JP6471860B2 - Control device for hybrid vehicle - Google Patents

Control device for hybrid vehicle Download PDF

Info

Publication number
JP6471860B2
JP6471860B2 JP2015042854A JP2015042854A JP6471860B2 JP 6471860 B2 JP6471860 B2 JP 6471860B2 JP 2015042854 A JP2015042854 A JP 2015042854A JP 2015042854 A JP2015042854 A JP 2015042854A JP 6471860 B2 JP6471860 B2 JP 6471860B2
Authority
JP
Japan
Prior art keywords
power
engine
altitude
battery
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015042854A
Other languages
Japanese (ja)
Other versions
JP2016159859A (en
Inventor
文一 池田谷
文一 池田谷
忠義 平尾
忠義 平尾
重利 平野
重利 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2015042854A priority Critical patent/JP6471860B2/en
Publication of JP2016159859A publication Critical patent/JP2016159859A/en
Application granted granted Critical
Publication of JP6471860B2 publication Critical patent/JP6471860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は、走行用モータ、及び、エンジンにより駆動される発電機を備えたハイブリッド車両の制御装置に関する。   The present invention relates to a control device for a hybrid vehicle including a traveling motor and a generator driven by an engine.

近年、走行用モータとエンジンとを組み合わせて車両の駆動力を得るようにしたハイブリッド車両が開発され、実用化が進んでいる。ハイブリッド車両としては、発電機をエンジンにより駆動させて発電し、走行用モータに給電を行うバッテリを充電する車両(PHV)だけでなく、バッテリを外部の商用電源でも充電可能な車両(PHEV)の開発、実用化が進んでいる。   In recent years, hybrid vehicles in which a driving motor and an engine are combined to obtain a driving force of the vehicle have been developed and put into practical use. As a hybrid vehicle, not only a vehicle (PHV) that charges a battery that drives a generator by an engine to generate electricity and supplies power to a traveling motor but also a battery (PHEV) that can be charged by an external commercial power source is also used. Development and practical use are progressing.

このようなハイブリッド車両には、走行用モータのみを動力源として駆動輪を駆動させるEVモードと、走行用モータを動力源とすると共にエンジンにより発電機を駆動させてバッテリや走行用モータに電力を供給するシリーズモード、或いは、エンジンと走行用モータとの両方を動力源とするパラレルモードと、が運転状況に応じて切り替わるようになっているものが知られている。   In such a hybrid vehicle, an EV mode in which driving wheels are driven by using only a traveling motor as a power source, and a generator is driven by an engine while the traveling motor is used as a power source, and electric power is supplied to the battery and the traveling motor. There is known a series mode to be supplied, or a parallel mode in which both the engine and the traveling motor are used as power sources, depending on the driving situation.

ハイブリッド車両は、エンジンの運転により発電機が駆動され、発電電力がバッテリに充電されるようになっている。発電機の駆動に際しては、要求される発電の電力により、目標となるエンジン回転速度、エンジントルクが設定され、所望の発電電力となるようにエンジンが制御されて発電機が駆動され、一定の発電電力を得ている(例えば、特許文献1参照)このため、良好な燃料消費効率でエンジンを運転して所望の発電電力を得ることができる。   In the hybrid vehicle, the generator is driven by the operation of the engine, and the generated power is charged in the battery. When driving the generator, the target engine rotation speed and engine torque are set according to the required power generation power, the engine is controlled to achieve the desired generated power, the generator is driven, and constant power generation Electric power is obtained (see, for example, Patent Document 1). Therefore, the engine can be operated with good fuel consumption efficiency to obtain desired generated power.

ところで、バッテリの充電割合が所定充電割合を超える高い状態の領域では、要求される充電の電力が少ない。このため、バッテリの充電割合が所定充電割合を超える高い状態の領域で充電を行った場合、目標のエンジン回転速度、エンジントルクで良好な燃料消費効率でエンジンが運転されて充電が行われた際に、バッテリへの電力の供給が多くなって、電流が多く流れる状態になることが考えられる。電流が多く流れすぎた場合、電圧が高くなりすぎてバッテリに大きな負担が生じる虞があった。   By the way, in the high state area | region where the charge ratio of a battery exceeds a predetermined charge ratio, the electric power of charge required is little. For this reason, when charging is performed in an area where the charging rate of the battery is higher than the predetermined charging rate, when the engine is operated with good fuel consumption efficiency at the target engine rotation speed and engine torque, charging is performed. In addition, it is conceivable that a large amount of current flows due to an increase in power supply to the battery. If too much current flows, there is a risk that the voltage becomes too high and a large burden is placed on the battery.

特開2003−9305号公報JP 2003-9305 A

本発明は上記状況に鑑みてなされたもので、良好な燃料消費効率でエンジンを運転して発電を行う際に、電圧が高くなりすぎてバッテリに大きな負担が生じることがないハイブリッド車両の制御装置を提供することを目的とする。   The present invention has been made in view of the above situation, and a control device for a hybrid vehicle in which when the engine is operated with good fuel consumption efficiency to generate electric power, the voltage becomes too high and a large burden is not caused on the battery. The purpose is to provide.

上記目的を達成するための請求項1に係る本発明のハイブリッド車両の制御装置は、駆動輪に駆動力を伝える走行用モータと、前記走行用モータに電力を供給するバッテリと、エンジンの運転により駆動され、少なくとも前記バッテリに供給するための電力を含む要求電力を発電する発電機とを有するハイブリッド車両の制御装置であって、前記バッテリの充電状況を検出する充電状況検出手段と、前記エンジンの回転速度とトルクに基づいて燃料消費効率が良い運転点を求める燃料効率点導出手段と、前記要求電力に対して発電電力が増加するように前記エンジンを運転することで、前記燃料効率点導出手段で求められた運転点に基づいて前記エンジンを運転して前記発電機の発電を制御する発電制御手段と、前記ハイブリッド車両の走行場所の高度を検出する高度検出手段とを備え、前記発電制御手段は、前記充電状況検出手段で検出される充電割合が所定充電割合以下の際に、前記発電機の発電制御を実行し、前記高度検出手段で検出される前記ハイブリッド車両の走行場所の高度が基準となる高度よりも高い時の前記発電電力の増加量が、基準となる高度の時の前記発電電力の増加量に比べて少なく設定され、高度が基準となる高度よりも高い時の前記発電電力の単位時間あたりの増加量を少なくし、高度が基準となる高度よりも高い時の充電時の充電割合の経時変化の傾きを、基準となる高度の時に比べて小さくすることを特徴とする。
走行場所の高度が基準となる高度よりも高い時には、基準となる高度の時と同じ出力、または、発電電力を得るためには、エンジンの回転速度は高い回転速度を必要としている
In order to achieve the above object, a control apparatus for a hybrid vehicle according to a first aspect of the present invention includes a travel motor that transmits driving force to drive wheels, a battery that supplies electric power to the travel motor, and an engine operation. A hybrid vehicle control device having a generator for generating required power including at least electric power to be supplied to the battery, the charging status detection means for detecting the charging status of the battery, and the engine Fuel efficiency point deriving means for obtaining an operating point with good fuel consumption efficiency based on the rotational speed and torque, and operating the engine so that the generated power increases with respect to the required power, whereby the fuel efficiency point deriving means a power generation control means for controlling the power generation of the generator by operating the engine on the basis of the obtained operating point determined by the running of the hybrid vehicle And a high degree detecting means for detecting the altitude of the place, the power generation control unit, when the charging rate detected by said charging state detection means is less than a predetermined charging rate, perform the power generation control of the generator, the The amount of increase in the generated power when the altitude of the traveling location of the hybrid vehicle detected by the altitude detecting means is higher than the standard altitude is smaller than the amount of increase in the generated power at the standard altitude. Reduce the amount of increase in the generated power per unit time when the altitude is higher than the standard altitude, and set the slope of the change over time in the charging rate when charging when the altitude is higher than the standard altitude. It is characterized by being made smaller than the standard altitude .
When the altitude of the driving location is higher than the standard altitude, the engine speed needs to be high in order to obtain the same output or generated power as the standard altitude.
.

