JP2014172082A - High-power laser machine - Google Patents

High-power laser machine Download PDF

Info

Publication number
JP2014172082A
JP2014172082A JP2013048996A JP2013048996A JP2014172082A JP 2014172082 A JP2014172082 A JP 2014172082A JP 2013048996 A JP2013048996 A JP 2013048996A JP 2013048996 A JP2013048996 A JP 2013048996A JP 2014172082 A JP2014172082 A JP 2014172082A
Authority
JP
Japan
Prior art keywords
scraper
thermal lens
laser
power laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013048996A
Other languages
Japanese (ja)
Inventor
Osamu Noda
修 野田
Hideo Omori
秀雄 大森
Hideki Komori
秀樹 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVANCED MATERIALS PROC INST KINKI JAPAN
Advanced Materials Processing Institute Kinki Japan AMPI
Original Assignee
ADVANCED MATERIALS PROC INST KINKI JAPAN
Advanced Materials Processing Institute Kinki Japan AMPI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADVANCED MATERIALS PROC INST KINKI JAPAN, Advanced Materials Processing Institute Kinki Japan AMPI filed Critical ADVANCED MATERIALS PROC INST KINKI JAPAN
Priority to JP2013048996A priority Critical patent/JP2014172082A/en
Publication of JP2014172082A publication Critical patent/JP2014172082A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide as a high-power laser machine a machine that can compensate a thermal lens characteristic without the necessity of a special drive mechanism and special control mechanism, can readily perform high-precision laser machining, and can be manufactured at a low cost.SOLUTION: In a high-power laser machine having a scraper 2, which includes a full-reflection film, in a laser optical path, a thermal lens action on a converging side exerted by optical components other than the scraper 2 intervened in the laser optical path is canceled out by a thermal lens action on a diffusing side due to a change in a curvature of a reflection surface 2a derived from thermal expansion of the scraper 2 that has absorbed laser light, and a thermal lens characteristic of the entire laser machine is thus compensated.

Description

本発明は、レーザ溶接等に用いるファイバーレーザやディスクレーザの如き高輝度・高収束のレーザ加工機であって、特にレーザ光路に全反射膜を有するスクレーパが介在する高出力レーザ加工機に関する。   The present invention relates to a high-intensity and high-convergence laser processing machine such as a fiber laser or a disk laser used for laser welding or the like, and more particularly to a high-power laser processing machine in which a scraper having a total reflection film is interposed in a laser beam path.

レーザ溶接は、高出力のレーザ光を加工ヘッドの集光レンズで絞ったスポットを被加工物の表面に照射しつつ、溶接部位に沿って照射位置を移動させることにより、照射部位の被加工物素材を連続的に溶融・固化させてゆくものであり、高密度のエネルギーを微小領域に集中できることから、狭い溶接ビード幅で深い溶込みが得られると共に、小さい入熱量で高能率の溶接を行えるという利点がある。そして、このようなレーザ溶接にはファイバーレーザやディスクレーザ等のレーザ波長1μm帯用の高輝度・高収束のレーザ加工機が多用されるが、その集光レンズやコリメータレンズの如き光学部品として一般的に石英母材の表面に無反射コートを施したものが使用されている。   Laser welding irradiates the surface of the workpiece with a high-power laser beam focused by the condenser lens of the machining head, and moves the irradiation position along the welding site, thereby allowing the workpiece at the irradiated site to move. The material is continuously melted and solidified, and high-density energy can be concentrated in a minute region, so that deep penetration can be achieved with a narrow weld bead width and high-efficiency welding can be performed with a small heat input. There is an advantage. In such laser welding, a high-intensity and high-convergence laser processing machine for a laser wavelength band of 1 μm, such as a fiber laser or a disk laser, is often used. However, it is generally used as an optical component such as a condenser lens or a collimator lens. In particular, a quartz base material with a non-reflective coating is used.

しかるに、レーザ溶接においては、一般的に溶接開始位置から離れるにしたがって溶接品位が低下する傾向が認められる。これは、熱レンズ現象として、レーザ光路に介在する光学部品がレーザ光を吸収して昇温し、熱膨張及び屈折率変化を生じてレーザ光の焦点距離が変化する(通常は凸レンズ効果で焦点距離が短くなる)ことに起因している。なお、この熱レンズ現象に繋がるレーザ光の吸収は、光学部品の石英母材でもある程度は生じるが、表面の無反射コート部分での吸収が大きい。一方、このような高出力レーザ加工機では加工ヘッド内部のレーザ散乱光による周辺部品の過熱という問題もある。   However, in laser welding, it is generally recognized that the weld quality tends to decrease with increasing distance from the welding start position. This is because, as a thermal lens phenomenon, an optical component intervening in the laser optical path absorbs the laser light and rises in temperature, causing thermal expansion and a change in refractive index to change the focal length of the laser light (usually the focal lens effect causes a focal point). This is because the distance becomes shorter. The absorption of the laser light that leads to this thermal lens phenomenon occurs to some extent even in the quartz base material of the optical component, but the absorption at the non-reflective coating portion on the surface is large. On the other hand, such a high-power laser processing machine also has a problem of overheating of peripheral components due to laser scattered light inside the processing head.

