JP2014173107A - Method for recovering platinum group elements - Google Patents

Method for recovering platinum group elements Download PDF

Info

Publication number
JP2014173107A
JP2014173107A JP2013045023A JP2013045023A JP2014173107A JP 2014173107 A JP2014173107 A JP 2014173107A JP 2013045023 A JP2013045023 A JP 2013045023A JP 2013045023 A JP2013045023 A JP 2013045023A JP 2014173107 A JP2014173107 A JP 2014173107A
Authority
JP
Japan
Prior art keywords
platinum group
group element
platinum
main component
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013045023A
Other languages
Japanese (ja)
Other versions
JP6030005B2 (en
Inventor
Kazuto Yagi
和人 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013045023A priority Critical patent/JP6030005B2/en
Publication of JP2014173107A publication Critical patent/JP2014173107A/en
Application granted granted Critical
Publication of JP6030005B2 publication Critical patent/JP6030005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering high-purity platinum group elements in high yields.SOLUTION: The provided method for recovering platinum group elements includes a step of separating, by percolating, with a nitric acid solution, and filtering an alloy including platinum group elements, the alloy into a residue including platinum group elements as main components and a percolate including non-platinum group elements as main components, a step of converting the platinum group elements into a chloride complex of platinum group element ions by dissolving, into a mixed solution consisting of hydrochloric acid and an oxidant, the residue including the platinum group elements as main components, and a step of inducing, by adding the chloride of a monovalent cation to the solution including the chloride complex of the platinum group element ions, the deposition of crystals of the platinum group elements and then filtering and recovering the crystals.

Description

本発明は、白金族元素を含有する合金から純度の高い白金族元素を高収率で回収する方法に関する。   The present invention relates to a method for recovering a platinum group element having a high purity from an alloy containing a platinum group element in a high yield.

近年、半導体集積回路の進展に伴い、電子回路や各種の電子素子形成のために様々な薄膜が形成されている。また、記録媒体用磁性薄膜(例えばCo-Cr-Pt-Ti等)の材料用として、白金族元素を含有するスパッタリングターゲットを使用して、薄膜を形成することが行われている。これらの薄膜は白金等を含有する合金製のターゲットをアルゴンガス等の不活性雰囲気下でスパッタリングすることにより形成される。   In recent years, with the progress of semiconductor integrated circuits, various thin films have been formed for forming electronic circuits and various electronic elements. In addition, as a material for magnetic thin films for recording media (for example, Co—Cr—Pt—Ti), a thin film is formed using a sputtering target containing a platinum group element. These thin films are formed by sputtering an alloy target containing platinum or the like in an inert atmosphere such as argon gas.

このようなターゲットが製作される段階では、切削屑等の多量の端材が生じる。これらは全てスクラップとなるが、白金族元素は高価な材料なので、これを回収して再使用する必要がある。たとえば、特許文献1〜2には、白金含有スクラップを王水等の酸で溶解し残渣を除去した後、白金含有溶液にNaOH溶液を添加して、不純物を水酸化物として沈殿させ、これを濾過した後、塩化アンモニウム溶液を添加して塩化白金酸アンモニウム沈殿回収し、さらにこの塩化白金酸アンモニウムを焙焼することにより、白金を回収すること技術が開示されている   At the stage where such a target is manufactured, a large amount of cutting material such as cutting waste is generated. All of these are scrap, but platinum group elements are expensive materials that must be recovered and reused. For example, in Patent Documents 1 and 2, after dissolving the platinum-containing scrap with an acid such as aqua regia and removing the residue, an NaOH solution is added to the platinum-containing solution to precipitate impurities as hydroxides. A technique for recovering platinum by adding ammonium chloride solution after filtration and recovering precipitation of ammonium chloroplatinate and further baking this ammonium chloroplatinate is disclosed.

このように従来では、白金または白金族合金の溶解には王水が用いられてきた。その理由として、白金族元素は非常に化学的に安定なので、塩酸や硝酸、硫酸のみでは溶解がほとんど進まず、また、不動態の性質を有する遷移金属との合金の場合には、さらに溶解が困難となる場合がある。したがって、王水の有する強力な酸化力が一般的に利用されている。   Thus, conventionally, aqua regia has been used to dissolve platinum or platinum group alloys. The reason for this is that platinum group elements are very chemically stable, so dissolution hardly progresses only with hydrochloric acid, nitric acid, or sulfuric acid, and in the case of alloys with transition metals that have passive properties, further dissolution occurs. It can be difficult. Therefore, the powerful oxidizing power possessed by aqua regia is generally used.

ところが、王水による溶解の場合、後工程で問題が生じていた。一つは硝酸イオンが溶液中に存在していると、白金族元素の塩化錯体と1価カチオン、特に、アンモニウムイオンからなる晶析物の生成率が低下し、白金族元素の回収率が低減することがあった。そして、これを回避するために王水溶解後に硝酸イオンを分解する工程(脱硝反応工程)が必要となり、試薬コストの増大、さらには追加工程による回収時間の延長が問題となった。   However, in the case of dissolution with aqua regia, there was a problem in the subsequent process. One is that when nitrate ions are present in the solution, the rate of formation of crystallized substances consisting of platinum group element chloride complexes and monovalent cations, especially ammonium ions, is reduced, and the recovery rate of platinum group elements is reduced. There was something to do. And in order to avoid this, the process (denitration reaction process) which decomposes | disassembles nitrate ion after aqua regia melt | dissolution is needed, The increase in reagent cost and also the extension of the collection time by an additional process became a problem.

二つには王水溶解ではその強力な酸化力ゆえに白金族元素以外の遷移金属を含む不純物元素も共に溶解してしまうので、溶解液から回収した白金族元素には多量の不純物元素が随伴しており、純度が低下するという問題があった。そして、この不純物を除去するために別の精製工程を追加するか、再精製を行う必要があり、同様に試薬コストの増大や回収時間の延長が問題となった。以上の理由により、白金族元素の回収、精製プロセスにおいては、回収効率と純度の向上、さらには、試薬コストの低減、回収工程の短縮を実現させる必要がある。   Second, in aqua regia dissolution, impurity elements including transition metals other than platinum group elements are dissolved together due to their strong oxidizing power, so a large amount of impurity elements accompany the platinum group elements recovered from the solution. There was a problem that purity decreased. In order to remove this impurity, it is necessary to add another refining step or to perform repurification, and similarly, an increase in reagent cost and an increase in recovery time become problems. For the above reasons, it is necessary to improve the recovery efficiency and purity, further reduce the reagent cost, and shorten the recovery process in the platinum group element recovery and purification process.

上記に関連して、特許文献3には、ブラスト粉中に含まれる微量の白金を回収する方法として、ブラスト粉を希硫酸に投入し、白金以外の金属を溶解して濾過した後、得られた沈殿物を王水又は酸化性塩酸溶液に溶解し、その溶解液に塩化アンモニウムを添加して、白金を塩化白金酸アンモニウム塩の沈殿物として回収する技術が開示されている。この技術も王水を利用するもので上記の問題を抱えている。その他、特許文献4には、陽イオン不純物をクロロ錯体とし、これをカルボン酸で抽出することで、白金族元素の分離回収する技術が開示されている。   In relation to the above, Patent Document 3 discloses a method for recovering a small amount of platinum contained in blast powder, after pouring blast powder into dilute sulfuric acid, dissolving metals other than platinum and filtering. A technique is disclosed in which platinum is dissolved in aqua regia or oxidizing hydrochloric acid solution, ammonium chloride is added to the solution, and platinum is recovered as a precipitate of ammonium chloroplatinate. This technology also uses aqua regia and has the above problems. In addition, Patent Document 4 discloses a technique for separating and recovering platinum group elements by converting a cation impurity into a chloro complex and extracting it with a carboxylic acid.