請求項1に係る本発明では、ハイブリッド車両の運転状態に応じて、要求電力に対して発電電力が増加するようにエンジンを運転して発電機の発電を制御する。この場合、充電状況検出手段で検出される充電割合が所定充電割合以下の時に、前記発電機の発電制御を実行する。バッテリの充電割合が所定充電割合以下の時に、エンジンの運転点を最適に変更して発電電力を調整しているので、バッテリの充電割合が所定充電割合を超えた時には、エンジンの運転を停止してバッテリから走行用モータに電力を供給する等、エンジンの運転時間を短縮して(走行用モータでの走行時間を長くして)発電制御を行うことができる。これにより、多くの電流が流れて電圧が高くなる状態での充電を抑制することができる。
そして、発電制御手段は、高地での発電電力の増加量が、基準となる高度である低地(平地)よりも少なく設定されているので、走行場所が高地である場合には、低地(平地)に対して発電電力が抑制され、エンジンの回転速度が低くなるようにしてエンジン回転速度に起因する騒音を抑制することができる。
走行場所が低地(平地)に比べて高地である場合に、発電電力の増加量が少なく設定されることにより、単位時間当たりの充電割合の増加量が少なくなり、高地の時の充電割合の充電時の経時変化の傾きが低地(平地)の時に比べて小さくなる。
According to the first aspect of the present invention, the engine is operated to control the power generation of the generator so that the generated power is increased with respect to the required power in accordance with the operating state of the hybrid vehicle. In this case, the power generation control of the generator is executed when the charging rate detected by the charging status detecting means is equal to or lower than a predetermined charging rate. When the battery charge rate is less than or equal to the specified charge rate, the engine operating point is optimally changed to adjust the generated power.If the battery charge rate exceeds the specified charge rate, the engine operation is stopped. Thus, power generation control can be performed by shortening the engine operation time (e.g., increasing the travel time of the travel motor), such as supplying power from the battery to the travel motor. Thereby, charging in a state where a large amount of current flows and the voltage becomes high can be suppressed.
The power generation control means is set so that the amount of increase in the generated power in the highland is less than the lowland (flat land) which is the standard altitude. Therefore, when the traveling place is the highland, the lowland (flat ground) In contrast, the generated electric power is suppressed, and the engine speed is lowered so that noise caused by the engine speed can be suppressed.
When the driving location is higher than the lowland (flat land), the amount of increase in the generated power is set to be small, so the increase in the charge rate per unit time is small, and the charge rate is charged at the highland. The slope of the change over time is smaller than when the ground is low (flat).

つまり、バッテリの充電割合が所定充電割合を超える高い状態では、要求される充電の電力(要求電力)が少なく、充電に要求される電力が少ない領域で発電電力が増加するようにエンジンを運転して充電を行った場合、バッテリへの電力の供給が多くなって、電流が多く流れる状態になることが考えられる。電流が多く流れすぎた場合、電圧が高くなりすぎてバッテリに大きな負担が生じるが、バッテリの充電割合が所定充電割合を超える高い状態で、充電を実施しないことができるため、電圧が高くなりすぎてバッテリに大きな負担が生じることを抑制することができる。   In other words, when the battery charge rate is higher than the predetermined charge rate, the engine is operated so that the required power for charging (required power) is small and the generated power increases in a region where the power required for charging is low. When charging is performed, it is conceivable that the supply of power to the battery increases and a large amount of current flows. If too much current flows, the voltage will become too high and a heavy burden will be placed on the battery.However, since the charging rate of the battery is higher than the specified charging rate and charging can not be performed, the voltage becomes too high. Thus, it is possible to suppress a large burden on the battery.

このため、良好な燃料消費効率でエンジンを運転して、即ち、要求電力に対して発電電力を増加させて燃料消費効率が良い運転点でエンジンを運転して発電を行う際に、電圧が高くなりすぎてバッテリに大きな負担が生じることをなくすことができる。   For this reason, when the engine is operated with good fuel consumption efficiency, that is, when generating power by operating the engine at an operating point with good fuel consumption efficiency by increasing the generated power with respect to the required power, the voltage is high. Therefore, it is possible to eliminate a large burden on the battery due to becoming too much.

また、請求項2に係る本発明のハイブリッド車両の制御装置は、請求項1に記載のハイブリッド車両の制御装置において、前記発電制御手段は、前記走行用モータを前記ハイブリッド車両の走行動力源とすると共に、前記エンジンにより前記発電機を駆動させて前記バッテリ及び前記走行用モータの少なくとも一方に電力を供給するシリーズモードの時に、前記発電機の発電制御を実行することを特徴とする。 A hybrid vehicle control device according to a second aspect of the present invention is the hybrid vehicle control device according to the first aspect , wherein the power generation control means uses the travel motor as a travel power source of the hybrid vehicle. In addition, power generation control of the generator is executed in a series mode in which the generator is driven by the engine and power is supplied to at least one of the battery and the travel motor.

請求項2に係る本発明では、シリーズモードの時に、エンジン回転速度、エンジントルクに応じて発電を行う際に、電圧が高くなりすぎてバッテリに大きな負担が生じることをなくすことができる。 According to the second aspect of the present invention, when the power generation is performed according to the engine rotation speed and the engine torque in the series mode, it is possible to eliminate a large burden on the battery due to the voltage becoming too high.

