JP2014172012A - Hydrogen separation method - Google Patents

Hydrogen separation method Download PDF

Info

Publication number
JP2014172012A
JP2014172012A JP2013049020A JP2013049020A JP2014172012A JP 2014172012 A JP2014172012 A JP 2014172012A JP 2013049020 A JP2013049020 A JP 2013049020A JP 2013049020 A JP2013049020 A JP 2013049020A JP 2014172012 A JP2014172012 A JP 2014172012A
Authority
JP
Japan
Prior art keywords
hydrogen
permeation flux
temperature
hydrogen permeation
alloy film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013049020A
Other languages
Japanese (ja)
Other versions
JP6089814B2 (en
Inventor
Masahiro Shiraki
正浩 白木
Hideto Kurokawa
英人 黒川
Hiroshi Yugawa
宏 湯川
Asuka Suzuki
飛鳥 鈴木
Tomonori Nanbu
智憲 南部
Yoshihisa Matsumoto
佳久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokyo Gas Co Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
Nagoya University NUC
Tokyo Gas Co Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokyo Gas Co Ltd, Institute of National Colleges of Technologies Japan filed Critical Nagoya University NUC
Priority to JP2013049020A priority Critical patent/JP6089814B2/en
Publication of JP2014172012A publication Critical patent/JP2014172012A/en
Application granted granted Critical
Publication of JP6089814B2 publication Critical patent/JP6089814B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen separation method capable of efficiently separating hydrogen at a comparatively low temperature.SOLUTION: In a hydrogen separation method to separate hydrogen by a Pd-Ag alloy film,: Ag content in the Pd-Ag alloy film is 15-30 mass%; and a temperature at separation treatment is lower than 300°C and is the temperature where the hydrogen transmission flux of the Pd-Ag alloy film becomes 80% or more of the hydrogen transmission flux of hydrogen at 400°C. It is preferable that the primary side pressure Pof the Pd-Ag alloy film at the separation treatment is 100-1,000 kPa and P/Pis 1.4-10.

Description

本発明は、水素分離膜によって水素を分離する方法に関する。   The present invention relates to a method for separating hydrogen by a hydrogen separation membrane.

水素含有ガスから水素を選択的に透過させて分離する水素分離膜としてPd系合金膜、特にPd−Ag合金膜がある。このPd系合金の水素分離膜の透過性能は、温度の上昇に伴って向上し、また膜の両面の水素分圧差の増加に伴って向上することが知られている。   As a hydrogen separation membrane that selectively permeates and separates hydrogen from a hydrogen-containing gas, there is a Pd-based alloy membrane, particularly a Pd-Ag alloy membrane. It is known that the permeation performance of a hydrogen separation membrane of this Pd-based alloy improves with increasing temperature and also with increasing difference in hydrogen partial pressure on both sides of the membrane.

合金組成、使用温度、圧力は任意に設定することができるが、必要な水素透過性能を確保する為に高温で使用する必要があり、300℃未満の温度では十分な水素透過能が得られないとされている。これは、Pd−Ag合金膜の水素透過能が温度の低下に伴い単調に(ほぼ直線状に)低下してしまうからである(特許文献1〜4)。特許文献4の0002段落には、パラジウム合金膜の典型的な運転温度は300〜600℃であると記載されており、実用上は350℃〜450℃(中心温度400℃近傍)の温度範囲で水素分離処理が行われているのが現状である。   The alloy composition, operating temperature, and pressure can be set arbitrarily, but it must be used at a high temperature to ensure the required hydrogen permeation performance, and sufficient hydrogen permeation cannot be obtained at temperatures below 300 ° C. It is said that. This is because the hydrogen permeability of the Pd—Ag alloy film decreases monotonously (almost linearly) as the temperature decreases (Patent Documents 1 to 4). In paragraph 0002 of Patent Document 4, it is described that a typical operating temperature of the palladium alloy film is 300 to 600 ° C., and practically in a temperature range of 350 ° C. to 450 ° C. (center temperature around 400 ° C.). At present, hydrogen separation treatment is performed.

特許2651610Patent 2651610 特許4917787Patent No. 4917787 特開2005−254191JP-A-2005-254191 特開2002−153737JP2002-153737

上記特許文献1〜4のようにPd系水素分離膜は、高温(300℃〜600℃)で水素分離処理を行うことによって水素透過性能の向上が図られているが、この場合、加熱のためのエネルギー消費量が多いと共に、水素分離膜及びその他の水素分離装置の構成部材を耐熱性の高いものとする必要があり、部材コストが高くなる。また、高温で使用するほど、部材の劣化も早くなる。さらに、水素分離膜の使用温度が450℃より高温では、ガスリークの原因となるピンホールが容易に形成されるため、膜の耐久性が著しく低下する問題がある。このため、膜の水素透過性能および耐久性と、構成部材の耐熱性およびコストの観点から、実用上は350℃〜450℃(中心温度400℃近傍)の温度範囲で水素分離処理が行われている。   As described in Patent Documents 1 to 4, the Pd-based hydrogen separation membrane is improved in hydrogen permeation performance by performing a hydrogen separation treatment at a high temperature (300 ° C. to 600 ° C.). In addition to the large amount of energy consumption, it is necessary to make the constituent members of the hydrogen separation membrane and other hydrogen separation devices highly heat resistant, resulting in high member costs. Moreover, the higher the temperature, the faster the member will deteriorate. Furthermore, when the operating temperature of the hydrogen separation membrane is higher than 450 ° C., pinholes that cause gas leakage are easily formed, and there is a problem that the durability of the membrane is significantly reduced. For this reason, from the viewpoint of the hydrogen permeation performance and durability of the membrane, the heat resistance and cost of the constituent members, the hydrogen separation treatment is practically performed in a temperature range of 350 ° C. to 450 ° C. (around 400 ° C. central temperature). Yes.

本発明は、従来、Pd系合金膜について、実用的な水素透過速度が得られないと考えられてきた300℃未満の低温において水素を効率よく分離することができる水素分離方法を提供することを目的とする。   The present invention provides a hydrogen separation method that can efficiently separate hydrogen at a low temperature of less than 300 ° C., which has been considered that a practical hydrogen permeation rate cannot be obtained for a Pd-based alloy film. Objective.