特開2003−129145号公報JP 2003-129145 A 特開2003−27154号公報JP 2003-27154 A 特開2012−219314号公報JP 2012-219314 A 特許第3496319号明細書Japanese Patent No. 3396319

以上から、本発明はスパッタリング用白金族元素含有ターゲットの製造工程等で発生する端材、切削屑、平研屑等のスクラップから、白金族元素含有ターゲットに再使用できる、高純度の白金族元素を低コストで効率的に回収する方法を提供するものである。   From the above, the present invention is a high-purity platinum group element that can be reused as a platinum group element-containing target from scraps such as scraps, cutting scraps, and flat scraps generated in the manufacturing process of a platinum group element-containing target for sputtering. A method for efficiently recovering the gas at low cost is provided.

上記の課題を解決するために、本発明は、
1)白金族元素を含む合金を硝酸溶液で浸出し濾別することで白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する工程と、該白金族元素を主成分とする残渣を塩酸と酸化剤とからなる混合溶液で溶解することで白金族元素を白金族元素イオンの塩化物錯体に転換する工程と、該白金族元素イオンの塩化物錯体を含有する溶液に1価カチオンの塩化物を添加することで白金族元素の晶析物を析出させて、これを濾別回収する工程、とからなることを特徴とする白金族元素の回収方法、
2)前記白金族元素が、パラジウム、白金、ルテニウム、ロジウム、イリジウムからなる群から選択した一種以上の元素であることを特徴とする上記1)記載の白金族元素の回収方法、
3)前記非白金族元素が、クロム、マンガン、鉄、コバルト、ニッケル、銅、ホウ素からなる群から選択した一種以上の元素であることを特徴とする上記1)又は2)記載の白金族元素の回収方法、
4)白金族元素を含む合金を硝酸溶液で浸出し濾別することで白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する工程において、該硝酸溶液の濃度をpH0〜2となるように調整することを特徴とする上記1)〜3)のいずれか一に記載の白金族元素の回収方法、
5)白金族元素を含む合金を硝酸溶液で浸出し濾別することで白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する工程において、該硝酸溶液に連続的または断続的に硝酸を添加することで硝酸濃度を調整することを特徴とする上記4)記載の白金族元素の回収方法、
6)白金族元素を含む合金を硝酸溶液で浸出し濾別することで白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する工程において、該硝酸溶液の温度を50〜100℃となるように制御することを特徴とする上記1)〜5)のいずれか一に記載の白金族元素の回収方法、
7)白金族元素を含む合金を硝酸溶液で浸出し濾別することで白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する工程において、濾別した浸出液中の白金族元素の濃度が500mg/L以下であることを特徴とする上記1)〜6)のいずれか一に記載の白金族元素の回収方法、
8)該白金族元素を主成分とする残渣を塩酸と酸化剤とからなる混合溶液で溶解することで白金族元素を白金族元素イオンの塩化物錯体に転換する工程において、該混合溶液の温度を30〜100℃となるように制御することを特徴とする上記1)〜7)のいずれか一に記載の白金族元素の回収方法、
9)該白金族元素を主成分とする残渣を塩酸と酸化剤とからなる混合溶液で溶解することで白金族元素を白金族元素イオンの塩化物錯体に転換する工程において、該酸化剤が、過酸化水素水、次亜塩素酸イオンを含む溶液、過炭酸ナトリウム、オゾンを含む溶液、塩素ガス及び塩素ガスを含む溶液の群から選択した一種以上の酸化剤であることを特徴とする上記1)〜8)のいずれか一に記載の白金族元素の回収方法、
10)該白金族元素イオンの塩化物錯体を含有する溶液に1価カチオンの塩化物を添加することで白金族元素の晶析物を析出させて、これを濾別回収する工程において、該1価カチオンの塩化物が、塩化カリウム、塩化ルビジウム、塩化セシウム、塩化アンモニウムの群から選択した一種以上の塩化物であることを特徴とする上記1)〜9)のいずれか一に記載の白金族元素回収方法、
11)さらに、該晶析物を大気中又は不活性ガス雰囲気中、400〜1200℃で焙焼することで白金族元素を回収する工程からなることを特徴とする上記1)〜10)にいずれか一に記載の白金族元素の回収方法、を提供する。
In order to solve the above problems, the present invention provides:
1) A step of separating an alloy containing a platinum group element with a nitric acid solution and separating the alloy into a residue containing a platinum group element as a main component and a leachate containing a non-platinum group element as a main component; A step of converting a platinum group element into a chloride complex of a platinum group element ion by dissolving a residue as a main component in a mixed solution of hydrochloric acid and an oxidizing agent, and a chloride complex of the platinum group element ion Adding a monovalent cation chloride to the solution to precipitate a crystallized product of the platinum group element and collecting it by filtration; and a method for recovering the platinum group element,
2) The platinum group element recovery method according to 1) above, wherein the platinum group element is one or more elements selected from the group consisting of palladium, platinum, ruthenium, rhodium, and iridium.
3) The platinum group element according to 1) or 2) above, wherein the non-platinum group element is one or more elements selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, and boron. Recovery method,
4) Concentration of the nitric acid solution in the step of separating the alloy containing the platinum group element with a nitric acid solution and separating the alloy into a residue containing the platinum group element as the main component and a leachate containing the non-platinum group element as the main component. The method for recovering a platinum group element according to any one of 1) to 3) above, wherein the pH is adjusted to 0 to 2;
5) In the process of separating the alloy containing the platinum group element with a nitric acid solution and separating the alloy into a residue containing the platinum group element as a main component and a leachate containing a non-platinum group element as a main component. The method for recovering a platinum group element as described in 4) above, wherein the concentration of nitric acid is adjusted by adding nitric acid periodically or intermittently,
6) In the step of leaching an alloy containing a platinum group element with a nitric acid solution and separating the alloy into a residue containing a platinum group element as a main component and a leachate containing a non-platinum group element as a main component, the temperature of the nitric acid solution The platinum group element recovery method according to any one of 1) to 5) above, wherein the temperature is controlled to be 50 to 100 ° C.
7) In the step of separating the alloy containing the platinum group element with a nitric acid solution and separating it into a leachate containing the platinum group element as the main component and the non-platinum group element as the main component, The platinum group element recovery method according to any one of 1) to 6) above, wherein the platinum group element concentration is 500 mg / L or less,
8) In the step of converting the platinum group element into a chloride complex of platinum group element ions by dissolving the residue mainly composed of the platinum group element in a mixed solution composed of hydrochloric acid and an oxidizing agent, the temperature of the mixed solution The platinum group element recovery method according to any one of 1) to 7) above, wherein the temperature is controlled to be 30 to 100 ° C.
9) In the step of converting the platinum group element into a chloride complex of a platinum group element ion by dissolving the residue containing the platinum group element as a main component in a mixed solution of hydrochloric acid and an oxidizing agent, the oxidizing agent comprises: 1 or more kinds of oxidizing agents selected from the group consisting of hydrogen peroxide, a solution containing hypochlorite ions, sodium percarbonate, a solution containing ozone, chlorine gas and a solution containing chlorine gas. ) To 8), a method for recovering a platinum group element according to any one of
10) In the step of depositing a monovalent cation chloride in a solution containing a chloride complex of a platinum group element ion to precipitate a crystallized product of the platinum group element and collecting it by filtration, The platinum group according to any one of 1) to 9) above, wherein the chloride of the valent cation is one or more chlorides selected from the group consisting of potassium chloride, rubidium chloride, cesium chloride, and ammonium chloride. Element recovery method,
11) The above 1) to 10) further comprising a step of recovering a platinum group element by roasting the crystallized product in the air or in an inert gas atmosphere at 400 to 1200 ° C. A method for recovering a platinum group element according to claim 1 is provided.