本発明のハイブリッド車両の制御装置は、良好な燃料消費効率でエンジンを運転して、即ち、要求電力に対して発電電力が増加させて燃料消費効率が良い運転点でエンジンを運転して発電を行う際に、電圧が高くなりすぎてバッテリに大きな負担が生じることをなくすことができる。   The control device for a hybrid vehicle of the present invention operates the engine with good fuel consumption efficiency, that is, generates power by operating the engine at an operating point with good fuel consumption efficiency by increasing the generated power with respect to the required power. In doing so, it is possible to eliminate a significant burden on the battery due to the voltage becoming too high.

本発明の一実施例に係る制御装置が搭載されたハイブリッド車両の全体の概略構成図である。1 is an overall schematic configuration diagram of a hybrid vehicle equipped with a control device according to an embodiment of the present invention. 発電制御を行うためのブロック構成図である。It is a block block diagram for performing power generation control. 発電電力の運転点を説明するマップである。It is a map explaining the operating point of generated electric power. 車速と発電電力(要求電力)との関係を説明するマップである。It is a map explaining the relationship between vehicle speed and generated electric power (required electric power). 加速時における充電割合(発電制御)の経時変化を説明するグラフである。It is a graph explaining the time-dependent change of the charge ratio (power generation control) at the time of acceleration. 減速時における充電割合(発電制御)の経時変化を説明するグラフである。It is a graph explaining the time-dependent change of the charge ratio (power generation control) at the time of deceleration. 低地、高地での充電割合(発電制御)の経時変化を説明するグラフである。It is a graph explaining the time-dependent change of the charge ratio (power generation control) in a lowland and a highland. 発電制御のフローチャートである。It is a flowchart of electric power generation control.

図1に基づいてハイブリッド車両の全体の構成を説明する。図1には本発明の一実施例に係る制御装置が搭載されたハイブリッド車両の全体の概略構成を示してある。
図に示すように、ハイブリッド車両(車両)1には、駆動輪2に動力を伝える走行用モータ3、及び、エンジン4が備えられている。走行用モータ3の駆動力は伝達機構5を介して駆動輪2に伝達される。走行用モータ3にはインバータ等の回路6を介してバッテリ7が接続されている。乗員のペダル操作に応じた電力が、バッテリ7から回路6を介して走行用モータ3に供給される。
The overall configuration of the hybrid vehicle will be described with reference to FIG. FIG. 1 shows an overall schematic configuration of a hybrid vehicle equipped with a control device according to an embodiment of the present invention.
As shown in the figure, a hybrid vehicle (vehicle) 1 is provided with a traveling motor 3 that transmits power to the drive wheels 2 and an engine 4. The driving force of the traveling motor 3 is transmitted to the driving wheel 2 via the transmission mechanism 5. A battery 7 is connected to the traveling motor 3 via a circuit 6 such as an inverter. Electric power corresponding to the passenger's pedal operation is supplied from the battery 7 to the traveling motor 3 via the circuit 6.

エンジン4には出力系8を介して発電機9が接続され、発電機9は回路6を介してバッテリ7(及び走行用モータ3)に接続されている。出力系8は発電機9に接続される一方で、クラッチ10を介して伝達機構5に接続されている。   A generator 9 is connected to the engine 4 via an output system 8, and the generator 9 is connected to a battery 7 (and a traveling motor 3) via a circuit 6. The output system 8 is connected to the generator 9 while being connected to the transmission mechanism 5 via the clutch 10.

車両1の運転状態に応じてエンジン4が運転されると、エンジン4の駆動力が出力系8を介して発電機9に伝達される。発電機9はエンジン4の運転により回転して(駆動されて)発電が実施される。発電機9で発電された電力はバッテリ7、走行用モータ3に供給される。車両1の運転状態に応じてクラッチ10により出力系8と伝達機構5が接続されると、エンジン4の駆動力が発電機9、及び、駆動輪2に伝達される。   When the engine 4 is operated according to the driving state of the vehicle 1, the driving force of the engine 4 is transmitted to the generator 9 via the output system 8. The generator 9 is rotated (driven) by the operation of the engine 4 to generate power. The electric power generated by the generator 9 is supplied to the battery 7 and the traveling motor 3. When the output system 8 and the transmission mechanism 5 are connected by the clutch 10 according to the driving state of the vehicle 1, the driving force of the engine 4 is transmitted to the generator 9 and the driving wheels 2.

車両1には各種装置を総括的に制御する制御装置11が設けられ、制御装置11には、エンジン4の回転速度の情報、車速センサー12の情報が入力される。車両1には、バッテリ7の充電状況(充電割合:SOC)が検出される充電状況検出手段15が備えられ、充電状況検出手段15の情報が制御装置11に入力される。また、車両1には、要求トルク検出手段としてアクセルポジションセンサー(APS)13が備えられ、APS13の検出情報(要求トルクの情報)が制御装置11に入力される。更に、車両1には、高度検出手段としての気圧計測手段14が備えられ、気圧計測手段14の検出情報が制御装置11に入力される。   The vehicle 1 is provided with a control device 11 that comprehensively controls various devices. Information about the rotational speed of the engine 4 and information about the vehicle speed sensor 12 are input to the control device 11. The vehicle 1 is provided with a charging status detection unit 15 that detects a charging status (charging ratio: SOC) of the battery 7, and information on the charging status detection unit 15 is input to the control device 11. Further, the vehicle 1 is provided with an accelerator position sensor (APS) 13 as required torque detection means, and detection information (requested torque information) of the APS 13 is input to the control device 11. Further, the vehicle 1 is provided with an atmospheric pressure measuring unit 14 as an altitude detecting unit, and detection information of the atmospheric pressure measuring unit 14 is input to the control device 11.

尚、要求トルク検出手段としては、アクセルポジションセンサー(APS)13に代えて(加えて)、走行用モータ3の回転速度に基づいて要求トルクを導出する手段を用いることができる。   As the required torque detection means, means for deriving the required torque based on the rotational speed of the traveling motor 3 can be used instead of (in addition to) the accelerator position sensor (APS) 13.

上記構成の車両1は、走行用モータ3を車両走行の動力源とするEVモードと、走行用モータ3を車両走行の動力源とし、エンジン4を発電機9の動力源として用いるシリーズモードを有している。更に、走行用モータ3及びエンジン4を車両走行用の動力源とするパラレルモードを有している。それぞれの運転モードは、車両1の走行状態に応じて適宜選択されて切換えられる。   The vehicle 1 having the above configuration has an EV mode in which the travel motor 3 is a power source for vehicle travel, and a series mode in which the travel motor 3 is used as a power source for vehicle travel and the engine 4 is used as a power source for the generator 9. doing. Furthermore, it has a parallel mode in which the traveling motor 3 and the engine 4 are used as a power source for traveling the vehicle. Each operation mode is appropriately selected and switched according to the traveling state of the vehicle 1.