従来、レーザ加工機における熱レンズ現象に対処するために、いくつかの手段が提案されている。その一つは、集光レンズの上方に2組の温度センサを取り付けた回転自動ステージを設け、両温度センサによって集光レンズのレーザ光入射側である上面全体をスキャニングし、得られる温度データから該集光レンズの焦点距離変化量を算出し、その算出値に基づいて焦点距離自動調整装置によって集光レンズを上下に移動させることにより、焦点が常に被加工物上に結ばれるように制御する方式である(特許文献1)。また他の一つは、セレン化亜鉛等よりなる屈折率の温度変化率が正の透過光学素子を含む加工光路系を有するレーザ加工機において、その加工光路途中にフッ化バリウム等よりなる屈折率の温度変化率が負の透過型熱レンズ補正素子を配置することにより、屈折率の温度変化率が正の透過光学素子で発生する収束系の熱レンズ特性を打ち消す方式である(特許文献2)。更に他の一つは、レーザ加工中に変化するレーザ光出力の大きさに基づいて、レーザ光照射位置で焦点位置の変化量を算出し、この変化量に基づいて加工レンズの位置を制御するか、もしくは背面側に空間を有するベンドミラーを配置し、その空間への流体供給圧力によって該ベンドミラーを弾性変形させて曲率を制御することにより、焦点位置を補正する方式である(特許文献3)。   Conventionally, several means have been proposed in order to cope with the thermal lens phenomenon in a laser beam machine. One of them is that a rotating automatic stage with two sets of temperature sensors is installed above the condenser lens, and the entire upper surface on the laser beam incident side of the condenser lens is scanned by both temperature sensors. The focal length change amount of the condenser lens is calculated, and the focal lens is moved up and down by the automatic focal length adjustment device based on the calculated value, so that the focal point is always connected to the workpiece. It is a system (patent document 1). The other is a laser processing machine having a processing optical path system including a transmission optical element having a positive temperature change rate of refractive index made of zinc selenide or the like, and a refractive index made of barium fluoride or the like in the middle of the processing optical path. This is a system that cancels out the thermal lens characteristics of a converging system that occurs in a transmissive optical element having a positive refractive index temperature change rate by arranging a transmission type thermal lens correction element having a negative temperature change rate (Patent Document 2). . The other one calculates the amount of change in the focal position at the laser light irradiation position based on the magnitude of the laser light output that changes during laser processing, and controls the position of the processing lens based on this amount of change. Alternatively, a bend mirror having a space on the back side is disposed, and the focus position is corrected by elastically deforming the bend mirror by the fluid supply pressure to the space and controlling the curvature (Patent Document 3). ).

特開2003−211359号公報Japanese Patent Laid-Open No. 2003-212359 特開2007−95936号公報JP 2007-95936 A 国際公開WO2009/122758号公報International Publication WO2009 / 122758

しかしながら、前記特許文献1の方式では、2組の温度センサ、回転自動ステージとその駆動機構、焦点レンズの上下移動機構とその制御機構等を必要とするため、加工ヘッド及び付帯設備のコストが高く付くと共に、温度測定値→集光レンズ全体の温度分布→熱変形量→焦点距離変化量を順次演算する熱解析手段の構築にも多大な労力を要するとになる。また、特許文献2の方式では、通常の加工光路系に介在させる透過型レンズをセレン化亜鉛等の特殊な材料で製作し、しかもフッ化バリウム等の特殊な材料からなる透過型熱レンズ補正素子を用いる必要があり、これらの材料コスト及び製作コストが極めて高く付くために実用性に乏しいという問題がある。更に、特許文献3の方式では、加工条件に関する設定情報とレーザ加工機構からの熱レンズ情報として多くの様々な数値を加工制御装置に入力し、その入力情報から焦点位置の変化量を算出する必要があり、その操作及び制御システム構築に多大な手間を要し、また加工レンズの駆動及び制御機構やベンドミラーを流体圧で変形させるための極めて特殊な装置及び制御機構が必要になる。   However, the method of Patent Document 1 requires two sets of temperature sensors, a rotary automatic stage and its driving mechanism, a vertical lens moving mechanism and its control mechanism, and so on, and the cost of the processing head and incidental equipment is high. At the same time, a great deal of labor is required to construct a thermal analysis means for sequentially calculating the temperature measurement value → the temperature distribution of the entire condenser lens → the amount of thermal deformation → the amount of change in focal length. Further, in the method of Patent Document 2, a transmission type lens that is made of a special material such as zinc selenide, and a transmission type thermal lens correction element made of a special material such as barium fluoride, is manufactured. There is a problem that the material cost and the manufacturing cost are extremely high and the practicality is poor. Furthermore, in the method of Patent Document 3, it is necessary to input many various numerical values to the processing control device as setting information regarding processing conditions and thermal lens information from the laser processing mechanism, and to calculate the amount of change in the focal position from the input information. Therefore, it takes a lot of time to construct the operation and control system, and a very special device and control mechanism for deforming the working lens drive and control mechanism and the bend mirror with fluid pressure are required.

本発明は、上述の事情に鑑みて、レーザ溶接等に用いる高出力レーザ加工機として、各別な駆動機構や制御機構を要することなく熱レンズ特性を補償でき、もって高精度のレーザ加工を容易に行えると共に低コストで製作可能なもの、更には加工ヘッド内部のレーザ散乱光による周辺部品の過熱を抑制できるものを提供することを目的としている。   In view of the above circumstances, the present invention can compensate for thermal lens characteristics without requiring a separate drive mechanism or control mechanism as a high-power laser processing machine used for laser welding or the like, thereby facilitating highly accurate laser processing. Another object of the present invention is to provide a device that can be manufactured at low cost and that can suppress overheating of peripheral components due to laser scattered light inside the processing head.

上記課題を解決するための手段を図面の参照符号を付して示せば、請求項1の発明は、レーザ光路に全反射膜を有するスクレーパ2が介在する高出力レーザ加工機において、レーザ光路に介在するスクレーパ2以外の光学部品(集光レンズ4、コリメータレンズ5、保護ガラス6)による収束側の熱レンズ作用を、レーザ光Lを吸収した該スクレーパ2の熱膨張に伴う反射面2aの曲率変化による拡散側の熱レンズ作用によって相殺することにより、レーザ加工機全体の熱レンズ特性を補償するように構成されてなることを特徴としている。   If the means for solving the above-mentioned problems are shown with reference numerals in the drawings, the invention of claim 1 is a high-power laser beam machine having a scraper 2 having a total reflection film in the laser beam path. The curvature of the reflecting surface 2a due to the thermal expansion of the scraper 2 that has absorbed the laser light L due to the thermal lens action on the convergence side by the optical components (the condensing lens 4, the collimator lens 5 and the protective glass 6) other than the intervening scraper 2. It is characterized in that it is configured to compensate the thermal lens characteristics of the entire laser processing machine by canceling out by the thermal lens action on the diffusion side due to the change.

請求項2の発明は、上記請求項1の高出力レーザ加工機において、スクレーパ2の全反射膜が2層以上の誘電体層からなるものとしている。   According to a second aspect of the present invention, in the high power laser processing machine according to the first aspect, the total reflection film of the scraper 2 is composed of two or more dielectric layers.