本発明は、スパッタリング用白金族元素含有ターゲットの製造工程で発生する端材、切削屑、平研屑等のスクラップから、比較的簡単な工程で、ターゲットに再使用できる高純度の白金族元素を高収率で回収することができるという優れた効果を有する。また、これによって得られた高純度の白金元素含有ターゲットは、薄膜の物理的特性又は化学的特性を改善するだけでなく、不純物元素に起因するスパッタリング中の異常放電、パーティクル等の発生が減少するという著しい特長を有する。   The present invention provides a high-purity platinum group element that can be reused for a target in a relatively simple process from scraps such as scraps, cutting scraps, and flat scraps generated in the manufacturing process of a platinum group element-containing target for sputtering. It has an excellent effect that it can be recovered in a high yield. In addition, the high-purity platinum element-containing target thus obtained not only improves the physical or chemical properties of the thin film, but also reduces the occurrence of abnormal discharge, particles, etc. during sputtering caused by impurity elements. It has a remarkable feature.

本発明は、まず、白金族元素を含む合金を硝酸溶液で浸出し濾別することで、白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する。本発明は、非白金族元素を硝酸で浸出することが特に重要である。従来は、王水を使用して白金族元素を浸出していたが、本発明のように非白金族元素を浸出することで、酸の過剰消費がなくなるため試液コストを低減することができる。さらに、本発明の方法では、白金族元素のロスが少なく(すなわち、白金族元素は硝酸にほとんど浸出しない)、また、塩酸を使用する場合のように水素の発生もない。なお、本発明とは直接関係はないが、浸出液は廃液とせず、必要に応じて非白金族元素の回収も可能である。   In the present invention, an alloy containing a platinum group element is first leached with a nitric acid solution and separated by filtration to separate a residue containing the platinum group element as a main component and a leachate containing a non-platinum group element as a main component. In the present invention, it is particularly important to leach non-platinum group elements with nitric acid. Conventionally, platinum group elements have been leached using aqua regia, but leaching non-platinum group elements as in the present invention eliminates excessive consumption of acid, thus reducing the cost of the reagent solution. Furthermore, in the method of the present invention, the loss of the platinum group element is small (that is, the platinum group element hardly leaches into nitric acid), and hydrogen is not generated as in the case of using hydrochloric acid. Although not directly related to the present invention, the leachate is not a waste liquid, and non-platinum group elements can be recovered as necessary.

非白金族元素を浸出する際は、該硝酸溶液の濃度をpH0〜2となるように調整することが好ましい。pHがマイナスであると、白金族元素が浸出することがあり、一方、pHが2を超えると、非白金族元素の浸出率が低下するからである。また、硝酸添加は濃度を調整しながら連続的または断続的に添加することが好ましい。これは、浸出可能な非白金族元素が存在すると、硝酸添加後pHは徐々に高くなるが、一方で、非白金族元素が全て溶解すると、pHの変化がなくなる。したがって、このような添加の方法により、硝酸の過剰消費を抑制することができる。   When leaching a non-platinum group element, it is preferable to adjust the concentration of the nitric acid solution to pH 0-2. This is because if the pH is negative, platinum group elements may be leached, whereas if the pH exceeds 2, the leaching rate of non-platinum group elements decreases. Nitric acid is preferably added continuously or intermittently while adjusting the concentration. If non-platinum group elements that can be leached are present, the pH gradually increases after the addition of nitric acid. On the other hand, if all of the non-platinum group elements are dissolved, the pH does not change. Therefore, excessive consumption of nitric acid can be suppressed by such an addition method.

また、白金族元素を含む合金を硝酸溶液で浸出し濾別することで白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する工程において、硝酸溶液の温度を50〜100℃となるように制御することが好ましい。硝酸溶液の温度が50℃未満であると反応速度が低下し、一方、100℃超であると硝酸溶液の一部が蒸発してNOxガスが発生するため好ましくない。さらに、非白金族元素の浸出を効果的に行うことで、濾別した浸出液中の白金族元素の濃度が500mg/L以下とすることができ、白金族元素の回収率を高めることができる。   In the step of separating the alloy containing the platinum group element into a residue containing the platinum group element as a main component and the leachate containing the non-platinum group element as a main component by leaching and filtering the alloy containing the platinum group element with a nitric acid solution, It is preferable to control so that it may become 50-100 degreeC. If the temperature of the nitric acid solution is less than 50 ° C., the reaction rate decreases, while if it exceeds 100 ° C., a part of the nitric acid solution evaporates and NOx gas is generated, which is not preferable. Furthermore, by effectively leaching the non-platinum group element, the concentration of the platinum group element in the filtered leachate can be reduced to 500 mg / L or less, and the recovery rate of the platinum group element can be increased.

次に、本発明は、白金族元素を主成分とする残渣を塩酸と酸化剤とからなる混合溶液で溶解することで、白金族元素を白金族元素イオンの塩化物錯体に転換する。これにより、先述の脱硝反応処理を行う必要がなく、試薬コストの低減、回収工程の簡略化が可能となる。また、このとき、混合溶液の温度を30〜100℃となるように制御することが好ましい。混合溶液の温度が30℃未満であると反応速度が低下し、一方、100℃超であると混合溶液の一部が蒸発し、ガスを発生するため好ましくない。また酸化剤は、公知のものを使用することができるが、過酸化水素水、次亜塩素酸イオンを含む溶液、過炭酸ナトリウム、オゾンを含む溶液、塩素ガス及び塩素ガスを含む溶液を用いることが好ましい。   Next, the present invention converts a platinum group element into a chloride complex of platinum group element ions by dissolving a residue containing a platinum group element as a main component in a mixed solution of hydrochloric acid and an oxidizing agent. As a result, it is not necessary to perform the above-described denitration reaction treatment, and it is possible to reduce reagent costs and simplify the recovery process. Moreover, it is preferable to control so that the temperature of a mixed solution may be 30-100 degreeC at this time. If the temperature of the mixed solution is less than 30 ° C., the reaction rate decreases, whereas if it exceeds 100 ° C., part of the mixed solution evaporates and generates gas, which is not preferable. As the oxidizing agent, a known one can be used, but a hydrogen peroxide solution, a solution containing hypochlorite ions, a solution containing sodium percarbonate, ozone, a solution containing chlorine gas and chlorine gas should be used. Is preferred.

その後、本発明は、白金族元素イオンの塩化物錯体を含有する溶液に1価カチオンの塩化物を添加することで、白金族元素の晶析物を析出させて、これを濾別回収する。該1価カチオンの塩化物としては、塩化カリウム、塩化ルビジウム、塩化セシウム、塩化アンモニウムを用いることができる。これによって得られた晶析物は、適宜、加熱処理することで、高純度の白金族元素を得ることができる。加熱処理の条件としては、回収する白金族元素により異なるが、例えば、大気中、水素ガス雰囲気中、又は、窒素ガス若しくはアルゴンガスなどの不活性ガス雰囲気中、400〜1200℃で焙焼することができる。   Thereafter, in the present invention, a monovalent cation chloride is added to a solution containing a chloride complex of a platinum group element ion to precipitate a crystallized product of the platinum group element, which is recovered by filtration. As the monovalent cation chloride, potassium chloride, rubidium chloride, cesium chloride, and ammonium chloride can be used. The crystallized product thus obtained can be appropriately heat-treated to obtain a high purity platinum group element. The heat treatment conditions vary depending on the platinum group element to be recovered. For example, it is roasted at 400 to 1200 ° C. in the air, in a hydrogen gas atmosphere, or in an inert gas atmosphere such as nitrogen gas or argon gas. Can do.