本発明の実施例に係るハイブリッド車両の制御装置は、例えば、シリーズモードでの運転時の発電機9の発電制御が特徴となっている。図2から図8に基づいて本発明の一実施例に係る発電制御を具体的に説明する。
図2には本発明の一実施例に係るハイブリッド車両の制御装置の発電制御を行うためのブロック構成、図3にはエンジンのトルクと回転速度との関係で発電電力の運転点を説明するマップ、図4には車速と発電電力(要求電力)との関係を説明するマップ、図5には加速時における充電割合の経時変化(発電制御の経時変化)、図6には減速時における充電割合の経時変化(発電制御の経時変化)、図7には低地(平地)、高地での走行における充電割合の経時変化(発電制御の経時変化)を示してある。そして、図8には本発明の一実施例に係るハイブリッド車両の制御装置における発電制御の処理の一例を説明するフローチャートを示してある。
The hybrid vehicle control device according to the embodiment of the present invention is characterized by, for example, power generation control of the generator 9 during operation in the series mode. The power generation control according to one embodiment of the present invention will be specifically described with reference to FIGS.
FIG. 2 is a block diagram for performing power generation control of a hybrid vehicle control device according to an embodiment of the present invention, and FIG. 3 is a map for explaining operating points of generated power in relation to engine torque and rotational speed. 4 is a map for explaining the relationship between the vehicle speed and the generated power (required power), FIG. 5 is a change with time in the charge ratio during acceleration (change with time in power generation control), and FIG. 6 is a charge ratio during deceleration. FIG. 7 shows the change with time (change with time in power generation control) of the charging ratio in traveling in the lowland (flat area) and highland. FIG. 8 shows a flowchart for explaining an example of the power generation control process in the hybrid vehicle control apparatus according to the embodiment of the present invention.

図2に示すように、制御装置11には、APS13の検出情報、気圧計測手段14の検出情報、充電状況検出手段15の検出情報が入力される。そして、制御装置11には、エンジン4の回転速度とトルクに基づいて燃料消費効率が良い運転点を求める燃料効率点導出手段21が備えられている。また、制御装置11には、発電の要求電力に応じてエンジン4を運転させる発電制御手段22が備えられ、車両1(図1参照)の運転状態に応じて発電電力が増加するようにエンジン4を運転させる増加量設定機能23が備えられている。   As shown in FIG. 2, detection information of the APS 13, detection information of the atmospheric pressure measurement unit 14, and detection information of the charging status detection unit 15 are input to the control device 11. The control device 11 is provided with fuel efficiency point deriving means 21 for obtaining an operating point with good fuel consumption efficiency based on the rotational speed and torque of the engine 4. Further, the control device 11 is provided with power generation control means 22 for operating the engine 4 according to the required power for power generation, and the engine 4 is configured so that the generated power increases according to the operating state of the vehicle 1 (see FIG. 1). Is provided with an increase amount setting function 23.

燃料効率点導出手段21には、図3に示したマップが記憶されている。図3に示すように、エンジン4のトルクと回転速度との関係で燃料消費効率が良い領域が、例えば、等燃費線P1、P2、P3(同じ燃費効率を結んだ線:図中点線で示してあり、P1の燃費効率<P2の燃費効率<P3の燃費効率)で設定されている。そして、例えば、図中一点鎖線で示す、発電電力x0kW、x1kW、x2kW、x3kW(x0<x1<x2<x3)の電力を発電する際のエンジン4の燃費効率が良い運転点S(図中実線で示してある)が設定されている。   The fuel efficiency point deriving means 21 stores the map shown in FIG. As shown in FIG. 3, the region where the fuel consumption efficiency is good due to the relationship between the torque and the rotational speed of the engine 4 is, for example, equal fuel consumption lines P1, P2, and P3 (lines connecting the same fuel consumption efficiency: The fuel efficiency of P1 <the fuel efficiency of P2 <the fuel efficiency of P3). And, for example, an operating point S with good fuel efficiency of the engine 4 when generating electric power of generated power x0kW, x1kW, x2kW, x3kW (x0 <x1 <x2 <x3) indicated by a one-dot chain line in the figure (solid line in the figure) Is set).

図3に示したマップに基づき、車両1の運転状態に応じて発電電力が増加される。これにより、燃料消費効率が良い運転点Sの回転速度、トルクで、エンジン4の運転が制御されて発電機9が駆動され必要な電力が発電される(発電制御手段22)。
増加量設定機能23は、エンジン4に要求されるトルク(APS13の検出情報に基づいて導出される)が加速状態(緩加速状態、及び、定常状態)の時には、減速状態の時に比べ、発電電力の増加量を多く設定する機能が備えられている。即ち、増加量設定機能23には、図4に示したマップが記憶されている。図4に点線で示すように、車速に応じて基準となる要求電力が設定され、要求されるトルクに応じて、加速状態(緩加速状態、及び、定常状態)、減速状態の時に、発電電力が増加して設定されている。要求されるトルクが加速状態(緩加速状態、及び、定常状態)の時には(図4に実線で示してある)、減速状態の時(図4に一点鎖線で示してある)に比べ、発電電力の増加量が多く設定されている。
Based on the map shown in FIG. 3, the generated power is increased according to the driving state of the vehicle 1. As a result, the operation of the engine 4 is controlled by the rotational speed and torque of the operating point S with good fuel consumption efficiency, and the generator 9 is driven to generate necessary power (power generation control means 22).
The increase amount setting function 23 generates power when the torque required for the engine 4 (derived based on the detection information of the APS 13) is in an acceleration state (slow acceleration state and steady state) as compared with that in a deceleration state. A function for setting a large amount of increase is provided. That is, the increase amount setting function 23 stores the map shown in FIG. As shown by a dotted line in FIG. 4, a reference required power is set according to the vehicle speed, and the generated power in the acceleration state (slow acceleration state and steady state) and the deceleration state according to the required torque. Is set to increase. When the required torque is in the accelerated state (slowly accelerating state and steady state) (shown by a solid line in FIG. 4), the generated power is lower than that in the decelerating state (shown by a one-dot chain line in FIG. 4). A large amount of increase is set.

例えば、基準となる要求電力がx0kWで、図3に示したマップで等燃費線P1の外側の領域(燃料消費効率が低いP1の外側の領域)でエンジン4が運転される場合、燃料消費効率がP1よりも低くなり、燃料消費効率が良くない領域での運転となる。本実施例では、運転状態に応じて発電電力を増加させ、要求トルクに応じて加速状態(緩加速状態、及び、定常状態)、減速状態の時に、発電電力を増加させているので、発電電力をx1kW、x2kWに増加させて、図3に示したマップで等燃費線P2、P3の内側の領域でエンジン4を運転させることになり、燃料消費効率が良い領域での運転となる。   For example, when the reference required power is x0 kW and the engine 4 is operated in a region outside the equal fuel consumption line P1 (region outside P1 where fuel consumption efficiency is low) in the map shown in FIG. Becomes lower than P1, and the operation is performed in a region where the fuel consumption efficiency is not good. In this embodiment, the generated power is increased according to the operating state, and the generated power is increased in the acceleration state (slow acceleration state and steady state) and the deceleration state according to the required torque. 3 is increased to x1 kW and x2 kW, and the engine 4 is operated in the region inside the equal fuel consumption lines P2 and P3 in the map shown in FIG. 3, and the operation is performed in the region where the fuel consumption efficiency is good.

そして、加速状態(緩加速状態、及び、定常状態)の時には、減速状態の時に比べ、発電電力の増加量が多く設定されているので、加速状態(緩加速状態、及び、定常状態)の時には、発電電力が多くなるようにエンジン4が運転され、減速状態の時には、発電電力の増加が抑制されて騒音の増加を抑えた状態でエンジン4が運転され、運転者に騒音や振動等に対する違和感を与えることなく、燃料消費効率が良い運転点でエンジンを運転して発電を行うことができる。   And, in the acceleration state (slow acceleration state and steady state), the amount of increase in the generated power is set larger than in the deceleration state, so in the acceleration state (slow acceleration state and steady state) When the engine 4 is operated so as to increase the generated power and is in a deceleration state, the engine 4 is operated in a state in which the increase in generated power is suppressed and the increase in noise is suppressed. The engine can be operated to generate electricity at an operating point with good fuel consumption efficiency.

具体的には後述するが、車両1に要求されるトルクが、減速状態の時に比べて加速状態(緩加速状態、及び、定常状態)の時に発電電力の増加量が多く設定され、単位時間当たりの充電割合の増加量が多くなり、加速状態の時には充電割合の充電時の経時変化の傾きが減速状態の時の充電時の経時変化の傾きに比べて大きくなる。   Specifically, as will be described later, when the torque required for the vehicle 1 is in an acceleration state (slow acceleration state and steady state) compared to when the vehicle is in a deceleration state, the amount of increase in generated power is set larger. In the acceleration state, the slope of the change over time during charging of the charge ratio becomes larger than the slope of the change over time during charging during the deceleration state.

そして、発電制御手段22では、充電状況検出手段15で検出されるSOCが所定充電割合以下の時に(例えば、30%以下の時にのみ)、エンジン4を図3に示したマップに基づいて運転する。即ち、バッテリ7のSOCが所定充電割合以下の時にのみ、発電機9(図1参照)の発電制御を実行する。   Then, the power generation control means 22 operates the engine 4 based on the map shown in FIG. 3 when the SOC detected by the charge status detection means 15 is less than or equal to a predetermined charge ratio (for example, only when it is 30% or less). . That is, power generation control of the generator 9 (see FIG. 1) is executed only when the SOC of the battery 7 is equal to or lower than a predetermined charging rate.

つまり、図5、図6に示すように、走行用モータ3(図1参照)による走行に伴い、バッテリ7(図1参照)のSOCが減少し、SOCが所定充電割合S1以下になり、更に、例えば、数%低下した充電割合S2になった時点で(時刻t1)、エンジン4(図1参照)を運転して充電を実施する。SOCが所定充電割合S1以下の時に、所定充電割合S1と充電割合S2の間で充電と放電が繰り返される。   That is, as shown in FIGS. 5 and 6, the SOC of the battery 7 (see FIG. 1) decreases with traveling by the traveling motor 3 (see FIG. 1), and the SOC becomes a predetermined charging rate S <b> 1 or less. For example, when the charging rate S2 decreases by several percent (time t1), the engine 4 (see FIG. 1) is operated to perform charging. When the SOC is equal to or lower than the predetermined charging rate S1, charging and discharging are repeated between the predetermined charging rate S1 and the charging rate S2.

前述したように、車両1に要求されるトルクが、減速状態の時に比べて加速状態(緩加速状態、及び、定常状態)の時に発電電力の増加量が多く設定されているので、図5に示した加速状態(緩加速状態、及び、定常状態)の時には、所定充電割合S1以下の領域で、単位時間当たりの充電割合の増加量が、図6に示した減速状態の時に比べて多くなる。このため、加速状態の時の充電割合の充電時の経時変化の傾き(図5参照)は、減速状態の時の充電割合の充電時の経時変化の傾き(図6参照)に比べて大きくなっている。   As described above, since the amount of increase in the generated power is set more when the torque required for the vehicle 1 is in the acceleration state (slow acceleration state and steady state) than in the deceleration state, FIG. In the acceleration state shown (slow acceleration state and steady state), the amount of increase in the charge rate per unit time is larger than that in the deceleration state shown in FIG. . For this reason, the slope of change over time during charging of the charging rate in the acceleration state (see FIG. 5) is larger than the slope of change over time of charging during the deceleration state (see FIG. 6). ing.

バッテリ7のSOCが所定充電割合S1以下の領域において、SOCが充電割合S2になるまでは、エンジン4の運転を停止してバッテリ7から走行用モータ3に電力を供給し続けているので、SOCが所定充電割合S1以下の領域であってもエンジン4の運転時間を短縮して(走行用モータ3での走行時間を長くして)発電制御を行うことができる。
そして、バッテリ7のSOCが所定充電割合S1を超える高い状態で、多くの電流が流れてバッテリ7の電圧が高くなる状態での発電を抑制することができる。
In the region where the SOC of the battery 7 is equal to or less than the predetermined charging rate S1, the operation of the engine 4 is stopped and the electric power is continuously supplied from the battery 7 to the traveling motor 3 until the SOC reaches the charging rate S2. Even in the region where the charging ratio is not more than the predetermined charging ratio S1, the power generation control can be performed by shortening the operation time of the engine 4 (increasing the travel time of the travel motor 3).
And in the state where SOC of the battery 7 is high exceeding the predetermined charging rate S1, it is possible to suppress power generation in a state where a large amount of current flows and the voltage of the battery 7 becomes high.

バッテリ7のSOCが所定充電割合S1より引くい状態では、要求される充電の電力(要求電力)が少なく、要求電力を発電するためのエンジン4の運転が、低回転速度、低トルクでの領域である燃料消費効率が低い領域での運転になる虞がある。本実施例では、バッテリ7のSOCが所定充電割合S1以下の時に、エンジン4の運転点を最適に変更して発電電力を調整して発電を実施しているので、燃料消費効率が低い領域でのエンジン4の運転を抑制することができる。   When the SOC of the battery 7 is less than the predetermined charging rate S1, the required charging power (required power) is small, and the operation of the engine 4 for generating the required power is performed at a low rotational speed and low torque. There is a risk of driving in a region where the fuel consumption efficiency is low. In the present embodiment, when the SOC of the battery 7 is equal to or less than the predetermined charging rate S1, power generation is performed by optimally changing the operating point of the engine 4 and adjusting the generated power, so that the fuel consumption efficiency is low. The operation of the engine 4 can be suppressed.

また、バッテリ7のSOCが所定充電割合S1を超える高い状態の領域、即ち、要求電力が少ない領域で充電を行った場合、バッテリ7への電力の供給が多くなり、電流が多く流れる状態になることが考えられる。バッテリ7に電流が多く流れすぎた場合、電圧が高くなりすぎてバッテリ7に大きな負担が生じる。本実施例では、バッテリ7の充電割合が所定充電割合S1を超える高い状態で、充電を実施しないことができるため、電圧が高くなりすぎてバッテリ7に大きな負担が生じることを抑制することができる。   In addition, when charging is performed in a region where the SOC of the battery 7 is higher than the predetermined charging rate S1, that is, in a region where the required power is low, the supply of power to the battery 7 increases and a large amount of current flows. It is possible. If too much current flows through the battery 7, the voltage becomes too high, causing a heavy burden on the battery 7. In the present embodiment, since charging cannot be performed in a state where the charging rate of the battery 7 is higher than the predetermined charging rate S1, it is possible to suppress a large burden on the battery 7 due to excessive voltage. .

そして、増加量設定機能23には、車両1の走行場所の高度(気圧計測手段14の検出情報に基づいて導出される)が基準となる高度(低地の時)よりも高い時(高地の時)は、発電電力の増加量を、低地の時の発電電力の増加量に比べて少なく設定する機能が備えられている。車両1の走行場所の高度が基準となる高度よりも高い時には、即ち、走行場所が高地の場合、トルクを低地と同じ出力、または、発電電力にするためには、エンジンの回転速度は高い回転速度を必要としている。   In the increase amount setting function 23, when the altitude of the travel location of the vehicle 1 (derived based on the detection information of the atmospheric pressure measuring means 14) is higher than the standard altitude (when the altitude is low) (when the altitude is high) ) Has a function of setting the amount of increase in the generated power to be smaller than the amount of increase in the generated power when the ground is low. When the altitude of the travel location of the vehicle 1 is higher than the reference altitude, that is, when the travel location is high, the engine rotation speed is high in order to obtain the same output as the low ground or generated power. Need speed.

本実施例では、高地の時には、発電電力の増加量が、低地の時の発電電力の増加量に比べて少なく設定されているので、走行場所が高地である場合には、低地に対して発電電力が抑制され、エンジン回転速度に起因する騒音を抑制することができる。   In this embodiment, since the amount of increase in the generated power is set to be lower than that in the lowland when the land is high, power generation is performed on the lowland when the traveling place is highland. Electric power is suppressed, and noise caused by engine speed can be suppressed.

図7に示すように、バッテリ7のSOCが減少し、SOCが所定充電割合S1以下の時に、所定充電割合S1と充電割合S2の間で充電と放電が繰り返される。走行場所が低地に比べて高地である場合に、発電電力の増加量が少なく設定されているので、単位時間当たりの充電割合の増加量が低地である場合に比べて少なくなる。このため、高地である場合の充電割合の充電時の経時変化の傾き(図中二点鎖線で示してある)は、基準となる充電割合(低地の場合の充電割合)の充電時の経時変化の傾き(図中実線で示してある)に比べて小さくなっている。   As shown in FIG. 7, when the SOC of the battery 7 decreases and the SOC is equal to or lower than the predetermined charging rate S1, charging and discharging are repeated between the predetermined charging rate S1 and the charging rate S2. When the travel location is higher than the lowland, the amount of increase in the generated power is set to be small, so that the increase in the charging rate per unit time is smaller than that in the lowland. For this reason, the slope of change over time during charging of the charging rate in the case of high altitude (shown by a two-dot chain line in the figure) is the time-dependent change during charging of the reference charging rate (charging rate in the case of low altitude). It is smaller than the inclination (shown by a solid line in the figure).

図8に基づいて上述したハイブリッド車両の制御装置における発電制御の一例の処理を説明する。
車両1を駆動するための電力、バッテリ7の充電電力、補機の消費電力により、要求電力が設定され、運転者の直接の意思、車両1の運転状態により、要求電力に応じて発電が実施される。例えば、運転者の充電を行う旨の操作により、もしくは、車両1(バッテリ7)の状態が、強制的に充電が必要とされる状態の時に、エンジン4を駆動してバッテリ7の充電を行う、チャージモードか否かが判断される。
A process of an example of power generation control in the above-described hybrid vehicle control device will be described with reference to FIG.
The required power is set according to the power for driving the vehicle 1, the charging power of the battery 7, and the power consumption of the auxiliary machine, and power generation is performed according to the required power depending on the driver's direct intention and the driving state of the vehicle 1. Is done. For example, the engine 4 is driven to charge the battery 7 by an operation to charge the driver or when the vehicle 1 (battery 7) is in a state where charging is forcibly required. It is then determined whether the charging mode is set.

処理がスタートすると、ステップS5でバッテリ7のSOCが所定充電割合S1以下であるか否かが判断される。ステップS5でバッテリ7のSOCが所定充電割合S1を超えていると判断された場合、チャージモードではない状態でSOCが高いため、エンジンに4による発電を必要としない走行(EV走行)とされて終了となる。   When the process starts, it is determined in step S5 whether or not the SOC of the battery 7 is equal to or less than a predetermined charging rate S1. If it is determined in step S5 that the SOC of the battery 7 exceeds the predetermined charging rate S1, the SOC is high in a state that is not in the charge mode, so that the engine does not require power generation by 4 (EV traveling). End.

ステップS5でバッテリ7のSOCが所定充電割合S1以下であると判断された場合、即ち、図5、図6中の所定充電割合S1以下の状態になったと判断された場合、ステップS6で要求トルクが加速状態(緩加速状態、及び、定常状態)であるか否かが判断される。即ち、APS13の検出情報に基づいて導出される車両1の要求トルクに基づいて、要求トルクが加速状態(緩加速状態、及び、定常状態)であるか否かが判断される。   If it is determined in step S5 that the SOC of the battery 7 is equal to or lower than the predetermined charging rate S1, that is, if it is determined that the state is equal to or lower than the predetermined charging rate S1 in FIGS. 5 and 6, the required torque is determined in step S6. Is in an acceleration state (slow acceleration state and steady state). That is, based on the required torque of the vehicle 1 derived based on the detection information of the APS 13, it is determined whether or not the required torque is in an acceleration state (slow acceleration state and steady state).

ステップS6で要求トルクが加速状態(緩加速状態、及び、定常状態)であると判断された場合、ステップS7で加速状態の発電電力に応じた充電が設定される。即ち、車両1の要求トルクが判断されるまでの間の時間が経過した時刻t1(充電割合S2)から充電が開始されるように、予め設定された加速状態の増加量(減速状態の時に比べて多い増加量:図3、図4参照)で発電電力が設定される。   If it is determined in step S6 that the required torque is in the acceleration state (slow acceleration state and steady state), charging corresponding to the generated power in the acceleration state is set in step S7. That is, the amount of increase in the acceleration state set in advance (compared to that in the deceleration state) so that charging is started from time t1 (charging ratio S2) when the time until the required torque of the vehicle 1 is determined. The generated power is set with a large increase amount (see FIGS. 3 and 4).

ステップS8でSOCの上限が設定され(所定充電割合S1)、ステップS3で加速状態の発電電力となるようにエンジン4に運転の要求が出力されて、発電機9により発電が実施され終了となる。処理が繰り返されることにより。設定された上限以下(所定充電割合S1以下)のSOCの時に、所定充電割合S1と充電割合S2の間で充電と放電が繰り返される(図5参照)。   In step S8, the upper limit of the SOC is set (predetermined charging rate S1). In step S3, a request for operation is output to the engine 4 so that the generated power is in an accelerated state. . By repeating the process. When the SOC is equal to or lower than the set upper limit (predetermined charge rate S1), charging and discharging are repeated between the predetermined charge rate S1 and the charge rate S2 (see FIG. 5).

ステップS6で車両1が加速状態(緩加速状態、及び、定常状態)ではない、つまり、減速状態であると判断された場合、ステップS9で減速状態の発電電力に応じた充電が設定される。即ち、車両1の要求トルクが判断されるまでの間の時間が経過した時刻t1(充電割合S2)から充電が開始されるように、予め設定された減速状態の増加量(加速状態の時に比べて少ない増加量:図3、図4参照)で発電電力が設定される。   If it is determined in step S6 that the vehicle 1 is not in an accelerated state (slowly accelerating state and steady state), that is, in a decelerating state, charging corresponding to the generated power in the decelerating state is set in step S9. That is, the amount of increase in the deceleration state set in advance (compared to that in the acceleration state) so that charging is started from time t1 (charge ratio S2) when the time until the required torque of the vehicle 1 is determined. The generated power is set with a small increase amount (see FIGS. 3 and 4).

ステップS8でSOCの上限が設定され(所定充電割合S1)、ステップS3で減速状態の発電電力となるようにエンジン4に運転の要求が出力されて、発電機9により発電が実施され終了となる。処理が繰り返されることにより。設定された上限以下(所定充電割合S1以下)のSOCの時に、所定充電割合S1と充電割合S2の間で充電と放電が繰り返される(図6参照)。   In step S8, the upper limit of the SOC is set (predetermined charging rate S1). In step S3, an operation request is output to the engine 4 so that the generated power is in a decelerated state, and the generator 9 generates power and ends. . By repeating the process. When the SOC is equal to or lower than the set upper limit (predetermined charge rate S1), charging and discharging are repeated between the predetermined charge rate S1 and the charge rate S2 (see FIG. 6).

ステップS7、及び、ステップS9における充電設定では、走行場所が高地である場合には、低地に対して発電電力が抑制され、エンジン4の回転速度が低くなるようにして、エンジン回転速度に起因する騒音を抑制するために発電電力が調整されている。つまり、加速状態の発電電力、減速状態の発電電力のそれぞれに対し、走行場所が低地に比べて高地である場合に、発電電力の増加量が少なくなるように調整されている(図7参照)。   In the charge setting in step S7 and step S9, when the traveling place is highland, the generated power is suppressed with respect to the lowland, and the rotational speed of the engine 4 is lowered, resulting in the engine rotational speed. The generated power is adjusted to suppress noise. That is, for each of the generated power in the accelerated state and the generated power in the decelerated state, the amount of increase in the generated power is adjusted to be smaller when the travel location is higher than the low ground (see FIG. 7). .

上述したハイブリッド車両の制御装置は、車両1の運転状態による要求電力に対して発電電力が増加するようにエンジン4を運転して発電機9の発電を制御しているので、エンジン4を燃料消費効率が良い運転点で運転することができる。この場合、充電状況検出手段15で検出されるSOCが所定充電割合S1以下の時に発電機9の発電制御を実施して、エンジン4の運転点を最適に変更して発電電力を調整しているので、充電に要求される電力が少ない領域で、バッテリへの電力の供給が多くなって電流が多く流れる状態になることがなく、電圧が高くなりすぎてバッテリ7に大きな負担が生じることがない。   The above-described hybrid vehicle control device controls the power generation of the generator 9 by operating the engine 4 so that the generated power increases with respect to the required power depending on the driving state of the vehicle 1. It is possible to drive at an efficient operating point. In this case, the power generation control of the generator 9 is performed when the SOC detected by the charging status detection means 15 is equal to or less than the predetermined charging rate S1, and the generated power is adjusted by optimally changing the operating point of the engine 4. Therefore, in a region where the electric power required for charging is small, the supply of electric power to the battery does not increase so that a large amount of current does not flow, and the voltage becomes too high to cause a large burden on the battery 7. .

従って、要求電力に対して発電電力を増加させて燃料消費効率が良い運転点でエンジン4を運転して発電を行う際に、電圧が高くなりすぎてバッテリ7に大きな負担が生じることをなくすことができる。   Therefore, when generating power by operating the engine 4 at an operating point with good fuel consumption efficiency by increasing the generated power with respect to the required power, the voltage becomes too high and a large burden is not caused on the battery 7. Can do.

上述した実施例では、発電電力の増加量を、車両1の減速状態の時に比べて加速状態(緩加速状態、及び、定常状態)の時に多く設定しているが、減速状態、加速状態の時に同じ増加量とすることも可能である。また、低地(平地)と高地で発電電力を同じ増加量とすることも可能である。   In the above-described embodiment, the amount of increase in the generated power is set more in the acceleration state (slow acceleration state and steady state) than in the deceleration state of the vehicle 1, but in the deceleration state and acceleration state. It is also possible to increase the same amount. It is also possible to increase the generated power by the same amount in the lowland (flat land) and highland.

本発明は、走行用モータ、及び、エンジンにより駆動される発電機を備えたハイブリッド車両の制御装置の産業分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field of hybrid vehicle control devices including a travel motor and a generator driven by an engine.

1 ハイブリッド車両(車両)
2 駆動輪
3 走行用モータ
4 エンジン
5 伝達機構
6 回路
7 バッテリ
8 出力系
9 発電機
10 クラッチ
11 制御装置
12 車速センサー
13 アクセルポジションセンサー(APS)
14 気圧計測手段
15 充電状況検出手段
21 燃料効率点導出手段
22 発電制御手段
23 増加量設定機能
1 Hybrid vehicle (vehicle)
DESCRIPTION OF SYMBOLS 2 Drive wheel 3 Driving motor 4 Engine 5 Transmission mechanism 6 Circuit 7 Battery 8 Output system 9 Generator 10 Clutch 11 Control device 12 Vehicle speed sensor 13 Acceleration position sensor (APS)
14 Atmospheric pressure measurement means 15 Charging status detection means 21 Fuel efficiency point deriving means 22 Power generation control means 23 Increase amount setting function

Claims (2)

駆動輪に駆動力を伝える走行用モータと、
前記走行用モータに電力を供給するバッテリと、
エンジンの運転により駆動され、少なくとも前記バッテリに供給するための電力を含む要求電力を発電する発電機とを有するハイブリッド車両の制御装置であって、
前記バッテリの充電状況を検出する充電状況検出手段と、
前記エンジンの回転速度とトルクに基づいて燃料消費効率が良い運転点を求める燃料効率点導出手段と、
前記要求電力に対して発電電力が増加するように前記エンジンを運転することで、前記燃料効率点導出手段で求められた運転点に基づいて前記エンジンを運転して前記発電機の発電を制御する発電制御手段と
前記ハイブリッド車両の走行場所の高度を検出する高度検出手段とを備え、
前記発電制御手段は、
前記充電状況検出手段で検出される充電割合が所定充電割合以下の際に、前記発電機の発電制御を実行し
前記高度検出手段で検出される前記ハイブリッド車両の走行場所の高度が基準となる高度よりも高い時の前記発電電力の増加量が、基準となる高度の時の前記発電電力の増加量に比べて少なく設定され、
高度が基準となる高度よりも高い時の前記発電電力の単位時間あたりの増加量を少なくし、高度が基準となる高度よりも高い時の充電時の充電割合の経時変化の傾きを、基準となる高度の時に比べて小さくする
ことを特徴とするハイブリッド車両の制御装置。
A traveling motor that transmits driving force to the driving wheels;
A battery for supplying electric power to the traveling motor;
A control device for a hybrid vehicle, which is driven by the operation of an engine and has a generator for generating required power including at least power to be supplied to the battery,
Charging status detection means for detecting the charging status of the battery;
Fuel efficiency point deriving means for obtaining an operating point with good fuel consumption efficiency based on the rotational speed and torque of the engine;
By operating the engine so that the generated power increases with respect to the required power, the engine is operated based on the operating point obtained by the fuel efficiency point deriving means to control the power generation of the generator. Power generation control means ;
Altitude detecting means for detecting the altitude of the travel location of the hybrid vehicle,
The power generation control means includes
When the charging rate detected by the charging status detection means is equal to or lower than a predetermined charging rate, the power generation control of the generator is executed ,
The increase amount of the generated power when the altitude of the traveling location of the hybrid vehicle detected by the altitude detection means is higher than the reference altitude is larger than the increase amount of the generated power at the reference altitude. Set less,
The amount of increase in the generated power per unit time when the altitude is higher than the standard altitude is reduced, and the slope of the change over time in the charging rate when charging when the altitude is higher than the standard altitude A control device for a hybrid vehicle, which is smaller than that at an altitude .
請求項1に記載のハイブリッド車両の制御装置において、
前記発電制御手段は、
前記走行用モータを前記ハイブリッド車両の走行動力源とすると共に、前記エンジンにより前記発電機を駆動させて前記バッテリ及び前記走行用モータの少なくとも一方に電力を供給するシリーズモードの時に、前記発電機の発電制御を実行する
ことを特徴とするハイブリッド車両の制御装置。
In the hybrid vehicle control device according to claim 1 ,
The power generation control means includes
In the series mode in which the driving motor is used as a driving power source of the hybrid vehicle and the generator is driven by the engine to supply power to at least one of the battery and the driving motor. A control apparatus for a hybrid vehicle, characterized by executing power generation control.
JP2015042854A 2015-03-04 2015-03-04 Control device for hybrid vehicle Active JP6471860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015042854A JP6471860B2 (en) 2015-03-04 2015-03-04 Control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015042854A JP6471860B2 (en) 2015-03-04 2015-03-04 Control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2016159859A JP2016159859A (en) 2016-09-05
JP6471860B2 true JP6471860B2 (en) 2019-02-20

Family

ID=56844429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015042854A Active JP6471860B2 (en) 2015-03-04 2015-03-04 Control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP6471860B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3725615B1 (en) 2017-12-15 2023-02-08 Nissan Motor Co., Ltd. Method and device for controlling hybrid vehicle
JP7003777B2 (en) 2018-03-23 2022-01-21 トヨタ自動車株式会社 Hybrid vehicle control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2937008B2 (en) * 1994-04-13 1999-08-23 三菱自動車工業株式会社 Hybrid vehicle engine control device
JP2011011648A (en) * 2009-07-02 2011-01-20 Honda Motor Co Ltd Control device of hybrid vehicle
EP2631101B1 (en) * 2012-02-22 2016-06-08 MAGNA STEYR Fahrzeugtechnik AG & Co KG Hybrid drive

Also Published As

Publication number Publication date
JP2016159859A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6471859B2 (en) Control device for hybrid vehicle
KR101836693B1 (en) Apparatus and method for controlling torque intervention of hybrid vehicle
JP4291823B2 (en) Vehicle control device
CN109624962B (en) Hybrid vehicle
JP2017178056A (en) Vehicular travel drive apparatus
JP6274386B2 (en) Hybrid vehicle engine operation control device
KR101360051B1 (en) Torque intervention system for green car and method thereof
KR20160034773A (en) Apparatus and method of controlling motor of electric vehicle for reducing vibration
JP6730668B2 (en) Vehicle drive device
CN111055691B (en) Vehicle brake control device
JP6221944B2 (en) Hybrid vehicle and control method thereof
KR101755467B1 (en) Apparatus and method of controlling motor of electric vehicle for reducing vibration
JP2010141997A (en) Electric vehicle and method of controlling the same
JP2016088440A (en) Hybrid drive vehicle output controller
KR20190073173A (en) Cruise control system and cruise control method for mild hybrid electric vehicle
JP2009154715A (en) Power generation control device
JP6471860B2 (en) Control device for hybrid vehicle
WO2016147406A1 (en) Control apparatus and control method for hybrid vehicle
JP2016005291A (en) vehicle
JP2018154230A (en) Control system of hybrid vehicle
JP2017217944A (en) Hybrid work vehicle and control method of the same
KR101448768B1 (en) Vibration control system foe hybrid electric vehicle and method thereof
JP2013133062A (en) Hybrid vehicle
JP2011239629A (en) Control device for electric vehicle
JPWO2015159724A1 (en) Engine torque assist device and torque assist method using ISG

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190108

R151 Written notification of patent or utility model registration

Ref document number: 6471860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151