請求項3の発明は、上記請求項1又は2の高出力レーザ加工機において、レーザ光路に全反射膜を有する複数のスクレーパ2が介在し、これらスクレーパ2による重奏した拡散側の熱レンズ作用によって前記収束側の熱レンズ作用を相殺するように設定されてなるものとしている。   According to a third aspect of the present invention, in the high-power laser processing machine according to the first or second aspect, a plurality of scrapers 2 having a total reflection film are interposed in the laser optical path, and the diffusion side thermal lens action by the scrapers 2 is used. It is assumed that it is set so as to cancel the thermal lens action on the convergence side.

請求項4の発明は、上記請求項1〜3のいずれかの高出力レーザ加工機において、内部に集光レンズ4と少なくとも一つのスクレーパ2を含む光学部品を装着した加工ヘッド1の内表面10aに、ブラスト処理及び黒化処理が施されてなるものとしている。   According to a fourth aspect of the present invention, in the high-power laser processing machine according to any one of the first to third aspects, the inner surface 10a of the processing head 1 in which an optical component including the condenser lens 4 and at least one scraper 2 is mounted. In addition, blasting and blackening are performed.

請求項5の発明は、上記請求項4の高出力レーザ加工機において、ブラスト処理及び黒化処理が施された加工ヘッド1の構造部材11〜13の内部に冷却水路7が設けられ、該構造部材11〜13のレーザ散乱光吸収に伴う熱エネルギーを冷却水路7に流通する冷却水との熱交換によって排熱するように構成されてなる。   According to a fifth aspect of the present invention, in the high-power laser processing machine according to the fourth aspect, the cooling water passage 7 is provided inside the structural members 11 to 13 of the processing head 1 subjected to the blasting process and the blackening process. The heat energy associated with the laser scattered light absorption of the members 11 to 13 is configured to be exhausted by heat exchange with the cooling water flowing through the cooling water passage 7.

次に、本発明の効果について図面の参照符号を付して説明する。まず、請求項1の発明に係る高出力レーザ加工機では、レーザ光路に介在するスクレーパ2以外の光学部品(集光レンズ4、コリメータレンズ5、保護ガラス6)による収束側の熱レンズ作用を予め計測しておき、全反射膜を有するスクレーパ2として、レーザ光Lの吸収による熱膨張に伴って反射面2aに、前記収束側の熱レンズ作用に対応した拡散側の熱レンズ作用をもたらす曲率変化を生じるものを使用することにより、その収束側と拡散側の熱レンズ作用を相殺させる。従って、この高出力レーザ加工機によれば、上記曲率変化を生じる吸収特性を持つスクレーパ2を選択するだけで、各別な駆動機構や制御機構を要することなくレーザ加工機全体の熱レンズ特性が補償されるから、高精度のレーザ加工を容易に行えると共に、該レーザ加工機を低コストで製作できる。   Next, effects of the present invention will be described with reference numerals in the drawings. First, in the high-power laser processing machine according to the first aspect of the present invention, the thermal lens action on the convergence side by the optical components (the condensing lens 4, the collimator lens 5, and the protective glass 6) other than the scraper 2 interposed in the laser optical path is previously obtained. As a scraper 2 having a total reflection film, a curvature change that causes a thermal lens action on the diffusion side corresponding to the thermal lens action on the converging side to the reflecting surface 2a with thermal expansion due to absorption of the laser light L. By using the one that causes the thermal lens action on the converging side and the diffusing side is canceled. Therefore, according to this high-power laser processing machine, the thermal lens characteristics of the entire laser processing machine can be obtained by simply selecting the scraper 2 having the absorption characteristics that cause the above-described change in curvature without requiring separate drive mechanisms and control mechanisms. Since it is compensated, high-precision laser processing can be easily performed, and the laser processing machine can be manufactured at low cost.

請求項2の発明によれば、スクレーパ2の全反射膜が2層以上の誘電体層からなるため、その誘電体層の層数及び層厚プロフィールの設定によって前記吸収特性を持つ該スクレーパ2を容易に製作できる。   According to the second aspect of the present invention, since the total reflection film of the scraper 2 is composed of two or more dielectric layers, the scraper 2 having the absorption characteristics can be obtained by setting the number of dielectric layers and the layer thickness profile. Easy to manufacture.

請求項3の発明によれば、レーザ光路に全反射膜を有する複数のスクレーパ2が介在し、これらスクレーパ2による重奏した拡散側の熱レンズ作用によって前記収束側の熱レンズ作用を相殺するから、個々のスクレーパ2による拡散側の熱レンズ作用が小さくとも、複数のスクレーパ2によって必要な拡散側の熱レンズ作用を確保でき、それだけ該スクレーパ2の設計・製作が容易になると共に、レーザ加工機の機種や使用するスクレーパ2以外の光学部品の品種による収束側の熱レンズ作用の強弱度合が違う場合でも、個々の拡散側の熱レンズ作用が異なるスクレーパ2を適宜組み合わせることで対応できる。   According to the invention of claim 3, since a plurality of scrapers 2 having a total reflection film are interposed in the laser light path, the thermal lens action on the convergence side is canceled by the thermal lens action on the diffusion side superimposed by these scrapers 2, Even if the thermal lens action on the diffusion side by the individual scraper 2 is small, the necessary thermal lens action on the diffusion side can be secured by the plurality of scrapers 2, and the design and production of the scraper 2 can be facilitated, and the laser processing machine Even if the intensity of the thermal lens action on the convergence side differs depending on the model and the type of optical components other than the scraper 2 to be used, it can be dealt with by appropriately combining the scrapers 2 having different thermal lens actions on the individual diffusion side.

請求項4の発明によれば、加工ヘッド1の内表面10aにブラスト処理及び黒化処理が施されているから、該加工ヘッド1の構造部材11〜13にレーザ散乱光が効率よく吸収され、もって周辺部品の過熱が抑制される。   According to the invention of claim 4, since the blasting process and the blackening process are performed on the inner surface 10a of the processing head 1, the laser scattered light is efficiently absorbed by the structural members 11 to 13 of the processing head 1, Therefore, overheating of peripheral parts is suppressed.

請求項5の発明によれば、ブラスト処理及び黒化処理が施された加工ヘッド1の構造部材11〜13の内部に冷却水路6を有し、該構造部材11〜13のレーザ散乱光吸収に伴う熱エネルギーを冷却水路6の冷却水との熱交換で効率よく排熱できるから、周辺部品の過熱をより効果的に防止できる。   According to the invention of claim 5, the cooling water passage 6 is provided inside the structural members 11 to 13 of the processing head 1 subjected to the blasting process and the blackening process, and the structural members 11 to 13 absorb laser scattered light. Since the accompanying heat energy can be efficiently exhausted by heat exchange with the cooling water in the cooling water channel 6, overheating of peripheral components can be more effectively prevented.

本発明の一実施形態に係る高出力レーザ加工機の加工ヘッドを示す縦断側面図である。It is a vertical side view which shows the process head of the high output laser beam machine which concerns on one Embodiment of this invention. 高出力レーザ加工機の熱レンズによる焦点変位を示し、(a)はスクレーパの吸収率が小さい場合の模式縦断側面図、(b)は同吸収率が大きい場合の模式縦断側面図である。The focal displacement by the thermal lens of a high power laser beam machine is shown, (a) is a schematic longitudinal side view when the scraper has a low absorption rate, and (b) is a schematic longitudinal side view when the absorption rate is high. 本発明の高出力レーザ加工機における熱レンズ特性の補償を示し、(a)はレーザ出力が低い状態での模式縦断側面図、(b)はレーザ出力が高い状態での模式縦断側面図である。FIG. 4 shows compensation of thermal lens characteristics in the high-power laser processing machine of the present invention, where (a) is a schematic longitudinal side view in a state where the laser output is low, and (b) is a schematic longitudinal side view in a state where the laser output is high. . 石英母材のスクレーパの一例におけるレーザ光吸収時の反射面の変形状況を示す反射中心からの半径−変位量特性図である。It is a radius-displacement amount characteristic view from the reflection center which shows the deformation | transformation condition of the reflective surface at the time of laser beam absorption in an example of the scraper of a quartz base material. 本発明の他の実施形態に係る高出力レーザ加工機の模式図である。It is a schematic diagram of the high output laser beam machine which concerns on other embodiment of this invention.

図1で示す加工ヘッド1は、レーザ溶接用ファイバーレーザの溶接ヘッドを構成するものであり、側面視略L字形に曲折した筒状のハウジング10内に、レーザ光路に沿って図示上部側から順次、光ファイバー3の出射端3aから出射されるレーザ光Lを平行光に変換するコリメータレンズ5、45°の角度で傾斜配置して該平行光を90°異なる方向(図示左方向)へ全反射させる反射型スクレーパ2、その反射光を収束して加工テーブルT上の被加工物Wの表面近傍で焦点Fを結ばせる集光レンズ4、平板状の保護ガラス6が配置している。   The processing head 1 shown in FIG. 1 constitutes a fiber laser welding head for laser welding, and is sequentially provided from the upper side in the figure along a laser beam path in a cylindrical housing 10 bent in a substantially L shape in side view. The collimator lens 5 that converts the laser light L emitted from the emission end 3a of the optical fiber 3 into parallel light is inclined at an angle of 45 °, and the parallel light is totally reflected in different directions (left direction in the drawing) by 90 °. A reflective scraper 2, a condensing lens 4 for converging the reflected light and converging the focal point F near the surface of the workpiece W on the processing table T, and a flat protective glass 6 are arranged.

そして、ハウジング10は、その内表面10aにブラスト処理及び黒化処理が施されると共に、コリメータレンズ5及び集光レンズ4の各々周囲の構造部材11,12と、スクレーパ2の配置部分の構造部材13の、それぞれ内部に冷却水路6が設けてある。また、該ハウジング10におけるスクレーパ2の背面側には、焦点レンズ4の光軸方向に設けた開口部14に臨んで外側に観察用のCCDカメラ15が設置されている。   The housing 10 is subjected to blasting and blackening treatment on the inner surface 10a, and the structural members 11 and 12 around the collimator lens 5 and the condensing lens 4 and the structural member at the portion where the scraper 2 is disposed. The cooling water channel 6 is provided in each of 13. Further, an observation CCD camera 15 is disposed on the outer side facing the opening 14 provided in the optical axis direction of the focusing lens 4 on the back side of the scraper 2 in the housing 10.

ここで、集光レンズ4及びコリメータレンズ5と保護ガラス6はいずれも石英母材の表面に無反射膜を設けたもの、スクレーパ2は石英母材の表面に全反射膜を設けたものである。そして、レーザ光路に介在するスクレーパ2を除く光学部品、つまり集光レンズ4、コリメータレンズ5、保護ガラス6は、レーザ光Lの吸収に伴う熱膨張と屈折率変化によって焦点Fを集光レンズ4側へ変位させる収束側(正)の熱レンズ作用を生じるものであるのに対し、スクレーパ2は後述するようにレーザ光Lの吸収に伴う熱膨張で反射面2aが凸形に変形する曲率変化により、前記収束側(正)の熱レンズ作用を相殺する拡散側(負)の熱レンズ作用を生じるものであり、これによって加工ヘッド1全体の熱レンズ特性が補償されている。   Here, the condensing lens 4 and the collimator lens 5 and the protective glass 6 are all provided with a non-reflective film on the surface of the quartz base material, and the scraper 2 is provided with a total reflection film on the surface of the quartz base material. . The optical components excluding the scraper 2 interposed in the laser light path, that is, the condensing lens 4, the collimator lens 5, and the protective glass 6 focus the focal point F due to thermal expansion and refractive index change accompanying absorption of the laser light L. Whereas the converging side (positive) thermal lens action is displaced to the side, the scraper 2 has a curvature change in which the reflecting surface 2a is deformed into a convex shape due to thermal expansion accompanying absorption of the laser beam L, as will be described later. Thus, a diffusion side (negative) thermal lens action that cancels out the convergence side (positive) thermal lens action is generated, thereby compensating the thermal lens characteristics of the entire processing head 1.

次に市販の反射型スクレーパ2A〜2C(径80mm、厚さ8mm)を用いた加工ヘッドによる熱レンズ特性の試験結果を示す。これらスクレーパ2A〜2Cは、いずれも石英母材の表面に電子ビーム蒸着によってSiO2 及びTiO2 の誘電体層を交互に多数層に積層した全反射膜を備え、次表1に示す反射率と全反射膜の層数比率(スクレーパ2Aを基準1とする比率)を有するものである。試験では、出力10kWのレーザ光Lの出射開始から3分後における集光レンズ4側への焦点変位、ならびにその時点でのスクレーパの中心(反射中心)と周辺との温度差を計測した。次表1に、計測結果をスクレーパ2Aを基準1とした相対値で示すと共に、試験時の状況を図2で模式的に示す。なお、焦点変移は短縮側への変移である。 Next, test results of thermal lens characteristics by a processing head using commercially available reflective scrapers 2A to 2C (diameter 80 mm, thickness 8 mm) will be shown. Each of these scrapers 2A to 2C includes a total reflection film in which dielectric layers of SiO 2 and TiO 2 are alternately stacked on the surface of a quartz base material by electron beam evaporation. It has a layer number ratio of the total reflection film (ratio with the scraper 2A as a reference 1). In the test, the focal displacement toward the condenser lens 4 side after 3 minutes from the start of emission of the laser beam L with an output of 10 kW, and the temperature difference between the center (reflection center) of the scraper and the periphery at that time were measured. In Table 1 below, the measurement results are shown as relative values with the scraper 2A as the reference 1, and the situation during the test is schematically shown in FIG. The focus shift is a shift toward the shortening side.

Figure 2014172082
Figure 2014172082

表1に示すように、反射型スクレーパ2A,2Cを用いた加工ヘッドでは、収束側への熱レンズ作用が強く、焦点変移が大きくなっている。そして、スクレーパ2A,2Cの中心と周辺との温度差は僅かである。これは、スクレーパ2A,2Cではレーザ光Lの吸収率が小さいため、図2(a)に示すように反射面2aが平面状を維持する結果、これらスクレーパ2A,2Cを除く集光レンズ4等の光学部品のレーザ光Lの吸収に伴う熱膨張と屈折率変化による収束側(正)の熱レンズ作用がそのまま現れ、焦点位置が本来のF0からF1へ移動する大きな焦点変移Δf1を生じていると言える。これに対し、反射型スクレーパ2Bを用いた加工ヘッドでは、収束側への熱レンズ作用が弱く、焦点変移が少なくなっているが、該スクレーパ2Bの中心と周辺との温度差はスクレーパ2A,2Cの6倍以上にも大きくなっている。この場合、スクレーパ2Bではレーザ光Lの吸収率が大きいため、その反射面2aが熱膨張によって図2(b)に示すように凸状に変形し、レーザ光Lが凸面で反射することで拡散側(負)の熱レンズ作用を生じ、その分だけスクレーパ2Bを除く集光レンズ4等の光学部品による収束側(正)の熱レンズ作用が減殺される結果、焦点位置が本来のF0からF2へ移動するだけの小さな焦点変移Δf2に止まっていると想定される。   As shown in Table 1, in the processing head using the reflective scrapers 2A and 2C, the action of the thermal lens toward the convergence side is strong and the focus shift is large. The temperature difference between the center and the periphery of the scrapers 2A and 2C is slight. This is because the scraper 2A, 2C has a low absorptance of the laser light L, and as a result, the reflecting surface 2a is kept flat as shown in FIG. 2A. As a result, the condenser lens 4 excluding these scrapers 2A, 2C, etc. The converging (positive) thermal lens action due to the thermal expansion and refractive index change accompanying the absorption of the laser beam L of the optical component appears as it is, and a large focal shift Δf1 in which the focal position moves from the original F0 to F1 is generated. It can be said. On the other hand, in the processing head using the reflective scraper 2B, the thermal lens action toward the convergence side is weak and the focus shift is small, but the temperature difference between the center and the periphery of the scraper 2B is the scraper 2A, 2C. It is larger than 6 times. In this case, since the absorptivity of the laser beam L is large in the scraper 2B, the reflection surface 2a is deformed into a convex shape as shown in FIG. 2B due to thermal expansion, and the laser beam L is reflected by the convex surface and diffused. Side (negative) thermal lens action is generated, and as a result, the convergence side (positive) thermal lens action by the optical components such as the condenser lens 4 excluding the scraper 2B is diminished, so that the focal position is changed from the original F0 to F2. It is assumed that the focal point shift Δf2 is small enough to move to.

本発明は、上記試験結果に基づく知見から、レーザ光路に介在するスクレーパ2以外の光学部品(集光レンズ4、コリメータレンズ5、保護ガラス6等)による収束側の熱レンズ作用を予め計測しておき、スクレーパ2としてレーザ光吸収に伴って反射面2aに該収束側の熱レンズ作用に対応した拡散側の熱レンズ作用をもたらす曲率変化を生じるものを使用することにより、その収束側と拡散側の熱レンズ作用の相殺され、もってレーザ加工機全体としての熱レンズ特性を補償できることを見出したものである。   From the knowledge based on the above test results, the present invention measures in advance the thermal lens action on the convergence side by an optical component other than the scraper 2 (condensing lens 4, collimator lens 5, protective glass 6, etc.) interposed in the laser optical path. In addition, by using a scraper 2 that causes a change in curvature that causes a thermal lens action on the diffusion side corresponding to the thermal lens action on the convergence side on the reflecting surface 2a as the laser light is absorbed, the convergence side and the diffusion side It has been found that the thermal lens function of the laser processing machine as a whole can be compensated by canceling out the thermal lens action.

すなわち、本発明の高出力レーザ加工機では、図3(a)に示すように、低いレーザ出力で各光学部品に掛かる負荷が低い場合、スクレーパ2以外の集光レンズ4等の光学部品の熱膨張と屈折率変化による収束側(正)の熱レンズ作用は小さいが、スクレーパ2も僅かな熱膨張で反射面2aの凸形の曲率変化が小さく、その曲率変化による拡散側(負)の熱レンズ作用と前記収束側(正)の熱レンズ作用とが打ち消し合って本来の焦点位置F0が保たれる。そして、図3(b)に示すように、高いレーザ出力で各光学部品に掛かる負荷が高い場合、スクレーパ2以外の光学部品の熱膨張と屈折率変化による収束側(正)の熱レンズ作用は大きくなるが、スクレーパ2も大きな熱膨張で反射面2aの凸形の曲率変化が大きくなり、その曲率変化による拡散側(負)の熱レンズ作用と前記収束側(正)の熱レンズ作用とが打ち消し合い、やはり本来の焦点位置F0が保たれる。従って、この高出力レーザ加工機によれば、熱レンズ特性の補償のための各別な駆動機構や制御機構を要することなく、常に一定した焦点位置で高精度のレーザ加工を行える。   That is, in the high-power laser processing machine of the present invention, as shown in FIG. 3A, when the load applied to each optical component is low with a low laser output, the heat of the optical components such as the condenser lens 4 other than the scraper 2 is reduced. The convergence (positive) thermal lens action due to expansion and refractive index change is small, but the scraper 2 also has a slight thermal expansion, so that the convex curvature change of the reflecting surface 2a is small, and the diffusion side (negative) heat due to the curvature change. The lens action and the convergent (positive) thermal lens action cancel each other, and the original focal position F0 is maintained. As shown in FIG. 3B, when the load applied to each optical component is high with high laser output, the thermal lens action on the convergence side (positive) due to the thermal expansion and refractive index change of the optical components other than the scraper 2 is Although the scraper 2 also has a large thermal expansion, the curvature change of the convex shape of the reflecting surface 2a becomes large, and the diffusion side (negative) thermal lens action and the convergence side (positive) thermal lens action due to the curvature change Canceling each other, the original focal position F0 is maintained. Therefore, according to this high-power laser processing machine, high-precision laser processing can be performed at a constant focal position at all times without requiring separate drive mechanisms and control mechanisms for compensating the thermal lens characteristics.

因みに、前記試験時の反射形スクレーパ2Bについて、その反射中心から半径10mmまでの領域における反射面2aの表面変移を測定したところ、図4に示す結果が得られた。図示のように、この表面変移は中心側ほど高い略円弧状のカーブを描いており、その変移曲線は曲率半径R=26.5mに略相当する。しかして、使用する反射型スクレーパ2の吸収特性つまり熱膨張特性は、全反射膜に用いる誘電体の種類と層数及び層厚プロフィールによって任意に設定できるから、適用する加工ヘッド1のレーザ光路に介在する集光レンズ4、コリメータレンズ5、保護ガラス6等の他の光学部品による収束側(正)の熱レンズ特性に対応して、逆の拡散側(負)の熱レンズ特性になるものを選択すればよい。なお、スクレーパ2の材質としては、特に制約はないが、光学特性及び材料コストより石英の母材が好ましく、全反射膜を構成する誘電体としてはSiO2 及びTiO2 が好適である。また、全反射膜の形成手段としては、種々の薄膜形成方法を用い得るが、特に電子ビーム蒸着法やイオンビーム蒸着法が均一な厚みの誘電体層を容易に積層形成できる点から推奨される。 Incidentally, when the surface transition of the reflective surface 2a in the region from the reflection center to the radius of 10 mm was measured for the reflective scraper 2B at the time of the test, the result shown in FIG. 4 was obtained. As shown in the figure, this surface transition draws a substantially arc-shaped curve that is higher toward the center side, and the transition curve substantially corresponds to a radius of curvature R = 26.5 m. Therefore, the absorption characteristic, that is, the thermal expansion characteristic of the reflective scraper 2 to be used can be arbitrarily set according to the type of dielectric used for the total reflection film, the number of layers, and the layer thickness profile. Corresponding to thermal lens characteristics on the converging side (positive) by other optical components such as the condensing lens 4, collimator lens 5, protective glass 6, etc. Just choose. The material of the scraper 2 is not particularly limited, but a quartz base material is preferable from the viewpoint of optical characteristics and material cost, and SiO 2 and TiO 2 are preferable as the dielectric constituting the total reflection film. Various thin film forming methods can be used as a means for forming the total reflection film, but the electron beam evaporation method or the ion beam evaporation method is particularly recommended because it can easily form a dielectric layer having a uniform thickness. .

一方、上記実施形態の高出力レーザ加工機の加工ヘッド1では、その内表面にブラスト処理及び黒化処理が施されているから、加工ヘッド1の構造部材11〜13によって内部のレーザ散乱光が効率よく吸収されることに加え、これら構造部材11〜13の内部に冷却水路6を有するため、該構造部材11〜13のレーザ散乱光吸収に伴う熱エネルギーを冷却水路6の冷却水との熱交換で効率よく排熱でき、もって赤外線センサー9やCCDカメラ15等の周辺部品の過熱を効果的に防止できるという利点がある。なお、ブラスト処理は粗面化で生じた微細凹凸部においてレーザ散乱光が複数回反射することで吸収率を高めるものであり、また黒化処理は黒色アルマイト処理等による黒化で光吸収性を高めるものである。   On the other hand, in the processing head 1 of the high-power laser processing machine of the above embodiment, the inner surface is subjected to blasting and blackening processing, so that internal laser scattered light is emitted by the structural members 11 to 13 of the processing head 1. In addition to being efficiently absorbed, the structural members 11 to 13 have the cooling water channels 6, so that the thermal energy associated with the absorption of the laser scattered light of the structural members 11 to 13 is converted into heat from the cooling water in the cooling water channels 6. By exchanging, there is an advantage that heat can be exhausted efficiently, and overheating of peripheral parts such as the infrared sensor 9 and the CCD camera 15 can be effectively prevented. The blasting process increases the absorption rate by reflecting the laser scattered light multiple times at the fine irregularities caused by the roughening, and the blackening process improves the light absorption by blackening by black alumite processing. It is something to enhance.

前記実施形態の高出力レーザ加工機では、最も基本的な構成として、加工ヘッド1内のレーザ光路が一つのスクレーパ2による反射で90°方向を変えるものを例示したが、加工ヘッド1内に限らず、加工機全体としてのレーザ光路中に複数の反射型のスクレーパ2を介在させ、これらスクレーパ2によってレーザ光の方向を複数段階に変える構成としてもよい。例えば、図5に示す他の実施形態の高出力レーザ加工機は、レーザ発振器9より出射されたレーザ光Lが、1番目と2番目のスクレーパ2,2で反射して順次90°ずつ方向を変えてコリメータレンズ5を通過し、更に3番目のスクレーパ2で反射して90°方向を変えて集光レンズ4に入射し、該集光レンズ4で収束されて被加工物Wに照射されるようになっている。   In the high-power laser processing machine of the above embodiment, the laser beam path in the processing head 1 changes its direction by 90 ° by reflection by one scraper 2 as the most basic configuration, but is limited to the processing head 1. Instead, a plurality of reflective scrapers 2 may be interposed in the laser beam path of the entire processing machine, and the scraper 2 may change the direction of the laser beam in a plurality of stages. For example, in the high-power laser beam machine according to another embodiment shown in FIG. 5, the laser light L emitted from the laser oscillator 9 is reflected by the first and second scrapers 2 and 2 and sequentially directed by 90 °. Then, the light passes through the collimator lens 5, is further reflected by the third scraper 2, changes the direction of 90 ° to enter the condenser lens 4, is converged by the condenser lens 4, and is irradiated onto the workpiece W. It is like that.

このようにレーザ光路に複数の反射型のスクレーパ2を介在させる場合、これらスクレーパ2の重奏による拡散側の熱レンズ作用により、これらスクレーパ2以外のレーザ光路に介在する光学部品による収束側の熱レンズ作用を相殺し、もってレーザ加工機全体の熱レンズ特性を補償するように設定すればよい。この場合、個々のスクレーパ2による拡散側の熱レンズ作用が小さくとも、複数のスクレーパ2によって必要な拡散側の熱レンズ作用を確保できるから、単一のスクレーパ2のみで大きな拡散側の熱レンズ作用を発揮させる場合に比較し、スクレーパ2の設計・製作が容易になる。また、レーザ加工機の機種や使用するスクレーパ2以外の光学部品の品種により、収束側の熱レンズ作用の強弱度合の違いがあっても、個々の拡散側の熱レンズ作用が異なるスクレーパ2を適宜組み合わせて対応することが可能となる。   When a plurality of reflective scrapers 2 are interposed in the laser light path as described above, a converging-side thermal lens formed by optical components intervening in the laser light path other than the scraper 2 due to the diffusion-side thermal lens action caused by the overlap of the scrapers 2. What is necessary is just to set so that an effect | action may be canceled and the thermal lens characteristic of the whole laser beam machine may be compensated. In this case, even if the thermal lens action on the diffusion side by each scraper 2 is small, the necessary thermal lens action on the diffusion side can be ensured by the plurality of scrapers 2, so that the large diffusion side thermal lens action can be achieved with only the single scraper 2. The scraper 2 can be designed and manufactured more easily than in the case of exhibiting. In addition, depending on the type of laser processing machine and the type of optical components other than the scraper 2 to be used, even if there is a difference in the strength of the thermal lens action on the convergence side, the scraper 2 with different thermal lens action on the individual diffusion side is appropriately selected. It becomes possible to respond by combining.

なお、本発明においては、反射型のスクレーパ2と共に、必要に応じて無反射膜を有する透過型のスクレーパ、つまり収束側の熱レンズ作用を生じるスクレーパをレーザ光路に介在させてもよい。また、本発明では、集光レンズ4やコリメータレンズ5等の他の光学部品の配置位置や配置数、周辺部品の種類と配置構成等、細部構成については実施形態以外に種々設計変更可能である。   In the present invention, together with the reflective scraper 2, a transmissive scraper having a non-reflective film, that is, a scraper that generates a converging-side thermal lens function may be interposed in the laser light path as necessary. Further, in the present invention, various design changes other than the embodiment can be made for the detailed configuration such as the arrangement position and number of other optical components such as the condenser lens 4 and the collimator lens 5 and the types and arrangement configurations of the peripheral components. .

1 加工ヘッド
2 スクレーパ
2a 反射面
4 集光レンズ(他の光学部品)
5 コリメータレンズ(他の光学部品)
6 保護ガラス(他の光学部品)
7 冷却水路
10a 内表面
11〜13 加工ヘッド構成部材
L レーザ光
F 焦点
DESCRIPTION OF SYMBOLS 1 Processing head 2 Scraper 2a Reflecting surface 4 Condensing lens (other optical components)
5 Collimator lens (other optical components)
6 Protective glass (other optical components)
7 Cooling channel 10a Inner surface 11-13 Processing head component L Laser beam F Focus

Claims (5)

レーザ光路に全反射膜を有するスクレーパが介在する高出力レーザ加工機において、レーザ光路に介在する前記スクレーパ以外の光学部品による収束側の熱レンズ作用を、レーザ光を吸収した該スクレーパの熱膨張に伴う反射面の曲率変化による拡散側の熱レンズ作用によって相殺することにより、レーザ加工機全体の熱レンズ特性を補償するように構成されてなる高出力レーザ加工機。   In a high-power laser processing machine in which a scraper having a total reflection film is interposed in the laser beam path, the thermal lens action on the convergence side by optical components other than the scraper interposed in the laser beam path is used for the thermal expansion of the scraper that has absorbed the laser beam. A high-power laser processing machine configured to compensate for the thermal lens characteristics of the entire laser processing machine by canceling out with the thermal lens action on the diffusion side caused by the change in curvature of the reflecting surface. 前記スクレーパの全反射膜が2層以上の誘電体層からなる請求項1に記載の高出力レーザ加工機。   The high-power laser processing machine according to claim 1, wherein the total reflection film of the scraper includes two or more dielectric layers. レーザ光路に全反射膜を有する複数のスクレーパが介在し、これらスクレーパによる重奏した拡散側の熱レンズ作用によって前記収束側の熱レンズ作用を相殺するように設定されてなる請求項1又は2に記載の高出力レーザ加工機。   3. A plurality of scrapers having a total reflection film are interposed in a laser beam path, and are set so as to cancel out the convergence-side thermal lens action by the overlapping diffusion-side thermal lens action by these scrapers. High power laser processing machine. 内部に集光レンズと少なくとも一つの前記スクレーパを含む光学部品を装着した加工ヘッドの内表面に、ブラスト処理及び黒化処理が施されてなる請求項1〜3のいずれかに記載の高出力レーザ加工機。   The high-power laser according to any one of claims 1 to 3, wherein an inner surface of a processing head in which an optical component including a condensing lens and at least one scraper is mounted is blasted and blackened. Processing machine. 前記ブラスト処理及び黒化処理が施された加工ヘッドの構造部材の内部に冷却水路が設けられ、該構造部材のレーザ散乱光吸収に伴う熱エネルギーを冷却水路に流通する冷却水との熱交換によって排熱するように構成されてなる請求項4に記載の高出力レーザ加工機。   A cooling water passage is provided inside the structural member of the processing head that has been subjected to the blasting and blackening treatment, and the heat energy associated with the absorption of the laser scattered light of the structural member is exchanged with the cooling water flowing through the cooling water passage. The high-power laser beam machine according to claim 4, wherein the high-power laser beam machine is configured to exhaust heat.
JP2013048996A 2013-03-12 2013-03-12 High-power laser machine Pending JP2014172082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048996A JP2014172082A (en) 2013-03-12 2013-03-12 High-power laser machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048996A JP2014172082A (en) 2013-03-12 2013-03-12 High-power laser machine

Publications (1)

Publication Number Publication Date
JP2014172082A true JP2014172082A (en) 2014-09-22

Family

ID=51693910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048996A Pending JP2014172082A (en) 2013-03-12 2013-03-12 High-power laser machine

Country Status (1)

Country Link
JP (1) JP2014172082A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104526160A (en) * 2014-11-13 2015-04-22 张立国 Laser machining method and system
JP2017534463A (en) * 2014-10-20 2017-11-24 バイストロニック レーザー アクチェンゲゼルシャフト Processing head and laser processing machine for laser processing machine
JP2022540985A (en) * 2019-12-23 2022-09-21 バイストロニック レーザー アクチェンゲゼルシャフト Optical unit for laser processing of workpiece and laser processing device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157089U (en) * 1984-03-29 1985-10-19 三菱電機株式会社 Laser processing equipment
JPH03236016A (en) * 1990-02-14 1991-10-22 Nikon Corp Optical scanner
JP2006093643A (en) * 2004-08-27 2006-04-06 Kyocera Corp Reflection type light emitting diode
JP2006209136A (en) * 2005-01-28 2006-08-10 Lg Electronics Inc Varifocal mirror and camera module applying the same
JP2006247676A (en) * 2005-03-09 2006-09-21 Fanuc Ltd Laser beam machine
JP2008094689A (en) * 2006-10-16 2008-04-24 Shibuya Kogyo Co Ltd Device for cutting brittle material
JP2008233405A (en) * 2007-03-19 2008-10-02 Yamagata Prefecture Variable curvature mirror device and manufacturing method thereof
JP2012157893A (en) * 2011-02-01 2012-08-23 Amada Co Ltd Laser beam machining method and laser beam machine
JP2012223772A (en) * 2011-04-15 2012-11-15 Mitsubishi Electric Corp Laser processing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157089U (en) * 1984-03-29 1985-10-19 三菱電機株式会社 Laser processing equipment
JPH03236016A (en) * 1990-02-14 1991-10-22 Nikon Corp Optical scanner
JP2006093643A (en) * 2004-08-27 2006-04-06 Kyocera Corp Reflection type light emitting diode
JP2006209136A (en) * 2005-01-28 2006-08-10 Lg Electronics Inc Varifocal mirror and camera module applying the same
JP2006247676A (en) * 2005-03-09 2006-09-21 Fanuc Ltd Laser beam machine
JP2008094689A (en) * 2006-10-16 2008-04-24 Shibuya Kogyo Co Ltd Device for cutting brittle material
JP2008233405A (en) * 2007-03-19 2008-10-02 Yamagata Prefecture Variable curvature mirror device and manufacturing method thereof
JP2012157893A (en) * 2011-02-01 2012-08-23 Amada Co Ltd Laser beam machining method and laser beam machine
JP2012223772A (en) * 2011-04-15 2012-11-15 Mitsubishi Electric Corp Laser processing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017534463A (en) * 2014-10-20 2017-11-24 バイストロニック レーザー アクチェンゲゼルシャフト Processing head and laser processing machine for laser processing machine
US11135676B2 (en) 2014-10-20 2021-10-05 Bystronic Laser Ag Machining head for laser machining machine, and laser machining machine
CN104526160A (en) * 2014-11-13 2015-04-22 张立国 Laser machining method and system
CN104526160B (en) * 2014-11-13 2016-09-07 张立国 A kind of laser processing and laser-processing system
JP2022540985A (en) * 2019-12-23 2022-09-21 バイストロニック レーザー アクチェンゲゼルシャフト Optical unit for laser processing of workpiece and laser processing device
JP7175408B2 (en) 2019-12-23 2022-11-18 バイストロニック レーザー アクチェンゲゼルシャフト Optical unit for laser processing of workpiece and laser processing device

Similar Documents

Publication Publication Date Title
JP6044315B2 (en) Displacement measuring method and displacement measuring apparatus
US10052719B2 (en) Laser welding device, laser welding method, and battery casing
JP5033693B2 (en) Condensing diameter conversion control method and apparatus in fiber laser processing machine
JP6134861B2 (en) Optical processing head, optical processing apparatus and optical processing method
WO2017168857A1 (en) Laser processing machine
JP2014172082A (en) High-power laser machine
JP6956328B2 (en) Laser processing equipment and laser processing method
JP6964801B2 (en) Laminated modeling equipment
JP6861117B2 (en) Laser processing machine
JP2016000421A (en) Laser processing system and laser processing method
JP5558179B2 (en) Laser equipment
JP2017047455A (en) Laser welding method
US11906388B2 (en) Laser processing machine and state detection method for optical component
JP6546229B2 (en) Laser processing method of adjusting focus shift according to the type and level of contamination of external optical system before laser processing
JP7262081B2 (en) LASER PROCESSING DEVICE AND OPTICAL ADJUSTMENT METHOD
JP2007289980A (en) Laser soldering equipment and laser soldering method
JP7308439B2 (en) LASER PROCESSING DEVICE AND OPTICAL ADJUSTMENT METHOD
JPWO2016013171A1 (en) Laser processing system and laser processing method
JP5667344B2 (en) Laser emission unit
JP5185557B2 (en) Equipment for improving residual stress in pipes
TW201532790A (en) Improved stereolithography machine
WO2021235195A1 (en) Laser processing apparatus
TWI681836B (en) Laser processing system and laser processing method
JP2016043387A (en) Laser processing apparatus
JP7087283B2 (en) Measuring device and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170602