本発明の水素分離方法は、Pd−Ag合金膜によって水素を分離する水素分離方法において、該Pd−Ag合金膜のAg含有率が15〜30質量%であり、分離処理時の温度を300℃よりも低く、かつ該Pd−Ag合金膜の水素透過流束が400℃における水素透過流束の80%以上となる温度とすることを特徴とする。   The hydrogen separation method of the present invention is a hydrogen separation method in which hydrogen is separated by a Pd—Ag alloy membrane, wherein the Ag content of the Pd—Ag alloy membrane is 15 to 30% by mass, and the temperature during the separation treatment is 300 ° C. And a temperature at which the hydrogen permeation flux of the Pd—Ag alloy film is 80% or more of the hydrogen permeation flux at 400 ° C.

本発明では、分離処理時におけるPd−Ag合金膜の1次側の圧力Pを50〜1100kPa、2次側の圧力を真空から900kPa以下とすることが好ましい。また、該1次側の圧力Pと2次側の圧力Pとの比P/Pを1.1以上とすることが好ましい。本発明では、特にPを100〜1000kPaとし、P/Pを1.4〜10とし、分離処理時の温度を100℃以上300℃未満とするのが好ましい。 In the present invention, the pressure P 1 on the primary side of the Pd-Ag alloy membrane during separation 50~1100KPa, it is preferable that the pressure of the secondary side from the vacuum 900kPa or less. Further, it is preferable that the ratio P 1 / P 2 between the primary pressure P 1 and the secondary pressure P 2 is 1.1 or more. In the present invention, it is particularly preferable that P 1 is 100 to 1000 kPa, P 1 / P 2 is 1.4 to 10, and the temperature during the separation treatment is 100 ° C. or more and less than 300 ° C.

Pd−Ag合金膜のAg含有率は15〜30質量%であることが好ましい。   The Ag content of the Pd—Ag alloy film is preferably 15 to 30% by mass.

本発明では、温度−水素透過流束曲線において水素透過流束が極大値となる温度付近で水素を分離することが好ましい。   In the present invention, it is preferable to separate hydrogen around a temperature at which the hydrogen permeation flux reaches a maximum value in the temperature-hydrogen permeation flux curve.

本発明者が種々研究を重ねたところ、Pd−Ag合金膜の水素透過流束が、500℃以下の温度領域において、温度の低下に伴い単調に(ほぼ直線状に)低下するのではなく、約130℃〜350℃の範囲では温度が低下しても水素透過流束が350℃における水素透過流束と大差ないか、又は逆に大きくなる(極大値をとる)ことを見出した。   When the inventor conducted various studies, the hydrogen permeation flux of the Pd—Ag alloy film does not decrease monotonously (almost linearly) as the temperature decreases in a temperature range of 500 ° C. or lower. It has been found that in the range of about 130 ° C. to 350 ° C., the hydrogen permeation flux does not differ greatly from the hydrogen permeation flux at 350 ° C. even if the temperature decreases, or conversely increases (takes a maximum value).

本発明はかかる知見に基づくものである。本発明によると、水素透過流束を犠牲にすることなく、従来よりも相当に低い温度、例えば300℃付近又はそれより低い温度領域にて水素を効率よく分離することができる。そのため、加熱のための消費エネルギーが節減されると共に、部材に必要とされる耐熱特性も緩和され、部材コストを低減することができる。また、部材の熱劣化を抑制することができる。   The present invention is based on such knowledge. According to the present invention, hydrogen can be efficiently separated at a considerably lower temperature than in the prior art, for example, around 300 ° C. or lower, without sacrificing the hydrogen permeation flux. For this reason, energy consumption for heating is reduced, heat resistance characteristics required for the member are alleviated, and member cost can be reduced. Moreover, the thermal deterioration of a member can be suppressed.

水素分離膜の水素透過流束を示すグラフである。It is a graph which shows the hydrogen permeation flux of a hydrogen separation membrane. 水素分離膜の水素透過流束を示すグラフである。It is a graph which shows the hydrogen permeation flux of a hydrogen separation membrane. 水素分離膜の水素透過流束を示すグラフである。It is a graph which shows the hydrogen permeation flux of a hydrogen separation membrane. 水素分離膜の水素透過流束を示すグラフである。It is a graph which shows the hydrogen permeation flux of a hydrogen separation membrane. 水素分離膜の水素透過流束を示すグラフである。It is a graph which shows the hydrogen permeation flux of a hydrogen separation membrane. 水素分離膜の水素透過流束を示すグラフである。It is a graph which shows the hydrogen permeation flux of a hydrogen separation membrane. 水素分離膜の水素透過流束を示すグラフである。It is a graph which shows the hydrogen permeation flux of a hydrogen separation membrane. 水素透過流束が極大となる温度と一次側ガス圧の関係である。This is the relationship between the temperature at which the hydrogen permeation flux becomes maximum and the primary gas pressure. 水素分離膜の水素透過流束を示すグラフである。It is a graph which shows the hydrogen permeation flux of a hydrogen separation membrane. 400℃における水素透過流束の80%と同等の流束を示す最低温度とAg濃度の関係、および、α−α’変態の臨界温度とAg濃度の関係を示すグラフである。It is a graph which shows the relationship between the minimum temperature which shows a flux equivalent to 80% of hydrogen permeation flux in 400 degreeC, and Ag density | concentration, and the critical temperature of Ag-alpha 'transformation, and Ag density | concentration. 水素透過試験用モジュールの断面図である。It is sectional drawing of the module for hydrogen permeation tests.

本発明で用いる水素分離膜は、Pd−Ag合金膜(Ag15〜30質量%特に20〜30質量%)が好適である。   The hydrogen separation membrane used in the present invention is preferably a Pd—Ag alloy membrane (Ag 15-30% by mass, particularly 20-30% by mass).

上記合金膜は、上記組成の合金を溶製して得て、これを好ましくは厚さ1〜500μm特に好ましくは10〜50μmに圧延して製造することができる。なお、薄膜化には圧延以外の手段を採用してもよい。また、水素分離膜は、スパッタリング、CVD、めっきなどの成膜方法によって通気性の金属、セラミック等の支持材料の表面に厚さ1〜500μm、特に1〜20μm程度に形成されたものであってもよい。   The alloy film can be obtained by melting an alloy having the above composition and rolling it to a thickness of preferably 1 to 500 μm, particularly preferably 10 to 50 μm. In addition, you may employ | adopt means other than rolling for thin film formation. The hydrogen separation membrane is formed on the surface of a support material such as a breathable metal or ceramic by a film formation method such as sputtering, CVD, or plating, and has a thickness of 1 to 500 μm, particularly about 1 to 20 μm. Also good.

水素分離膜を備えた水素製造装置としては、水素分離膜がハウジング、ケーシング又はベッセル等と称される容器内に設置され、水素分離膜で隔てられた1次室と2次室とを有し、必要に応じさらに加熱手段を有するものであれば、特にその構成は限定されない。膜の形態としても、平膜型、円筒型などのいずれの形態であってもよい。水素分離膜は、多孔質の支持体や表面に溝を設けた支持板の上に重ね合わされてもよい。多孔質体としては、金属材、セラミック材などのいずれでもよい。   As a hydrogen production apparatus equipped with a hydrogen separation membrane, the hydrogen separation membrane is installed in a container called a housing, casing, vessel or the like, and has a primary chamber and a secondary chamber separated by a hydrogen separation membrane. The structure is not particularly limited as long as it further has heating means as required. The form of the film may be any form such as a flat film type and a cylindrical type. The hydrogen separation membrane may be overlaid on a porous support or a support plate having grooves on the surface. As a porous body, any of a metal material, a ceramic material, etc. may be sufficient.

水素製造装置の1次室に供給される原料ガス(水素含有ガス)としては、水素を含むものであればよく、炭化水素の水蒸気改質ガス、燃料電池の燃料オフガス、水素を含むバイオガス、バイオマスガス化炉からの発生ガスなどが例示されるが、これに限定されない。   The source gas (hydrogen-containing gas) supplied to the primary chamber of the hydrogen production apparatus may be any gas containing hydrogen, such as a hydrocarbon steam reformed gas, a fuel cell fuel off-gas, a biogas containing hydrogen, The gas generated from the biomass gasification furnace is exemplified, but it is not limited thereto.

装置の運転温度(具体的には1次側のガス温度)は、膜の組成ならびに一次側および2次側圧力にもよるが、Ag15〜30質量%のPd−Ag合金膜を用いた場合は100〜300℃未満特に100〜295℃とりわけ130℃以上295℃以下とされるのが好ましい。   The operating temperature of the apparatus (specifically, the gas temperature on the primary side) depends on the composition of the film and the pressure on the primary side and the secondary side, but when a Pd—Ag alloy film of 15 to 30% by mass of Ag is used. It is preferable that the temperature is 100 to less than 300 ° C, particularly 100 to 295 ° C, particularly 130 ° C to 295 ° C.

本発明では、温度−水素透過流束のグラフにおいて、300℃以下であって且つ水素透過流束が極大値となる温度(例えば、図1の場合であれば165℃)付近で水素を分離するのが好ましく、具体的には、水素透過流束が極大値となる温度±10℃の温度、もしくは、水素透過流束が該極大値の80%以上となる温度で水素を分離するのが好ましい。   In the present invention, in the graph of temperature-hydrogen permeation flux, hydrogen is separated at a temperature that is not higher than 300 ° C. and has a maximum hydrogen permeation flux (for example, 165 ° C. in the case of FIG. 1). Specifically, it is preferable to separate hydrogen at a temperature at which the hydrogen permeation flux reaches a maximum value ± 10 ° C. or at a temperature at which the hydrogen permeation flux reaches 80% or more of the maximum value. .

この場合、装置の1次側の圧力Pは高いほど好ましいが、1100kPaを超えると装置の耐圧強度の要求値が極めて高くなると共に、法令上の規則もあるので、1100kPa以下、具体的には50〜1100kPa特に100〜1100kPaであることが好ましい。装置の2次側圧力Pは、低い方が好ましく、200kPa以下、例えば真空〜200kPaが好ましい。なお、2次側圧力が大気圧又はそれ以上である場合、2次側を減圧するためのポンプが不要であるので、2次側圧力Pを大気圧(100kPa)以上とすることが好ましい。1次側の圧力Pと2次側の圧力Pとの比P/Pは、大きいほど水素透過流束が大きくなり好ましいので、1.1以上、特に1.1〜200中でも1.4〜10程度が好適である。 In this case, the pressure P 1 on the primary side of the apparatus is preferably as high as possible. However, if the pressure P 1 exceeds 1100 kPa, the required value of the pressure strength of the apparatus becomes extremely high and there are also legal regulations. It is preferably 50 to 1100 kPa, particularly 100 to 1100 kPa. Secondary pressure P 2 of the apparatus, is preferably low, 200 kPa or less, for example vacuum ~200kPa are preferred. In the case the secondary side pressure is atmospheric or higher, since the pump for depressurizing the secondary side is not required, it is preferable that the secondary side pressure P 2 atmospheric pressure (100 kPa) or more. The larger the ratio P 1 / P 2 between the primary pressure P 1 and the secondary pressure P 2 , the higher the hydrogen permeation flux, and therefore the higher the ratio P 1 / P 2. About 4 to 10 is preferable.

以下、実施例について説明する。   Examples will be described below.

〔実施例1〕
Pd80質量%、Ag20質量%の組成の合金溶湯からインゴットを得て、これを圧延して厚さ25μm、直径12mmのPd−20質量%Ag水素分離膜を製造した。この水素分離膜を図4に示す試験用モジュール1にセットして水素透過流束を測定した。
[Example 1]
An ingot was obtained from a molten alloy having a composition of 80 mass% Pd and 20 mass% Ag, and this was rolled to produce a Pd-20 mass% Ag hydrogen separation membrane having a thickness of 25 µm and a diameter of 12 mm. This hydrogen separation membrane was set in the test module 1 shown in FIG. 4, and the hydrogen permeation flux was measured.

この水素透過試験用モジュール1は、ガス導入管2の後端面とガス取出管6の前端面との間にガスケット3,5を介して水素分離膜4を配置したものである。導入管2にはナット7が外嵌しており、取出管6の先端のフランジ部6aにはキャップナット8が係合している。   In this hydrogen permeation test module 1, a hydrogen separation membrane 4 is disposed between a rear end face of a gas introduction pipe 2 and a front end face of a gas extraction pipe 6 via gaskets 3 and 5. A nut 7 is fitted on the introduction pipe 2, and a cap nut 8 is engaged with a flange portion 6 a at the tip of the extraction pipe 6.

該キャップナット8を導入管2側に延出させ、その内周面の雌ねじに対しナット7の外周面の雄ねじを螺合させる。ナット7の先端が導入管2の後端のフランジ部2aに当接することにより、キャップナット8を介して取出管6が導入管2側に引き付けられ、導入管2の後端面と取出管6の前端面との間でガスケット3,5を介して水素分離膜4が挟圧される。   The cap nut 8 is extended to the introduction tube 2 side, and a male screw on the outer peripheral surface of the nut 7 is screwed into a female screw on the inner peripheral surface. The leading end of the nut 7 comes into contact with the flange portion 2 a at the rear end of the introduction pipe 2, whereby the extraction pipe 6 is attracted to the introduction pipe 2 side through the cap nut 8, and the rear end surface of the introduction pipe 2 and the extraction pipe 6 are The hydrogen separation membrane 4 is sandwiched between the front end face via the gaskets 3 and 5.

ガスケット3,5は、同一大きさの円環状であり、その内孔の面積が水素分離膜4の膜透過面積Aとなる。キャップナット8には、ガスのリークテスト用の小孔8aが設けられている。   The gaskets 3 and 5 have an annular shape of the same size, and the area of the inner hole is the membrane permeation area A of the hydrogen separation membrane 4. The cap nut 8 is provided with a small hole 8a for a gas leak test.

ガスケットの内孔は5.6mmであるが、キャップナット8で締め付けられた場合のガスケットと膜試料との接触部の直径は7.1mmであり、有効膜透過面積Aは39.6mm(3.96×10−5)である。 The inner hole of the gasket is 5.6 mm, but the diameter of the contact portion between the gasket and the membrane sample when tightened with the cap nut 8 is 7.1 mm, and the effective membrane permeation area A is 39.6 mm 2 (3 96 × 10 −5 m 2 ).

この水素透過試験用モジュール1を電気炉内に設置し、導入管2に原料ガスを供給し、取出管6から水素ガスを取り出す。   The hydrogen permeation test module 1 is installed in an electric furnace, the raw material gas is supplied to the introduction pipe 2, and the hydrogen gas is taken out from the extraction pipe 6.

導入管2のガス圧Pを100kPaとし、取出管6内のガス圧Pを10kPaとした。原料ガスとしては、純度99.99999%以上の高純度水素を用いた。水素分離膜4を透過した水素ガスは回収容器(図示略)に回収した。電気炉の温度を100〜500℃の間で種々変えて運転を行った。水素透過流束を測定し、その結果を図1に示した。図1の通り、500℃〜250℃の間で、温度が低下するほど水素透過流束が低下する傾向があるが、250〜165℃の間では温度の低下するほど水素透過流束が増加する傾向にあり、約165℃に極大を示した後、水素透過流束は再び低下した。300℃における水素透過流束は400℃における水素透過流束のおよそ80%であり、これと同等の水素透過流束が約130℃で得られることが認められる。また、極大を示した165℃の水素透過流束は450℃における水素透過流束と同等の値である。すなわち、130〜165℃で運転することによって、300〜450℃と同等の水素透過流束が得られ、水素透過流束を犠牲にすることなく運転温度を285〜170℃低下させることが可能である。このため、運転コスト(加熱コスト)の削減、ならびに、装置を構成する部材の耐熱性の軽減によるコストの削減を図ることできる。また構成部材の熱劣化を抑制することができる。 The gas pressure P 1 of the introduction tube 2 and 100 kPa, the gas pressure P 2 of the take-out tube 6 was 10 kPa. As the source gas, high purity hydrogen having a purity of 99.99999% or more was used. The hydrogen gas that permeated the hydrogen separation membrane 4 was recovered in a recovery container (not shown). The operation was performed by changing the temperature of the electric furnace between 100 and 500 ° C. The hydrogen permeation flux was measured and the result is shown in FIG. As shown in FIG. 1, the hydrogen permeation flux tends to decrease as the temperature decreases between 500 ° C. and 250 ° C., but the hydrogen permeation flux increases as the temperature decreases between 250 ° C. and 165 ° C. After tending to reach a maximum at about 165 ° C., the hydrogen permeation flux decreased again. It can be seen that the hydrogen permeation flux at 300 ° C. is approximately 80% of the hydrogen permeation flux at 400 ° C., and an equivalent hydrogen permeation flux is obtained at about 130 ° C. Further, the hydrogen permeation flux at 165 ° C., which showed the maximum, is a value equivalent to the hydrogen permeation flux at 450 ° C. That is, by operating at 130 to 165 ° C., a hydrogen permeation flux equivalent to 300 to 450 ° C. is obtained, and the operating temperature can be lowered by 285 to 170 ° C. without sacrificing the hydrogen permeation flux. is there. For this reason, it is possible to reduce the operating cost (heating cost) and the cost by reducing the heat resistance of the members constituting the apparatus. Moreover, the thermal deterioration of a structural member can be suppressed.

[実験例2]
Pd−Ag合金膜をPd−23質量%Agとしたこと以外は実施例1と同一条件にて水素透過係数を測定し、結果を図2に示した。図2の通り、実験例2(Pd−23質量%Ag)は約180℃で水素透過流束が極大となり、この180℃における極大水素透過流束は、約385℃における水素透過流束と同等であることが認められた。従って、このPd−23質量%Ag膜の場合も実験例1と同様に300℃未満の低温にて効率よく水素を分離できることが認められる。図中の破線は、350℃以上の高温における水素透過流束の温度依存性を低温まで外挿したものであり、400℃における水素透過流束の80%と同等の水素透過流束を得るためには305℃の高温が必要であると見積もられる。しかし、図2に示されるように、400℃における水素透過流束の80%と同等の水素透過流束が約155℃で得られることが認められる。すなわち、外挿線から予測される温度より相当に低い温度で効率よく水素分離処理が可能であることがわかる。
[Experiment 2]
The hydrogen permeation coefficient was measured under the same conditions as in Example 1 except that the Pd—Ag alloy film was changed to Pd-23 mass% Ag, and the results are shown in FIG. As shown in FIG. 2, in Example 2 (Pd-23 mass% Ag), the hydrogen permeation flux becomes maximum at about 180 ° C., and this maximum hydrogen permeation flux at 180 ° C. is equivalent to the hydrogen permeation flux at about 385 ° C. It was confirmed that Therefore, in the case of this Pd-23 mass% Ag membrane, it is recognized that hydrogen can be efficiently separated at a low temperature of less than 300 ° C. as in Experimental Example 1. The broken line in the figure is obtained by extrapolating the temperature dependence of the hydrogen permeation flux at a high temperature of 350 ° C. or higher to a low temperature, in order to obtain a hydrogen permeation flux equivalent to 80% of the hydrogen permeation flux at 400 ° C. Is estimated to require a high temperature of 305 ° C. However, as shown in FIG. 2, it can be seen that a hydrogen permeation flux equivalent to 80% of the hydrogen permeation flux at 400 ° C. is obtained at about 155 ° C. That is, it can be seen that the hydrogen separation treatment can be efficiently performed at a temperature considerably lower than the temperature predicted from the extrapolation line.

[実験例3]
Pd−Ag合金膜をPd−25質量%Agとしたこと以外は実施例1、2と同一条件にて水素透過係数を測定し、結果を図3に示した。図3の通り、実験例3(Pd−25質量%Ag)は約190℃で水素透過流束が極大となり、この190℃における極大水素透過流束は、約425℃における水素透過流束と同等であることが認められた。従って、このPd−25質量%Ag膜の場合も実験例1、2と同様に300℃未満の低温にて効率よく水素を分離できることが認められる。また、400℃における水素透過流束の80%と同等の水素透過流束が約140℃で得られることが認められる。
[Experiment 3]
The hydrogen permeation coefficient was measured under the same conditions as in Examples 1 and 2 except that the Pd—Ag alloy film was changed to Pd-25 mass% Ag, and the results are shown in FIG. As shown in FIG. 3, in Example 3 (Pd-25 mass% Ag), the hydrogen permeation flux becomes maximum at about 190 ° C., and this maximum hydrogen permeation flux at 190 ° C. is equivalent to the hydrogen permeation flux at about 425 ° C. It was confirmed that Therefore, in the case of this Pd-25 mass% Ag membrane, it is recognized that hydrogen can be efficiently separated at a low temperature of less than 300 ° C. as in Experimental Examples 1 and 2. It can also be seen that a hydrogen permeation flux equivalent to 80% of the hydrogen permeation flux at 400 ° C. is obtained at about 140 ° C.

[実験例4]
Pd−Ag合金膜をPd−27質量%Agとしたこと以外は実施例1〜3と同一条件にて水素透過係数を測定し、結果を図4に示した。図4の通り、実験例4(Pd−27質量%Ag)は約175℃で水素透過流束が極大となり、この175℃における極大水素透過流束は、約340℃における水素透過流束と同等であることが認められた。従って、このPd−27質量%Ag膜の場合も実験例1〜3と同様に300℃未満の低温にて効率よく水素を分離できることが認められる。また、400℃における水素透過流束の80%と同等の水素透過流束が約160℃で得られることが認められる。
[Experimental Example 4]
The hydrogen permeation coefficient was measured under the same conditions as in Examples 1 to 3 except that the Pd-Ag alloy film was changed to Pd-27 mass% Ag, and the results are shown in FIG. As shown in FIG. 4, Experimental Example 4 (Pd-27 mass% Ag) has a maximum hydrogen permeation flux at about 175 ° C., and this maximum hydrogen permeation flux at 175 ° C. is equivalent to the hydrogen permeation flux at about 340 ° C. It was confirmed that Therefore, in the case of this Pd-27 mass% Ag membrane, it is recognized that hydrogen can be efficiently separated at a low temperature of less than 300 ° C. as in Experimental Examples 1 to 3. It can also be seen that a hydrogen permeation flux equivalent to 80% of the hydrogen permeation flux at 400 ° C. is obtained at about 160 ° C.

[実験例5]
Pd−Ag合金膜をPd−30質量%Agとしたこと以外は実施例1〜4と同一条件にて水素透過係数を測定し、結果を図5に示した。図5の通り、実験例5(Pd−30質量%Ag)は約220℃で水素透過流束が極大となり、この220℃における極大水素透過流束は、約300℃における水素透過流束と同等であることが認められた。従って、このPd−30質量%Ag膜の場合も実験例1〜4と同様に300℃未満の低温にて効率よく水素を分離できることが認められる。また、400℃における水素透過流束の80%と同等の水素透過流束が約180℃で得られることが認められる。なお、図5には、Pd−Ag合金膜をPd−40質量%Agとした場合の結果も示されている。Pd−40質量%Agの場合には水素透過流束が温度の低下に伴って単調に低下した。
[Experimental Example 5]
The hydrogen permeation coefficient was measured under the same conditions as in Examples 1 to 4 except that the Pd—Ag alloy film was changed to Pd-30 mass% Ag, and the results are shown in FIG. As shown in FIG. 5, Experimental Example 5 (Pd-30 mass% Ag) has a maximum hydrogen permeation flux at about 220 ° C., and this maximum hydrogen permeation flux at 220 ° C. is equivalent to the hydrogen permeation flux at about 300 ° C. It was confirmed that Therefore, in the case of this Pd-30 mass% Ag membrane, it is recognized that hydrogen can be efficiently separated at a low temperature of less than 300 ° C. as in Experimental Examples 1 to 4. It can also be seen that a hydrogen permeation flux equivalent to 80% of the hydrogen permeation flux at 400 ° C. is obtained at about 180 ° C. FIG. 5 also shows the results when the Pd—Ag alloy film is Pd-40 mass% Ag. In the case of Pd-40 mass% Ag, the hydrogen permeation flux monotonously decreased as the temperature decreased.

[実験例6〜8]
実験例2(Pd−23質量%Ag)において、ガス圧P,Pを次の通りとしたこと以外は同一条件にて水素透過係数を測定し、結果を図6に示した。P、Pの単位は各々kPaである。
No.6 P=800、P=100(P/P=800/100=8)
No.7 P=500、P=100(P/P=500/100=5)
No.8 P=250、P=100(P/P=250/100=2.5)
[Experimental Examples 6 to 8]
In Experimental Example 2 (Pd-23 mass% Ag), the hydrogen permeation coefficient was measured under the same conditions except that the gas pressures P 1 and P 2 were changed as follows, and the results are shown in FIG. The unit of P 1 and P 2 is kPa.
No. 6 P 1 = 800, P 2 = 100 (P 1 / P 2 = 800/100 = 8)
No. 7 P 1 = 500, P 2 = 100 (P 1 / P 2 = 500/100 = 5)
No. 8 P 1 = 250, P 2 = 100 (P 1 / P 2 = 250/100 = 2.5)

図6より明らかな通り、No.6の場合には、約280℃で水素透過流束が極大となり、この280℃における極大水素透過流束は、約480℃の水素透過流束と同等であることが認められた。また、400℃における水素透過流束の80%と同等の水素透過流束が約213℃で得られることが認められる。No.7の場合には、約250℃で水素透過流束が極大となり、この250℃における極大水素透過流束は、約485℃の水素透過流束と同等であることが認められた。また、400℃における水素透過流束の80%と同等の水素透過流束が約203℃で得られることが認められる。No.8の場合には、約230℃で水素透過流束が極大となり、この230℃における極大水素透過流束は、約490℃の水素透過流束と同等であることが認められた。また、400℃における水素透過流束の80%と同等の水素透過流束が約184℃で得られることが認められる。このように、184℃以上、特に203℃以上とりわけ213℃以上かつ300℃以下特に300℃未満とりわけ295℃以下中でも280℃以下の温度とすることにより、低コストにて且つ高水素透過流束にて水素を分離できることが認められた。   As is clear from FIG. In the case of 6, the hydrogen permeation flux reached a maximum at about 280 ° C., and the maximum hydrogen permeation flux at 280 ° C. was found to be equivalent to the hydrogen permeation flux at about 480 ° C. It can also be seen that a hydrogen permeation flux equivalent to 80% of the hydrogen permeation flux at 400 ° C. is obtained at about 213 ° C. No. In the case of 7, the hydrogen permeation flux reached a maximum at about 250 ° C., and the maximum hydrogen permeation flux at 250 ° C. was found to be equivalent to the hydrogen permeation flux at about 485 ° C. It can also be seen that a hydrogen permeation flux equivalent to 80% of the hydrogen permeation flux at 400 ° C. is obtained at about 203 ° C. No. In the case of 8, the hydrogen permeation flux reached a maximum at about 230 ° C., and the maximum hydrogen permeation flux at 230 ° C. was found to be equivalent to the hydrogen permeation flux at about 490 ° C. It can also be seen that a hydrogen permeation flux equivalent to 80% of the hydrogen permeation flux at 400 ° C. is obtained at about 184 ° C. Thus, by setting the temperature at 184 ° C. or higher, particularly 203 ° C. or higher, especially 213 ° C. or higher and 300 ° C. or lower, particularly less than 300 ° C. It was found that hydrogen can be separated.

[実験例9〜11]
実験例2(Pd−23質量%Ag)において、ガス圧P,Pを次の通りとしたこと以外は同一条件にて水素透過係数を測定し、結果を図7に示した。P、Pの単位は各々kPaである。
No.9 P=1000、P=100(P/P=1000/100=10)
No.10 P=1000、P=200(P/P=1000/200=20)
No.11 P=1000、P=800(P/P=1000/800=1.25)
[Experimental Examples 9 to 11]
In Experimental Example 2 (Pd-23 mass% Ag), the hydrogen permeation coefficient was measured under the same conditions except that the gas pressures P 1 and P 2 were changed as follows, and the results are shown in FIG. The unit of P 1 and P 2 is kPa.
No. 9 P 1 = 1000, P 2 = 100 (P 1 / P 2 = 1000/100 = 10)
No. 10 P 1 = 1000, P 2 = 200 (P 1 / P 2 = 1000/200 = 20)
No. 11 P 1 = 1000, P 2 = 800 (P 1 / P 2 = 1000/800 = 1.25)

図7の通り、実験例9〜11の全てにおいて、水素透過流束は400℃近傍で極小を示したのち、温度の低下に伴って増加し300℃近傍で極大を示した後再び低下した。400℃における水素透過流束の80%と同等の水素透過流束が、No.9の場合には約226℃で、No.10の場合には約239℃で、No.11の場合には約275℃の温度でそれぞれ得られることが認められる。このように、226℃以上かつ300℃以下特に300℃未満の温度とすることにより、低コストにて且つ高水素透過流束にて水素を分離できることが認められた。   As shown in FIG. 7, in all of Experimental Examples 9 to 11, the hydrogen permeation flux showed a minimum at around 400 ° C., then increased with a decrease in temperature, showed a maximum at around 300 ° C., and then decreased again. A hydrogen permeation flux equivalent to 80% of the hydrogen permeation flux at 400 ° C. In the case of No. 9, the temperature is about 226 ° C. No. 10 is about 239 ° C. In the case of 11, it can be seen that each can be obtained at a temperature of about 275 ° C. Thus, it was recognized that hydrogen can be separated at a low cost and with a high hydrogen permeation flux by setting the temperature to 226 ° C. or more and 300 ° C. or less, particularly less than 300 ° C.