以上のように、本発明は、スパッタリング用白金族元素含有ターゲットの製造工程で発生する端材、切削屑、平研屑等のスクラップからの白金族元素の回収方法であって、特に、白金族元素と非白金族元素との合金スクラップからの白金族元素を回収する方法であり、白金族元素としては、パラジウム、白金、ルテニウム、ロジウム、イリジウム又はこれらの二種以上を組み合わせた合金が挙げられ、また、非白金族元素として、クロム、マンガン、鉄、コバルト、ニッケル、銅、ホウ素又はこれらの二種以上を組み合わせた合金が挙げられる。   As described above, the present invention is a method for recovering platinum group elements from scraps such as scraps, cutting scraps, flat polishing scraps, etc. generated in the manufacturing process of a platinum group element-containing target for sputtering, It is a method for recovering platinum group elements from alloy scrap of an element and a non-platinum group element. Examples of the platinum group elements include palladium, platinum, ruthenium, rhodium, iridium, or an alloy in which two or more of these are combined. In addition, examples of the non-platinum group element include chromium, manganese, iron, cobalt, nickel, copper, boron, or an alloy in which two or more of these are combined.

以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。   Hereinafter, description will be made based on Examples and Comparative Examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

(実施例1)
Ni−Pt−Ir合金を純水に浸漬した後、液温80℃に維持しながらpH0〜2になるように硝酸を連続的又は断続的に添加した。これにより、白金族元素(Pt、Ir)が沈殿し、非白金族元素(Ni)が浸出した。pH変動がなくなった後、硝酸の添加を停止し、濾過を行って白金族元素と非白金族元素を分離した。このとき、濾液に含まれる白金族元素(Pt、Ir)の濃度は、1mg/L未満であった。
次に、白金族元素を主成分とする濾過残渣に、塩酸と過酸化水素の混合溶液を添加し、液温80℃となるように加熱して、濾過残渣を全て溶解し、白金族元素イオンの塩化物錯体を形成した。このとき、溶液に含まれる白金族元素(Pt、Ir)の濃度は50g/Lであり、また、非白金族元素(Ni)の濃度は10g/Lであった。
その後、この白金族元素イオンの塩化物錯体の溶液に、塩化アンモニウムを添加し、数時間経過後、白金族元素のアンモニウム結晶を析出した。これを濾過して、液中に生成した晶析物を濾別した。さらに、この白金族元素の晶析物を水素雰囲気中、700℃で2時間加熱処理することにより、高純度の白金族元素を回収した。
この回収した白金族元素に対して、GDMS(グロー放電質量分析)を行った結果、主な不純物であるNiの含有量が20wtppm未満であった。また、その他の不純物含有量も合計で50wtpp未満であった。そして、濾液に含まれる白金族元素の含有量は500wtppm未満であり、白金族元素の回収率は90%以上であった。
Example 1
After the Ni—Pt—Ir alloy was immersed in pure water, nitric acid was continuously or intermittently added so that the pH was 0 to 2 while maintaining the liquid temperature at 80 ° C. Thereby, platinum group elements (Pt, Ir) were precipitated, and non-platinum group elements (Ni) were leached. After the pH change disappeared, the addition of nitric acid was stopped and filtration was performed to separate the platinum group element and the non-platinum group element. At this time, the concentration of platinum group elements (Pt, Ir) contained in the filtrate was less than 1 mg / L.
Next, a mixed solution of hydrochloric acid and hydrogen peroxide is added to the filtration residue containing a platinum group element as a main component, and heated to a liquid temperature of 80 ° C. to completely dissolve the filtration residue. Formed a chloride complex. At this time, the concentration of the platinum group elements (Pt, Ir) contained in the solution was 50 g / L, and the concentration of the non-platinum group elements (Ni) was 10 g / L.
Thereafter, ammonium chloride was added to the solution of the platinum group element ion chloride complex, and after several hours, ammonium crystals of the platinum group element were precipitated. This was filtered and the crystallized substance produced | generated in the liquid was separated by filtration. Further, the platinum group element crystallized product was heat-treated in a hydrogen atmosphere at 700 ° C. for 2 hours to recover a high purity platinum group element.
As a result of performing GDMS (glow discharge mass spectrometry) on this recovered platinum group element, the content of Ni as a main impurity was less than 20 wtppm. In addition, the total content of other impurities was less than 50 wtpp. And the content of the platinum group element contained in the filtrate was less than 500 wtppm, and the recovery rate of the platinum group element was 90% or more.

(実施例2)
Cr−Fe−Co−Cu−B−Ru−Pd合金を純水に浸漬した後、液温100℃に維持しながらpH0〜2になるように硝酸を連続的又は断続的に添加した。これにより、白金族元素(Ru、Pd)が沈殿し、非白金族元素(Cr、Fe、Co、Cu、B)が浸出した。pH変動がなくなった後、硝酸の添加を停止し、濾過を行って白金族元素と非白金族元素を分離した。このとき、濾液に含まれる白金族元素(Ru、Pd)の濃度は、1mg/L未満であった。
次に、白金族元素を主成分とする濾過残渣に、塩酸と過酸化水素の混合溶液を添加し、液温100℃となるように加熱して、濾過残渣を全て溶解し、白金族元素イオンの塩化物錯体を形成した。このとき、溶液に含まれる白金族元素(Ru、Pd)の濃度は30g/Lであり、また、非白金族元素(Cr、Fe、Co、Cu、B)の濃度は10g/Lであった。
その後、この白金族元素イオンの塩化物錯体の溶液に、塩化アンモニウムを添加し、数時間経過後、白金族元素のアンモニウム結晶を析出した。これを濾過して、液中に生成した晶析物を濾別した。さらに、この白金族元素の晶析物を水素雰囲気中、1200℃で2時間加熱処理することにより、高純度の白金族元素を回収した。
この回収した白金族元素に対して、GDMS(グロー放電質量分析)を行った結果、主な不純物であるCr、Fe、Co、Cu、Bの合計含有量が100wtppm未満であった。また、その他の不純物含有量も合計で500wtpp未満であった。そして、濾液に含まれる白金族元素の含有量は500wtppm未満であり、白金族元素の回収率は90%以上であった。
(Example 2)
After the Cr—Fe—Co—Cu—B—Ru—Pd alloy was immersed in pure water, nitric acid was continuously or intermittently added so that the pH was 0 to 2 while maintaining the liquid temperature at 100 ° C. Thereby, platinum group elements (Ru, Pd) were precipitated, and non-platinum group elements (Cr, Fe, Co, Cu, B) were leached. After the pH change disappeared, the addition of nitric acid was stopped and filtration was performed to separate the platinum group element and the non-platinum group element. At this time, the concentration of platinum group elements (Ru, Pd) contained in the filtrate was less than 1 mg / L.
Next, a mixed solution of hydrochloric acid and hydrogen peroxide is added to the filtration residue containing a platinum group element as a main component, and heated to a liquid temperature of 100 ° C. to completely dissolve the filtration residue. Formed a chloride complex. At this time, the concentration of platinum group elements (Ru, Pd) contained in the solution was 30 g / L, and the concentration of non-platinum group elements (Cr, Fe, Co, Cu, B) was 10 g / L. .
Thereafter, ammonium chloride was added to the solution of the platinum group element ion chloride complex, and after several hours, ammonium crystals of the platinum group element were precipitated. This was filtered and the crystallized substance produced | generated in the liquid was separated by filtration. Further, the platinum group element crystallized product was heat-treated at 1200 ° C. for 2 hours in a hydrogen atmosphere to recover a high purity platinum group element.
As a result of performing GDMS (glow discharge mass spectrometry) on this recovered platinum group element, the total content of Cr, Fe, Co, Cu, and B, which are main impurities, was less than 100 wtppm. In addition, the content of other impurities was less than 500 wtpp in total. And the content of the platinum group element contained in the filtrate was less than 500 wtppm, and the recovery rate of the platinum group element was 90% or more.

(実施例3)
Mn−Ni−Ru−Ir合金を純水に浸漬した後、液温50℃に維持しながらpH0〜2になるように硝酸を連続的又は断続的に添加した。これにより、白金族元素(Ru、Ir)が沈殿し、非白金族元素(Mn、Ni)が浸出した。pH変動がなくなった後、硝酸の添加を停止し、濾過を行って白金族元素と非白金族元素を分離した。このとき、濾液に含まれる白金族元素(Ru、Ir)の濃度は、1mg/L未満であった。
次に、白金族元素を主成分とする濾過残渣に、塩酸と過酸化水素の混合溶液を添加し、液温30℃となるように加熱して、濾過残渣を全て溶解し、白金族元素イオンの塩化物錯体を形成した。このとき、溶液に含まれる白金族元素(Ru、Ir)の濃度は30g/Lであり、また、非白金族元素(Mn、Ni)の濃度は3g/Lであった。
その後、この白金族元素イオンの塩化物錯体の溶液に、塩化アンモニウムを添加し、数時間経過後、白金族元素のアンモニウム結晶を析出した。これを濾過して、液中に生成した晶析物を濾別した。さらに、この白金族元素の晶析物を水素雰囲気中、1200℃で2時間加熱処理することにより、高純度の白金族元素を回収した。
この回収した白金族元素に対して、GDMS(グロー放電質量分析)を行った結果、主な不純物であるMn、Niの合計含有量が50wtppm未満であった。また、その他の不純物含有量も合計で100wtpp未満であった。そして、濾液に含まれる白金族元素の含有量は500wtppm未満であり、白金族元素の回収率は、90%以上であった。
(Example 3)
After immersing the Mn—Ni—Ru—Ir alloy in pure water, nitric acid was continuously or intermittently added so that the pH was 0-2 while maintaining the liquid temperature at 50 ° C. Thereby, platinum group elements (Ru, Ir) were precipitated, and non-platinum group elements (Mn, Ni) were leached. After the pH change disappeared, the addition of nitric acid was stopped and filtration was performed to separate the platinum group element and the non-platinum group element. At this time, the concentration of platinum group elements (Ru, Ir) contained in the filtrate was less than 1 mg / L.
Next, a mixed solution of hydrochloric acid and hydrogen peroxide is added to the filtration residue containing a platinum group element as a main component, and heated to a liquid temperature of 30 ° C. to dissolve all the filtration residue. Formed a chloride complex. At this time, the concentration of platinum group elements (Ru, Ir) contained in the solution was 30 g / L, and the concentration of non-platinum group elements (Mn, Ni) was 3 g / L.
Thereafter, ammonium chloride was added to the solution of the platinum group element ion chloride complex, and after several hours, ammonium crystals of the platinum group element were precipitated. This was filtered and the crystallized substance produced | generated in the liquid was separated by filtration. Further, the platinum group element crystallized product was heat-treated at 1200 ° C. for 2 hours in a hydrogen atmosphere to recover a high purity platinum group element.
As a result of performing GDMS (glow discharge mass spectrometry) on the recovered platinum group element, the total content of Mn and Ni as main impurities was less than 50 wtppm. Moreover, other impurity content was also less than 100 wtpp in total. And the content of the platinum group element contained in the filtrate was less than 500 wtppm, and the recovery rate of the platinum group element was 90% or more.

(実施例4)
Mn−Ni−Rh合金を純水に浸漬した後、液温80℃に維持しながらpH0〜2になるように硝酸を連続的又は断続的に添加した。これにより、白金族元素(Rh)が沈殿し、非白金族元素(Mn、Ni)が浸出した。pH変動がなくなった後、硝酸の添加を停止し、濾過を行って白金族元素と非白金族元素を分離した。このとき、濾液に含まれる白金族元素(Rh)の濃度は、1mg/L未満であった。
次に、白金族元素を主成分とする濾過残渣に、塩酸と過酸化水素の混合溶液を添加し、液温80℃となるように加熱して、濾過残渣を全て溶解し、白金族元素イオンの塩化物錯体を形成した。このとき、溶液に含まれる白金族元素(Rh)の濃度は20g/Lであり、また、非白金族元素(Mn、Ni)の濃度は3g/Lであった。
その後、この白金族元素イオンの塩化物錯体の溶液に、塩化アンモニウムを添加し、数時間経過後、白金族元素のアンモニウム結晶を析出した。これを濾過して、液中に生成した晶析物を濾別した。さらに、この白金族元素の晶析物を水素雰囲気中、700℃で2時間加熱処理することにより、高純度の白金族元素を回収した。
この回収した白金族元素に対して、GDMS(グロー放電質量分析)を行った結果、主な不純物であるMn、Niの合計含有量が20wtppm未満であった。また、その他の不純物含有量も合計で50wtpp未満であった。そして、濾液に含まれる白金族元素の含有量は500wtppm未満であり、白金族元素の回収率は、90%以上であった。
Example 4
After immersing the Mn-Ni-Rh alloy in pure water, nitric acid was continuously or intermittently added so that the pH was 0-2 while maintaining the liquid temperature at 80 ° C. Thereby, platinum group elements (Rh) were precipitated, and non-platinum group elements (Mn, Ni) were leached. After the pH change disappeared, the addition of nitric acid was stopped and filtration was performed to separate the platinum group element and the non-platinum group element. At this time, the concentration of the platinum group element (Rh) contained in the filtrate was less than 1 mg / L.
Next, a mixed solution of hydrochloric acid and hydrogen peroxide is added to the filtration residue containing a platinum group element as a main component, and heated to a liquid temperature of 80 ° C. to completely dissolve the filtration residue. Formed a chloride complex. At this time, the concentration of the platinum group element (Rh) contained in the solution was 20 g / L, and the concentration of the non-platinum group elements (Mn, Ni) was 3 g / L.
Thereafter, ammonium chloride was added to the solution of the platinum group element ion chloride complex, and after several hours, ammonium crystals of the platinum group element were precipitated. This was filtered and the crystallized substance produced | generated in the liquid was separated by filtration. Further, the platinum group element crystallized product was heat-treated in a hydrogen atmosphere at 700 ° C. for 2 hours to recover a high purity platinum group element.
As a result of performing GDMS (glow discharge mass spectrometry) on the recovered platinum group element, the total content of Mn and Ni as main impurities was less than 20 wtppm. In addition, the total content of other impurities was less than 50 wtpp. And the content of the platinum group element contained in the filtrate was less than 500 wtppm, and the recovery rate of the platinum group element was 90% or more.

(実施例5)
Fe−Ni−Co−Pt合金を純水に浸漬した後、液温90℃に維持しながらpH0〜2になるように硝酸を連続的又は断続的に添加した。これにより、白金が沈殿し、非白金族元素(Fe、Ni、Co)が浸出した。pH変動がなくなった後、硝酸の添加を停止し、濾過を行って白金族元素と非白金族元素を分離した。このとき、濾液に含まれる白金元素の濃度は、1mg/L未満であった。
次に、白金元素を主成分とする濾過残渣に、塩酸と過酸化水素の混合溶液を添加し、液温90℃となるように加熱して、濾過残渣を全て溶解し、白金族元素イオンの塩化物錯体を形成した。このとき、溶液に含まれる白金元素の濃度は50g/Lであり、また、非白金族元素(Fe、Ni、Co)の濃度は10g/Lであった。
その後、この白金元素イオンの塩化物錯体の溶液に、塩化アンモニウムを添加し、数時間経過後、白金元素のアンモニウム結晶を析出した。これを濾過して、液中に生成した晶析物を濾別した。さらに、この白金元素の晶析物を大気雰囲気中、800℃で2時間加熱処理することにより、高純度の白金元素を回収した。
この回収した白金元素に対して、GDMS(グロー放電質量分析)を行った結果、主な不純物であるFe、Ni、Coの合計含有量が20wtppm未満であった。また、その他の不純物含有量も合計で50wtpp未満であった。そして、濾液に含まれる白金族元素の含有量は500wtppm未満であり、白金族元素の回収率は90%以上であった。
(Example 5)
After the Fe—Ni—Co—Pt alloy was immersed in pure water, nitric acid was continuously or intermittently added so that the pH was 0 to 2 while maintaining the liquid temperature at 90 ° C. Thereby, platinum precipitated and non-platinum group elements (Fe, Ni, Co) were leached. After the pH change disappeared, the addition of nitric acid was stopped and filtration was performed to separate the platinum group element and the non-platinum group element. At this time, the concentration of elemental platinum contained in the filtrate was less than 1 mg / L.
Next, a mixed solution of hydrochloric acid and hydrogen peroxide is added to the filtration residue containing platinum element as a main component, and the solution is heated to a liquid temperature of 90 ° C. to dissolve all the filtration residue. A chloride complex was formed. At this time, the concentration of the platinum element contained in the solution was 50 g / L, and the concentration of the non-platinum group elements (Fe, Ni, Co) was 10 g / L.
Thereafter, ammonium chloride was added to the solution of the platinum element ion chloride complex, and after several hours, platinum element ammonium crystals were precipitated. This was filtered and the crystallized substance produced | generated in the liquid was separated by filtration. Further, the platinum element crystallized product was heat-treated at 800 ° C. for 2 hours in an air atmosphere to recover high-purity platinum element.
As a result of performing GDMS (glow discharge mass spectrometry) on the recovered platinum element, the total content of Fe, Ni and Co as main impurities was less than 20 wtppm. In addition, the total content of other impurities was less than 50 wtpp. And the content of the platinum group element contained in the filtrate was less than 500 wtppm, and the recovery rate of the platinum group element was 90% or more.

(比較例1)
Ni−Pt−Ir合金を純水に浸漬した後、液温40℃に維持しながらpH0〜2になるように硝酸を連続的又は断続的に添加した。これにより、白金族元素(Rt、Ir)が沈殿し、非白金族元素(Ni)が浸出した。pH変動がなくなった後、硝酸の添加を停止し、濾過を行って白金族元素と非白金族元素を分離した。
比較例1では、pHの変動がなくなった時点において、合金の50%近くが未溶解のままで残った。次に、白金族元素を主成分とする濾過残渣に、塩酸と過酸化水素の混合溶液を添加し、液温80℃となるように加熱して、濾過残渣を全て溶解し、白金族元素イオンの塩化物錯体を形成した。このとき、溶液に含まれる白金族元素(Pt、Ir)の濃度は20g/Lであった。
その後、この白金族元素イオンの塩化物錯体の溶液に、塩化アンモニウムを添加し、数時間経過後、白金族元素のアンモニウム結晶を析出した。これを濾過して、液中に生成した晶析物を濾別した。さらに、この白金族元素の晶析物を水素雰囲気中、700℃で2時間加熱処理することにより、白金族元素を回収した。この回収した白金族元素に対して、GDMS(グロー放電質量分析)を行った結果、主な不純物であるNiの含有量が1000wtppm以上含まれていた。
以上から、硝酸溶液の液温が比較的低い場合には、非白金族元素の浸出が十分に行われず、回収した白金族元素の純度が低下した。但し、このような溶解温度であっても、白金族元素の分離回収は可能である。
(Comparative Example 1)
After the Ni—Pt—Ir alloy was immersed in pure water, nitric acid was continuously or intermittently added so that the pH was 0 to 2 while maintaining the liquid temperature at 40 ° C. Thereby, platinum group elements (Rt, Ir) were precipitated, and non-platinum group elements (Ni) were leached. After the pH change disappeared, the addition of nitric acid was stopped and filtration was performed to separate the platinum group element and the non-platinum group element.
In Comparative Example 1, nearly 50% of the alloy remained undissolved when the pH change disappeared. Next, a mixed solution of hydrochloric acid and hydrogen peroxide is added to the filtration residue containing a platinum group element as a main component, and heated to a liquid temperature of 80 ° C. to completely dissolve the filtration residue. Formed a chloride complex. At this time, the concentration of platinum group elements (Pt, Ir) contained in the solution was 20 g / L.
Thereafter, ammonium chloride was added to the solution of the platinum group element ion chloride complex, and after several hours, ammonium crystals of the platinum group element were precipitated. This was filtered and the crystallized substance produced | generated in the liquid was separated by filtration. Furthermore, the platinum group element was recovered by heat-treating the crystallized product of the platinum group element in a hydrogen atmosphere at 700 ° C. for 2 hours. As a result of performing GDMS (glow discharge mass spectrometry) on the recovered platinum group element, the content of Ni as a main impurity was 1000 wtppm or more.
From the above, when the liquid temperature of the nitric acid solution was relatively low, the non-platinum group element was not sufficiently leached, and the purity of the collected platinum group element was lowered. However, separation and recovery of platinum group elements is possible even at such a melting temperature.

(比較例2)
Ni−Pt−Ir合金を純水に浸漬した後、液温80℃に維持しながらpHマイナスになるように硝酸を連続的又は断続的に添加した。これにより、白金族元素(Pt、Ir)が沈殿し、非白金族元素(Ni)が浸出した。pHの変動がなくなった後、硝酸の添加を停止し、濾過を行って白金族元素と非白金族元素を分離した。このとき、濾液に含まれる白金族元素(Pt、Ir)の濃度は、500mg/L以上であった。
以上から、硝酸溶液のpHが比較的低い場合には、白金族元素も若干浸出してしまい、白金族元素の回収率が低下した。但し、このような硝酸濃度であっても、白金族元素の分離回収は可能である。
(Comparative Example 2)
After the Ni—Pt—Ir alloy was immersed in pure water, nitric acid was continuously or intermittently added so that the pH became negative while maintaining the liquid temperature at 80 ° C. Thereby, platinum group elements (Pt, Ir) were precipitated, and non-platinum group elements (Ni) were leached. After the change in pH disappeared, the addition of nitric acid was stopped and filtration was performed to separate the platinum group element and the non-platinum group element. At this time, the concentration of platinum group elements (Pt, Ir) contained in the filtrate was 500 mg / L or more.
From the above, when the pH of the nitric acid solution was relatively low, platinum group elements were also leached slightly, and the recovery rate of platinum group elements was reduced. However, separation and recovery of platinum group elements is possible even at such a nitric acid concentration.

本発明は、スパッタリング用白金族元素含有ターゲットの製造工程で発生する端材、切削屑、平研屑等のスクラップから、比較的簡単な工程で、ターゲットに再使用できる高純度の白金族元素を高収率で回収することができるというので、大きな産業上の利点がある。   The present invention provides a high-purity platinum group element that can be reused for a target in a relatively simple process from scraps such as scraps, cutting scraps, and flat scraps generated in the manufacturing process of a platinum group element-containing target for sputtering. Since it can be recovered with a high yield, there is a great industrial advantage.

Claims (11)

白金族元素を含む合金を硝酸溶液で浸出し濾別することで白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する工程と、該白金族元素を主成分とする残渣を塩酸と酸化剤とからなる混合溶液で溶解することで白金族元素を白金族元素イオンの塩化物錯体に転換する工程と、該白金族元素イオンの塩化物錯体を含有する溶液に1価カチオンの塩化物を添加することで白金族元素の晶析物を析出させて、これを濾別回収する工程、とからなることを特徴とする白金族元素の回収方法。   A step of separating an alloy containing a platinum group element with a nitric acid solution and separating the alloy into a residue containing a platinum group element as a main component and a leachate containing a non-platinum group element as a main component, and the platinum group element as a main component And the step of converting the platinum group element into a chloride complex of the platinum group element ion by dissolving the residue in a mixed solution comprising hydrochloric acid and an oxidizing agent, and a solution containing the chloride complex of the platinum group element ion. A method for recovering a platinum group element, comprising: adding a monovalent cation chloride to precipitate a crystallized product of a platinum group element, and collecting it by filtration. 前記白金族元素が、パラジウム、白金、ルテニウム、ロジウム、イリジウムからなる群から選択した一種以上の元素であることを特徴とする請求項1に記載の白金族元素の回収方法。   The method for recovering a platinum group element according to claim 1, wherein the platinum group element is one or more elements selected from the group consisting of palladium, platinum, ruthenium, rhodium, and iridium. 前記非白金族元素が、クロム、マンガン、鉄、コバルト、ニッケル、銅、ホウ素からなる群から選択した一種以上の元素であることを特徴とする請求項1又は2に記載の白金族元素の回収方法。   The platinum group element recovery according to claim 1 or 2, wherein the non-platinum group element is one or more elements selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, and boron. Method. 白金族元素を含む合金を硝酸溶液で浸出し濾別することで白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する工程において、該硝酸溶液の濃度をpH0〜2となるように調整することを特徴とする請求項1〜3のいずれか一項に記載の白金族元素の回収方法。   In the step of leaching an alloy containing a platinum group element with a nitric acid solution and separating the alloy into a residue containing the platinum group element as a main component and a leachate containing a non-platinum group element as a main component, the concentration of the nitric acid solution is adjusted to pH 0. It adjusts so that it may become -2, The recovery method of the platinum group element as described in any one of Claims 1-3 characterized by the above-mentioned. 白金族元素を含む合金を硝酸溶液で浸出し濾別することで白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する工程において、該硝酸溶液に連続的または断続的に硝酸を添加することで硝酸濃度を調整することを特徴とする請求項4に記載の白金族元素の回収方法。   In the step of separating an alloy containing a platinum group element with a nitric acid solution and separating it into a leachate containing a platinum group element as a main component and a non-platinum group element as a main component, The method for recovering a platinum group element according to claim 4, wherein the nitric acid concentration is adjusted by intermittently adding nitric acid. 白金族元素を含む合金を硝酸溶液で浸出し濾別することで白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する工程において、該硝酸溶液の温度を50〜100℃となるように制御することを特徴とする請求項1〜5のいずれか一項に記載の白金族元素の回収方法。   In the step of separating an alloy containing a platinum group element with a nitric acid solution and separating it into a residue containing the platinum group element as a main component and a leachate containing a non-platinum group element as a main component, the temperature of the nitric acid solution is 50 It controls so that it may become -100 degreeC, The recovery method of the platinum group element as described in any one of Claims 1-5 characterized by the above-mentioned. 白金族元素を含む合金を硝酸溶液で浸出し濾別することで白金族元素を主成分とする残渣と非白金族元素を主成分とする浸出液に分離する工程において、濾別した浸出液中の白金族元素の濃度が500mg/L以下であることを特徴とする請求項1〜6のいずれか一項に記載の白金族元素の回収方法。   In the process of separating the alloy containing the platinum group element with a nitric acid solution and separating it into a residue containing the platinum group element as the main component and the leachate containing the non-platinum group element as the main component, platinum in the leachate filtered off The method for recovering a platinum group element according to any one of claims 1 to 6, wherein the concentration of the group element is 500 mg / L or less. 該白金族元素を主成分とする残渣を塩酸と酸化剤とからなる混合溶液で溶解することで白金族元素を白金族元素イオンの塩化物錯体に転換する工程において、該混合溶液の温度を30〜100℃となるように制御することを特徴とする請求項1〜7のいずれか一項に記載の白金族元素の回収方法。   In the step of converting the platinum group element into a chloride complex of platinum group element ions by dissolving the residue mainly composed of the platinum group element with a mixed solution of hydrochloric acid and an oxidizing agent, the temperature of the mixed solution is set to 30. It controls so that it may become -100 degreeC, The recovery method of the platinum group element as described in any one of Claims 1-7 characterized by the above-mentioned. 該白金族元素を主成分とする残渣を塩酸と酸化剤とからなる混合溶液で溶解することで白金族元素を白金族元素イオンの塩化物錯体に転換する工程において、該酸化剤が、過酸化水素水、次亜塩素酸イオンを含む溶液、過炭酸ナトリウム、オゾンを含む溶液、塩素ガス及び塩素ガスを含む溶液の群から選択した一種以上の酸化剤であることを特徴とする請求項1〜8のいずれか一項に記載の白金族元素の回収方法。   In the step of converting the platinum group element into a chloride complex of a platinum group element ion by dissolving the residue mainly composed of the platinum group element in a mixed solution of hydrochloric acid and an oxidizing agent, the oxidizing agent is peroxidized. It is one or more oxidizing agents selected from the group consisting of hydrogen water, a solution containing hypochlorite ions, sodium percarbonate, a solution containing ozone, chlorine gas and a solution containing chlorine gas. The method for recovering a platinum group element according to any one of claims 8 to 9. 該白金族元素イオンの塩化物錯体を含有する溶液に1価カチオンの塩化物を添加することで白金族元素の晶析物を析出させて、これを濾別回収する工程において、該1価カチオンの塩化物が、塩化カリウム、塩化ルビジウム、塩化セシウム、塩化アンモニウムの群から選択した一種以上の塩化物であることを特徴とする請求項1〜9のいずれか一項に記載の白金族元素回収方法。   In the step of depositing a monovalent cation chloride into a solution containing a chloride complex of a platinum group element ion to precipitate a crystallized product of the platinum group element and collecting it by filtration, the monovalent cation The platinum group element recovery according to any one of claims 1 to 9, wherein the chloride is one or more chlorides selected from the group consisting of potassium chloride, rubidium chloride, cesium chloride, and ammonium chloride. Method. さらに、該晶析物を大気中、水素雰囲気中又は不活性ガス雰囲気中、400〜1200℃で焙焼することで白金族元素を回収する工程からなることを特徴とする請求項1〜10のいずれか一項に記載の白金族元素の回収方法。   Furthermore, it consists of the process of collect | recovering platinum group elements by baking at 400-1200 degreeC in air | atmosphere, hydrogen atmosphere, or inert gas atmosphere of this crystallized material, The method for recovering a platinum group element according to any one of the above.
JP2013045023A 2013-03-07 2013-03-07 Method for recovering platinum group elements Active JP6030005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045023A JP6030005B2 (en) 2013-03-07 2013-03-07 Method for recovering platinum group elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013045023A JP6030005B2 (en) 2013-03-07 2013-03-07 Method for recovering platinum group elements

Publications (2)

Publication Number Publication Date
JP2014173107A true JP2014173107A (en) 2014-09-22
JP6030005B2 JP6030005B2 (en) 2016-11-24

Family

ID=51694675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045023A Active JP6030005B2 (en) 2013-03-07 2013-03-07 Method for recovering platinum group elements

Country Status (1)

Country Link
JP (1) JP6030005B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101579498B1 (en) * 2015-02-24 2015-12-22 (주) 유천테크 Method for recovering palladium of waste pastes containing palladium
JP2019031703A (en) * 2017-08-07 2019-02-28 住友金属鉱山株式会社 Iridium recovery method
GB2578185A (en) * 2018-10-15 2020-04-22 Tripod Nano Tech Corporation Method of making colloidal platinum nanoparticles
JP2020090430A (en) * 2018-12-07 2020-06-11 ▲キン▼鼎奈米科技股▲分▼有限公司 Manufacturing method of inorganic platinum compound
US10744590B2 (en) 2016-03-07 2020-08-18 Haraeus Deutschland Gmbh & Co. Kg Noble-metal powder and the use thereof for producing components
CN114619040A (en) * 2022-03-18 2022-06-14 昆明理工大学 Method for refining platinum and preparing platinum black
CN115109930A (en) * 2022-06-16 2022-09-27 浙江微通催化新材料有限公司 From TiO 2 -ZrO 2 Method for recovering valuable metal from carrier-loaded copper-manganese-platinum catalyst
CN115232970A (en) * 2022-07-26 2022-10-25 广东先导稀材股份有限公司 Method for recovering semiconductor chip waste

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022211703A1 (en) * 2022-11-07 2024-05-08 Robert Bosch Gesellschaft mit beschränkter Haftung Method and device for separating iridium from at least one starting material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217536A (en) * 1985-03-20 1986-09-27 Sumitomo Metal Mining Co Ltd Method for recovering noble metal from silver separation slag
JP2006130387A (en) * 2004-11-04 2006-05-25 Nippon Mining & Metals Co Ltd Method of recovering platinum and rhenium from waste catalyst
JP2007302944A (en) * 2006-05-11 2007-11-22 Sumitomo Metal Mining Co Ltd Method for recovering platinum group element from ion-exchange resin containing adsorbed platinum group element
JP2008527165A (en) * 2004-12-30 2008-07-24 スリーエム イノベイティブ プロパティズ カンパニー Recovery of platinum from nanostructured fuel cell catalysts
JP2009041047A (en) * 2007-08-07 2009-02-26 Okuchi Denshi Kk Method for melt-extracting noble metal from residual dross of hardly-soluble noble metal containing platinum
JP2009097024A (en) * 2007-10-12 2009-05-07 Sumitomo Metal Mining Co Ltd Method for refining rhodium
JP2011195935A (en) * 2010-03-23 2011-10-06 Sumitomo Metal Mining Co Ltd Method for separating and recovering platinum group element
JP2012219314A (en) * 2011-04-07 2012-11-12 Okuchi Denshi Kk Method for recovering platinum from blasting powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217536A (en) * 1985-03-20 1986-09-27 Sumitomo Metal Mining Co Ltd Method for recovering noble metal from silver separation slag
JP2006130387A (en) * 2004-11-04 2006-05-25 Nippon Mining & Metals Co Ltd Method of recovering platinum and rhenium from waste catalyst
JP2008527165A (en) * 2004-12-30 2008-07-24 スリーエム イノベイティブ プロパティズ カンパニー Recovery of platinum from nanostructured fuel cell catalysts
JP2007302944A (en) * 2006-05-11 2007-11-22 Sumitomo Metal Mining Co Ltd Method for recovering platinum group element from ion-exchange resin containing adsorbed platinum group element
JP2009041047A (en) * 2007-08-07 2009-02-26 Okuchi Denshi Kk Method for melt-extracting noble metal from residual dross of hardly-soluble noble metal containing platinum
JP2009097024A (en) * 2007-10-12 2009-05-07 Sumitomo Metal Mining Co Ltd Method for refining rhodium
JP2011195935A (en) * 2010-03-23 2011-10-06 Sumitomo Metal Mining Co Ltd Method for separating and recovering platinum group element
JP2012219314A (en) * 2011-04-07 2012-11-12 Okuchi Denshi Kk Method for recovering platinum from blasting powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016023928; 柴田隼次他1名: '貴金属のリサイクル技術' 資源と素材 vol.118 No.1, 20021205, p.1-8 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101579498B1 (en) * 2015-02-24 2015-12-22 (주) 유천테크 Method for recovering palladium of waste pastes containing palladium
US10744590B2 (en) 2016-03-07 2020-08-18 Haraeus Deutschland Gmbh & Co. Kg Noble-metal powder and the use thereof for producing components
JP2019031703A (en) * 2017-08-07 2019-02-28 住友金属鉱山株式会社 Iridium recovery method
GB2578185A (en) * 2018-10-15 2020-04-22 Tripod Nano Tech Corporation Method of making colloidal platinum nanoparticles
US11179781B2 (en) 2018-10-15 2021-11-23 Tripod Nano Technology Corporation Method of making colloidal platinum nanoparticles
GB2578185B (en) * 2018-10-15 2021-07-21 Tripod Nano Tech Corporation Method of making colloidal platinum nanoparticles
US10865121B2 (en) 2018-12-07 2020-12-15 Tripod Nano Technology Corporation Method of making an inorganic platinum compound
GB2579685A (en) * 2018-12-07 2020-07-01 Tripod Nano Tech Corporation Method of making an inorganic platinum compound
JP2020090430A (en) * 2018-12-07 2020-06-11 ▲キン▼鼎奈米科技股▲分▼有限公司 Manufacturing method of inorganic platinum compound
GB2579685B (en) * 2018-12-07 2021-12-29 Tripod Nano Tech Corporation Method of making an inorganic platinum compound
CN114619040A (en) * 2022-03-18 2022-06-14 昆明理工大学 Method for refining platinum and preparing platinum black
CN114619040B (en) * 2022-03-18 2024-03-26 昆明理工大学 Method for refining platinum and preparing platinum black
CN115109930A (en) * 2022-06-16 2022-09-27 浙江微通催化新材料有限公司 From TiO 2 -ZrO 2 Method for recovering valuable metal from carrier-loaded copper-manganese-platinum catalyst
CN115232970A (en) * 2022-07-26 2022-10-25 广东先导稀材股份有限公司 Method for recovering semiconductor chip waste
CN115232970B (en) * 2022-07-26 2024-02-06 广东先导稀材股份有限公司 Method for recycling semiconductor chip waste

Also Published As

Publication number Publication date
JP6030005B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6030005B2 (en) Method for recovering platinum group elements
JP5399510B2 (en) High-purity platinum recovery method
JP6780448B2 (en) How to recover high-grade rhodium powder
JP4715627B2 (en) Method for recovering platinum group element from ion exchange resin adsorbed platinum group element
JP5132226B2 (en) Ruthenium recovery method
Schreier et al. Separation of Ir, Pd and Rh from secondary Pt scrap by precipitation and calcination
JP4865156B2 (en) Method for recovering high-purity platinum and palladium
JP5327420B2 (en) Platinum recovery method
JP5676348B2 (en) How to recover platinum from blast powder
JP4016680B2 (en) Method for dissolving selenium platinum group element-containing material
JP2011132552A (en) Method for reducing and recovering gold
JP5291968B2 (en) Ruthenium recovery method
JP6264566B2 (en) Method for producing leaching product liquid containing platinum group element
JP2011208249A (en) Method for separating platinum group element
JP5154486B2 (en) Method for recovering platinum group elements
JP2011208248A (en) Method for separating platinum group element
JP2010222612A (en) Refining method for refining and recovering ruthenium
JP2004190133A (en) Method of treating selenium, tellurium, and platinum group-containing material
JP2003129145A (en) Method for recovering platinum
KR101578389B1 (en) Method of recovering silver
CN110615413A (en) Method for leaching selenium and tellurium from waste anode copper sludge and method for extracting selenium and tellurium
JP2016069244A (en) Tungsten compound recovery process
JP2004218001A (en) Treatment method for selenium and tellurium
JP2004035968A (en) Method for separating platinum group element
JP5629166B2 (en) Pt recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161019

R150 Certificate of patent or registration of utility model

Ref document number: 6030005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250