気5H製造皆無に加えて、静翼と動翼を交互に夫々半分具備して、圧縮機では圧縮空気を静翼で堰き止め方向転換繰り返す無茶圧縮にし、タービンでは燃焼ガスを静翼で堰き止め方向転換を繰り返す無茶膨張にして、回転出力や噴射推進出力を1/10〜1/100等にしているため、静翼を円筒外側動翼群60Dとして円筒内側動翼群60Cと二重反転する、全動翼の簡単ガス機関89Cや簡単空気噴射機関89Dや簡単噴射機関89E等とし、圧縮空気熱交換器2Y過熱蒸気5H製造で回転出力や噴射推進出力を100倍に近付け、更に横型全動翼水重力タービン11C発電電気製造物駆動を追加して、太陽光加熱器21過熱蒸気5H温熱製造副産物の液体酸素5K+液体窒素5L使用にし、空気容積圧縮仕事率の21/60000+79/60000容積圧縮仕事率にして、簡単ガス機関89Cや簡単空気噴射機関89Dや簡単噴射機関89Eを駆動し、自動車ではCO2排気や燃料費を1/100に近付ける可能性があり、船舶は同一燃料費で10倍速度に近付ける可能性があり、飛行機は宇宙到達費用を1/50万等として、宇宙利用全盛として地球上何処でも日帰り旅行にして地球温暖化防止する等、温熱冷熱利用全盛の大革命にする可能性もある。 In addition to the production of superheated steam 5H, the existing state-of-the-art science and technology gas turbine is equipped with half each of stationary blades and moving blades. In the turbine, the combustion gas is dammed with the stationary blades, and the rotation is repeated without changing the direction, and the rotational output and the injection propulsion output are set to 1/10 to 1/100. A simple gas engine 89C, a simple air injection engine 89D, a simple injection engine 89E, etc., that are double-reversed with the inner rotor blade group 60C, and the rotation output and injection propulsion output in the manufacture of the compressed air heat exchanger 2Y superheated steam 5H. To 100 times, add a horizontal full blade water gravity turbine 11C power generation electrical product drive, use solar heater 21 superheated steam 5H thermal production by-product liquid oxygen 5K + liquid nitrogen 5L, A simple gas engine 89C, a simple air injection engine 89D, and a simple injection engine 89E are driven at a volumetric compression work rate of 21/60000 + 79/60000 volumetric compression work rate. There is a possibility, the ship may approach 10 times the speed with the same fuel cost, the plane will be 1500,000 to reach the space, and as a prime use of space, take a day trip anywhere on earth to prevent global warming There is also the possibility of making a major revolution in the use of heat and cold.

0:各種エネルギ保存サイクル合体機関、 0:各種エネルギ保存サイクル合体機関及び合体方法、 1:発電機、 1A:蓄電池、 1B:圧力機関(酸素圧力歯車機関・酸素圧力往復機関・水圧力歯車機関・水圧力往復機関等液体圧縮で圧縮仕事率を1/600の各種圧力機関にする) 1C:アルコール、 1D:燃料噴射ポンプ、 1F:復水ポンプ、 1G:1〜複数段熱ポンプ(熱エネルギを空気温度とし熱ポンプ(各種空気圧縮機)で複数回圧縮2Cの2X2Y2Zで複数回熱回収温熱50+冷熱28aで分割保存) 1K:液体燃料制御弁、 1L:燃料加熱管、 1Q:開閉弁、 1Y:複数段燃焼室、 1b:燃料(液体燃料+液化可能気体燃料) 1b:燃料(液体燃料+液化可能気体燃料) 1b:燃料管(燃料噴射温度が最適温度になるように具備する) 1c:液体燃料、 1d:水銀、 1g:重力加速部、 1h:横軸(外側軸装置と内側軸装置の回転方向交互にする軸) 1J:燃料制御弁、 1K:液体燃料制御弁、 2:太陽光加熱器(長レンズで太陽光を直線状に集めて高温部形成吸入空気を加熱) 2a:自然現象高速化(空気中では変化略0の残飯類が近くの川に移動すると一夜で0に近付く膨大な微生物量を人類の食糧増大に利用) 2a:自然現象高速化(発電では海水に冷熱28aを混合自然現象高速化した海水を海底に供給窒素や酸素やCO2等の栄養分を供給微生物増大して魚類やコンブ等食糧大増大する装置) 2a:自然現象高速化(船舶では海中に窒素や酸素やCO2等の栄養分を供給微生物の消化能力を森林の数万倍狙い植物プランクトンや海草等を増殖食物連鎖等により魚類やコンブ類等人類の食糧を増大) 2b:水抵抗僅少(船底に空気や燃焼ガスや過熱蒸気等を高速噴射して水抵抗僅少にする) 2c:断熱材、 2d:長レンズ(凸レンズ断面を直線状に延長矩形とし、複数使用で焦点距離最短レンズ幅最大狙う) 2e:水面、 2g:比重大物質加速方向、 2h:復水器、 2i:復水ポンプ、 2A:耐熱材、 2B:熱吸収材、 2C:1〜複数段圧縮熱回収器(熱エネルギを空気温度とし熱ポンプで複数回圧縮熱交換器で複数回熱回収して残りを温熱50+液体冷熱28aに分割保存) 2E:比重大物質(合金含む、白金球・金球・タングステン合金粉末焼結球・銀球・銅球・錫球・鉛球・亜鉛球・アルミニウム球・インジウム・カドミウム・ガリウム・タリウム・ビスマス等比重の大きい物質) 2E:比重大物質(製造法は小径程衝撃エネルギが低減するため例えば溶融鋼を空気中に噴射高速衝突粉砕空気冷却水冷却で超小径鋼球等製造) 2E:比重大物質(シリコン樹脂被覆やケイ素樹脂被覆の、被覆白金合金球・被覆金合金球・被覆タングステン合金粉末焼結球・被覆銀合金球・被覆ビスマス合金球・被覆銅合金球・被覆錫合金球・被覆鉛合金球・被覆亜鉛合金球・被覆アルミニウム合金球) 2F:比重大物質上昇装置(重力エネルギを上昇保存) 2H:冷熱海水混合器、 2V:低温排気熱交換器、 2W:低温空気熱交換器、 2X:空気熱交換器、 2Y:圧縮空気熱交換器(液体空気冷熱+温熱製造する) 2Z:比重大物質熱交換器(500度以下液体金属の温度管理等で使用) 3a:撥水鍍金、 3i:簡単多段圧縮機、 3s:簡単圧縮機、 3t:空気タービン、 3u:タービン、 3A:撥水コーティング、 3B:水圧力往復機関、 3D:電気+液体空気冷熱+過熱蒸気温熱供給設備(重力発電電気で冷熱+温熱製造し液体酸素や液体窒素を供給自動車や船舶や飛行機を駆動や過熱蒸気で供給メタンハイドレートに注入メタンを回収等電気+冷熱+温熱利用全盛にする) 3E:比重大物質(水銀や水等常温で液体の比重大物質) 3E:比重大物質(低融点合金の500度以下液体で安定高温液体合金) 3F:酸素圧力往復機関 3G:理論燃焼歯車機関、 3H:往復ピストン、 3J:理論燃焼往復機関、 3K:外接歯車、 3L:複数段燃焼室、 3M:水蒸気圧力往復機関、 3N:水蒸気圧力歯車機関、 3P:理論膨張機関(気体の体積は圧力に反比例する理論で最良機関+酸素水素増大燃焼狙う) 3Q:理論膨張機関(ボイルの法則で最良機関+真空中の最高加速駆動狙う) 3R:理論ガスタービン(気体の体積は圧力に反比例対応の理論最良ガスタービン) 3S:理論蒸気タービン(気体の体積は圧力に反比例対応の理論最良蒸気タービン) 3T:理論気体圧縮機(気体の体積は圧力に反比例対応の理論最良気体圧縮機) 3U:理論タービン、 3V:ポンプ機関(既存各種ポンプをエンジンで使用) 3X:圧縮機機関(既存各種圧縮機をエンジンで使用) 3Y:対向噛合い回転機関(気体の体積は圧力に反比例対応のエンジン) 3Z:酸素圧力歯車機関、 3a:撥水鍍金、 3b:撥水コーティング、 4C:対向同期歯車、 4D:直列同回転歯車、 4F:燃焼ガス往復機関、 4H:熱吸収管(長レンズ2dで太陽光を熱吸収管に直線状に集めて管内空気温度を最高に加熱して菅外空気温度も上昇する) 4J:蓄電池駆動車輪、 4K:理論膨張機関自動車、 4Q:理論燃焼室(過熱蒸気製造で理論空燃比燃焼既存の4倍燃焼量等や20倍圧力過熱蒸気噴射狙う燃焼室)、 4W:理論圧縮室、 4Y:理論燃焼室(水蒸気の中で高温燃焼して水の熱分解電気分解燃焼狙い化合物0狙い燃焼室) 4Z:燃焼ガス歯車機関、 4X:タービン翼断面(断面積を拡大表面積増大) 4a:液体燃料ポンプ、 4b:液体酸素ポンプ、 4c:水ポンプ、 4d:歯車装置、 4e:ローラー、 4f:回転支持部、 5:空気噴射ノズル、 5a:高圧高温燃焼ガス制御弁、 5b:圧縮吸入空気路、 5d:燃焼流内壁、 5e:超高圧酸素、 5h:精留塔排ガス、 5h:精留塔排ガス管、 5A:給気弁、 5B:冷却ヒレ、 5C:排気室 5D:排気弁 5E:給気室 5F:酸素加熱管、 5G:水蒸気加熱管、 5G:高圧高温水加熱管、 5H:過熱蒸気、 5H:高圧高温過熱蒸気管、 5K:液体酸素、 5K:液体酸素室、 5L:液体窒素、 5L:液体窒素室、 5M:高圧高温燃焼室、 5M:高圧高温燃焼ガス室、 5N:高圧高温水蒸気室、 5N:高圧高温水蒸気、 5P:水蒸気制御弁、 5Q:水制御弁、 5R:過熱蒸気制御弁、 5S:圧縮空気加熱管、 5T:液体酸素制御弁、 6:最終圧縮翼、 6A:過熱蒸気ロケット噴口、 6B:圧縮空気噴射ノズル、 6E:比重大物質噴射ノズル、 6F:水噴射ノズル、 6G:外箱噴口、 6H:排水管、 6L:酸素噴射ノズル、 6M:酸素窒素噴射ノズル、 6W:比重大物質加速機(液体比重大物質3E圧力と比重差利用して比重大物質3Eや2E混合噴射) 6X:燃料噴射ノズル、 6X:アフターバーナー(吸引空気流に燃料噴射冷熱28a燃焼流6Yに合流燃焼して燃料燃焼量大増大で宇宙上昇) 6Y:燃焼ガス噴射ノズル(冷熱28a燃焼流) 6Z:過熱蒸気噴射ノズル、 7A:プロペラ、 7B:回転翼、 7C:スクリュー、 7I:簡単ガス機関自動車、 7J:簡単ガス機関船舶、 7K:簡単ガス機関飛行機、 7L:簡単空気噴射機関船舶、 7M:簡単噴射機関飛行機、 7N:回転翼飛行機、 7O:回転翼噴射飛行機、 7P:特大オスプレイ、 7Q:大型オスプレイ、 8b:タービン翼(サイクル数や比重大物質性質仕事速度や周速度に合せた角度や曲線や回転半径の直列同回転歯車4D連動としたタービン翼) 8c:タービン翼(円筒外面に直線長大タービン翼を設けて内周や外周の全自動加工や軽量化を狙う) 8d:上側膨張翼群、 8e:下側膨張翼群、 8f:組立タービン翼群、 8g:上側圧縮翼群、 8h:下側圧縮翼群、 8j:組立圧縮翼群、 8k:内側圧縮翼、 8m:外側圧縮翼、 8n:内側出力翼、 8p:外側出力翼、 8q:内側圧縮翼(回転速度や周速度に合せた角度や曲線や回転半径対向噛合い回転とした圧縮翼) 8r:外側圧縮翼(回転速度や周速度に合せた角度や曲線や回転半径対向噛合い回転とした圧縮翼) 8s:内側出力翼(回転速度や周速度に合せた角度や曲線や回転半径対向噛合い回転とした出力翼) 8t:外側出力翼(回転速度や周速度に合せた角度や曲線や回転半径対向噛合い回転とした出力翼) 8A:円筒タービン翼群(横型円筒タービン翼群として全自動加工や精密組立可能にする) 8B:横型全動翼水重力タービン、 8C:横型全動翼比重大物質重力タービン、 8D:横型全動翼水重力タービン、 8E:横型全動翼比重大物質重力タービン、 8V:竪型全動翼水重力タービン、 8W:竪型全動翼比重大物質重力タービン、 8X:竪型全動翼水重力タービン、 8Y:竪型全動翼比重大物質重力タービン、 9:耐摩耗環状組立(8cを含む比重大物質流路のみ超硬合金で環状製造軽量化する嵌合組立方法にする) 9b:上吸引下反発磁石、 9A:円筒環状組立(耐摩耗円筒環状組立て動翼群6種類にすることで構造簡単や部品数僅少や全自動加工容易や組立容易や軽量化容易等にする) 9A:円筒環状組立(入口固定外翼60E+外側環状翼60G+出口固定外翼60J嵌合で円筒タービン翼群8Aを構成し、入口固定内翼60F+内側環状翼60H+出口固定内翼60K嵌合で円筒タービン翼群8Aを構成する円筒部) 9B:反発永久磁石、 9C:吸引永久磁石、 9D:圧縮空気部、 9E:真空部、 9M:嵌合組立部、 9Q:垂直平行板(噴射空気を保存船尾に誘導する垂直平行の板) 10:船体、 10A:船室、 10b:操縦室、 10c:制御室、 10d:客室、 10e:貨物室、 11:竪型全動翼蒸気タービン11FA:竪型全動翼水重力タービン、 11B:竪型全動翼比重大物質重力タービン、 11C:横型全動翼水重力タービン、 11D:気体専用冷却室、 11E:横型全動翼比重大物質重力タービン、 11F:竪型全動翼蒸気タービン、 12:重力発電建物、 12A:鉄骨骨組、 12B:柱管、 12C:軸受、 12D:角フランジ、 12E:フランジ、 16:水平軸板(精密組立を容易にする円盤) 16A:水平軸、 21:太陽光加熱器(吸入空気路を熱吸収管4H内にも設けて主使用する) 24:燃焼ガス制御弁、 24A:圧縮空気制御弁、 25:過熱蒸気制御弁、 25b:燃料制御弁、 25c:燃料管、 28a:空気、 28a:冷熱(空気28aを熱ポンプで圧縮して圧縮空気熱量の過熱蒸気50温熱+液体酸素や液体窒素を含む圧縮空気28a冷熱に分割保存) 28b:圧縮空気熱量、 28A:吸入空気路、 28B:空気路入口、 38:回転案内具、 38a:飛行胴、 38b:飛行翼、 38c:飛行尾翼、 38d:垂直翼、 38e:翼前縁心、 38g:水上翼、 38h:浮上艇、 38B:空気吸引噴射船舶(79S79T79Y79Z具備) 38C:水吸引噴射船舶(79U79X具備) 38H:理論スクリュウ船舶、 38J:理論噴射船舶、 38T:理論噴射飛行機、 38U:理論プロペラ飛行機、 39A:太陽熱重力飛行機、 39B:太陽熱重力回転飛行機、 39C:太陽熱重力ヘリコプター、 39D:スクリュー船舶、 39G:太陽熱重力飛行船舶、 39H:酸素合体スクリュー船舶、 39J:酸素合体噴射船舶、 39K:酸素合体スクリュー噴射船舶、 39L:酸素合体噴射飛行機、 39M:酸素合体プロペラ飛行機、 39N:酸素合体プロペラ噴射飛行機、 39P:酸素合体回転翼飛行機、 39Q:酸素合体スクリュー船舶、 39R:酸素合体噴射船舶、 39S:酸素合体スクリュー噴射船舶、 39T:酸素合体噴射飛行機、 39U:酸素合体プロペラ飛行機、 40A:方向舵、 49:燃焼ガス、 50:過熱蒸気、 50:過熱蒸気室、 50:温熱(空気28aを熱ポンプで圧縮して圧縮空気熱量の過熱蒸気50温熱+圧縮空気28a冷熱に分割保存) 50A:水蒸気、 50a:過熱蒸気噴射管、 51:空気抽出器、 51:合流抽出器(合流するための抽出器) 51A:空気抽出室、 52A:低温水、 52B:低温水
管、 52C:アルコール、 52C:アルコール管、 52a:海洋深層水、 52b:高温水、 52d:温熱(50から変化) 52e:冷熱(28aから変化) 55B:変速装置、 60A:内側軸装置(タービン翼具備装置) 60B:外側軸装置(タービン翼具備装置) 60C:円筒内側動翼群(耐摩耗円筒環状組立固定動翼群を含めて全自動加工容易組立容易にする) 60D:円筒外側動翼群(耐摩耗円筒環状組立固定動翼群を含めて全自動加工容易組立容易にする) 60E:入口固定外翼(外側動翼群を環状組立固定する入口翼) 60F:入口固定内翼(内側動翼群を環状組立固定する入口翼) 60G:外側環状翼(外側動翼群を環状組立する中間翼) 60H:内側環状翼(内側動翼群を環状組立する中間翼) 60J:出口固定外翼(外側動翼群を環状組立固定する出口翼) 60K:出口固定内翼(内側動翼群を環状組立固定する出口翼) 60c:内側動翼、 60d:外側動翼、 60e:外入口翼、 60f:内入口翼、 60g:外中間翼、 60h:内中間翼、 60j:内出口翼、 60k:外出口翼、 76:歯車装置(磁気摩擦動力伝達装置を含む) 77B:ロケット外箱、 77C:対向噛合い回転機外箱、 77F:噴射部外箱、 77G:円筒回転部、 77a:タービン外箱、 77b:圧縮機外箱、 80:軸受(磁気軸受+空気軸受含) 80a:推力軸受(磁気軸受+空気軸受含) 80A:継手、 80B:締付具、 80Y:液体空気吸引ウォータージェット(高圧高温燃焼室5M高圧高温水蒸気室5Nを受給して5Mに複数回燃料噴射燃焼して5Nを内周と内周外周から複数回加熱して噴射し、空気吸引噴射して水を吸引噴射する) 80Z:液体空気吸引ウォータージェット(高圧高温燃焼室5M高圧高温水蒸気室5Nを受給して5Mに複数回燃料噴射燃焼して5Nを内周と内周外周から複数回加熱して噴射し、空気吸引流複数か所にも燃料噴射燃焼噴射して、空気吸引噴射して水を吸引噴射する) 84:対向噛合い回転磁気摩擦装置(固定部具備内側動翼群と外側動翼群を略同速度反対回転にする装置) 84Y:対向噛合い回転歯車装置(既存技術で同様にする) 85:対向噛合い回転磁気装置(磁石利用歯車高さ僅少から無接触にし横軸1h歯車により相互逆回転にする) 85Y:対向噛合い回転歯車装置(既存横軸1h歯車により相互逆回転にする) 88p:液体酸素製造機、 88q:簡単ガス機関、 88r:簡単空気噴射機関、 88s:簡単噴射機関、 88A:酸素合体空気噴射部(ロケット燃焼+ジェット燃焼+水蒸気噴射等と合体噴射) 88B:酸素合体空気噴射部(超高圧ロケット燃焼+ジェット燃焼+過熱蒸気噴射吸引) 88C:理論空気噴射部、 88M:理論水噴射部、 88K:酸素合体水噴射部(ロケット燃焼+ジェット燃焼+水蒸気噴射等と合体噴射) 88L:酸素合体水噴射部(超高圧ロケット燃焼+ジェット燃焼+過熱蒸気噴射吸引) 89A:液体酸素製造機、 89B:簡単多段圧縮機、 89C:簡単ガス機関、 89D:簡単空気噴射機関、 89E:簡単噴射機関、 89F:簡単ガス機関自動車、 89G:簡単ガス機関船舶、 89H:簡単ガス機関飛行機、 89I:簡単空気噴射機関船舶、 89J:簡単噴射機関飛行機、 89K:回転翼飛行機、 89L:回転翼噴射飛行機、 89M:特大オスプレイ、 89N:大型オスプレイ、 89P:簡単ガス機関、 95a:燃焼ガス溜、 95b:圧縮空気溜、 95c:過熱蒸気溜、 103:冷熱回収器、
0: Various energy storage cycle coalescence engine, 0: Various energy conservation cycle coalescence engine and coalescence method, 1: Generator, 1A: Storage battery, 1B: Pressure engine (oxygen pressure gear engine, oxygen pressure reciprocating engine, water pressure gear engine, 1C: alcohol, 1D: fuel injection pump, 1F: condensate pump, 1G: 1 to multistage heat pump (heat energy 1K: Liquid fuel control valve, 1L: Fuel heating pipe, 1Q: On-off valve, 1Y Air temperature and heat pump (various air compressors) multiple times compression 2C 2X2Y2Z multiple times heat recovery temperature 50 + cold heat 28a) : Multistage combustion chamber, 1b: fuel (liquid fuel + liquefiable gas fuel) 1b: fuel (liquid fuel + liquefiable gas fuel) 1b: fuel pipe (fuel injection temperature is at optimum temperature) 1c: Liquid fuel, 1d: Mercury, 1g: Gravity accelerating unit, 1h: Horizontal axis (axis that alternately rotates the outer shaft device and the inner shaft device) 1J: Fuel control valve, 1K: Liquid fuel Control valve, 2: Sunlight heater (collects sunlight in a straight line with a long lens and heats the high-temperature part forming intake air) 2a: Speeds up the natural phenomenon (in the air, there is almost zero leftovers in the nearby river 2a: Speeding up natural phenomena (by generating cold water 28a mixed with seawater for power generation, supplying seawater to the seabed with natural phenomena) Nitrogen, oxygen, CO2, etc. 2a: Speeding up natural phenomena (By ship, supplying nutrients such as nitrogen, oxygen and CO2 into the sea, aiming for the digestive capacity of microorganisms tens of thousands of times that of forests) Phytoplankton and seaweed 2b: Low water resistance (low-injection of air, combustion gas, superheated steam, etc. to the bottom of the ship to reduce water resistance) 2c: Thermal insulation, 2d: Long lens (Convex lens cross-section is linearly extended, and multiple lenses are used to aim at the shortest focal length lens width) 2e: Water surface, 2g: Specific material acceleration direction, 2h: Condenser, 2i: Condensate pump, 2A: Heat-resistant material, 2B: heat absorbing material, 2C: 1 to multiple-stage compression heat recovery device (heat energy is air temperature, heat pump is heat-recovered a plurality of times with a compression heat exchanger, and the rest is heated 50 + liquid cold 28a 2E: Specific critical substances (including alloys, platinum balls, gold balls, tungsten alloy powder sintered balls, silver balls, copper balls, tin balls, lead balls, zinc balls, aluminum balls, indium, cadmium, gallium, thallium, bismuth Specific gravity 2E: Specific critical substance (Manufacturing method reduces the impact energy as the diameter decreases. For example, molten steel is injected into the air to produce ultra-small diameter steel balls by high-speed collision crushing air cooling water cooling) 2E: Specific critical substance ( Coated platinum alloy balls, coated gold alloy balls, coated tungsten alloy powder sintered balls, coated silver alloy balls, coated bismuth alloy balls, coated copper alloy balls, coated tin alloy balls, coated lead alloy balls -Coated zinc alloy sphere-Coated aluminum alloy sphere) 2F: Specific critical material raising device (gravity energy is increased and stored) 2H: Cold seawater mixer, 2V: Low temperature exhaust heat exchanger, 2W: Low temperature air heat exchanger, 2X: Air heat exchanger, 2Y: Compressed air heat exchanger (liquid air cold heat + heat production) 2Z: Specific critical material heat exchanger (used for temperature control of liquid metal below 500 degrees) 3a: Water repellent plating, 3i: Easy Multi-stage compressor, 3s: Simple compressor, 3t: Air turbine, 3u: Turbine, 3A: Water repellent coating, 3B: Water pressure reciprocating engine, 3D: Electricity + liquid air cold heat + superheated steam temperature heat supply equipment (with gravity power generation electricity Manufacturing of cold + hot and supplying liquid oxygen and liquid nitrogen Driving automobiles, ships and airplanes, and supplying with superheated steam Recovering methane injected into methane hydrate, etc. Electricity + cold + hot energy use prime) 3E: Specific material (mercury) 3E: Specific critical material (low melting point alloy liquid and stable high temperature liquid alloy) 3F: Oxygen pressure reciprocating engine 3G: Theoretical combustion gear engine, 3H: Reciprocating piston, 3J : Reciprocating combustion engine, 3K: External gear, 3L: Multistage combustion chamber, 3M: Steam pressure reciprocating engine, 3N: Steam pressure gear engine, 3P: Theoretical expansion engine (gas volume is 3Q: Theoretical expansion engine (best engine + aiming for the highest acceleration drive in vacuum) 3R: Theoretical gas turbine (the volume of gas is inversely proportional to the pressure) 3S: Theoretical steam turbine (Theoretical best steam turbine whose gas volume is inversely proportional to pressure) 3T: Theoretical gas compressor (Theoretical best gas compressor whose gas volume is inversely proportional to pressure) 3U: Theoretical turbine, 3V: Pump engine (Uses existing pumps in the engine) 3X: Compressor engine (Uses existing compressors in the engine) 3Y: Opposing meshing rotary engine (Gas volume is inversely proportional to pressure) 3Z: Oxygen pressure gear engine, 3a: Water repellent plating, 3b: Water repellent coating, 4C: Opposite synchronous gear, 4D: In-line rotating gear, 4F: Combustion gas reciprocation Engine, 4H: Heat absorption tube (collecting sunlight into the heat absorption tube in a straight line with the long lens 2d, heating the air temperature inside the tube to the maximum and raising the outside air temperature) 4J: Battery drive wheel, 4K: Theory Expansion engine vehicle, 4Q: Theoretical combustion chamber (theoretical air-fuel ratio combustion in the production of superheated steam, combustion chamber aiming at the existing 4-fold combustion amount and 20-fold pressure superheated steam injection), 4W: Theoretical compression chamber, 4Y: Theoretical combustion chamber (steam 4Z: Combustion gas gear engine, 4X: Turbine blade cross section (increase cross-sectional area to increase surface area) 4a: Liquid fuel pump, 4b: Liquid Oxygen pump, 4c: Water pump, 4d: Gear device, 4e: Roller, 4f: Rotation support part, 5: Air injection nozzle, 5a: High-pressure high-temperature combustion gas control valve, 5b: Compression intake air path, 5d: Combustion flow inner wall , 5e: Super High pressure oxygen, 5h: Rectification tower exhaust gas, 5h: Rectification tower exhaust gas pipe, 5A: Supply valve, 5B: Cooling fin, 5C: Exhaust chamber 5D: Exhaust valve 5E: Supply chamber 5F: Oxygen heating pipe, 5G: Steam heating pipe, 5G: High pressure high temperature water heating pipe, 5H: Superheated steam, 5H: High pressure high temperature superheated steam pipe, 5K: Liquid oxygen, 5K: Liquid oxygen chamber, 5L: Liquid nitrogen, 5L: Liquid nitrogen chamber, 5M: High pressure High temperature combustion chamber, 5M: High pressure high temperature combustion gas chamber, 5N: High pressure high temperature steam chamber, 5N: High pressure high temperature steam, 5P: Steam control valve, 5Q: Water control valve, 5R: Superheated steam control valve, 5S: Compressed air heating pipe 5T: liquid oxygen control valve, 6: final compression blade, 6A: superheated steam rocket nozzle, 6B: compressed air injection nozzle, 6E: specific material injection nozzle, 6F: water injection nozzle, 6G: outer box injection nozzle, 6H: Drain pipe, 6L: Oxygen Injection nozzle, 6M: Oxygen / nitrogen injection nozzle, 6W: Specific critical substance accelerator (liquid specific critical substance 3E pressure and specific gravity difference using specific gravity difference 3E or 2E mixed injection) 6X: Fuel injection nozzle, 6X: Afterburner (suction) 6Y: Combustion gas injection nozzle (cooling 28a combustion flow) 6Z: Superheated steam injection nozzle, 7A: Propeller, 7B: Rotation Wings, 7C: Screw, 7I: Simple gas engine vehicle, 7J: Simple gas engine ship, 7K: Simple gas engine airplane, 7L: Simple air injection engine ship, 7M: Simple injection engine airplane, 7N: Rotary wing airplane, 7O: Rotating blade injection plane, 7P: Oversized Osprey, 7Q: Large Osprey, 8b: Turbine blade (cycle number and specific material properties work speed and peripheral speed 8c: Turbine blade (a straight long turbine blade is provided on the outer surface of the cylinder, aiming for fully automatic machining and weight reduction of the inner and outer circumferences) 8d : Upper expansion blade group, 8e: Lower expansion blade group, 8f: Assembly turbine blade group, 8g: Upper compression blade group, 8h: Lower compression blade group, 8j: Assembly compression blade group, 8k: Inner compression blade, 8m : Outer compression blades, 8n: Inner output blades, 8p: Outer output blades, 8q: Inner compression blades (compressed blades with rotation and counter-rotating angles and curves according to rotational speed and peripheral speed) 8r: Outer compression Blades (compressed wings with rotational speed and circumferential speed, angle, curve and rotational radius opposed meshing rotation) 8s: Inner output blades (angle, curved line and rotational radius opposed meshing rotation according to rotational speed and circumferential speed) 8t: Outer output wing (rotation speed and 8A: Cylindrical turbine blade group (enables fully automatic machining and precision assembly as a horizontal cylindrical turbine blade group) 8B: Horizontal full blade dynamic gravity Turbine, 8C: Horizontal all blade ratio critical material gravity turbine, 8D: Horizontal total blade water gravity turbine, 8E: Horizontal total blade ratio critical material gravity turbine, 8V: Vertical all blade water gravity turbine, 8W: 竪Type all-blade specific gravity material gravity turbine, 8X: vertical all-blade water gravity turbine, 8Y: vertical type all-blade specific gravity gravity turbine, 9: wear-resistant annular assembly (only specific material flow path including 8c) 9b: Upper attracting and lower repulsive magnet, 9A: Cylindrical annular assembly (wear-resistant cylindrical annular assembly, 6 types of moving blade group, simple structure and few parts) Easy and fully automatic processing and assembly capacity 9A: Cylindrical annular assembly (inlet fixed outer blade 60E + outer annular blade 60G + outlet fixed outer blade 60J is fitted to form cylindrical turbine blade group 8A, inlet fixed inner blade 60F + inner annular blade 60H +) 9B: Repulsive permanent magnet, 9C: Suction permanent magnet, 9D: Compressed air part, 9E: Vacuum part, 9M: Fitting assembly part, 9Q : Vertical parallel plate (vertical parallel plate that guides the blast air to the storage stern) 10: Hull, 10A: Cabin, 10b: Control room, 10c: Control room, 10d: Guest room, 10e: Cargo room, 11: Vertical type all Rotor Steam Turbine 11FA: Vertical Type Fully Bladed Water Gravity Turbine, 11B: Vertical Type Fully Bladed Specific Material Gravity Turbine, 11C: Horizontal Type Fully Bladed Water Gravity Turbine, 11D: Gas Cooling Chamber, 11E: Horizontal Type Fully Dynamic Specific gravity gravity turbine, 11F: Vertical type full-blade steam turbine, 12: Gravity power generation building, 12A: Steel frame, 12B: Column tube, 12C: Bearing, 12D: Square flange, 12E: Flange, 16: Horizontal shaft plate (Disc that facilitates precision assembly) 16A: Horizontal axis, 21: Solar heater (mainly used with the intake air path provided in the heat absorption pipe 4H) 24: Combustion gas control valve, 24A: Compressed air control Valve, 25: superheated steam control valve, 25b: fuel control valve, 25c: fuel pipe, 28a: air, 28a: cold heat (compressed air 28a is compressed with a heat pump, heat of compressed air is heated 50 heat + liquid oxygen or liquid 28b: compressed air calorie, 28A: intake air passage, 28B: air passage inlet, 38: rotation guide, 38a: flight trunk, 38b: flight wing, 3 c: flying tail, 38d: vertical wing, 38e: leading edge of the wing, 38g: surface wing, 38h: floating boat, 38B: air suction jet ship (with 79S79T79Y79Z) 38C: water suction jet ship (with 79U79X) 38H: theory Screw ship, 38J: theoretical jet ship, 38T: theoretical jet airplane, 38U: theoretical propeller airplane, 39A: solar thermal gravity airplane, 39B: solar thermal gravity rotating airplane, 39C: solar thermal gravity helicopter, 39D: screw ship, 39G: solar thermal gravity flight Ship, 39H: Oxygen coalescence screw ship, 39J: Oxygen coalescence injection ship, 39K: Oxygen coalescence screw injection ship, 39L: Oxygen coalescence injection airplane, 39M: Oxygen coalescence propeller airplane, 39N: Oxygen coalescence propeller injection airplane, 39P: Oxygen coalescence Rotor plane, 39Q: Acid Combined screw ship, 39R: Oxygen combined injection ship, 39S: Oxygen combined screw injection ship, 39T: Oxygen combined injection airplane, 39U: Oxygen combined propeller airplane, 40A: Rudder, 49: Combustion gas, 50: Superheated steam, 50: Superheat Steam chamber, 50: Warmth (compressed air 28a is compressed with a heat pump, and is divided and stored into superheated steam 50 heat of compressed air calorie + compressed air 28a cold) 50A: steam, 50a: superheated steam injection pipe, 51: air extractor, 51: Confluence extractor (extractor for joining) 51A: Air extraction chamber, 52A: Low temperature water, 52B: Low temperature water pipe, 52C: Alcohol, 52C: Alcohol pipe, 52a: Deep ocean water, 52b: High temperature water, 52d : Thermal (change from 50) 52e: Cold (change from 28a) 55B: Transmission, 60A: Inner shaft device (turbine blade) Equipment 60B: Outer shaft device (equipment with turbine blades) 60C: Cylindrical inner blade group (Wear resistant cylindrical annular assembly fixed moving blade group, including fully automatic machining easy assembly) 60D: Cylindrical outer blade group (Ease of easy wear and assembly including wear-resistant cylindrical annular assembly fixed rotor blade group) 60E: Outer fixed outer blade (inlet blade for annular assembly fixing outer rotor blade group) 60F: Inlet fixed inner blade (inner motion) 60G: Outer annular blade (intermediate blade for annular assembly of outer blade group) 60H: Inner annular blade (intermediate blade for annular assembly of inner blade group) 60J: Outlet fixed outer blade (Outlet blade for annular assembly fixing outer rotor blade group) 60K: Outlet fixed inner blade (exit blade for annular assembly fixing inner rotor blade group) 60c: Inner rotor blade, 60d: Outer rotor blade, 60e: Outer inlet blade, 60f: Inner inlet blade, 60g: Outer intermediate blade, 6 0h: Inner intermediate blade, 60j: Inner outlet blade, 60k: Outer outlet blade, 76: Gear device (including magnetic friction power transmission device) 77B: Rocket outer box, 77C: Opposing meshing rotating machine outer box, 77F: Injection External box, 77G: Cylindrical rotating part, 77a: Turbine outer box, 77b: Compressor outer box, 80: Bearing (including magnetic bearing + air bearing) 80a: Thrust bearing (including magnetic bearing + air bearing) 80A: Fitting 80B: Fastener, 80Y: Liquid air suction water jet (high pressure high temperature combustion chamber 5M receiving high pressure high temperature steam chamber 5N, fuel injection combustion to 5M multiple times, 5N is heated multiple times from the inner periphery and inner periphery outer periphery 80Z: Liquid air suction water jet (receives high pressure high temperature combustion chamber 5M, high pressure high temperature steam chamber 5N, and injects and combusts multiple times to 5M, 5N inner circumference Heating and injecting multiple times from the inner and outer periphery, and fuel injection / combustion injection at a plurality of locations of air suction flow, air suction injection and water suction injection) 84: Opposing meshing rotary magnetic friction device (fixed portion) 84Y: Opposing meshing rotating gear device (same as in existing technology) 85: Opposing meshing rotating magnetic device (magnet gear height) 85Y: Opposite meshing rotating gear device (reciprocal reverse rotation with the existing horizontal shaft 1h gear) 88p: liquid oxygen production machine, 88q: simple gas engine, 88r: simple air injection engine, 88s: simple injection engine, 88A: oxygen combined air injection unit (rocket combustion + jet combustion + steam injection and combined injection) 88B: oxygen combined air injection unit (ultra-high pressure rocket combustion + di 88C: Theoretical air injection unit, 88M: Theoretical water injection unit, 88K: Oxygen combined water injection unit (rocket combustion + jet combustion + steam injection and combined injection) 88L: Oxygen combined water injection 89A: Liquid oxygen production machine, 89B: Simple multistage compressor, 89C: Simple gas engine, 89D: Simple air injection engine, 89E: Simple injection engine, 89F: Simple gas engine automobile, 89G: Simple gas engine ship, 89H: Simple gas engine airplane, 89I: Simple air injection engine ship, 89J: Simple injection engine airplane, 89K: Rotary wing airplane, 89L: Rotary wing injection airplane, 89M: Extra large Osprey, 89N: Large Osprey, 89P: Simple gas engine, 95a: Combustion gas reservoir, 95b: Compressed air reservoir, 95 : Superheated steam reservoir, 103: cold heat recovery unit,

Claims (193)

簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)を重力発電建物(12)に具備した各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods comprising a simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) in a gravity power generation building (12). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)を重力発電建物(12)の柱管(12B)に具備した各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method comprising a simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) in a column pipe (12B) of a gravity power generation building (12). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)を重力発電建物(12)の柱に具備した各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods comprising a simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) on a column of a gravity power generation building (12). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)を重力発電建物(12)の中に具備した各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods comprising a simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) in a gravity power generation building (12). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)を重力発電建物(12)の柱管(12B)角フランジ(12D)に固定した各種エネルギ保存サイクル合体機関及び合体方法。   Combined with various energy conservation cycles in which simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) is fixed to column pipe (12B) square flange (12D) of gravity power generation building (12) Organization and coalescence method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)を重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)に固着した各種エネルギ保存サイクル合体機関及び合体方法。   Steel frame (12A) with simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) and gravity power generation building (12) column pipe (12B) square flange (12D) square Various energy storage cycle coalescence engines and coalescence methods fixed to 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電+過熱蒸気管(5H)の重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)にボルト締めした各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) + vertical all blade steam turbine (11F) power generation + superheated steam pipe (5H) gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A ) Various energy storage cycle coalescence engines and coalescence methods bolted to 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電+過熱蒸気管(5H)の重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下で固着した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) + vertical all blade steam turbine (11F) power generation + superheated steam pipe (5H) gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A ) Various energy storage cycle coalescence engines and coalescence methods fixed at the top and bottom. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電+過熱蒸気管(5H)の重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下でボルト締めした各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) + vertical all blade steam turbine (11F) power generation + superheated steam pipe (5H) gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A ) Various energy storage cycle coalescence engines and coalescence methods bolted up and down. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電+過熱蒸気管(5H)の重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を増大する各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) + vertical all blade steam turbine (11F) power generation + superheated steam pipe (5H) gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A ) Various energy conservation cycle coalescing engines and coalescence methods that increase the number of floors by bolting up and down. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電+過熱蒸気管(5H)の重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を1階以上とした各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) + vertical all blade steam turbine (11F) power generation + superheated steam pipe (5H) gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A ) Various energy conservation cycle coalescing engines and coalescence methods that have upper and lower bolts to make the floor number one or more. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電+過熱蒸気管(5H)の重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を20階以下とした各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) + vertical all blade steam turbine (11F) power generation + superheated steam pipe (5H) gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A ) Various energy conservation cycle coalescing engines and coalescence methods with upper and lower bolting to make the floor 20 floors or less. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電+過熱蒸気管(5H)の重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を15階以下とした各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) + vertical all blade steam turbine (11F) power generation + superheated steam pipe (5H) gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A ) Various energy conservation cycle coalescing engines and coalescence methods with upper and lower bolts tightened to a floor number of 15 or less. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電+過熱蒸気管(5H)の重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を10階以下とした各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) + vertical all blade steam turbine (11F) power generation + superheated steam pipe (5H) gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A ) Various energy conservation cycle coalescing engines and coalescence methods with upper and lower bolting to reduce the floor to 10 floors or less. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電+過熱蒸気管(5H)の重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を8階以下とした各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) + vertical all blade steam turbine (11F) power generation + superheated steam pipe (5H) gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A ) Various energy conservation cycle coalescing engines and coalescence methods that have upper and lower bolts to make the floor 8 or less. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電+過熱蒸気管(5H)の重力発電建物(12)の柱管(12B)角フランジ(12D)を角形として鉄骨骨組(12A)上下のボルト締めで階数を6階以下とした各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) + vertical all blade steam turbine (11F) power generation + superheated steam pipe (5H) gravity power generation building (12) column tube (12B) square flange (12D) square steel frame (12A ) Various energy conservation cycle coalescing engines and coalescing methods in which the number of floors is 6 or less by tightening the upper and lower bolts. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇使用する各種エネルギ保存サイクル合体機関及び合体方法。   Simple energy engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + various energy storage cycle coalescing engines that use superheated steam (5H) at the top of column pipe (12B) Merge method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速で噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy conservation cycle coalescing engine and coalescence method for injecting with acceleration of gravitational acceleration while the temperature is rising. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ3以上で噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy conservation cycle coalescing engine and coalescence method for injecting at gravitational acceleration acceleration Mach 3 or higher while the temperature is rising. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ3以下で噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy conservation cycle coalescence engine and coalescence method for injecting at a gravitational acceleration acceleration Mach 3 or less while the temperature is rising. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ1以上で噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy conservation cycle coalescence engines and coalescence methods for injection at a gravitational acceleration acceleration Mach of 1 or higher. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ1以下で噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy conservation cycle coalescence engines and coalescence methods for injecting at a gravitational acceleration acceleration Mach of 1 or less. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速で噴射真空中重力加速度加速する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy conservation cycle coalescence engine and coalescence method for accelerating gravitational acceleration in a jet vacuum by acceleration of gravitational acceleration while the temperature is rising. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ3以上で噴射真空中重力加速度加速する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy storage cycle coalescence engines and coalescence methods for accelerating gravitational acceleration in a jet vacuum with gravitational acceleration acceleration Mach 3 or higher. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ3以下で噴射真空中重力加速度加速する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy storage cycle coalescence engines and coalescence methods for accelerating gravitational acceleration in an injection vacuum at a gravitational acceleration acceleration Mach 3 or less. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ1以上で噴射真空中重力加速度加速する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Gravity acceleration acceleration Mach 1 or higher, and various energy conservation cycle coalescence engine and coalescence method for accelerating gravity acceleration in injection vacuum. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ1以下で噴射真空中重力加速度加速する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Gravity acceleration acceleration while increasing the temperature Mach 1 or less, various energy storage cycle coalescence engine and coalescence method for accelerating gravitational acceleration in injection vacuum. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy conservation cycle coalescence engines and coalescence methods for injecting into a vacuum gravity acceleration acceleration cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C) in a vacuum with acceleration of gravitational acceleration while the temperature is rising. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ3以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy conservation cycle coalescence engine and coalescence method for injecting gravity acceleration acceleration cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C) in injection vacuum with gravitational acceleration acceleration Mach 3 or higher. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ3以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy storage cycle coalescence engine and coalescence method for injecting gravity acceleration acceleration cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C) in jet vacuum at gravitational acceleration acceleration Mach 3 or less. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ1以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy storage cycle coalescence engines and coalescence methods for injecting gravity acceleration acceleration cylinder outer moving blade group (60D) and cylinder inner moving blade group (60C) in jet vacuum at gravitational acceleration acceleration Mach 1 or higher. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ1以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy conservation cycle coalescence engines and coalescence methods for injecting gravity acceleration acceleration Mach 1 or less during gravity rise into gravity vacuum acceleration cylinder outer rotor blade group (60D) and cylinder inner rotor blade group (60C) in vacuum. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Various energy storage cycle coalescence engines and coalescence methods for driving the jets to the cylinder outer rotor blade group (60D) and the cylinder inner rotor blade group (60C) in a jet vacuum by acceleration of gravitational acceleration while increasing the temperature. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ3以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Accelerating Gravity Acceleration Mach 3 or higher during injection, Gravity Acceleration Acceleration in Vacuum Vacuum Outer Cylindrical Blade Group (60D), Cylindrical Inner Blade Group (60C) Method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ3以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Accelerating Gravity Acceleration Mach 3 or less, and accelerating Gravity Acceleration Cylinder Outer Blade Group (60D) and Cylindrical Inner Blade Group (60C) Method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ1以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Accelerating Gravity Acceleration Mach 1 or higher during injection, Gravity Acceleration Acceleration in Vacuum Vacuum Outer Cylindrical Blade Group (60D), Cylindrical Inner Blade Group (60C) Method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ1以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Accelerating Gravity Acceleration Mach 1 or less during injection, Gravity Acceleration Acceleration in Vacuum Vacuum Outer Cylinder Outer Blade Group (60D) and Cylindrical Inner Blade Group (60C) Method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動して発電する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Accelerating Gravity Acceleration with Increasing Degree of Gravity Acceleration in Gravity Acceleration in Cylindrical Outer Blade Group (60D) and Cylindrical Inner Blade Group (60C) Method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ3以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動して発電する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Accelerating Gravity Acceleration Mach 3 or higher during spraying Gravity Acceleration Acceleration in Vacuum Vacuum Outer Cylindrical Blade Group (60D) Cylindrical Inner Blade Group (60C) Organization and coalescence method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ3以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動して発電する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Combined with various energy conservation cycles to generate electricity by rotating the jets in reverse to the cylinder outer rotor blade group (60D) and the cylinder inner rotor blade group (60C) in the jet vacuum at gravitational acceleration acceleration Mach 3 or less. Organization and coalescence method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ1以上で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動して発電する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Combined with various energy conservation cycles to generate electricity by rotating the jets in the cylinder outer rotor blade group (60C) and the cylinder inner rotor blade group (60C) in a jet vacuum at a gravitational acceleration acceleration Mach of 1 or more while increasing the temperature. Organization and coalescence method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電過熱蒸気管(5H)+柱管(12B)で過熱蒸気(5H)を最上部に上昇過熱蒸気(5H)膨張速度+真空度上昇中の重力加速度加速マッハ1以下で噴射真空中重力加速度加速円筒外側動翼群(60D)円筒内側動翼群(60C)に噴射夫々を二重反転駆動して発電する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation superheated steam pipe (5H) + column pipe (12B) raises superheated steam (5H) to the top Superheated steam (5H) expansion speed + vacuum Combined with various energy storage cycles to generate power by driving the jets to reverse each other in the cylinder outer rotor blade group (60D) and the cylinder inner rotor blade group (60C). Organization and coalescence method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電外側軸装置(60B)兼円筒外側動翼群(60D)や内側軸装置(60A)兼円筒内側動翼群(60C)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation outer shaft device (60B) / cylindrical outer blade group (60D) and inner shaft device (60A) / cylindrical inner blade group (60C) Various energy storage cycle coalescence engines and coalescence methods equipped with bearings (12C) at both ends of each. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電外側軸装置(60B)兼円筒外側動翼群(60D)や内側軸装置(60A)兼円筒内側動翼群(60C)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation outer shaft device (60B) / cylindrical outer blade group (60D) and inner shaft device (60A) / cylindrical inner blade group (60C) Bearings (12C) are provided at both ends of each of the various energy storage cycle coalescing engines and coalescence methods capable of supporting both ends with a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電外側軸装置(60B)兼円筒外側動翼群(60D)や内側軸装置(60A)兼円筒内側動翼群(60C)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation outer shaft device (60B) / cylindrical outer blade group (60D) and inner shaft device (60A) / cylindrical inner blade group (60C) Bearings (12C) are provided at both ends of each of the various energy storage cycle coalescing engines and coalescing methods, wherein both ends are supported and ultra-high-speed balance adjustment processing is performed separately with a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電外側軸装置(60B)兼円筒外側動翼群(60D)や内側軸装置(60A)兼円筒内側動翼群(60C)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation outer shaft device (60B) / cylindrical outer blade group (60D) and inner shaft device (60A) / cylindrical inner blade group (60C) Bearings (12C) are provided at both ends of each of the various energy storage cycle coalescence engines and coalescence methods, which are separately supported at both ends by a temporary assembly machine tool and ultra-high-speed balance adjustment ultra-precision machining. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電外側軸装置(60B)兼円筒外側動翼群(60D)や内側軸装置(60A)兼円筒内側動翼群(60C)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation outer shaft device (60B) / cylindrical outer blade group (60D) and inner shaft device (60A) / cylindrical inner blade group (60C) Bearings (12C) are provided at both ends of each of the various energy storage cycle coalescence engines and coalescence methods that are separately assembled in a temporary assembly machine tool and supported at both ends by super-high-speed balance adjustment and ultra-precision machining. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation electric drive liquid oxygen production machine (89A) outer shaft device (60B) and outer compression blade (8r) and inner shaft device (60A) and inner Various energy storage cycle coalescence engines and coalescence methods provided with bearings (12C) at both ends of the compression blades (8q). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation electric drive liquid oxygen production machine (89A) outer shaft device (60B) and outer compression blade (8r) and inner shaft device (60A) and inner Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends of each of the compressor blades (8q), and both ends can be supported by a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation electric drive liquid oxygen production machine (89A) outer shaft device (60B) and outer compression blade (8r) and inner shaft device (60A) and inner Various energy storage cycle coalescence engines and coalescence methods, in which bearings (12C) are provided at both ends of each of the compression blades (8q), and both ends are supported and ultra-high speed balance adjustment processing is performed by a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation electric drive liquid oxygen production machine (89A) outer shaft device (60B) and outer compression blade (8r) and inner shaft device (60A) and inner Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends of each of the compressor blades (8q), and both ends are supported and ultra-high-speed balance adjustment is performed with a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation electric drive liquid oxygen production machine (89A) outer shaft device (60B) and outer compression blade (8r) and inner shaft device (60A) and inner Various energy storage cycle coalescence engines and coalescence methods that are equipped with bearings (12C) at both ends of each of the compression blades (8q), and that are assembled separately after ultra-high-precision balance adjustment and ultra-precision machining with both ends supported by a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) Electric generator-driven liquid oxygen production machine (89A) Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner Various energy storage cycle coalescence engines and coalescence methods provided with bearings (12C) at both ends of each of the output blades (8s). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) Electric generator-driven liquid oxygen production machine (89A) Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner Bearings (12C) are provided at both ends of each of the output blades (8s), and various energy storage cycle merging engines and merging methods that enable both ends to be supported by a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) Electric generator-driven liquid oxygen production machine (89A) Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner Various energy storage cycle coalescence engines and coalescence methods, in which bearings (12C) are provided at both ends of each of the output blades (8s), and both ends are supported and ultra-high speed balance adjustment processing is performed by a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) Electric generator-driven liquid oxygen production machine (89A) Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner Bearings (12C) at both ends of each of the output wings (8s), and various energy storage cycle coalescence engines and coalescence methods, each of which is separately supported at both ends by a temporary assembly machine tool and ultra-high-speed balance adjustment ultra-precision machining. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電電気駆動の液体酸素製造機(89A)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) Electric generator-driven liquid oxygen production machine (89A) Outer shaft device (60B) and outer output blade (8t) and inner shaft device (60A) and inner Bearings (12C) are provided at both ends of each of the output blades (8s), and various energy storage cycle coalescence engines and coalescence methods are separately assembled by temporary assembly machine tools after both ends are supported and ultra-high-speed balance adjustment is performed after ultra-precision machining. 各種連結駆動する簡単多段圧縮機(89B)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備した簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas compressor equipped with bearings (12C) at both ends of a simple multistage compressor (89B) outer shaft device (60B) and outer compressor blade (8r) and inner shaft device (60A) and inner compressor blade (8q) that are connected and driven in various ways. Various energy storage cycle coalescence engine and coalescence method including engine (89P) + vertical all blade steam turbine (11F) power generation (11C) power generation electric product drive. 各種連結駆動する簡単多段圧縮機(89B)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Bearings (12C) are provided separately at both ends of each of the simple multistage compressors (89B), outer shaft devices (60B) and outer compressor blades (8r), and inner shaft devices (60A) and inner compressor blades (8q) that are connected and driven in various ways. Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) power generation electric product drive and combined engine and combination method capable of supporting both ends with a temporary assembly machine tool . 各種連結駆動する簡単多段圧縮機(89B)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工して、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Bearings (12C) are provided separately at both ends of each of the simple multistage compressors (89B), outer shaft devices (60B) and outer compressor blades (8r), and inner shaft devices (60A) and inner compressor blades (8q) that are connected and driven in various ways. Various energy storage cycle coalescence engine and coalescence method including horizontal full-blade hydrogravity turbine (11C) power generation electric product drive by both-end support processing ultra-high-speed balance adjustment processing with a temporary assembly machine tool. 各種連結駆動する簡単多段圧縮機(89B)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Bearings (12C) are provided separately at both ends of each of the simple multistage compressors (89B), outer shaft devices (60B) and outer compressor blades (8r), and inner shaft devices (60A) and inner compressor blades (8q) that are connected and driven in various ways. Various energy storage cycle merging engines and merging methods that include both ends support processing ultra-high-speed balance adjustment ultra-precise processing with a temporary assembly machine tool, and a horizontal full-blade hydrogravity turbine (11C) generator electric product drive. 各種連結駆動する簡単多段圧縮機(89B)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Bearings (12C) are provided separately at both ends of each of the simple multistage compressors (89B), outer shaft devices (60B) and outer compressor blades (8r), and inner shaft devices (60A) and inner compressor blades (8q) that are connected and driven in various ways. Various energy storage cycle merging engines and merging methods that include both full-width blade hydrogravity turbine (11C) power generation electric product drive after being assembled after ultra-high-speed balance adjustment and ultra-precision machining with temporary assembly machine tools. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple gas engine (89C) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner shaft Various energy storage cycle merging engines and merging methods provided with bearings (12C) at both ends of the device (60A) and the inner compression blade (8q). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple gas engine (89C) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner compression blade (8q), and various energy storage cycle coalescence engines and coalescence methods capable of supporting both ends separately with a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple gas engine (89C) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner compression blade (8q), and various energy storage cycle coalescence engines and coalescence methods are separately processed by a temporary assembly machine tool to perform both-end support processing and ultrahigh-speed balance processing. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple gas engine (89C) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner compression blade (8q), and various energy storage cycle merging engines and merging methods are used to perform both-end support machining and ultra-high-speed balance adjustment ultra-precision machining with temporary assembly machine tools. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple gas engine (89C) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner shaft Bearings (12C) at both ends of each of the apparatus (60A) and the inner compression blade (8q), each having a bearing (12C) separately, supporting both ends with a temporary assembly machine tool. Merge method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple gas engine (89C) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner shaft Various energy storage cycle merging engines and merging methods provided with bearings (12C) at both ends of the device (60A) and the inner output blade (8s). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple gas engine (89C) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner output blade (8s), and various energy storage cycle coalescence engines and coalescence methods that enable both ends to be supported by a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple gas engine (89C) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner output blade (8s), and various energy storage cycle coalescence engines and coalescence methods are separately processed at both ends by a temporary assembly machine tool to perform ultra-high speed balance adjustment processing. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple gas engine (89C) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner output blade (8s), and various energy storage cycle merging engines and merging methods are used to perform both-end support machining and ultra-high-speed balance adjustment ultra-precision machining with a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単ガス機関(89C)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple gas engine (89C) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner shaft Bearings (12C) at both ends of each of the apparatus (60A) and the inner output blade (8s), each having a bearing (12C) separately, supporting both ends with a temporary assembly machine tool, various high-speed balance adjustments, various energy storage cycle coalescing engines to be assembled after ultra-precision machining and Merge method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation (11C) simple air injection engine (89D) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner Various energy storage cycle coalescence engines and coalescence methods comprising bearings (12C) at both ends of the shaft device (60A) and the inner compression blades (8q). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation (11C) simple air injection engine (89D) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner Various energy storage cycle coalescence engines and coalescence methods, in which both ends of the shaft device (60A) and the inner compression blades (8q) are respectively provided with bearings (12C) and can be both end supported by a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation (11C) simple air injection engine (89D) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner Various energy storage cycle coalescence engines and coalescence methods, in which bearings (12C) are provided at both ends of each of the shaft device (60A) and the inner compression blades (8q), and both ends are supported by a temporary assembly machine tool and ultra-high speed balance adjustment processing is performed. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation (11C) simple air injection engine (89D) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner The shaft device (60A) and the inner compression blade (8q) have bearings (12C) at both ends, respectively, and are supported on both ends by a temporary assembly machine tool. . 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation (11C) simple air injection engine (89D) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner Bearings (12C) are provided at both ends of each of the shaft device (60A) and the inner compression blade (8q). Both ends are supported separately by a temporary assembly machine tool. Ultra-high-speed balance adjustment. And coalescing method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple air injection engine (89D) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner Various energy storage cycle merging engines and merging methods provided with bearings (12C) at both ends of the shaft device (60A) and the inner output blade (8s). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple air injection engine (89D) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner Various energy storage cycle merging engines and merging methods in which bearings (12C) are provided at both ends of each of the shaft device (60A) and the inner output blade (8s), and both ends can be supported by a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple air injection engine (89D) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner Various energy storage cycle coalescence engines and coalescence methods, including bearings (12C) at both ends of each of the shaft device (60A) and the inner output blade (8s), each of which is separately supported at both ends by a temporary assembly machine tool and processed at a high speed balance. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple air injection engine (89D) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner The shaft device (60A) and the inner output blade (8s) have bearings (12C) at both ends, and support each end with a temporary assembly machine tool. . 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単空気噴射機関(89D)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple air injection engine (89D) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner Bearings (12C) are provided at both ends of the shaft device (60A) and the inner output blade (8s), respectively. Both ends are supported by a temporary assembly machine tool. Ultra-high-speed balance adjustment. And coalescing method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation (11C) simple injection engine (89E) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner shaft Various energy storage cycle merging engines and merging methods provided with bearings (12C) at both ends of the device (60A) and the inner compression blade (8q). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation (11C) simple injection engine (89E) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner compression blade (8q), and various energy storage cycle coalescence engines and coalescence methods capable of supporting both ends separately with a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation (11C) simple injection engine (89E) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner compression blade (8q), and various energy storage cycle coalescence engines and coalescence methods are separately processed by a temporary assembly machine tool to perform both-end support processing and ultrahigh-speed balance adjustment processing. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation (11C) simple injection engine (89E) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner compression blade (8q), and various energy storage cycle merging engines and merging methods are used to perform both-end support machining and ultra-high-speed balance adjustment ultra-precision machining with temporary assembly machine tools. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側圧縮翼(8r)や内側軸装置(60A)兼内側圧縮翼(8q)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all blade steam turbine (11F) power generation (11C) simple injection engine (89E) including power generation electric product drive outer shaft device (60B) and outer compression blade (8r) and inner shaft Bearings (12C) at both ends of each of the apparatus (60A) and the inner compression blade (8q), each having a bearing (12C) separately, supporting both ends with a temporary assembly machine tool. Merge method. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備した各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple injection engine (89E) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner shaft Various energy storage cycle merging engines and merging methods provided with bearings (12C) at both ends of the device (60A) and the inner output blade (8s). 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工を可能にした各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple injection engine (89E) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner output blade (8s), and various energy storage cycle coalescence engines and coalescence methods that enable both ends to be supported by a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整加工する各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple injection engine (89E) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner output blade (8s), and various energy storage cycle coalescence engines and coalescence methods are separately processed at both ends by a temporary assembly machine tool to perform ultra-high speed balance adjustment processing. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple injection engine (89E) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner shaft Bearings (12C) are provided at both ends of each of the apparatus (60A) and the inner output blade (8s), and various energy storage cycle merging engines and merging methods are used to perform both-end support machining and ultra-high-speed balance adjustment ultra-precision machining with a temporary assembly machine tool. 簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電(11C)発電電気製造物駆動を含む簡単噴射機関(89E)外側軸装置(60B)兼外側出力翼(8t)や内側軸装置(60A)兼内側出力翼(8s)夫々の両端に軸受(12C)具備夫々別々に仮組立工作機械で両端支持加工超高速バランス調整超精密加工後に本組立にする各種エネルギ保存サイクル合体機関及び合体方法。   Simple gas engine (89P) + vertical all-blade steam turbine (11F) power generation (11C) simple injection engine (89E) including power generation electric product drive outer shaft device (60B) and outer output blade (8t) and inner shaft Bearings (12C) at both ends of each of the apparatus (60A) and the inner output blade (8s), each having a bearing (12C) separately, supporting both ends with a temporary assembly machine tool, various high-speed balance adjustments, various energy storage cycle coalescing engines to be assembled after ultra-precision machining and Merge method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの20倍以上として回転出力や噴射推進出力を既存ガスタービンの20倍以上にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of an existing boiler. Various energy storage cycle coalescence engine and coalescence method including horizontal full-blade hydrogravity turbine (11C) power generation electric product drive with rotation output and injection propulsion output over 20 times that of existing gas turbine. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力や噴射推進出力を既存ガスタービンの40倍以上にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. Various energy storage cycle coalescence engine and coalescence method including horizontal full-blade hydrogravity turbine (11C) power generation electrical product drive with rotational output and injection propulsion output over 40 times that of existing gas turbines. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの16倍以上にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Various energy storage cycle coalescence engine and coalescence method including horizontal full-blade hydrogravity turbine (11C) power generation electrical product drive with rotation output and injection propulsion output at least 16 times that of existing gas turbine. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力を既存ガスタービンの80倍以上にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. Various energy storage cycle coalescence engine and coalescence method including horizontal full-blade hydrogravity turbine (11C) power generation electric product drive with rotational output over 80 times that of existing gas turbine. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力を既存ガスタービンの16倍以上にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Various energy storage cycle coalescence engines and coalescence methods including a horizontal full-blade water gravity turbine (11C) power generation electric product drive with a rotational output of 16 times or more that of an existing gas turbine. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力を既存ガスタービンの80倍以上の簡単ガス機関自動車(89F)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. More than twice the rotation output of a simple gas engine automobile (89F) 80 times that of an existing gas turbine, combined with various energy storage cycle coalescence engines and coalescence containing horizontal full-blade water gravity turbine (11C) power generation electric product drive Method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力を既存ガスタービンの16倍以上の簡単ガス機関自動車(89F)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. More than twice the rotation output of a simple gas engine vehicle (89F) that is 16 times that of an existing gas turbine, combined with various energy storage cycle coalescence engines and coalescence that include a horizontal all blade water gravity turbine (11C) power generation electric product drive Method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力を既存ガスタービンの80倍以上の自動車類にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. Various energy storage cycle coalescence engine and coalescence method including horizontal full-blade water-gravity turbine (11C) power generation electric product drive, with a rotational output more than 80 times that of existing gas turbines. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力を既存ガスタービンの16倍以上の自動車類にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Various energy storage cycle coalescence engine and coalescence method including horizontal full-blade water gravity turbine (11C) power generation electric product drive, with a rotational output of 16 times or more that of existing gas turbines. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力を既存ガスタービンの80倍以上の車両類にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. Various energy storage cycle coalescence engines and coalescence methods including horizontal full-blade water gravity turbine (11C) power generation electric product drive, with a rotational output of 80 times or more of existing gas turbines, and a drive of a horizontal all-blade water gravity turbine (11C) generator and electric product drive. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力を既存ガスタービンの16倍以上の車両類にして、、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Various energy storage cycle coalescence engines and coalescence methods including horizontal full-blade hydrogravity turbine (11C) power generation electrical product drive, with a rotational output of 16 times or more than existing gas turbines and a rotational output of more than double. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの20倍以上として回転出力や噴射推進出力を既存ガスタービンの20倍以上の簡単ガス機関船舶(89G)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of an existing boiler. Rotating output and injection propulsion output with a simple gas engine ship (89G) more than 20 times that of the existing gas turbine, and various energy storage cycles that include a horizontal all-bladed water gravity turbine (11C) power generation electric product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力や噴射推進出力を既存ガスタービンの40倍以上の簡単ガス機関船舶(89G)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. Rotating output and injection propulsion output with a simple gas engine ship (89G) more than 40 times that of the existing gas turbine, and various energy storage cycles including a horizontal all blade hydrogravity turbine (11C) power generation electric product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単ガス機関船舶(89G)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Rotating output and injection propulsion output with a simple gas engine ship (89G) more than 8 times that of an existing gas turbine, and various energy storage cycles that include a horizontal all blade hydrogravity turbine (11C) power generation electric product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの20倍以上として回転出力や噴射推進出力を既存ガスタービンの20倍以上の簡単ガス機関飛行機(89H)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of an existing boiler. Rotating power and injection propulsion power with a simple gas engine airplane (89H) more than 20 times that of the existing gas turbine, and various energy storage cycles that include a horizontal all blade hydrogravity turbine (11C) power generation electric product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力や噴射推進出力を既存ガスタービンの40倍以上の簡単ガス機関飛行機(89H)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. Rotating output and injection propulsion output with a simple gas engine airplane (89H) more than 40 times that of the existing gas turbine, and various energy storage cycles that include a horizontal all blade hydrogravity turbine (11C) power generation electric product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単ガス機関飛行機(89H)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Rotating power and injection propulsion power with a simple gas engine airplane (89H) more than 8 times that of the existing gas turbine, and various energy storage cycles that include a horizontal all blade hydrogravity turbine (11C) power generation electric product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの20倍以上として回転出力や噴射推進出力を既存ガスタービンの20倍以上の回転翼飛行機(89K)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of an existing boiler. Combined with various energy storage cycles including horizontal full-blade hydrogravity turbine (11C) power generation electric product drive with rotary output and injection propulsion output more than 20 times that of existing gas turbines Organization and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力や噴射推進出力を既存ガスタービンの40倍以上の回転翼飛行機(89K)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. Combined with various energy storage cycles including horizontal full-blade hydrogravity turbine (11C) power generation electric product drive with rotary output and injection propulsion output more than 40 times that of existing gas turbines Organization and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の回転翼飛行機(89K)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. Combined with various energy storage cycles including horizontal full-blade hydrogravity turbine (11C) power generation electric product drive with rotary output and injection propulsion output more than 8 times that of existing gas turbines Organization and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの20倍以上として回転出力や噴射推進出力を既存ガスタービンの20倍以上の大型オスプレイ(89N)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of an existing boiler. More than twice the rotation output and propulsion propulsion output is a large Osprey (89N) that is 20 times or more that of the existing gas turbine, combined with various energy storage cycle coalescence engines that include a horizontal full-blade hydrogravity turbine (11C) power generation electric product drive And coalescing method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力や噴射推進出力を既存ガスタービンの40倍以上の大型オスプレイ(89N)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. More than twice the rotation output and injection propulsion output is 40 times or more large osprey (89N) of the existing gas turbine, combined with various energy storage cycle coalescence engine containing horizontal all blade water gravity turbine (11C) power generation electric product drive And coalescing method. 既存の静翼を全廃して全動翼二重反転とした簡単ガス機関(89C)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の大型オスプレイ(89N)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89C), which completely abolishes existing stationary blades and double-rotates all moving blades, is equipped with a compressed air heat exchanger (2Y) and produces the same amount of superheated steam (5H) with the same fuel amount. More than twice the rotation output and injection propulsion output is 8 times or more large osprey (89N) of the existing gas turbine, combined with various energy storage cycle combined engine containing horizontal all-blade water gravity turbine (11C) power generation electric product drive And coalescing method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの20倍以上として回転出力や噴射推進出力を既存ガスタービンの20倍以上の簡単空気噴射機関船舶(89I)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. Rotating output and injection propulsion output with a simple air injection engine ship (89I) more than 20 times that of the existing gas turbine, and various energy storage including a horizontal all blade hydrogravity turbine (11C) power generation electrical product drive Cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力や噴射推進出力を既存ガスタービンの40倍以上の簡単空気噴射機関船舶(89I)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the amount of superheated steam (5H) produced is the same fuel amount. Rotation output and injection propulsion output more than 40 times that of existing gas turbines, with a simple air injection engine ship (89I), and storage of various types of energy including horizontal all-bladed water gravity turbine (11C) power generation electrical product drive Cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単空気噴射機関船舶(89I)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple injection engine (89E) that completely abolishes existing stationary blades and double-rotating blades, and is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount. Rotating output and injection propulsion output more than double that of a simple air-injection engine ship (89I) that is 8 times or more that of an existing gas turbine, and various types of energy storage including a horizontal all blade hydrogravity turbine (11C) power generation electric product drive Cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの20倍以上として回転出力や噴射推進出力を既存ガスタービンの20倍以上の簡単噴射機関飛行機(89J)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. Rotating power and injection propulsion power with a simple injection engine airplane (89J) more than 20 times that of the existing gas turbine, and various energy storage cycles that include a horizontal full-blade water gravity turbine (11C) power generation electrical product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力や噴射推進出力を既存ガスタービンの40倍以上の簡単噴射機関飛行機(89J)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the amount of superheated steam (5H) produced is the same fuel amount. Rotating power and injection propulsion power with a simple injection engine airplane (89J) more than 40 times that of the existing gas turbine, and various energy storage cycles that include a horizontal all blade hydrogravity turbine (11C) power generation electrical product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単噴射機関飛行機(89J)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple injection engine (89E) that completely abolishes existing stationary blades and double-rotating blades, and is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount. Rotating output and injection propulsion output with a simple injection engine airplane (89J) more than 8 times that of an existing gas turbine, and various energy storage cycles that include a horizontal all blade hydrogravity turbine (11C) power generation electric product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの20倍以上として回転出力や噴射推進出力を既存ガスタービンの20倍以上の回転翼噴射飛行機(89L)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. Rotating power and injection propulsion power with a rotary blade injection airplane (89L) more than 20 times that of the existing gas turbine, and various energy storage cycles that include a horizontal all blade hydrogravity turbine (11C) power generation electric product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力や噴射推進出力を既存ガスタービンの40倍以上の回転翼噴射飛行機(89L)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the amount of superheated steam (5H) produced is the same fuel amount. Rotation output and injection propulsion output with a rotary blade injection airplane (89L) more than 40 times that of an existing gas turbine, and various energy storage cycles that include a horizontal full blade hydrogravity turbine (11C) power generation electrical product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の回転翼噴射飛行機(89L)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple injection engine (89E) that completely abolishes existing stationary blades and double-rotating blades, and is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount. Rotating power and injection propulsion power with a rotary blade injection airplane (89L) more than 8 times that of an existing gas turbine, and various energy storage cycles that include a horizontal full blade hydrogravity turbine (11C) power generation electrical product drive Merger engine and merger method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの20倍以上として回転出力や噴射推進出力を既存ガスタービンの20倍以上の特大オスプレイ(89M)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the production amount of superheated steam (5H) is the same as that of the existing boiler. More than twice the rotation output and propulsion propulsion output over 20 times the extra large Osprey (89M) of the existing gas turbine, combined with various energy storage cycle coalescence engine containing a horizontal all blade water gravity turbine (11C) power generation electric product drive And coalescing method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力や噴射推進出力を既存ガスタービンの40倍以上の特大オスプレイ(89M)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   A simple injection engine (89E) in which the existing stationary blades are completely abolished and the rotor blades are double-reversed is equipped with a compressed air heat exchanger (2Y), and the amount of superheated steam (5H) produced is the same fuel amount. More than twice the rotation output and propulsion propulsion output over 40 times that of the existing gas turbine Osprey (89M), combined with various energy storage cycle coalescence engines that include horizontal all-blade water gravity turbine (11C) power generation electrical product drive And coalescing method. 既存の静翼を全廃して全動翼二重反転とした簡単噴射機関(89E)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の特大オスプレイ(89M)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple injection engine (89E) that completely abolishes existing stationary blades and double-rotating blades, and is equipped with a compressed air heat exchanger (2Y) to produce superheated steam (5H) with the same fuel amount. More than twice the rotation output and injection propulsion output over 8 times larger than the existing gas turbine Osprey (89M), combined with various energy storage cycle combined engine including horizontal all blade water gravity turbine (11C) power generation electric product drive And coalescing method. 既存の静翼を全廃して全動翼二重反転とした簡単空気噴射機関(89D)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの20倍以上として回転出力や噴射推進出力を既存ガスタービンの20倍以上の簡単空気噴射機関船舶(89I)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple air injection engine (89D) that completely abolishes existing stationary blades and double-rotates all blades, and has a compressed air heat exchanger (2Y), producing superheated steam (5H) with the same fuel amount as the existing boiler Various energies containing a horizontal all blade hydrogravity turbine (11C) power generation electric product drive, with a rotary output and injection propulsion output of 20 times or more and a simple air injection engine ship (89I) 20 times or more that of an existing gas turbine Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単空気噴射機関(89D)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの40倍以上として回転出力や噴射推進出力を既存ガスタービンの40倍以上の簡単空気噴射機関船舶(89I)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple air injection engine (89D) that completely abolishes existing stationary blades and double-rotates all blades, and has a compressed air heat exchanger (2Y), producing superheated steam (5H) with the same fuel amount as the existing boiler Various energies containing a horizontal all-blade water gravity turbine (11C) power generation electric product drive with a rotary output and injection propulsion output of 40 times or more and a simple air injection engine ship (89I) 40 times or more that of an existing gas turbine Storage cycle coalescence engine and coalescence method. 既存の静翼を全廃して全動翼二重反転とした簡単空気噴射機関(89D)に圧縮空気熱交換器(2Y)を具備して過熱蒸気(5H)製造量を同一燃料量既存ボイラーの8倍以上として回転出力や噴射推進出力を既存ガスタービンの8倍以上の簡単空気噴射機関船舶(89I)にして、横型全動翼水重力タービン(11C)発電電気製造物駆動を含有した各種エネルギ保存サイクル合体機関及び合体方法。   Equipped with a simple air injection engine (89D) that completely abolishes existing stationary blades and double-rotates all blades, and has a compressed air heat exchanger (2Y), producing superheated steam (5H) with the same fuel amount as the existing boiler More than 8 times the rotation output and propulsion propulsion output is 8 times or more simple air injection engine ship (89I) of the existing gas turbine, and various energies including horizontal all blade water gravity turbine (11C) power generation electric product drive Storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Various types of energy storage that can include a horizontal full-blade hydrogravity turbine (11C) power generation electrical product drive as a simple gas engine (89P) that sucks and compresses air (28a) heated to high temperature with a solar heater (21) Cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比50にする簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   It can contain a horizontal all blade hydrogravity turbine (11C) generator electric product drive that is a simple gas engine (89P) that makes the air (28a) heated to high temperature by the solar heater (21) to a suction compression ratio of 50 Various energy storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比60にする簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   It can contain a horizontal all blade hydrogravity turbine (11C) generator and electric product drive that is a simple gas engine (89P) that makes the air (28a) heated to high temperature in the solar heater (21) to a suction compression ratio 60 Various energy storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比70にする簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   It can contain a horizontal full-blade hydrogravity turbine (11C) power generation electric product drive that is a simple gas engine (89P) that makes the air (28a) heated to high temperature by the solar heater (21) to a suction compression ratio 70 Various energy storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比80にする簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   It can contain a horizontal all blade hydrogravity turbine (11C) generator electric product drive that is a simple gas engine (89P) that makes the air (28a) heated to high temperature by the solar heater (21) to a suction compression ratio 80 Various energy storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比90にする簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   It can contain a horizontal all blade hydrogravity turbine (11C) generator electric product drive that is a simple gas engine (89P) that makes the air (28a) heated to high temperature by the solar heater (21) to a suction compression compression ratio of 90 Various energy storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比100にする簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   It can contain a horizontal all blade hydrogravity turbine (11C) generator and electric product drive that is a simple gas engine (89P) that makes the air (28a) heated to high temperature by the solar heater (21) to a suction compression ratio of 100 Various energy storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比50にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Horizontal full-blade water gravity turbine as a simple gas engine (89P) that injects air (28a) heated at a high temperature by a solar heater (21) into a compressed air heat exchanger (2Y) with a suction compression ratio of 50 (11C) Various energy storage cycle coalescence engines and coalescence methods that can contain power generation product drives. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比60にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Horizontal full-blade water gravity turbine as a simple gas engine (89P) that injects air (28a) heated at a high temperature by a solar heater (21) into a compressed air heat exchanger (2Y) with a suction compression ratio 60. (11C) Various energy storage cycle coalescence engines and coalescence methods that can contain power generation product drives. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比70にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A horizontal full-blade hydrogravity turbine as a simple gas engine (89P) that injects air (28a) heated to high temperature by a solar heater (21) into a compressed air heat exchanger (2Y) with a suction compression ratio 70. (11C) Various energy storage cycle coalescence engines and coalescence methods that can contain power generation product drives. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比80にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Horizontal full-blade water gravity turbine as a simple gas engine (89P) that injects air (28a) heated at a high temperature by a solar heater (21) into a compressed air heat exchanger (2Y) with a suction compression ratio 80. (11C) Various energy storage cycle coalescence engines and coalescence methods that can contain power generation product drives. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比90にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Horizontal full-blade water gravity turbine as a simple gas engine (89P) that injects air (28a) heated at a high temperature by a solar heater (21) into a compressed air heat exchanger (2Y) at a suction compression ratio 90. (11C) Various energy storage cycle coalescence engines and coalescence methods that can contain power generation product drives. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比100にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Horizontal full-blade water gravity turbine as a simple gas engine (89P) that injects air (28a) heated at a high temperature by a solar heater (21) into a compressed air heat exchanger (2Y) with a suction compression ratio of 100 (11C) Various energy storage cycle coalescence engines and coalescence methods that can contain power generation product drives. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮水噴射冷却圧縮で過熱蒸気用水加熱し、圧縮比50にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Air (28a) heated to high temperature by the solar heater (21) is heated with superheated steam by suction compressed water jet cooling compression, and is injected into the compressed air heat exchanger (2Y) with a compression ratio of 50 ( 89P), various energy storage cycle coalescence engines and coalescence methods capable of containing a horizontal full-blade water gravity turbine (11C) power generation electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮水噴射冷却圧縮で過熱蒸気用水加熱し、圧縮比60にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Air (28a) heated to a high temperature by the solar heater (21) is heated by superheated steam water by suction compressed water injection cooling compression, and is injected into the compressed air heat exchanger (2Y) at a compression ratio of 60 ( 89P), various energy storage cycle coalescence engines and coalescence methods capable of containing a horizontal full-blade water gravity turbine (11C) power generation electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮水噴射冷却圧縮で過熱蒸気用水加熱し、圧縮比70にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Air (28a) heated to high temperature by the solar heater (21) is heated by superheated steam water by suction compressed water jet cooling compression, and is injected into the compressed air heat exchanger (2Y) with a compression ratio of 70 ( 89P), various energy storage cycle coalescence engines and coalescence methods capable of containing a horizontal full-blade water gravity turbine (11C) power generation electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮水噴射冷却圧縮で過熱蒸気用水加熱し、圧縮比80にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Air (28a) heated to a high temperature by the solar heater (21) is heated with superheated steam by suction compressed water jet cooling compression, and is injected into the compressed air heat exchanger (2Y) with a compression ratio of 80 ( 89P), various energy storage cycle coalescence engines and coalescence methods capable of containing a horizontal full-blade water gravity turbine (11C) power generation electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮水噴射冷却圧縮で過熱蒸気用水加熱し、圧縮比90にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Air (28a) heated to high temperature by the solar heater (21) is heated with superheated steam by suction compressed water jet cooling compression, and is injected into the compressed air heat exchanger (2Y) with a compression ratio of 90 ( 89P), various energy storage cycle coalescence engines and coalescence methods capable of containing a horizontal full-blade water gravity turbine (11C) power generation electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮水噴射冷却圧縮で過熱蒸気用水加熱し、圧縮比100にして圧縮空気熱交換器(2Y)に噴射する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Air (28a) heated to high temperature by the solar heater (21) is heated with superheated steam by suction compressed water injection cooling compression, and is injected into the compressed air heat exchanger (2Y) with a compression ratio of 100 ( 89P), various energy storage cycle coalescence engines and coalescence methods capable of containing a horizontal full-blade water gravity turbine (11C) power generation electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比50にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces air (28a) heated at a high temperature by a solar heater (21) with an intake compression ratio of 50 and produces compressed fuel injection combustion heat exchange superheated steam 5H in a compressed air heat exchanger (2Y) Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) generator electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比60にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) for producing a heated air (28a) heated by a solar heater (21) at a suction compression compression ratio of 60 and producing an injection fuel injection combustion heat exchange superheated steam 5H in a compressed air heat exchanger (2Y) Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) generator electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比70にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces air (28a) heated to a high temperature by a solar heater (21) with a suction compression compression ratio of 70 and produces a fuel injection fuel injection combustion heat exchange superheated steam 5H in a compressed air heat exchanger (2Y) Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) generator electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比80にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) for producing a heated air (28a) heated by a solar heater (21) at a suction compression ratio 80 and producing an injection fuel injection combustion heat exchange superheated steam 5H in a compressed air heat exchanger (2Y) Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) generator electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比90にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces air (28a) heated at a high temperature by a solar heater (21) at a suction compression ratio 90 and is produced in a compressed air heat exchanger (2Y) by injection fuel injection combustion heat exchange superheated steam 5H Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) generator electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比100にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces air (28a) heated at a high temperature by a solar heater (21) with an intake compression ratio of 100, and produces compressed fuel injection combustion heat exchange superheated steam 5H in a compressed air heat exchanger (2Y) Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) generator electric product drive. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比50にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5Hを同一燃料量既存ボイラーの50倍以上製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Air (28a) heated to a high temperature by the solar heater (21) is set to a suction compression ratio 50, and the compressed air heat exchanger (2Y) is injected with the same amount of fuel as the injection fuel injection combustion heat exchange superheated steam 5H of the existing boiler 50. Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all-blade water gravity turbine (11C) generator electric product drive as a simple gas engine (89P) to produce more than twice. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比60にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5Hを同一燃料量既存ボイラーの60倍以上製造製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   The air (28a) heated to high temperature by the solar heater (21) is set to a suction compression ratio 60, and the compressed air heat exchanger (2Y) is injected with the same amount of fuel as the injected fuel injection combustion heat exchange superheated steam 5H 60 of the existing boiler. Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all-blade water gravity turbine (11C) power generation electric product drive as a simple gas engine (89P) manufactured and manufactured more than twice. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比70にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5Hを同一燃料量既存ボイラーの70倍以上製造製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   The air (28a) heated to a high temperature by the solar heater (21) is set to a suction compression ratio 70, and the compressed air heat exchanger (2Y) is injected with the same amount of fuel by the injected fuel injection combustion heat exchange superheated steam 5H of the existing boiler 70. Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all-blade water gravity turbine (11C) power generation electric product drive as a simple gas engine (89P) manufactured and manufactured more than twice. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比80にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5Hを同一燃料量既存ボイラーの80倍以上製造製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Air (28a) heated to a high temperature by the solar heater (21) is set to a suction compression ratio 80, and the compressed air heat exchanger (2Y) is injected with the same amount of fuel by the injection fuel injection combustion heat exchange superheated steam 5H of the existing boiler 80. Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all-blade water gravity turbine (11C) power generation electric product drive as a simple gas engine (89P) manufactured and manufactured more than twice. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比90にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5Hを同一燃料量既存ボイラーの90倍以上製造製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   The air (28a) heated to a high temperature by the solar heater (21) is set to a suction compression ratio 90, and the compressed air heat exchanger (2Y) is injected with the injected fuel injection combustion heat exchange superheated steam 5H with the same fuel amount 90 of the existing boiler. Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all-blade water gravity turbine (11C) power generation electric product drive as a simple gas engine (89P) manufactured and manufactured more than twice. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比100にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5Hを同一燃料量既存ボイラーの100倍以上製造製造する簡単ガス機関(89P)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   Air (28a) heated to high temperature by the solar heater (21) is set to a suction compression ratio 100, and the compressed air heat exchanger (2Y) is injected with the same amount of fuel by the injected fuel injection combustion heat exchange superheated steam 5H of the existing boiler 100. Various energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all-blade water gravity turbine (11C) power generation electric product drive as a simple gas engine (89P) manufactured and manufactured more than twice. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比50以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) which produces air (28a) heated at a high temperature by the solar heater (21) with an intake compression compression ratio of 50 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Energy storage cycle coalescence engine and coalescence method capable of containing horizontal all blade hydrogravity turbine (11C) power generation electric product drive as vertical all blade steam turbine (11F). 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比60以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) at a suction compression compression ratio of 60 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Energy storage cycle coalescence engine and coalescence method capable of containing horizontal all blade hydrogravity turbine (11C) power generation electric product drive as vertical all blade steam turbine (11F). 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比70以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) with a suction compression ratio of 70 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y) ) + Energy storage cycle coalescence engine and coalescence method capable of containing horizontal all blade hydrogravity turbine (11C) power generation electric product drive as vertical all blade steam turbine (11F). 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比80以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) at a suction air compression ratio of 80 or more and is produced in the compressed air heat exchanger (2Y) by injection fuel injection combustion heat exchange superheated steam 5H. ) + Energy storage cycle coalescence engine and coalescence method capable of containing horizontal all blade hydrogravity turbine (11C) power generation electric product drive as vertical all blade steam turbine (11F). 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比90以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) which produces air (28a) heated at a high temperature by the solar heater (21) with an intake compression compression ratio of 90 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Energy storage cycle coalescence engine and coalescence method capable of containing horizontal all blade hydrogravity turbine (11C) power generation electric product drive as vertical all blade steam turbine (11F). 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比100以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) at a suction compression compression ratio of 100 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Energy storage cycle coalescence engine and coalescence method capable of containing horizontal all blade hydrogravity turbine (11C) power generation electric product drive as vertical all blade steam turbine (11F). 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比50以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) which produces air (28a) heated at a high temperature by the solar heater (21) with an intake compression compression ratio of 50 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) power generation electrical product drive that is a vertical all blade steam turbine (11F) power generation. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比60以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) at a suction compression compression ratio of 60 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) power generation electrical product drive that is a vertical all blade steam turbine (11F) power generation. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比70以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) with a suction compression ratio of 70 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y) ) + Energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) power generation electrical product drive that is a vertical all blade steam turbine (11F) power generation. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比80以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) at a suction air compression ratio of 80 or more and is produced in the compressed air heat exchanger (2Y) by injection fuel injection combustion heat exchange superheated steam 5H. ) + Energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) power generation electrical product drive that is a vertical all blade steam turbine (11F) power generation. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比90以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) which produces air (28a) heated at a high temperature by the solar heater (21) with an intake compression compression ratio of 90 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) power generation electrical product drive that is a vertical all blade steam turbine (11F) power generation. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比100以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) at a suction compression compression ratio of 100 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Energy storage cycle coalescence engine and coalescence method capable of containing a horizontal all blade hydrogravity turbine (11C) power generation electrical product drive that is a vertical all blade steam turbine (11F) power generation. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比50以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とし同一燃料量既存火力発電の20倍以上の発電量にした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) which produces air (28a) heated at a high temperature by the solar heater (21) with an intake compression compression ratio of 50 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Vertical all-blade steam turbine (11F) power generation and the same fuel amount Various energy that can contain horizontal all-blade water gravity turbine (11C) power generation electric product drive with 20 times more power generation than existing thermal power generation Storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比60以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とし同一燃料量既存火力発電の40倍以上の発電量にした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) at a suction compression compression ratio of 60 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Vertical type full-blade steam turbine (11F) power generation and the same fuel amount Various energy that can contain horizontal type full-blade water gravity turbine (11C) power generation electric product drive with 40 times more power generation than existing thermal power generation Storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比70以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とし同一燃料量既存火力発電の60倍以上の発電量にした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) with a suction compression ratio of 70 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y) ) + Vertical all blade steam turbine (11F) power generation and the same fuel amount Various energy that can contain horizontal all blade hydrogravity turbine (11C) power generation electric product drive with power generation amount more than 60 times that of existing thermal power generation Storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比80以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とし同一燃料量既存火力発電の80倍以上の発電量にした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) at a suction air compression ratio of 80 or more and is produced in the compressed air heat exchanger (2Y) by injection fuel injection combustion heat exchange superheated steam 5H. ) + Vertical type full-blade steam turbine (11F) power generation and the same fuel amount Various energy that can contain horizontal type full-blade water gravity turbine (11C) power generation electric product drive with 80 times more power generation than existing thermal power generation Storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比90以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とし同一燃料量既存火力発電の100倍以上の発電量にした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) which produces air (28a) heated at a high temperature by the solar heater (21) with an intake compression compression ratio of 90 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Vertical all-blade steam turbine (11F) power generation and the same fuel amount Various energy that can contain horizontal all-blade water gravity turbine (11C) power generation electric product drive that is more than 100 times the power generation of existing thermal power generation Storage cycle coalescence engine and coalescence method. 太陽光加熱器(21)で加熱高温とした空気(28a)を吸入圧縮圧縮比100以上にして圧縮空気熱交換器(2Y)に噴射燃料噴射燃焼熱交換過熱蒸気5H製造する簡単ガス機関(89P)+竪型全動翼蒸気タービン(11F)発電とし同一燃料量既存火力発電の120倍以上の発電量にした横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。   A simple gas engine (89P) that produces high-temperature air (28a) heated by the solar heater (21) at a suction compression compression ratio of 100 or more and produces the injected fuel injection combustion heat exchange superheated steam 5H in the compressed air heat exchanger (2Y). ) + Vertical type all-blade steam turbine (11F) power generation and the same fuel amount Various energy that can contain horizontal type full-blade water gravity turbine (11C) power generation electric product drive with 120 times more power generation than existing thermal power generation Storage cycle coalescence engine and coalescence method. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放過熱蒸気(5H)を噴射して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F), the open / close valve (1Q) is released, and the superheated steam (5H) is injected. Various energy storage cycle coalescing engines capable of containing a horizontal full-blade water gravity turbine (11C) generating electric product drive that double-rotates the cylindrical outer blade group (60D) + cylindrical inner blade group (60C). And coalescing method. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) A horizontal full-blade hydrogravity turbine (11C) power generation electric product driven to reduce the volume of impulse liquefied steam in the process of contra-rotation drive by injecting the cylinder outer blade group (60D) + cylinder inner blade group (60C) Various energy storage cycle coalescence engines and coalescence methods that can be contained. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射水を吸引して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Horizontal full-blade hydrogravity turbine (11C) power generation electric manufacturing that sucks blast water and reduces impulse liquefied steam volume in the process of double reversal drive of cylindrical outer blade group (60D) + cylindrical inner blade group (60C) Various energy storage cycle coalescence engine and coalescence method capable of containing an object drive. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射水を吸引噴射して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Horizontal full-rotor blade water gravity turbine (11C) power generation electricity that reduces the impulse liquefied steam volume in the process of double reversal drive by sucking and jetting the spray water to make the cylindrical outer blade group (60D) + cylindrical inner blade group (60C) Various energy storage cycle coalescence engines and coalescence methods capable of containing product drive. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射低温水吸引して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Horizontal full-blade hydrogravity turbine (11C) generator electric manufacturing that reduces the volume of impulse liquefied steam in the process of double reversal drive by sucking low-temperature water jet and cylindrical outer rotor blade group (60D) + cylindrical inner rotor blade group (60C) Various energy storage cycle coalescence engine and coalescence method capable of containing an object drive. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射低温水を吸引噴射して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Horizontal type full-blade water gravity turbine (11C) power generation that reduces the impulse liquefied steam volume in the process of double reversal drive by sucking and jetting low temperature water injected into the cylinder outer blade group (60D) + cylinder inner blade group (60C) Various energy storage cycle coalescing engines and coalescence methods that can contain electrical product drives. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射高温水を吸引して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Horizontal type full-blade water gravity turbine (11C) power generation electricity that sucks high-temperature jet water and reduces the volume of impulse liquefied steam in the process of double reversal drive of the outer cylinder group (60D) and the inner cylinder group (60C) Various energy storage cycle coalescence engines and coalescence methods capable of containing product drive. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射高温水を吸引噴射して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Horizontal all-blade water gravity turbine (11C) power generation that reduces the impulse liquefied steam volume in the process of double inversion drive by sucking and injecting high-temperature water injected into the cylinder outer blade group (60D) + cylinder inner blade group (60C) Various energy storage cycle coalescing engines and coalescence methods that can contain electrical product drives. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射高温水を吸引噴射真空中重力加速度加速して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Horizontal type full-blade water gravity that reduces the volume of impulse liquefied steam in the process of double reversal drive by accelerating gravity acceleration in vacuum by sucking and jetting high-temperature water in the process of double reversal drive of cylinder outer blade group (60D) + cylinder inner blade group (60C) Various energy storage cycle coalescence engine and coalescence method capable of containing turbine (11C) power generation electrical product drive. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射水を吸引真空中重力加速度加速して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Horizontal full blade hydrogravity turbine that reduces the volume of impulse liquefied steam in the process of double reversal drive by accelerating the acceleration of gravity in suction vacuum and accelerating the cylinder outer blade group (60D) + cylinder inner blade group (60C) 11C) Various energy storage cycle coalescing engines and coalescence methods that can contain power generation electrical product drives. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射水を吸引噴射真空中重力加速度加速して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Horizontal full blade hydrogravity turbine that reduces the volume of impulse liquefied steam in the process of double reversal drive by accelerating gravitational acceleration in vacuum by sucking and spraying water into the cylinder outer blade group (60D) + cylinder inner blade group (60C) (11C) Various energy storage cycle coalescence engines and coalescence methods that can contain power generation product drives. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射低温水吸引真空中重力加速度加速して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Horizontal full blade hydrogravity turbine that reduces the volume of impulse liquefied steam in the process of double reversal drive by accelerating gravitational acceleration in jet low-temperature water suction vacuum and rotating cylinder outer blade group (60D) + cylinder inner blade group (60C) 11C) Various energy storage cycle coalescence engines and coalescence methods that can contain power generation electrical product drives. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射低温水を吸引噴射真空中重力加速度加速して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する横型全動翼水重力タービン(11C)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Horizontal full blade water gravity that reduces the volume of impulse liquefied steam in the process of double reversal drive by accelerating gravitational acceleration in vacuum by sucking and spraying jet low temperature water in the process of double reversal drive of cylinder outer blade group (60D) + cylinder inner blade group (60C) Various energy storage cycle coalescence engine and coalescence method capable of containing turbine (11C) power generation electrical product drive. 簡単ガス機関(89P)製造の過熱蒸気(5H)を過熱蒸気管(5H)により竪型全動翼蒸気タービン(11F)最上部上昇して開閉弁(1Q)を解放し過熱蒸気(5H)を噴射高温水を吸引真空中重力加速度加速して円筒外側動翼群(60D)+円筒内側動翼群(60C)を二重反転駆動の過程で衝動液化蒸気容積縮小する竪型全動翼水重力タービン(11A)発電電気製造物駆動を含有可能な各種エネルギ保存サイクル合体機関及び合体方法。 The superheated steam (5H) manufactured by the simple gas engine (89P) is raised by the superheated steam pipe (5H) to the top of the vertical all blade steam turbine (11F) to release the on-off valve (1Q), and the superheated steam (5H) Vertical-rotary blade water gravity that reduces the volume of impulse liquefied steam in the process of double reversal drive by accelerating the acceleration of gravity in vacuum by sucking high-temperature water jet and rotating the outer blade group (60D) + inner cylinder blade group (60C) Various energy storage cycle coalescence engine and coalescence method capable of containing turbine (11A) power generation electrical product drive.
JP2013089030A 2013-04-22 2013-04-22 Various kind energy conservation cycle combination engine Pending JP2014211146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013089030A JP2014211146A (en) 2013-04-22 2013-04-22 Various kind energy conservation cycle combination engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013089030A JP2014211146A (en) 2013-04-22 2013-04-22 Various kind energy conservation cycle combination engine

Publications (1)

Publication Number Publication Date
JP2014211146A true JP2014211146A (en) 2014-11-13

Family

ID=51931064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013089030A Pending JP2014211146A (en) 2013-04-22 2013-04-22 Various kind energy conservation cycle combination engine

Country Status (1)

Country Link
JP (1) JP2014211146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752160A (en) * 2018-12-19 2019-05-14 上海航天控制技术研究所 Jet for space micro experimental rig resets rope and limits free destination apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752160A (en) * 2018-12-19 2019-05-14 上海航天控制技术研究所 Jet for space micro experimental rig resets rope and limits free destination apparatus

Similar Documents

Publication Publication Date Title
JP2014211146A (en) Various kind energy conservation cycle combination engine
JP2014211145A (en) Various kind energy conservation cycle combination engine
JP2014211147A (en) Various kind energy conservation cycle combination engine
JP2014173506A (en) Various energy conservation cycle combination engine
JP2014211142A (en) Various kind energy conservation cycle combination engine
JP2015004340A (en) Various energy conservation cycle united engine
JP2013227891A (en) Various energy conservation cycle union engine
JP2015004341A (en) Various energy conservation cycle united engine
JP2015040531A (en) Various energy conservation cycle combined structure
JP2015086698A (en) Various energy conservation cycle combined structure
JP2014173509A (en) Various energy conservation cycle combination engine
JP2015040530A (en) Various energy conservation cycle combined structure
JP2014005749A (en) Various energy storing cycle integrated mechanism
JP2015086697A (en) Various energy conservation cycle combined structure
JP2015040532A (en) Various energy conservation cycle combined structure
JP2015004339A (en) Various energy conservation cycle united engine
JP2015040528A (en) Various energy conservation cycle combined structure
JP2015004338A (en) Various energy conservation cycle united engine
JP2015086696A (en) Various energy conservation cycle combined structure
JP2015132224A (en) Various energy reservation cycle combined engine
JP2014173507A (en) Various energy conservation cycle combination engine
JP2015132223A (en) Various energy reservation cycle combined engine
JP2014173505A (en) Various energy conservation cycle combination engine
JP2015086695A (en) Various energy conservation cycle combined structure
JP2014005751A (en) Various energy storing cycle integrated mechanism