実験例6〜9の結果より、二次側のガス圧Pを100kPaとした場合の、水素透過流束が極大を示す温度と一次側のガス圧Pの関係を図8に示す。水素透過流束が極大を示す温度は、一次圧Pの低下とともに低下しており、特にP=1000kPa以下ではピーク温度は300℃より低い温度である。 From the results of Experimental Example 6-9 shows a case where the gas pressure P 2 on the secondary side and 100 kPa, the temperature and the primary side of the relationship of the gas pressure P 1 represents a hydrogen permeation flux maximum in FIG. The temperature at which the hydrogen permeation flux reaches a maximum decreases as the primary pressure P 1 decreases, and the peak temperature is lower than 300 ° C. particularly at P 1 = 1000 kPa or less.

[実験例12〜16]
実験例4(Pd−27質量%Ag)において、ガス圧P,Pを次の通りとしたこと以外は同一条件にて水素透過係数を測定し、結果を図9に示した。P、Pの単位は各々kPaである。
No.12 P=1000、P=10(P/P=1000/10=100)
No.13 P=1000、P=100(P/P=1000/100=10)
No.14 P=260、P=60(P/P=260/60=4.3)
No.15 P=100、P=10(P/P=100/10=10)
No.16 P=50、P=5(P/P=50/5=10)
[Experimental Examples 12 to 16]
In Experimental Example 4 (Pd-27 mass% Ag), the hydrogen permeation coefficient was measured under the same conditions except that the gas pressures P 1 and P 2 were set as follows, and the results are shown in FIG. The unit of P 1 and P 2 is kPa.
No. 12 P 1 = 1000, P 2 = 10 (P 1 / P 2 = 1000/10 = 100)
No. 13 P 1 = 1000, P 2 = 100 (P 1 / P 2 = 1000/100 = 10)
No. 14 P 1 = 260, P 2 = 60 (P 1 / P 2 = 260/60 = 4.3)
No. 15 P 1 = 100, P 2 = 10 (P 1 / P 2 = 100/10 = 10)
No. 16 P 1 = 50, P 2 = 5 (P 1 / P 2 = 50/5 = 10)

図9より明らかな通り、Pd−27質量%Ag膜の場合も、300℃付近における水素透過流束が400℃における水素透過流束と同等の高い値となっており、160℃以上、特に175℃以上かつ300℃以下特に300℃未満とりわけ295℃以下の温度とすることにより、低コスト且つ高水素透過流束にて水素を分離できることが認められた。   As is clear from FIG. 9, in the case of the Pd-27 mass% Ag film, the hydrogen permeation flux near 300 ° C. is as high as the hydrogen permeation flux at 400 ° C., which is 160 ° C. or more, particularly 175 It has been found that hydrogen can be separated at a low cost and a high hydrogen permeation flux by setting the temperature to not less than 300 ° C. and not more than 300 ° C., particularly less than 300 ° C., particularly 295 ° C.

なお、1次側圧力Pが低いNo.14〜16では、2次側圧力Pが低くても水素透過流束が小さいところから、P/Pを大きくするだけでなく、P自体を大きくするのが好ましいことが分かる。 Incidentally, the low primary pressure P 1 No. 14 to 16, it can be seen that it is preferable not only to increase P 1 / P 2 but also to increase P 1 itself because the hydrogen permeation flux is small even when the secondary pressure P 2 is low.

図10は、図1〜図5に示す各Pd−Ag合金について、400℃における水素透過流束の80%の透過能を示す最低温度とAg濃度の関係を示したものである。400℃における水素透過流束の80%と同等の水素透過流束が得られる温度はAg濃度の低下とともに低下する傾向にあることが認められる。また、図10には、α−α’変態の臨界温度とAg濃度の関係も示されている。図10に示す通り、α−α’変態の臨界温度はAg濃度の増加とともに低下することがわかる。この直線関係より下の領域では、α−α’変態が起こる。この場合、α相とα’相の格子定数の差に起因する膨張収縮により金属膜に大きな歪みが生じる。このためα−α’変態の臨界温度より低い温度で水素分離処理を行うと合金膜の耐久性が著しく低下する。図10に示す2つの直線の交点により、α−α’変態を起こさずに400℃の80%の水素透過流束が得られる最低のAg濃度は15%と見積もることができ、そのときの運転温度は約100℃であると見積もることができる。   FIG. 10 shows the relationship between the minimum temperature showing the permeability of 80% of the hydrogen permeation flux at 400 ° C. and the Ag concentration for each Pd—Ag alloy shown in FIGS. It can be seen that the temperature at which a hydrogen permeation flux equivalent to 80% of the hydrogen permeation flux at 400 ° C. tends to decrease as the Ag concentration decreases. FIG. 10 also shows the relationship between the critical temperature of the α-α ′ transformation and the Ag concentration. As shown in FIG. 10, it can be seen that the critical temperature of the α-α ′ transformation decreases as the Ag concentration increases. In the region below this linear relationship, the α-α ′ transformation occurs. In this case, a large distortion occurs in the metal film due to expansion and contraction caused by a difference in lattice constant between the α phase and the α ′ phase. For this reason, if the hydrogen separation treatment is performed at a temperature lower than the critical temperature of the α-α ′ transformation, the durability of the alloy film is significantly lowered. From the intersection of the two straight lines shown in FIG. 10, the lowest Ag concentration at which 80% hydrogen permeation flux at 400 ° C. is obtained without causing α-α ′ transformation can be estimated to be 15%. The temperature can be estimated to be about 100 ° C.

1 水素透過試験用モジュール
2 ガス導入管
3,5 ガスケット
4 水素分離膜
6 ガス取出管
7 ナット
8 キャップナット
DESCRIPTION OF SYMBOLS 1 Hydrogen permeation test module 2 Gas introduction pipe 3,5 Gasket 4 Hydrogen separation membrane 6 Gas extraction pipe 7 Nut 8 Cap nut

Claims (7)

Pd−Ag合金膜によって水素を分離する水素分離方法において、
分離処理時の温度を300℃よりも低く、かつ該Pd−Ag合金膜の水素透過流束が400℃における水素透過流束の80%以上となる温度とすることを特徴とする水素分離方法。
In a hydrogen separation method in which hydrogen is separated by a Pd—Ag alloy membrane,
A hydrogen separation method characterized in that the temperature during the separation treatment is lower than 300 ° C., and the hydrogen permeation flux of the Pd—Ag alloy membrane is 80% or more of the hydrogen permeation flux at 400 ° C.
請求項1において、分離処理時におけるPd−Ag合金膜の1次側の圧力Pを50〜1100kPaとすることを特徴とする水素分離方法。 2. The hydrogen separation method according to claim 1 , wherein the pressure P1 on the primary side of the Pd—Ag alloy film during the separation treatment is set to 50 to 1100 kPa. 請求項1又は2において、該PdAg合金膜の2次側の圧力Pを900kPa以下とすることを特徴とする水素分離方法。 According to claim 1 or 2, the hydrogen separation method characterized by the pressure P 2 on the secondary side of the PdAg alloy film than 900 kPa. 請求項1ないし3のいずれか1項において、該Pd−Ag合金膜の1次側の圧力Pと2次側の圧力Pとの比P/Pを1.1以上とすることを特徴とする水素分離方法。 4. The ratio P 1 / P 2 between the primary pressure P 1 and the secondary pressure P 2 of the Pd—Ag alloy film according to claim 1 is 1.1 or more. The hydrogen separation method characterized by these. 請求項1ないし4のいずれか1項において、該Pd−Ag合金膜の1次側の圧力Pを100〜1000kPaとし、P/Pを1.4〜10とし、分離処理時の温度を100℃以上300℃未満とすることを特徴とする水素分離方法。 5. The temperature at the time of separation treatment according to claim 1, wherein the primary side pressure P 1 of the Pd—Ag alloy film is 100 to 1000 kPa, P 1 / P 2 is 1.4 to 10. Is performed at a temperature of 100 ° C. or higher and lower than 300 ° C. 請求項1ないし5のいずれか1項において、Pd−Ag合金膜のAg含有率が15〜30質量%であることを特徴とする水素分離方法。   6. The hydrogen separation method according to claim 1, wherein the Ag content of the Pd—Ag alloy film is 15 to 30% by mass. 請求項1ないし6のいずれか1項において、温度−水素透過流束曲線において水素透過流束が極大値となる温度付近で水素を分離することを特徴とする水素分離方法。   The hydrogen separation method according to any one of claims 1 to 6, wherein hydrogen is separated near a temperature at which the hydrogen permeation flux reaches a maximum value in the temperature-hydrogen permeation flux curve.
JP2013049020A 2013-03-12 2013-03-12 Hydrogen separation method Expired - Fee Related JP6089814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013049020A JP6089814B2 (en) 2013-03-12 2013-03-12 Hydrogen separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013049020A JP6089814B2 (en) 2013-03-12 2013-03-12 Hydrogen separation method

Publications (2)

Publication Number Publication Date
JP2014172012A true JP2014172012A (en) 2014-09-22
JP6089814B2 JP6089814B2 (en) 2017-03-08

Family

ID=51693852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013049020A Expired - Fee Related JP6089814B2 (en) 2013-03-12 2013-03-12 Hydrogen separation method

Country Status (1)

Country Link
JP (1) JP6089814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015194472A1 (en) * 2014-06-16 2017-05-25 日東電工株式会社 Hydrogen discharge membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108746659B (en) * 2018-06-01 2021-06-11 西北工业大学 Flower-shaped AgPd nano alloy and preparation and use methods thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136477A (en) * 1993-09-17 1995-05-30 Nok Corp Hydrogen separation membrane and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136477A (en) * 1993-09-17 1995-05-30 Nok Corp Hydrogen separation membrane and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015194472A1 (en) * 2014-06-16 2017-05-25 日東電工株式会社 Hydrogen discharge membrane

Also Published As

Publication number Publication date
JP6089814B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
Tong et al. Preparation of a pinhole-free Pd–Ag membrane on a porous metal support for pure hydrogen separation
JP6563452B2 (en) Membrane module for hydrogen separation, fuel processing apparatus and fuel cell system including membrane module
JP6089814B2 (en) Hydrogen separation method
JP6384831B2 (en) Hydrogen separator and hydrogen separation method
JP5594017B2 (en) Hydrogen separation method and apparatus
Yakabe et al. Operation of a palladium membrane reformer system for hydrogen production: the case of Tokyo Gas
JP5562698B2 (en) Hydrogen permeable alloy and hydrogen permeable membrane using the same
JP5545496B2 (en) Method for estimating hydrogen permeation rate, hydrogen production apparatus and operation method thereof
JP5183962B2 (en) Method for producing hydrogen using selectively permeable membrane reactor
JP5987197B2 (en) Hydrogen separation membrane and hydrogen separation method
RU189769U1 (en) DIFFUSION HYDROGEN SEPARATOR
JP4860310B2 (en) Method for producing oxide ion transporter
JP5803928B2 (en) Hydrogen separation membrane
JP5584477B2 (en) Two-stage hydrogen separation reformer
JP2009226331A (en) Hydrogen permeation module and method of application thereof
JP5867502B2 (en) Hydrogen separation membrane and hydrogen separator
JP2009291740A (en) Hydrogen separation member and hydrogen generating apparatus
JP5745662B2 (en) Two-stage hydrogen separation reformer
JP5723650B2 (en) Hydrogen permeation module and hydrogen separation method using the same
JP5757186B2 (en) Fluid separation material and manufacturing method thereof
JP5823807B2 (en) Hydrogen permeable membrane and hydrogen separation method using the same
RU147541U1 (en) COMPOSITE MEMBRANE FOR ISSUE OF HYDROGEN FROM GAS MIXTURES
JP2006021129A (en) Hydrogen permeable separation material and its manufacturing method
TW201607113A (en) Hydrogen release film
CN110772934A (en) Hydrogen-oxygen mixed separation membrane fixing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6089814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees