JP2014171353A - Electric vehicle - Google Patents

Electric vehicle Download PDF

Info

Publication number
JP2014171353A
JP2014171353A JP2013042831A JP2013042831A JP2014171353A JP 2014171353 A JP2014171353 A JP 2014171353A JP 2013042831 A JP2013042831 A JP 2013042831A JP 2013042831 A JP2013042831 A JP 2013042831A JP 2014171353 A JP2014171353 A JP 2014171353A
Authority
JP
Japan
Prior art keywords
battery
value
current
electric vehicle
travel motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013042831A
Other languages
Japanese (ja)
Other versions
JP6098236B2 (en
Inventor
Haruo Suzuki
治雄 鈴木
Shigehiro Okoshi
茂比古 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013042831A priority Critical patent/JP6098236B2/en
Publication of JP2014171353A publication Critical patent/JP2014171353A/en
Application granted granted Critical
Publication of JP6098236B2 publication Critical patent/JP6098236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric vehicle in which deterioration of a battery, that is the power supply of a travel motor capable of generating a part of driving force, due to internal temperature rise can be prevented more accurately than conventional.SOLUTION: Control means 11 acquires a measured value of a current measurement device 10 measuring the current being supplied from a battery 8 to a travel motor 6, and controls the maximum value of the current being supplied from the battery 8 to the travel motor 6 via an inverter 7, to be lower than a predetermined limit value, when a determination value calculated according to a predetermined formula considering heat radiation from the battery 8 reaches a predetermined threshold.

Description

本発明は電動車両に関し、更に詳しくは、駆動力の少なくとも一部を負担する走行モータの電源であるバッテリーの内部温度上昇による劣化を、従来よりも効果的に防止できる電動車両に関する。   The present invention relates to an electric vehicle, and more particularly to an electric vehicle that can more effectively prevent deterioration due to an increase in internal temperature of a battery that is a power source of a travel motor that bears at least part of driving force.

近年、燃費向上と環境対策などの観点から、バッテリーを電源とする走行モータで駆動される電気自動車や、エンジンが発生する駆動力の少なくとも一部を走行モータで代替するハイブリッド自動車などの電動車両が注目されている。   In recent years, from the viewpoint of improving fuel efficiency and environmental measures, there are electric vehicles such as an electric vehicle driven by a traveling motor that uses a battery as a power source and a hybrid vehicle that replaces at least a part of the driving force generated by the engine with a traveling motor. Attention has been paid.

それらの電動車両におけるバッテリーには、一般的にリチウムイオン電池が用いられる。このリチウムイオン電池は、頻繁な充放電に伴う発熱による内部温度の上昇により劣化するが、大電流放電による加熱が発生すると、劣化が促進されるという問題があった。   A lithium ion battery is generally used as a battery in these electric vehicles. Although this lithium ion battery deteriorates due to an increase in internal temperature due to heat generation due to frequent charge and discharge, there is a problem that deterioration is accelerated when heating due to large current discharge occurs.

このような問題を解決するため、バッテリーから放電される電流の時系列に沿った二乗積算値を算出し、その算出値に基づいてバッテリーから放電される電流を制限する制御を行うことが提案されている(例えば、特許文献1を参照。)   In order to solve such a problem, it has been proposed to calculate a square integrated value along the time series of the current discharged from the battery, and to perform control for limiting the current discharged from the battery based on the calculated value. (For example, refer to Patent Document 1)

しかしながら、上記の特許文献1の制御方法では、バッテリーからの放熱を考慮していないため、電流制限の判定精度が低いという問題がある。   However, the control method disclosed in Patent Document 1 does not consider heat dissipation from the battery, and thus has a problem that accuracy of current limit determination is low.

特許第4305410号公報Japanese Patent No. 4305410

本発明の目的は、駆動力の一部を発生可能な走行モータの電源であるバッテリーにおける内部温度の上昇による劣化を、従来よりも効果的に防止することができる電動車両を提供することにある。   An object of the present invention is to provide an electric vehicle that can effectively prevent deterioration due to an increase in internal temperature in a battery, which is a power source of a travel motor capable of generating a part of driving force, as compared with the related art. .

上記の目的を達成する本発明の電動車両は、駆動力の少なくとも一部を負担する走行モータと、前記走行モータの電源であるバッテリーとを有する電動車両であって、前記バッテリーが前記走行モータに供給する電流を測定する電流測定手段と、その電流を制限する電流制限手段と、制御手段とを備え、前記制御手段は、前記電流測定手段の測定値Iを用いた下記の(1)式で算出される判断値Yが予め定められたしきい値に達したときは、前記電流制限手段により前記バッテリーが前記走行モータに供給する電流の最大値を、予め定められた制限値未満に低下させる制御を行うことを特徴とするものである。

Figure 2014171353
An electric vehicle of the present invention that achieves the above object is an electric vehicle having a travel motor that bears at least part of the driving force, and a battery that is a power source of the travel motor, and the battery is used as the travel motor. A current measuring unit for measuring a current to be supplied; a current limiting unit for limiting the current; and a control unit, wherein the control unit is expressed by the following equation (1) using the measured value I of the current measuring unit. When the calculated determination value Y reaches a predetermined threshold value, the maximum value of the current that the battery supplies to the travel motor is reduced by the current limiting means to be less than a predetermined limit value. It is characterized by performing control.
Figure 2014171353

本発明の電動車両によれば、バッテリーからの放熱を考慮してバッテリーの内部温度を評価するようにしたので、バッテリーが放電する電流を制限する時期を精度良く判定できるため、内部温度の上昇によるバッテリーの劣化を従来よりも効果的に防止することができる。   According to the electric vehicle of the present invention, since the internal temperature of the battery is evaluated in consideration of heat dissipation from the battery, it is possible to accurately determine when to limit the current discharged by the battery. Battery deterioration can be prevented more effectively than before.

本発明の第1の実施形態からなる電動車両の構成図である。1 is a configuration diagram of an electric vehicle according to a first embodiment of the present invention. 制御手段の機能を説明するフロー図である。It is a flowchart explaining the function of a control means. バッテリー内部温度と温度補正係数Tとのマップの一例を示すグラフである。It is a graph which shows an example of the map of battery internal temperature and the temperature correction coefficient T. 本発明の第2の実施形態からなる電動車両の構成図である。It is a block diagram of the electric vehicle which consists of the 2nd Embodiment of this invention.

以下に、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施形態からなる電動車両の構成を示す。   FIG. 1 shows a configuration of an electric vehicle according to a first embodiment of the present invention.

この電動車両は、いわゆるハイブリッド自動車1(以下、「HEV1」という。)であり、左右一対の駆動輪2、2に駆動力を伝達する出力軸3に変速機4を介して連結するディーゼルエンジン5及び走行モータ6と、その走行モータ6にインバータ7を通じて電気的に接続するリチウムイオン電池からなるバッテリー8とを備えている。また、変速機4とディーゼルエンジン5との間には、駆動力を断接する湿式多板クラッチ9等が設けられている。   This electric vehicle is a so-called hybrid vehicle 1 (hereinafter referred to as “HEV1”), and is connected to an output shaft 3 that transmits a driving force to a pair of left and right driving wheels 2 and 2 via a transmission 4. And a travel motor 6 and a battery 8 made of a lithium ion battery that is electrically connected to the travel motor 6 through an inverter 7. Further, between the transmission 4 and the diesel engine 5, a wet multi-plate clutch 9 and the like for connecting and disconnecting the driving force are provided.

更に、インバータ7とバッテリー8との間には、バッテリー8から放電される電流値を測定する電流測定器10が設けられている。この電流測定器10の測定値は、信号線(点線)を通じて制御手段11により取得される。   Further, a current measuring device 10 for measuring a current value discharged from the battery 8 is provided between the inverter 7 and the battery 8. The measured value of the current measuring instrument 10 is acquired by the control means 11 through a signal line (dotted line).

ディーゼルエンジン5の発生する駆動力は、HEV1の走行状態に応じてECU12により制御される。また、走行モータ6とバッテリー8との間の電力の供給は、ECU12からの指令を受けた制御手段11がインバータ7を介して制御する。   The driving force generated by the diesel engine 5 is controlled by the ECU 12 according to the traveling state of the HEV 1. The power supply between the traveling motor 6 and the battery 8 is controlled via the inverter 7 by the control means 11 that receives a command from the ECU 12.

また、HEV1の通常走行時における余剰エネルギーや制動時における回生エネルギーは、走行モータ6を発電機として使用することで回収され、インバータ7を通じてバッテリー8を充電する。   Further, surplus energy during normal travel of the HEV 1 and regenerative energy during braking are recovered by using the travel motor 6 as a generator, and the battery 8 is charged through the inverter 7.

このようなHEV1における制御手段11の機能を、図2に基づいて以下に説明する。   The function of the control means 11 in such HEV1 is demonstrated below based on FIG.

まず、制御手段11は、電流測定器10の測定値Iを取得する(S10〜S20)。次に、下記の(1)式により判断値Yを計算する(S30)。

Figure 2014171353
First, the control means 11 acquires the measured value I of the current measuring instrument 10 (S10 to S20). Next, the judgment value Y is calculated by the following equation (1) (S30).
Figure 2014171353

但し、I0は初期電流値であり、例えば0(ゼロ)Aが用いられる。また、Kはバッテリーから放出される熱による内部温度の低下を補正する熱補正係数である。この熱補正係数Kは、バッテリーの仕様によって定まり、例えば普通自動車用のリチウムイオン電池では、0.5〜0.9の範囲の値となる。なお、nは電流測定器10による測定回数を示す自然数であり、iは級数における項数である。 However, I 0 is an initial current value, for example, 0 (zero) A is used. K is a thermal correction coefficient for correcting a decrease in internal temperature due to heat released from the battery. This thermal correction coefficient K is determined by the battery specifications, and is, for example, a value in the range of 0.5 to 0.9 in a lithium ion battery for ordinary automobiles. Note that n is a natural number indicating the number of measurements by the current measuring instrument 10, and i is the number of terms in the series.

そして、判定値Yが予め定められたしきい値に達したかを判断する(S40)。判定値Yがしきい値に達したときには、電流制限手段であるインバータ7を通じて、バッテリー8から走行モータ6に供給される電流の最大値を、予め定められた制限値未満(例えば、150A未満)に低下させる制御を行う(S50)。一方で、判定値Yがしきい値に達していないときには、所定の間隔をおいて、次回の電流値Iを測定する(S60〜S20)。   Then, it is determined whether the determination value Y has reached a predetermined threshold value (S40). When the determination value Y reaches the threshold value, the maximum value of the current supplied from the battery 8 to the traveling motor 6 through the inverter 7 serving as current limiting means is less than a predetermined limit value (for example, less than 150 A). (S50). On the other hand, when the determination value Y does not reach the threshold value, the next current value I is measured at a predetermined interval (S60 to S20).

このように、バッテリー8からの放熱を考慮してバッテリー8の内部温度を評価するようにしたので、バッテリー8が放電する電流を制限する時期を精度良く判定できるため、内部温度の上昇によるバッテリー8の劣化を従来よりも効果的に防止することができるのである。   As described above, since the internal temperature of the battery 8 is evaluated in consideration of the heat radiation from the battery 8, it is possible to accurately determine when to limit the current discharged by the battery 8, and therefore, the battery 8 due to the increase in the internal temperature. It is possible to effectively prevent the deterioration of the conventional one.

上記の(1)式においては、更に精度を向上するために、バッテリー8の内部温度による補正を行うことが望ましい。そのような温度補正の方法としては、以下の(2)又は(3)式が用いられる。

Figure 2014171353
Figure 2014171353
In the above equation (1), it is desirable to perform correction based on the internal temperature of the battery 8 in order to further improve the accuracy. As such a temperature correction method, the following equation (2) or (3) is used.
Figure 2014171353
Figure 2014171353

但し、Tは温度補正係数であり、バッテリー8に取り付けられた温度計13の測定値に基づいて、例えば図3に示すような関係を有する予め定められたマップから求められる。   However, T is a temperature correction coefficient, and is obtained from a predetermined map having a relationship as shown in FIG. 3, for example, based on the measured value of the thermometer 13 attached to the battery 8.

上記の(2)又は(3)式のいずれを用いるかは、HEV1の運転状態やバッテリー8の仕様に基づいて、制御手段11により適宜選択される。   Which of the above formulas (2) and (3) is used is appropriately selected by the control means 11 based on the operating state of the HEV 1 and the specifications of the battery 8.

図4は、本発明の第2の実施形態からなる電動車両を示す。   FIG. 4 shows an electric vehicle according to the second embodiment of the present invention.

この電動車両は、いわゆる電気自動車14(以下、「EV14」という。)であり、左右一対の駆動輪2、2に駆動力を伝達する出力軸3に変速機4を介して連結する走行モータ6と、その走行モータ6にインバータ7を通じて電気的に接続するリチウムイオン電池からなるバッテリー8とを備えている。   This electric vehicle is a so-called electric vehicle 14 (hereinafter, referred to as “EV14”), and a travel motor 6 connected to an output shaft 3 that transmits a driving force to a pair of left and right drive wheels 2 and 2 via a transmission 4. And a battery 8 made of a lithium ion battery that is electrically connected to the traveling motor 6 through an inverter 7.

また、インバータ7とバッテリー8との間には、バッテリー8から放電される電流値を測定する電流測定器10が設けられている。この電流測定器10の測定値は、信号線(点線)を通じて制御手段11により取得される。   Further, a current measuring device 10 that measures a current value discharged from the battery 8 is provided between the inverter 7 and the battery 8. The measured value of the current measuring instrument 10 is acquired by the control means 11 through a signal line (dotted line).

走行モータ6とバッテリー8との間の電力の供給は、EV14の走行状態に応じて、ECU12からの指令を受けた制御手段11がインバータ7を介して制御する。   Supply of electric power between the traveling motor 6 and the battery 8 is controlled via the inverter 7 by the control means 11 that receives a command from the ECU 12 according to the traveling state of the EV 14.

このようなEV14においても、制御手段11は、第1の実施形態に係るHEV1の場合と同様にして、バッテリー8から走行モータ6に供給される電流の最大値を制御する。また、上記の(2)又は(3)式を用いて、更に精度を向上することもできる。   Also in such EV14, the control means 11 controls the maximum value of the current supplied from the battery 8 to the traveling motor 6 in the same manner as in the case of HEV1 according to the first embodiment. Further, the accuracy can be further improved by using the above formula (2) or (3).

なお、上記の第1及び第2の実施形態では、制御手段11とECU12とを別体にしているが、制御手段11の機能をECU12に担わせることも可能である。   In the first and second embodiments described above, the control unit 11 and the ECU 12 are separated from each other, but the function of the control unit 11 can also be assigned to the ECU 12.

本発明は、HEV1やEV14に限られることなく、頻繁な負荷変動のある走行モータ6に電力を供給するバッテリー8を有する電動車両に適用されるものである。   The present invention is not limited to HEV1 and EV14, but is applied to an electric vehicle having a battery 8 for supplying electric power to a traveling motor 6 having frequent load fluctuations.

1 HEV
5 ディーゼルエンジン
6 走行モータ
7 インバータ
8 バッテリー
10 電流測定器
11 制御手段
13 温度計
14 EV
1 HEV
5 Diesel Engine 6 Traveling Motor 7 Inverter 8 Battery 10 Current Measuring Device 11 Control Means 13 Thermometer 14 EV

Claims (3)

駆動力の少なくとも一部を負担する走行モータと、前記走行モータの電源であるバッテリーとを有する電動車両であって、
前記バッテリーが前記走行モータに供給する電流を測定する電流測定手段と、その電流を制限する電流制限手段と、制御手段とを備え、
前記制御手段は、前記電流測定手段の測定値Iを用いた下記の(1)式で算出される判断値Yが予め定められたしきい値に達したときは、前記電流制限手段により前記バッテリーが前記走行モータに供給する電流の最大値を、予め定められた制限値未満に低下させる制御を行うことを特徴とする電動車両。
Figure 2014171353
但し、I0は初期電流値を、Kは熱補正係数を、nは前記電流測定手段の測定回数を、それぞれ示す。
An electric vehicle having a travel motor that bears at least part of the driving force, and a battery that is a power source of the travel motor,
Current measuring means for measuring the current supplied by the battery to the traveling motor, current limiting means for limiting the current, and control means,
When the judgment value Y calculated by the following equation (1) using the measured value I of the current measuring means reaches a predetermined threshold value, the control means causes the battery to be reduced by the current limiting means. An electric vehicle that performs control to reduce the maximum value of the current supplied to the travel motor to a value less than a predetermined limit value.
Figure 2014171353
Here, I 0 represents an initial current value, K represents a thermal correction coefficient, and n represents the number of times of measurement of the current measuring means.
前記バッテリーの温度を測定する温度測定手段を備えるとともに、前記制御手段は、予め定められたマップに従って前記温度測定手段の測定値から温度補正係数Tを求め、前記判断値Yを下記の(2)式に従って補正する請求項1に記載の電動車両。
Figure 2014171353
The temperature measurement means for measuring the temperature of the battery is provided, and the control means obtains a temperature correction coefficient T from the measurement value of the temperature measurement means according to a predetermined map, and the determination value Y is expressed by the following (2) The electric vehicle according to claim 1, wherein the electric vehicle is corrected according to a formula.
Figure 2014171353
前記バッテリーの温度を測定する温度測定手段を備えるとともに、前記制御手段は、予め定められたマップに従って前記温度測定手段の測定値から温度補正係数Tを求め、前記判断値Yを下記の(3)式に従って補正する請求項1に記載の電動車両。
Figure 2014171353
In addition to temperature measurement means for measuring the temperature of the battery, the control means obtains a temperature correction coefficient T from the measurement value of the temperature measurement means according to a predetermined map, and the determination value Y is expressed by the following (3) The electric vehicle according to claim 1, wherein the electric vehicle is corrected according to a formula.
Figure 2014171353
JP2013042831A 2013-03-05 2013-03-05 Electric vehicle Expired - Fee Related JP6098236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042831A JP6098236B2 (en) 2013-03-05 2013-03-05 Electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042831A JP6098236B2 (en) 2013-03-05 2013-03-05 Electric vehicle

Publications (2)

Publication Number Publication Date
JP2014171353A true JP2014171353A (en) 2014-09-18
JP6098236B2 JP6098236B2 (en) 2017-03-22

Family

ID=51693343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042831A Expired - Fee Related JP6098236B2 (en) 2013-03-05 2013-03-05 Electric vehicle

Country Status (1)

Country Link
JP (1) JP6098236B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093371A (en) * 2003-09-19 2005-04-07 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2006149181A (en) * 2004-10-22 2006-06-08 Nissan Motor Co Ltd Device and method for current control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093371A (en) * 2003-09-19 2005-04-07 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2006149181A (en) * 2004-10-22 2006-06-08 Nissan Motor Co Ltd Device and method for current control

Also Published As

Publication number Publication date
JP6098236B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6011541B2 (en) Charge control device and charge control method
US9266527B2 (en) Method and system for setting motor torque for hybrid vehicle
KR101558363B1 (en) Method and system for controlling charging and discharging of battery
US9981653B2 (en) System and method for reducing exhaust gas of hybrid electric vehicle
US10239517B2 (en) Controller of hybrid vehicle
JP6250164B2 (en) Method and apparatus for balancing an energy storage system
KR101798516B1 (en) Motor system control method and apparatus for hybrid vehicle
KR101755798B1 (en) Device and method for controlling battery charge and discharge quantity in eco-friendly vehicle
US9868434B2 (en) Vehicle and control method for vehicle
JP6741791B2 (en) Battery pack heat adjustment method and system
US9849773B2 (en) Generation control apparatus
JP2014169937A (en) Charge state calculation device
JP2011073611A (en) Control device of hybrid vehicle
KR101637304B1 (en) Method and apparatus for generating torque command
JP6098236B2 (en) Electric vehicle
JP6701699B2 (en) Battery control system, hybrid vehicle, and battery control method
JP6192191B2 (en) Engine torque assist device and torque assist method using ISG
JP6471860B2 (en) Control device for hybrid vehicle
KR102020909B1 (en) Power control method for a serial hybrid vehicle
JP5510662B2 (en) Vehicle control device
JP6455423B2 (en) Ni-MH secondary battery cooling system
JP2015116856A (en) Hybrid vehicle and control method therefor
KR102042124B1 (en) Apparatus for charging battery of hybrid vehicle and method thereof
JP6183180B2 (en) Hybrid vehicle and control method thereof
JP2017214025A (en) Hybrid vehicle and control method for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6098236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees