JP2014171218A - カラー及びフレームを含む音響共振器 - Google Patents

カラー及びフレームを含む音響共振器 Download PDF

Info

Publication number
JP2014171218A
JP2014171218A JP2014034922A JP2014034922A JP2014171218A JP 2014171218 A JP2014171218 A JP 2014171218A JP 2014034922 A JP2014034922 A JP 2014034922A JP 2014034922 A JP2014034922 A JP 2014034922A JP 2014171218 A JP2014171218 A JP 2014171218A
Authority
JP
Japan
Prior art keywords
frame
electrode
acoustic resonator
acoustic
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014034922A
Other languages
English (en)
Inventor
Burak Dariusz
ダリウス・ブラク
John Choy
ジョン・チョイ
Shirakawa Alexandre
アレキサンドル・シラカワ
Nickel Phil
フィル・ニッケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Avago Technologies General IP Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/781,491 external-priority patent/US9490771B2/en
Application filed by Avago Technologies General IP Singapore Pte Ltd filed Critical Avago Technologies General IP Singapore Pte Ltd
Publication of JP2014171218A publication Critical patent/JP2014171218A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】音響共振器の性能の改善
【解決手段】音響共振器構造体は、基板の上に配置された第1の電極と、第1の電極の上に配置された圧電層と、圧電層の上に配置された第2の電極と、第1の電極、圧電層及び第2の電極の間の重なり部分により画定された主膜領域内に配置され、且つ主膜領域の境界と実質的にそろえられた外側エッジを含むフレームと、フレームから離れて形成され、主膜領域の外側に配置され、且つ主膜領域の境界と実質的にそろえられた又は主膜領域と部分的に重なる内側エッジを有するカラーとを含む。
【選択図】図1B

Description

本発明は、カラー及びフレームを含む音響共振器に関する。
関連出願に対する相互参照
本出願は、2012年10月29日に出願され、「Acoustic Resonator Having Collar Structure」と題する、共同所有された米国特許出願第13/663,449号の、米国特許法施行規則(37CFR)セクション1.53(b)に従う一部継続出願であり、その内容は参照により本明細書に組み込まれる。
音響共振器は、様々な電子応用形態において信号処理機能を実現するために使用され得る。例えば、幾つかの携帯電話および他の通信デバイスは、音響共振器を用いて、送信信号および/または受信信号の周波数フィルタを実現する。様々な応用形態に従って、幾つかの異なるタイプの音響共振器が使用されることができ、実例には、圧電薄膜共振器(FBAR:Film Bulk Acoustic Resonator)のようなバルク音響波(BAW:bulk acoustic wave)共振器、結合共振器フィルタ(CRF:coupled resonator filter)、二重バルク音響共振器(DBAR:Double Bulk Acoustic Resonator)、及びソリッドマウント共振器(SMR:Solidly Mounted Resonator)が含まれる。
音響共振器は一般に、音響スタックと呼ばれる構造体において2つの平板電極の間に挟まれた圧電材料の層を含む。入力電気信号が電極間に印加される場合、逆圧電効果により、音響スタックは圧電材料の分極に依存して機械的に膨張または収縮する。入力電気信号が時間と共に変化する場合、音響スタックの膨張および収縮は音波を生成し、当該音波は、様々な方向に音響共振器を通して伝播し、圧電効果により出力電気信号へ変換される。音波の一部は音響スタックを横切って共振を達成し、この場合、共振周波数は、音響スタックの材料、寸法、及び動作状態のような要因により決定される。音響共振器のこれら及び他の機械的特性が、その周波数応答を決定する。
一般に、音響共振器は、異なる種類の共振または共振モードの支配を受ける可能性がある異なる横方向領域を含む。これら横方向領域は、非常に大ざっぱに主膜領域および周辺領域として特徴付けられることができ、この場合、主膜領域は、2つの平板電極と圧電材料との間の重なり部分によってほぼ画定され、周辺領域は、主膜領域の外側の領域として画定される。主膜領域は、2つの平板電極間の電場により生成された電気的励起モードを被り、主膜領域および周辺領域の双方は、電気的励起モードのエネルギーの散乱により生成された何らかの微分モード(derivative mode)を被る。電気的励起モードには例えば、主膜領域のエッジにおける境界でもって縦方向の音波により形成されたピストンモードが含まれる。微分モードには例えば、主膜領域のエッジにおいて励起された横方向の音波により形成された横モードが含まれる。
横モードは、主膜領域と周辺領域との間の適切な機械的粒子速度および応力の連続性を容易にする。横モードは、励起の点から自由に伝播する(いわゆる伝播モード)、又は指数関数的に減衰する(いわゆるエバネセント及び複雑モード)ことができる。横モードは、横方向の構造的不連続部(例えば、主膜領域における異なる厚さの領域間の接合部分(interface:界面)、又は上部または下部電極のエッジ)により、又は電場の不連続性(例えば、電場が突然に終了する上部電極のエッジ)により励起され得る。
横モードは一般に、音響共振器の性能に有害な影響を及ぼす。従って、幾つかの音響共振器は、横モードを抑制する、阻止する、又は軽減するように設計された補助的な構造的特徴要素を含む。例えば、境界から発するエバネセントモードの滑らかな減衰を可能にし、且つ機械的動きの主膜領域への閉じ込めを改善するために、カラー(collar:つば)が、主膜領域の境界の外側に誘電体材料により形成され得る。別の例において、電気的に励起されたピストンモードの散乱を上部電極のエッジにおいて最小限にし、且つ機械的動きの主膜領域への閉じ込めを改善するために、フレームが、主膜領域の境界内に導電材料または誘電体材料により形成され得る。
米国特許第6,107,721号 米国特許第5,587,620号 米国特許第5,873,153号 米国特許第6,507,983号 米国特許第6,384,697号 米国特許第7,275,292号 米国特許第7,629,865号 米国特許第7,280,007号 米国特許出願公開第2007/0205850号 米国特許第7,388,454号 米国特許出願公開第2010/0327697号 米国特許出願公開第2010/0327994号 米国特許出願第13/658,024号 米国特許出願第13/663,449号 米国特許出願第13/660,941号 米国特許出願第13/654,718号 米国特許出願公開第2008/0258842号 米国特許第6,548,943号 米国特許第7,345,410号 米国特許第7,358,831号 米国特許出願第13/286,038号 米国特許出願公開第2011/0204996号
これら補助的な構造的特徴要素の従来の具現化形態は、幾つかの潜在的な欠点を有する。例えば、これらの特定の設計に依存して、それらは、それらの利益より勝る可能性があるピストンモードの追加の散乱発生源となる可能性がある。更に、それらは、比較的柔軟な平坦化層のような、音響スタックの音響エネルギーを有害に再分配する可能性がある何らかの追加の材料の存在を必要とする可能性がある。また、幾つかの設計は、適度な性能の改善のみをもたらすことができる一方で、大幅にコストを上昇させる。更に、補助的な構造的特徴要素の形成は、構造的安定性を低下させる、又は上に重なる層の形成を妨げる可能性がある。従って、従来の音響共振器の構造に関するこれら及び他の欠点に鑑みて、改善された音響共振器の設計が一般的に必要とされている。
代表的な実施形態において、音響共振器構造体は、基板の上に配置された第1の電極と、第1の電極の上に配置された圧電層と、圧電層の上に配置された第2の電極と、第1の電極、圧電層、及び第2の電極の間の重なり部分により画定された主膜領域内に配置され、主膜領域の境界と実質的にそろえられた外側エッジを含むフレームと、フレームから離れて形成され、主膜領域の外側に配置され、主膜領域の境界と実質的にそろえられた、又は主膜領域と部分的に重なる内側エッジを有するカラーとを含む。
別の代表的な実施形態において、音響共振器構造体は、第1の電極層と第2の電極層との間に挟まれた圧電層を含み、且つ第1の電極、圧電層、及び第2の電極の間の重なり部分により画定された主膜領域を有する音響スタックと、主膜領域内に配置され、主膜領域の境界と実質的にそろえられた外側エッジを有するフレームと、主膜領域の外側に配置され、主膜領域の境界と実質的にそろえられた又は主膜領域と部分的に重なる内側エッジを有するカラーとを含み、フレーム及びカラーが音響スタックの異なる層に配置される。
例示的な実施形態は、添付図面と共に読まれる場合に以下の詳細な説明から最も良く理解される。様々な特徴要素は必ずしも一律の縮尺に従って描かれていないことが強調される。実際には、寸法は、説明の明瞭化のために適宜拡大または縮小され得る。適用できる及び実用的である場合には、同様の参照符号が同様の要素を表す。
本発明によれば、フレーム及びカラーを用いて主膜領域の全てのスプリアスモード及び主膜領域の外側の伝播モードを抑制することが可能となり、ひいては音響共振器の性能を向上させることが可能になる。
代表的な実施形態による、音響共振器の上面図である。 代表的な実施形態による、音響共振器の断面図である。 別の代表的な実施形態による、音響共振器の断面図である。 別の代表的な実施形態による、音響共振器の断面図である。 別の代表的な実施形態による、音響共振器の断面図である。 別の代表的な実施形態による、音響共振器の断面図である。 別の代表的な実施形態による、音響共振器の断面図である。 別の代表的な実施形態による、音響共振器の断面図である。 別の代表的な実施形態による、音響共振器の断面図である。 別の代表的な実施形態による、音響共振器の断面図である。 別の代表的な実施形態による、音響共振器の断面図である。 別の代表的な実施形態による、音響共振器の断面図である。 別の代表的な実施形態による、音響共振器の断面図である。 様々な代表的な実施形態の音響共振器に使用され得るフレーム構成の4つの異なる例を示す図である。 複合フレームの幅の関数として、カラーを備えない図1Bの音響共振器の並列抵抗Rpを示すグラフである。 複合フレームの幅の関数として、図1Bの音響共振器の並列抵抗Rpを示すグラフである。 カラー及びフレームを備える及び備えない、図1Bの音響共振器の品質係数(quality factor)及び並列抵抗Rpを示すグラフである。 カラー領域の音響分散図を示すグラフである。 直列共振周波数Fsより上の周波数において、図1Bの音響共振器の粒子変位の横方向プロファイルを示すグラフである。 図7Bに示された粒子変位プロファイルにより生じた自己バイアスを示すグラフである。
以下の詳細な説明において、制限ではなく説明を目的として、本教示の完全な理解を提供するために、特定の細部を開示する例示的な実施形態が説明される。しかしながら、本開示の利益を得る当業者には明らかなように、本明細書で開示される特定の細部から逸脱した、本教示による他の実施形態は、依然として添付の特許請求の範囲内にある。更に、例示的な実施形態の説明を不明瞭にしないように、よく知られた装置および方法に関する説明は省略され得る。そのような方法及び装置は、明らかに本教示の範囲内にある。
本明細書で使用される用語は、特定の実施形態の説明のみを目的としており、制限することは意図されていない。定義された用語は、関連する文脈において一般に理解されて許容されるものとして、定義された用語の技術的意味、科学的意味、又は通常の意味に追加される。
用語「1つの(a)」、「1つの(an)」及び「前記(the)」は、文脈で特に明示しない限り、単一の対象、及び複数の対象の双方を含む。このため、例えば、「1つのデバイス(a device)」は、1つのデバイス及び複数のデバイスを含む。用語「実質的な」又は「実質的に」は、許容可能な限界内または又は程度内を意味する。用語「約」は、当業者にとって許容可能な限界内または量内を意味する。「上に」、「下に」、「上部」、「下部」、「上側」、及び「下側」のような相対的な用語は、添付図面に示されたような様々な要素の相互の関係を説明するために使用され得る。これらの相対的な用語は、図面に示された向きに加えて、デバイス及び/又は要素の異なる向きを包含するることが意図されている。例えば、デバイスが図面の表示に対して反転された場合、例えば、別の要素の「上に」と説明された要素は、その要素の「下に」あることになる。第1のデバイスが第2のデバイスに接続される又は結合されると言われる場合、これは、1つ又は複数の介在デバイスを利用して2つのデバイスを互いに接続することができる例を包含する。対照的に、第1のデバイスが第2のデバイスに直接的に接続または直接的に結合されると言われる場合、これは、電気コネクタ(例えば、ワイヤ、ボンディング材料など)以外の任意の介在デバイスなしに2つのデバイスが互いに接続される例を包含する。
本教示は一般に、圧電薄膜共振器(FBAR)又はソリッドマウント共振器(SMR)のような音響共振器に関する。材料および製造方法を含む音響共振器の特定の細部は、以下の共同所有された米国特許および米国特許出願、即ちLakinに対する特許文献1、Ruby他に対する特許文献2、特許文献3、特許文献4、特許文献5、特許文献6及び特許文献7、Feng他に対する特許文献8、Jamneala他に対する特許文献9、Ruby他に対する特許文献10、Choy他に対する特許文献11、Choy他に対する特許文献12、Nikkel他に対する特許文献13、Burak他に対する特許文献14、Burak他に対する特許文献15、Burak他に対する特許文献16、Ruby他に対する特許文献17、及びKaitila他に対する特許文献18の1つ又は複数に見出され得る。これら特許および特許出願の開示は特に、参照により本明細書に組み込まれる。これら特許および特許出願において説明されたコンポーネント、材料、及び製造方法は、代表的であり、他の製造方法および材料は当業者が企図する範囲内であることが強調される。
後述される特定の実施形態において、音響共振器は、上部電極と下部電極との間に配置された圧電層、主膜領域の外側に配置されたカラー(collar:つば)、及び主膜領域内に配置されたフレームを含む。カラーは一般に、主膜領域の境界と実質的にそろえられた又は主膜領域に多少部分的に重なる内側エッジを有し、フレームは一般に、主膜領域の境界と実質的にそろえられた外側エッジを有する。
カラーは通常、有限の幅の比較的厚い誘電体領域から形成され、それは、上部電極の上、下部電極の下、又は下部電極と圧電層との間のような、様々な選択的位置に配置され得る。また、カラーは、幾つかの層に分割されて、2箇所以上の上記の位置に形成されてもよい。また、カラーは、音響共振器の他の特徴要素の内部に、例えば圧電層の内部に形成されてもよい。カラーの上および下の音響共振器の領域は、カラー領域と呼ぶ。
カラーは一般に、そのカットオフ周波数が主膜領域のカットオフ周波数と実質的に同じであり、その主な非伝播モード(例えば、エバネセントモード)が主膜領域のピストンモードと実質的に同じモード分布を有するように設計される。これは、ピストンモードの音響エネルギーがカラー領域において不要な伝播モードへ、並びに主膜領域において伝播およびエバネセントモードへ変換されることを防止する。励起される場合、カラー領域の伝播モードは一般に、音響共振器の外側の領域への音響放射に起因してエネルギー損失につながる可能性がある。同様に、励起される場合、主膜領域の内側の伝播およびエバネセントモードは一般に、横方向の電流およびジュール加熱に起因したエネルギー損失につながる可能性がある、横方向の電圧勾配を生じる可能性がある。かくして、カラーは、主膜領域の内側および外側での不要なスプリアス横モードの励起を抑制しながら、主膜領域内でのピストンモードの閉じ込めを改善することができる。その結果として、これは、全体的な音響散乱損失を低減し、音響共振器の並列抵抗Rp及び品質係数Qを向上させることができる。
カラーが存在しない場合、電気的に励起されたピストンモードに関して上部電極のエッジにおいて著しい音響インピーダンスの不連続性が存在する可能性がある。電場も上部電極のエッジにおいて終了するので、そのエッジは、主膜領域の内側および外側の双方の構造体によりサポートされた機械的および電気的励起のエバネセント、伝播および複雑モードを生じる。かくして、適切に設計されたカラーの存在下で、上部電極エッジにおけるピストンモードエネルギーの大部分は、カラー領域のエバネセントモードに結合することができ、次いで十分に広いカラー構造体の内側で指数関数的に減衰して効率的に抑制され得る。更に、幾つかの伝播モードは、適切な幅でカラー構造体を形成することにより抑制され得る。
フレームが、上部または下部電極に材料の層、通常は導電材料(しかし、誘電体材料もまた可能である)の層を追加することにより形成される。フレームは、複合フレーム又はアドオンフレームとすることができる。アドオンフレームは、主膜領域の周辺部に沿って下部または上部電極を形成する層の上または下に材料を堆積することにより形成される。複合フレームは、一般に上部または下部電極の上面または下面と同一平面である露出した上面または下面を備える上部または下部電極内に材料を埋め込むことにより形成される。複合フレームの使用は、平面上に層を付加することに関して音響共振器の製造を簡素化することができる。例えば、それは、上に重なる層において突出部分の形成を防止することができ、音響共振器の構造的安定性を保持することができる。フレームの上および下の音響共振器の領域は総称して、フレーム領域と呼ぶ。
フレームは一般に、電気的に励起されたピストンモードをフレーム領域において抑制し、及びフレームは反射し、そうでなければ横方向において伝播固有モードを共振的に抑制し、双方は、結果として音響共振器の動作を同時に改善することをもたらす。これは、一般にフレームが存在することにより、カットオフ周波数の不整合、及びフレーム領域と主膜領域の他の部分との間の音響インピーダンスの不整合の少なくとも1つを生じるからである。主膜領域と比べてフレーム領域のカットオフ周波数を下げるフレームは、低速フレーム(Low Velocity Frame)又はLVFと呼び、当該カットオフ周波数を上げるフレームは高速フレーム(High Velocity Frame)又はHVFと呼ぶ。この用語の背後にある論法は、複合フレーム(フレームと主膜領域の厚さが実質的に同じ)について、カットオフ周波数の増加または減少がそれぞれ、フレームを形成するスタックの有効な音速の増加または減少に実質的に等しいことである。
主膜の対応する音速より低い音速を有する複合またはアドオンフレーム(即ち、LVF)は一般に、主膜領域のカットオフ周波数より上で音響共振器の並列抵抗Rp及び品質係数Qを増加させる。逆に、主膜の対応する音速より高い音速を有する複合またはアドオンフレーム(即ち、HVF)は一般に、主膜領域のカットオフ周波数より下で音響共振器の直列抵抗Rsを減少させて品質係数Qを増加させる。例えば、典型的な低速フレームは、主膜領域より大幅に低いカットオフ周波数を有する領域を有効に提供し、それ故に図7Bに関連して更に詳細に後述されるように、フレーム領域の上部電極のエッジに向かう電気的に励起されたピストンモードの振幅を最小化する。更に、それは、伝播固有モードの反射を増大させる2つの界面(インピーダンス不整合平面)を提供する。これら伝播固有モードは、膜/フレームの界面(interface:接合部分)において機械的に励起され、上部電極のエッジにおいて機械的および電気的に励起される。フレームの幅が所与の固有モードに対して適切に設計されている場合、その特定の固有モードに関して共振的に強化された抑制という結果になる。更に、十分に広い低速フレームは、伝播固有モードと類似したメカニズムにより励起されるエバネセント及び複雑モードの滑らかな減衰の領域を提供する。上記の効果の組み合わせは、より良好なエネルギー閉じ込め、及び並列共振周波数Fpにおいてより高い品質係数Qを生じる。
カラー及びフレーム、並びに関連する材料および動作特性の様々な例が、上記のBurak他に対する特許文献14及び特許文献15に説明されている。これらの特許文献に説明されているように、カラー及びフレームは、音響スタックの電極および圧電層のような音響共振器の他の部分に対して様々な選択的位置および構成で配置され得る。更に、これらの寸法、材料、相対位置などは、目標共振周波数、直列抵抗Rs、並列抵抗Rp又は電気機械結合係数Ktのような特定の設計目標を達成するために調整され得る。以下の説明はFBARデバイスの形態で幾つかの実施形態を提供するが、説明される概念の幾つかは、例えばSMRのような他の形態の音響共振器で具現化され得る。
図1Aは、代表的な実施形態による音響共振器100の上面図であり、図1B〜図1Eは、線A−A’に沿った音響共振器100の断面図である。断面図は、音響共振器100の異なる変形態様に対応し、それぞれ音響共振器100B〜100Eと呼ばれる。音響共振器100B〜100Eは、多くの同じ特徴要素を有し、そのためこれら特徴要素の個々の説明は、冗長性を避けるために省略され得る。
図1Aを参照すると、音響共振器100は、5つの側部を有する上部電極135を含み、相互接続部102に電気接続を提供するように構成された接続用側部101を有する。相互接続部102は、上部電極135に電気信号を提供し、音響共振器100の圧電層(図1Aに示されず)に所望の音波を励起する。
図1Bを参照すると、音響共振器100Bは、空気キャビティ110を有する基板105、空気キャビティ110をおおって基板105上に配置された下部電極115、下部電極115に隣接して基板105上に配置された第1の平坦化層120、下部電極115及び第1の平坦化層120の上に配置された圧電層125、圧電層125上に配置された上部電極135、上部電極135に隣接して圧電層125上に配置された第2の平坦化層130を含む。ひとまとめにして、下部電極115、圧電層125及び上部電極135は音響共振器100Bの音響スタックを構成する。音響共振器100Bは更に、第2の平坦化層130及び上部電極135の上に配置されたカラー140、及び上部電極135の下側部分に配置されたフレーム145を含む。図示されていないけれども、パッシベーション層が上部電極135の上部に存在することができ、その厚さは、湿気、腐食、汚染物質、破片などからの保護を含む、環境から音響スタックの全ての層を隔離するのに十分である。
基板105は、例えば、シリコン(Si)、ガリウムヒ素(GaAs)、リン化インジウム(InP)、ガラス、サファイア、アルミナ等のような、半導体プロセスと適合する材料から形成され得る。基板の空気キャビティに関する様々な例示的な製造技術が、Grannen他に対する特許文献19(2008年3月18日)により説明され、音響ミラーに関する様々な例示的な製造技術が、Larson III他に対する特許文献20(2008年4月15日)により説明されており、それらは参照により全体として本明細書に組み込まれる。基板105が空気キャビティ110と共に示されるが、それは代案として、例えば分布ブラグ反射器のような音響反射器を含むことができる。
第1及び第2の平坦化層120と130は一般に、例えばホウケイ酸ガラス(BSG)から形成される。第1の平坦化層120は、FBAR100Bの機能に厳密に必要とされないが、その存在は様々な利点を与えることができる。例えば、下部平坦化層120の存在は、FBAR100Bの構造的安定性を改善する傾向があり、後続の層の成長の品質を改善することができ、下部電極115が空気キャビティ110を越えて延びるそのエッジを有さずに形成されることを可能にすることができる。更なる平坦化の潜在的な利点の例は、2011年10月31日に出願された特許文献21で提供されており、その内容は参照により本明細書に組み込まれる。下部および上部電極115と135は一般に、タングステン(W)、モリブデン(Mo)、銅(Cu)又はアルミニウム(Al)のような1つ又は複数の導電金属材料から形成される。これらの電極は、同じ又は異なる材料から形成され得る。カラー140は一般に、例えば二酸化ケイ素(SiO)、窒化ケイ素(SiN)、炭化ケイ素(SiC)、窒化アルミニウム(AlN)、酸化亜鉛(ZnO)、酸化アルミニウム(Al)、ダイヤモンド、ダイヤモンド状炭素(DLC)、又はチタン酸ジルコン酸鉛(PZT)のような誘電体材料から形成される。フレーム145は一般に、例えばW、Mo、Cu、SiO、SiN、AlN、ZnO、Al、DLC、又はSiCのような1つ又は複数の導電材料または誘電体材料から形成される。圧電層125は、例えばZnO、AlN、又はPZTのような圧電材料の薄膜から形成され得る。本教示の範囲から逸脱せずに、他の材料が、音響共振器100Bのこれら及び他の特徴要素へ組み込まれ得る。
両矢印112は、音響共振器100Bの主膜領域または活性領域を示し、垂直の点線は、主膜領域の境界を示す。この境界は、主膜領域の境界を越えて延在する接続用側部101を除いて、上部電極135のエッジと一致する。両矢印114と116は、音響共振器100Bの個々のカラー領域およびフレーム領域を示し、対応する垂直の点線はこれら領域の境界を示す。図1Aのように上側の角度から見られる場合、上部領域およびそれらの境界は、アポダイズされた形状(apodized shape)を有することができる。図1Bに示されたように、カラー140は、主膜領域の境界と実質的にそろえられた内側エッジを有し、フレーム145は、主膜領域の境界と実質的にそろえられた外側エッジを有する。
図1Bの例において、主膜領域は、下部および上部電極115及び135と圧電層125との間の重なり部分の最大限の範囲を含んでいない。その理由は、図示された上部電極135の右側が接続エッジであり、何らかの著しい方法で音響共振器100Bの動作周波数範囲において特性電気インピーダンスを変更することが意図されていないからである。しかしながら、上部電極接続エッジにおける下部電極115、圧電層125、上部電極135、及び基板105の間の重なり部分は通常、「デッド(dead:死んだ)FBAR」と呼ばれ、その領域においてピストンモードが空気キャビティ110の外周囲までずっと電気的に励起され、当該領域においてそれが基板105の領域によりサポートされる伝播モードに結合することができるので、大幅な音響エネルギーの損失を生じる可能性がある。その領域にカラー140が存在することは、上部電極接続エッジを質量負荷することによってその不要なエネルギー損失を最小限に抑えることができ、その結果として、電気的に励起されたピストンモードの振幅を空気キャビティ110の外側エッジにおいて大幅に低下させる。
例えば、はしご型フィルタの一部として、音響共振器100Bの典型的な動作中、入力電気信号が、下部電極115の入力端子に印加されることができ、上部電極135は出力端子に接続され得る。入力電気信号は一般に、主膜領域に振動を生じる時間的に変化する電圧からなる。次いで、この振動は、上部電極135の出力端子において出力電気信号をもたらす。入力および出力端子は、図1Bに示されたような主膜領域から離れて延在する接続エッジを介して、下部および上部電極115と135に接続され得る。例えば、上面図から、これら接続エッジは、図1Aに示されたようなアポダイズされた五角形の外側に延在するように看取され得る。音響共振器100Bの入力および出力端子は、例えば、はしご型フィルタを形成する他の音響共振器の適切な端子に接続され得る。
電気的に励起されたピストンモードは、上部電極135のエッジにおいて終了する。上部電極135のエッジにおけるこの構造的不連続性は、主膜領域と周辺領域との間でカットオフ周波数の著しい不連続性を与え、それにより、主膜領域と周辺領域の双方における横モードの励起が、これら双方の領域間の界面において適切な粒子速度および応力成分の連続性を容易にする。これは、ピストンモードからの音響エネルギーの望ましくない散乱、及び音響共振器100Bの電気応答の結果としての劣化につながる可能性がある。しかしながら、カラー140は、主膜領域の外側のカットオフ周波数を低下させる質量負荷を提供し、音響共振器100Bにわたって、より横方向に均一なカットオフ周波数のプロファイルをもたらす。同様に、フレーム145は、電気的に励起されたピストンモードをフレーム領域において抑制し、及びフレーム145は反射し、そうでなければ横方向において伝播(エバネセント及び複雑)固有モードを共振的(指数関数的)に抑制し、双方は、音響共振器100Bの動作を同時に改善することをもたらす。言い換えれば、音響共振器100Bの性能改善は、カットオフ周波数の不整合、及びフレーム領域とフレーム145により生じた主膜領域の他の部分との間の音響インピーダンスの不整合の少なくとも1つにより、容易にされる。
図1C、図1D、及び図1Eを参照すると、音響共振器100Cは、フレーム145が省かれて、下部電極115の下側部分に配置されたフレーム150に置き換えられていることを除いて、音響共振器100Bと実質的に同じである。音響共振器100Dは、フレーム145及び150の双方が存在することを除いて、音響共振器100Bと実質的に同じである。音響共振器100Eは、フレーム150がフレーム150’に置き換えられていることを除いて、音響共振器100Dと実質的に同じであり、フレーム150’は、下部電極115の下側部分ではなくて上側部分に配置される。音響共振器100C〜100Eのフレームは、音響共振器100Bのフレーム145に類似した利点を提供するが、これらの性能および製造プロセスは、フレームの異なる位置に起因して音響共振器100Bとは多少異なる。異なるフレーム構成の幾つかの一般的なトレードオフが、例えば上記の特許文献15に説明されている。
図2A〜図2Dは、更に他の代表的な実施形態による音響共振器200A〜200Dの断面図である。これらの音響共振器はそれぞれ、カラー140が省かれて代わりにカラー205が下部電極115と圧電層125との間に形成されていることを除いて、音響共振器100B〜100Eと実質的に同じである。カラー205は、音響共振器100B〜100Eのカラー140と類似した利点を提供するが、その性能および製造は、カラー205の異なる位置に起因して多少異なる。留意すべきは、例示ために、音響共振器200A〜200Dの下部電極115に形成された複合フレームは、音響共振器100B〜100Eの下部電極のフレームとは異なって構築される。図2A、図2C及び図2Dの上部電極は、2つの異なる金属材料からなる。また、図2B、図2C及び図2Dの下部電極も、2つの異なる金属材料からなる。図2A〜図2Dに示されたように、フレームは、個々の電極において、第1の電極材料を第2の電極材料へ埋め込むことにより形成される。異なるフレーム構成の幾つかの一般的なトレードオフが、例えば上記の特許文献14に説明されている。
図3A〜図3Dは、更に他の代表的な実施形態による音響共振器300A〜300Dの断面図である。これらの音響共振器はそれぞれ、カラー140が省かれて代わりにカラー305が下部電極115と基板層105との間に形成されていることを除いて、音響共振器100B〜100Eと実質的に同じである。言い換えれば、カラー305は下部電極115の下に形成される。同様に、カラー205、カラー305は、音響共振器100B〜100Eのカラー140と類似した利点を提供するが、その性能および製造は、カラー305の異なる位置に起因して多少異なる。全てのフレームが複合フレームである音響共振器100B〜200Dとは異なり、図3A、図3C及び図3Dにそれぞれ示された音響共振器300A、300C及び300Dの上部電極135のフレームは、アドオンフレームである。そのようなフレームは、音響共振器300A、300C及び300Dにおいて実質的に非平面の上部電極135の外形という結果になる。一般に、通常パッシベーション層のみが上部電極135上に形成されるので、このような上部電極135の非平面の外形は、音響共振器300A、300C及び300Dの構造的頑強性に何らかの著しい影響を及ぼすことはない。一方で、複合フレームが音響共振器300B、300C及び300Dの下部電極115に形成される。そのような実質的に平面のフレームは、下部電極115の上に高品質で空隙のない圧電層125及び上部電極層135を形成するために、下部電極115に好ましい。異なるフレーム構成の幾つかの追加の一般的なトレードオフが、例えば上記の特許文献14に説明されている。
図4は、様々な代表的な実施形態の音響共振器に使用され得るフレーム構成の4つの異なる例を示す図である。これらの例は、フレームの個々の影響を示すためにカラーを備えずに示されるが、説明される実施形態は一般に、図1〜図3に示されたようなカラーと組み合わせてこれらフレームを使用する。これらフレームの構成は、フレームの幾何学的配置および材料の双方が音響共振器の動作に如何にして影響を及ぼすかを示すために、以下の表1と共に説明される。より具体的には、以下の説明は、これらの異なるフレームの幾何学的配置および材料を使用することが、フレーム領域の内側の主膜領域の部分に対してフレーム領域のカットオフ周波数を如何にして上昇させる又は下降させることができるかを説明する。
図4を参照すると、4つの異なるフレーム構成400A〜400Dは、上部電極の上側部分または下側部分の何れかに形成された複合フレーム又はアドオンフレームを含む。構成400Aは、上部電極135の上部に形成された複合フレームを含み、構成400Bは、上部電極135の上部に形成されたアドオンフレームを含み、構成400Cは、上部電極135の下に形成された複合フレームを含み、構成400Dは、上部電極135の下に形成されたアドオンフレームを含む。他の実施形態に関連して上述されたように、複合フレームにより、上部電極は平面の上側表面で形成されることが可能になるが、アドオンフレームでは不可能である。アドオンフレームは一般に、複合フレームよりも製造することは容易であるが、アドオンフレームは一般に、上に重なる層に突出部分(例えば、構成400Bのパッシベーション層405、並びに構成400Dの上部電極135及びパッシベーション層405)を生じさせ、それは、数ある中でも音響共振器の機械的頑強性を低減する可能性がある。
例示された構成のそれぞれにおいて、下部電極は、約380nm(3800Å)の厚さでMoから形成され、圧電層は、約930nm(9300Å)の厚さでAlNから形成され、上部電極は、約325nm(3250Å)の厚さでMoから形成され、パッシベーション層は、約200nm(2000Å)の厚さでAlNから形成される。フレームのそれぞれは、約50nm(500Å)の厚さで形成される。
表1は、様々な異なる材料の制限しないセットでもって形成されたフレームの構成400A〜400Dの一般的な挙動を示す。表1において、略語LVFは、「低速フレーム」を表し、フレーム領域のカットオフ周波数(FSF)がフレーム領域の内側に位置する主膜領域の部分のカットオフ周波数(FSM)より低いことを示す(FSF<FSM)。同様に、略語HVFは、「高速フレーム」を表し、フレーム領域のカットオフ周波数(FSF)が主膜領域のカットオフ周波数(FSM)より高いことを示す(FSF>FSM)。好都合に参照するために、これら個々の材料の正規化音響インピーダンス(Za)及び正規化音速(V)を示して、異なる構成のこれら変化するものとカットオフ周波数のシフトとの間の関係を示す。構成400A〜400Dの例における上部電極がMoから形成されているので、音響インピーダンス及び音速は、音響インピーダンス及び音速の対応するMo値に関して正規化された。表1において、CDOは、炭素ドープド酸化ケイ素を表し、BSGは、ホウ素ドープド酸化ケイ素を表し、HZa−SiCは、高音響インピーダンスのスパッタリングされたSiCを表し、LZa−SiCは、CVDにより成長された低音響インピーダンスのSiCを表し、及びBeはベリリウムを表す。これらの材料の幾つかを如何にして成長させて使用するかの例、特にCDOは、Steve Gilbert他に対する特許文献22に開示されており、その内容は参照により本明細書に組み込まれる。BSGを如何にして成長させて使用するかの例は、Gannen他に対する上記特許文献19(2008年3月18日)に開示されている。
Figure 2014171218
表1に示されているように、アドオンフレームを有する構成400B及び400Dは、フレームに使用される材料に関係なく、低速フレームの挙動を生じる。これは、アドオンフレームの領域においてスタックがより厚く、スタックの上側と下側との間のより長い往復時間につながり、その領域においてカットオフ周波数を効果的に低下させるからである。一方で、構成400A及び400Cは、スタックのフレームの位置、並びにフレームを形成するために使用される材料の音響インピーダンス及び音速に依存して、低速フレーム又は高速フレームの挙動を生じる。一般に、フレームが上部電極135の上に配置される構成400Aの場合、高速フレームの挙動が、W及びCDOを除いて、表1に示された全材料に関して生じた。留意すべきは、2つの材料はMoよりも低い音速を有し、そのためフレーム領域の有効な音速が主膜領域においてよりも低くなり、それが低速フレームの挙動を生じる理由である。全ての他の材料はMoよりも高い音速を有し、それ故に等しい厚さのMo層を置き換えると、それらは高速フレームの挙動を生じる。フレームが上部電極135の下に位置する構成400Cの場合、HZa−SiC及びBeを除いて、表1に示された全ての材料に関して低速フレームの挙動が生じた。留意すべきは、W及びCDOのみがMoよりも低い音速を有し、それは構成400Aに関して予想される低速フレームの挙動につながる。W及びCDO以外のフレーム材料に関して低速フレームの挙動の理由は、構成400Cに示された典型的なスタックについて、Moから形成された下部電極115及び上部電極135の厚み及び音響インピーダンスにより決定される特定量である約70〜90%のエネルギーが圧電層125に閉じ込められるからである。圧電層125に隣接して配置された低音響インピーダンス材料から形成されたフレームは、圧電層125に閉じ込められたより多くのエネルギーがスタックの上部へ貫通することを可能にし、かくしてスタックに存在する全材料からの速度の重み付けされた合計に対して上部Mo及びフレーム層の速度の寄与が増大される。Moの音速がAlNの音速より約40%低いので(表1を作成するために使用された特定のスタックの例において)、音響スタックの全体的な周波数はシフトダウンし、低速フレームをもたらす。これは特に、フレーム材料の音速がMoの音速に匹敵する又はそれより低い(例えば、Al、CDO、BSG、LZa−SiCに関してのような)材料について明白である。しかしながら、Be及びHZa−SiCの双方がMoの音速よりも大幅に大きい音速を有するので、それらの寄与は、フレーム領域の有効なスタック速度の正味の増加を生じ、高速フレームの挙動をもたらす。当業者には理解されるべきであるように、表1に提示された挙動は、特定の成長条件、機器および技術に依存して変化する可能性があるシミュレーションで使用された材料特性に強く依存し、それ故に表1の結果は例示の目的のためだけに示されている。また、当業者には理解されるべきであるように、異なる設計、厚さ、及び構成400A及び400Cの音響スタックを形成するために使用された材料のセットについて、異なる挙動が得られる場合もある。
図5Aは、フレーム145の幅の関数として、カラー140及び第2の平坦化層130を備えない音響共振器100Bのシミュレートされた並列抵抗Rpを示すグラフであり、図5Bは、フレーム145の幅の関数として、カラー140及び第2の平坦化層130を備える同じ音響共振器の並列抵抗を示すグラフである。図5A及び図5Bの例において、下部電極115は、約380nm(3800Å)の厚さでMoから形成され、圧電層125は、約930nm(9300Å)の厚さでAlNから形成され、上部電極135は、約325nm(3250Å)の厚さでMoから形成され、パッシベーション層は、約200nm(2000Å)の厚さでAlNから形成される。カラー140は、約11.5μmの幅で、約450nm(4500Å)の厚さでスパッタリングされたSiCから形成される。
図5A及び図5Bを参照すると、4つの曲線C1〜C4は、4つの異なるシミュレーションに対応する。これら異なるシミュレーションにおいて、フレーム145は、35nm(350Å)、50nm(500Å)、100nm(1000Å)、及び200nm(2000Å)の個々の厚さでAlから形成される。図5A及び図5Bの双方の曲線により示されるように、フレーム145の追加(フレームの幅>0)は、カラー140を備える及び備えない、音響共振器100Bの並列抵抗Rpを改善する傾向にある。改善の大きさは、フレーム145の幅の周期関数として変化し、それは、フレーム145の幅が増加するにつれて一般に増加する傾向にある。更に、最も大きい幅のフレーム145について、Rpの値は、例えば曲線C1及びC2により示されるように、フレーム145のより薄いバージョンに関してより高くなる傾向がある。
任意のフレームを備えずに、カラー140を追加することは、Rpを約4倍、即ち約500オーム(図5A、フレーム幅0)から約2000オーム(図5B、フレーム幅=0)に増やす。カラー140及びフレーム145の双方を有することは、Rpに相加効果を有し、約550オーム(図5A、フレーム幅=0)から最高のシミュレートされたカラー/フレーム設計の約3600オーム(図5B、曲線C1、フレーム幅=3.25μm)までのトータルで約6倍の増加を生じる。図7Bに関連して後述されるように、この追加の改善は一般に、フレーム領域と主膜領域の内側部分との間の界面およびフレーム領域とカラー領域との間の界面においてピストンモードの散乱損失の最小化に起因することができ、ピストンモードの散乱の結果として励起された伝播モードの改善された抑制にも起因することができる。
図6は、カラー140及びフレーム145を備える及び備えない音響共振器100Bのシミュレートされた品質係数Q及び並列抵抗Rpを示すグラフである。カラー140、第2の平坦化層130及びフレーム145を備えない音響共振器のバージョンは、「裸の共振器」と呼ぶ。このグラフの目的は、カラー140及びフレーム145の追加の結果として生じる音響共振器100Bの通過帯域の性能変化を示すことである。
図6の例において、音響共振器100Bの寸法は、高いRpのために調整された。特に、下部電極115は約380nm(3800Å)の厚さでMoから形成され、圧電層125は、約930nm(9300Å)の厚さでAlNから形成され、上部電極135は、約325nm(3250Å)の厚さでMoから形成され、パッシベーション層は、約200nm(2000Å)の厚さでAlNから形成される。カラー140は、約11.5μmの幅で、約450nm(4500Å)の厚さでスパッタリングされたSiCから形成され、フレーム145は、約3.25μmの幅で、約35nm(350Å)の厚さでAlから形成される。特に、音響共振器100Bの設計は、デバイスC1について図5Bに示された最も高いシミュレートされたRp値に対応するものと同じである。
図6を参照すると、品質係数Qが左側のy軸により表され、Rpが右側のy軸により表される。品質係数Q及びRpの値が入力信号の周波数の関数として示される。
第1の曲線C1は裸の共振器の品質係数Qを示し、第2の曲線C2は音響共振器100Bの品質係数Qを示す。第3の曲線C3は裸の共振器のRpの値を示し、第4の曲線C4は音響共振器100BのRpの値を示す。より具体的には、曲線C3及びC4は、音響共振器100Bの複素数値電気インピーダンスの大きさを示す。並列共振周波数Fpにおいて、電気インピーダンスは、ほぼ実数値になり、電気インピーダンスの大きさのピーク値は、並列抵抗Rpを示す。
品質係数Qのピーク値は、デバイスのそれぞれについて約1.925GHzで生じる。この周波数は、個々のデバイスの直列共振周波数Fsに対応する。同様に、Rpのピーク値は、2つのデバイスのそれぞれについて約1.968GHzで生じる。この周波数は、個々のデバイスの並列共振周波数Fpに対応する。これらデバイスの帯域幅は、これら個々の値のFsとFpとの間の周波数範囲に対応する。従って、この例において、2つのデバイスは同様の帯域幅を有する。
Fsより上の周波数において、音響共振器100Bは、裸の共振器よりも大幅に高い品質係数Qを有する。更に、第3及び第4の曲線C3とC4の個々のピークにより示されたように、音響共振器100Bは、裸の共振器よりも大幅に高いRp値を有する。特に、音響共振器100Bは、約3800オームのRp値を有するが、裸の共振器は約550オームのRp値を有する。当業者には理解されるべきであるように、音響共振器100BのRpは、裸の共振器と比較した場合、帯域幅の何らかの著しい劣化なしに約6倍も増加する。
改善された性能の音響共振器100Bを設計することに関する特定の態様は、音響共振器100Bの各横方向領域においてモード構造を調べることにより理解され得る。図7Aは、音響共振器100Bについてカラー140の領域における音響分散図を示す。音響共振器100Bの任意の他の横方向領域において、音響分散図は、主膜領域よりも高い(低い)カットオフ周波数を有する領域に関して、分散曲線が水平軸および垂直軸に沿って広げられる(圧縮される)ことを除いて、図7Aに示されたものと定性的に似ている。
図7Aの水平軸は、横方向の波数Kxに対応し、正の数は実数のKx値を示し、負の数は虚数のKx値を示す。図7Aの各点は、後述されるように、特定のスタックによりサポートされる特定の音響偏波(acoustic polarization)の固有モード及び伝播の方向に対応する。実数Kx値は、所与のモードが伝播モードであることを示し(例示的に、それは、励起の点から周期的な態様で伝播することができる)、虚数Kx値は、所与のモードがエバネセントモードであることを示す(例示的に、それは、励起の点から指数関数的に減衰することができる)。複雑モードは、非ゼロの実数および虚数のKx値の双方を有し、励起の点から周期的な態様で伝播するが、それらの振幅は指数関数的に減衰する。図7Aの垂直軸は、音響共振器100Bの主膜領域のカットオフ周波数(第1次の厚み伸張(thickness extensional)モードTE1)に正規化された周波数に対応する。音響共振器の動作領域は、Fsと表示され且つ音響共振器100Bの直列共振周波数(又はTE1モードのカットオフ周波数)を示す水平線の上下約5%以内に広がる。
図7Aにおいて、曲線C1は、たわみモードを示し、曲線L1はダイラタンシー(dilatational)モードを示し、曲線pTS1は第1次の伝播厚みすべりモードを示し、曲線pTE1は第1次の伝播厚み伸張モードを示し、曲線pTS2は第2次の伝播厚みすべりモードを示し、曲線pTE2は第2次の伝播厚み伸張モードを示し、曲線eTS1は第1次のエバネセント厚みすべりモードを示し、曲線eTE1は第1次のエバネセント厚み伸張モードを示し、曲線cTE1、cTE2、cTE3、及びcTE4はそれぞれ、第1次、第2次、第3次、及び第4次の複雑厚み伸張モードを示す。一般に、無限数の複雑厚み伸張モードが存在し、4つの最も低い次数のモードのみが図7Aに示される。
図7Aに示されたモードの重要性は、下部電極115、圧電層125及び上部電極135が重なる領域においてピストンモードで音響共振器100Bを励起する際に、当該モードが構造的不連続部(フレーム/膜の界面、上部および下部電極のエッジのような)において且つ電場の不連続部(上部電極のエッジのような)において励起される点である。これらモードは、音響共振器100Bの各横方向領域において励起され、それらの振幅は、音響共振器100Bの各横方向の界面における適切な粒子速度および応力成分の連続性から決定される。しかしながら、横方向の領域に依存して、これらのモードは異なる損失メカニズムにつながる。主膜領域において、これらモードは、横方向の不均一な垂直変位プロファイルを生じ、当該変位は、直接的な圧電効果を介して、横方向の不均一な電圧プロファイルを生じる。高導電率の電極が圧電層の上下に配置されるので、横方向の不均一な電圧プロファイルは、横方向の電流につながり、ジュール加熱による音響エネルギーの、結果として生じる損失につながる。特に、この損失メカニズムは、膜で励起された全モード(即ち、eTE1、pTE1、pTS1、L1、F1、及び全ての複雑モード)に関して存在し、但し、これらのモードが非ゼロの厚み伸張偏波成分により電場に結合されることが可能にされる場合である。
上部電極の外側領域において、スタックによりサポートされたエバネセント及び複雑モードは、上部電極のエッジと空気キャビティ110のエッジとの間の距離がこれらモードの振幅の十分な指数関数的な減衰を提供するほど十分に広い限り、任意の損失をまねくことができない。一方、伝播モード(所与の周波数でサポートされる場合、L1、F1及びTS1のような)は、空気キャビティ110のエッジまで自由に伝播することができ、基板105への音響放射による損失をもたらす可能性がある。
上記の説明から、音響共振器100Bの性能を向上させるために、主膜領域の全てのスプリアスモード及び主膜領域の外側の伝播モードが抑制されるべきであることが明らかである。図1B〜図3Dに関連して説明されたように、フレーム及びカラーを用いて、スプリアスモードを抑制することができ、それ故に品質計数Qを増加させることができる。そのような性能増加のメカニズムは、図7Bに例示的に示される。図7Bの上部は、音響共振器100Bを示し、その音響共振器100Bは、下部電極115、圧電層125、上部電極135、パッシベーション層155、低速複合Al/Moフレーム145及び上部カラー140を含むが、図7Bの下部に関して音響共振器100Bの水平位置に関する情報を提供する目的で基板105を備えていない。図7Bの下部は、図7Bの上部に示された下部電極115の底面に沿って直列共振周波数Fsより上の周波数において計算された粒子変位の垂直成分と水平成分を示す。水平軸は、マイクロメートル(μm)で測定されたデバイス内の横方向位置を表し、垂直軸は、ピコメートル(pm)で測定された粒子変位を表す。
より具体的には、曲線C1は、カラー140を備えていないが複合フレーム145が存在する音響共振器100Bにおけるピストンモードの垂直(又は縦)方向Uz変位の大きさを示す。曲線C2は、カラー140及び複合フレーム145の双方が存在する構造体の音響共振器100Bにおけるピストンモードの垂直(又は縦)方向Uz変位の大きさを示す。曲線C3は、カラー140を備えていないが複合フレーム145が存在する音響共振器100Bにおける全(ピストンモード及び全てのスプリアスモード)垂直(又は縦)方向Uz変位の大きさを示す。曲線C4は、カラー140及び複合フレーム145の双方が存在する構造体の音響共振器100Bにおける全(ピストンモード及び全てのスプリアスモード)垂直(又は縦)方向Uz変位の大きさを示す。曲線C5は、カラー140を備えていないが複合フレーム145が存在する音響共振器100Bにおける全(全てのスプリアスモード、ピストンモード成分無し)水平(又はせん断(すべり))方向Ux変位の大きさを示す。曲線C6は、カラー140及び複合フレーム145の双方が存在する構造体の音響共振器100Bにおける全(全てのスプリアスモード、ピストンモード成分無し)水平(又はせん断(すべり))方向Ux変位の大きさを示す。曲線C1〜C6は、いわゆる音響散乱近似値(Acoustic Scattering Approximation:ASA)の範囲内で計算される。ASAの範囲内で、散乱問題のソース(発生源)項は、考察される幾何学的構成に依存して曲線C1及びC2により求められ(本質的にKx=0においてメイスン(Mason)モデルから計算される)、全場(考察される幾何学的構成に依存して、曲線C3及びC5、C2及びC6)が、図7Aに示された固有モードの項のモード展開を用いて各横方向の界面において適切な粒子速度および応力成分連続性条件から計算される。曲線C1、C3及びC5は裸の共振器に対応し、例示的な性能が、図6の曲線C1及びC3と対応して示された。曲線C2、C4及びC6は「最高の共振器」に対応し(この場合、「最高」は、説明される文脈において観測された最高の性能を示す)、例示的な性能が、図6の曲線C2及びC4と対応して示された。しかしながら、図6に示された最高の共振器と図7Bに示された複合化フレーム及びカラーを備える構造体との間の顕著な違いは、図7Bに示された構造体の主膜、複合フレーム145及びカラー140の横方向の寸法が任意に及び例示の目的のためだけに選択されている点である。特に、複合フレーム145は35nm(350Å)の厚さのAlから形成され、約5μmの幅を有し、カラー140はSiCから形成され、約10μmの幅を有する。複合フレーム145の内側エッジ、上部電極135のエッジ、及び外側カラー140のエッジは、図7Bの上部において垂直線で示される。
図7Bを参照すると、裸の共振器に関して、曲線C1により示されるように、均一なピストンモードが、20μmに等しい水平座標に位置する上部電極135のエッジまでずっと延びている。上部電極の外側の領域が電気的に駆動されず、明確に異なるモードのセットをサポートするので(L1、F1、pTS1又はeTS1、及び非常に多くの複雑cTEモード、その理由は、駆動周波数が、上部電極の外側の領域におけるカットオフ周波数に比べて主膜領域のFsに比較的接近しているからである)、上部電極のエッジは、曲線C3により示されるように、全粒子変位場の急激な降下を強いる。より具体的には、垂直運動の振幅Uzは、上部電極のエッジから約6μmの距離における約42pmから上部電極のエッジ(0μmのデバイス中心から20μmの距離に位置する)における約0pmまで減少する。この降下は、曲線C3及びC5により示されるように、上部電極の下および領域の外側の双方において伝播および複雑モードの追加の励起でもって膜領域における強いエバネセントモードの励起により達成される。図7Cに関連して後述されるように、7μmの範囲内における上部電極の下のUz変位の著しい降下は、横方向の電圧勾配を生じる可能性があり、それは、下部電極115及び上部電極135のそれぞれにおける横方向電流につながる可能性があり、ジュール加熱に起因するエネルギー損失という結果になる可能性がある。電場に結合することができないスプリアス伝播モードは、音響共振器100Bを形成する材料の粘性損失により最終的に減衰され得る。同時に、曲線C5により示されるように、約8pmの全振幅を有するせん断(すべり)モードが上部電極の外側の領域で励起され、音響放射に起因してエネルギー損失をまねく。これらエネルギー損失のメカニズムの全ては、裸の共振器のより低い品質係数Qの一因になり、その性能は図6の曲線C1及びC3で示された。
再び、図7Bを参照すると、複合フレーム145及びカラー140の双方を含む最高の共振器について、曲線C2により示されるように、均一なピストンモードが複合フレーム145の内側エッジまで延び、そこでその振幅は、約50%(この特定のフレーム設計および駆動周波数に関して)だけ低下した。上部電極の外側の領域はカラー140を含むので、それは、複合フレーム145のピストン及びeTE1モードと機械的に効率的に結合することができるエバネセントモードeTE1をサポートする(カラー140及び主膜が実質的に同様のカットオフ周波数を有するので)。一般に、より薄い複合フレーム145は、複合フレーム145及びカラー140が接近すればするほど、主膜のカットオフ周波数としてeTE1モード間の結合がより効率的になることである。これは、図5Bのそれぞれの曲線C1、C2及びC3により示された35nm(350Å)、50nm(500Å)、及び100nm(1kÅ)の薄いAl/Mo複合フレームが、図5Bの曲線C4により示された200nm(2kÅ)の厚い複合フレームよりも良好な性能を何故提供するかを部分的に説明することができる。主膜、複合フレーム145及びカラー140にエバネセントモードが存在することにより、曲線C4に示されたような全垂直変位場の漸次的な減衰が可能になる。より具体的には、全垂直運動Uzの振幅は、上部電極のエッジから約10μmの距離で約42pmから、フレーム145の内側エッジで約27pmまで、並びに上部電極のエッジ及びカラー140の内側エッジで約10pmまで減少する。この降下は、曲線C3及びC5により示されるように上部電極、フレーム、カラー及び外側領域の下で伝播および複雑モードの双方の追加の(裸の共振器と比較して)より弱い励起でもって、膜領域における比較的弱いエバネセントモードの励起により達成される。図7Cに関連して後述されるように、約10μmの範囲内で上部電極の下のUz変位の比較的小さい降下は、比較的より小さい横方向の電圧勾配(裸の共振器と比較して)を生じる可能性があり、それは、下部電極115及び上部電極135のそれぞれにおける比較的より小さい横方向電流につながる可能性があり、ジュール加熱に起因する比較的より小さいエネルギー損失(裸の共振器と比較して)につながる可能性がある。同時に、約3pmの全振幅を有するせん断モードが、曲線C6により示されるように、上部電極の外側の領域(カラーを含む)で励起され、結局、裸の共振器に比較して音響放射に起因して約1/7のエネルギー損失ということになる(音響放射を記述するポインティングベクトルの振幅が、機械的変位の二乗振幅に比例するので)。
図7Bを再び参照すると、フレーム145及びカラー140により提供されるデバイス性能に対する上述した改善に加えて、これら双方の構造体の幅は、曲線C4及びC6の局所的な山(ピーク)および谷として示された伝播モードの励起を更に最小化するために調整され得る。しかしながら、一般的にモードpTS1及びF1は、スタックの片側(例えば、下部電極115の周りに)に大部分は閉じ込められるが、モードpTE1及びL1は、スタックの反対側(例えば、上部電極135の周りに)に大部分は閉じ込められる。かくして、スタックの異なる部分に複合またはアドオン(又はプロセス要件に依存して双方のタイプ)のフレームを配置することは、伝播モードを抑制することに様々な影響を与えることができる。かくして、たとえ図7Bの例が単一の複合フレーム及び単一のカラーを示したとしても、図1B〜図3Dに示された例で示されたように、より大幅な性能改善が、スタックの複数の場所に配置されたフレーム(複数)及びカラー(複数)を用いることにより得られることができる。更に、たとえ図7Bの例が単一の複合フレームを示したとしても、音響共振器100Bの品質係数での同様の改善は、アドオンフレームでも得られることができる。
横方向の電流から結果として生じるジュール加熱に起因したエネルギー損失は、音響共振器100Bで励起された横方向の固有モードにより生じる電位(自己バイアス)の横方向のプロファイルを分析することにより理解され得る。図7Cは、下部電極115を接地した状態で上部電極135について計算された、デバイスの様々な横方向領域において図7Bに示された粒子変位分布により生じた自己バイアスを示す。モデルにおいて、横方向の電流はどちらの電極でも許容されない。特に、曲線C1及びC2は、図7Bに関連して説明されたような裸の共振器および最高の共振器それぞれに関して、上部電極135により圧電層125に提供される電圧の横方向のプロファイルを示す。曲線C3は、裸の共振器に関して、図7Bの曲線C3及びC5により与えられる粒子変位プロファイルにより生じた自己バイアスの大きさを示す。曲線C4は、最高の共振器に関して、図7Bの曲線C4及びC6により与えられる粒子変位プロファイルにより生じた自己バイアスの大きさを示す。留意すべきは、曲線C1及びC2は、20μmに位置する上部電極135のエッジにおいて急激に終了している。しかしながら、曲線C3及びC4は、スタックの機械的な動きにより生じた圧電層125の上部の電位を表すように、上部電極135のエッジを越えて続いている。裸の共振器の場合、横方向の粒子分布プロファイル(図7Bの曲線C3及びC5)により生じた電圧は、曲線C3により示されるように、上部電極135のエッジに向かって約5μmの距離にわたって約1Vから約0.1Vまで減衰する。最高の共振器の場合、横方向の粒子分布プロファイル(図7Bの曲線C4及びC6)により生じた電圧は、曲線C4により示されるように、上部電極135のエッジに向かって約10μmの距離にわたって約1Vから約0.2Vまで減衰する。理想的な電圧源条件の下でのジュール加熱は2点間の電圧差の二乗に比例し、これら2点間の抵抗に反比例するので、上部電極135におけるジュール加熱に起因したエネルギー損失は、裸の共振器と比較して、最高の共振器に関して約1/2から1/3になることができる。上述した複合フレーム145及びカラー140を含む最高の共振器におけるジュール加熱の低減は主として、主膜、複合フレーム145、及びカラー140のような構造体の様々な部分によりサポートされたエバネセントeTE1モードを用いた上部電極135のエッジに向かう自己バイアス減衰の低減に関係する。しかしながら、追加の利点は、主膜領域において伝播モードを抑制することにより得られることができる。特に、裸の共振器(曲線C3)に比較して最高の共振器(曲線C4)のデバイスの中央部分における自己バイアスのリップル(伝播モードから結果として生じる)のより小さい振幅は、ジュール加熱に起因したエネルギー損失の追加の低減につながることができる。
上述した実施形態において、カラー及びフレームは一般に、従来の処理技術を用いて形成されることができ、その例には、様々な形態の堆積、スパッタリング、エッチング、研磨などが含まれる。更に、説明された実施形態および関連する製造方法は、当業者には明らかなように様々な態様に変更され得る。
例示的な実施形態が本明細書で説明されたが、当業者には理解されるように、本教示に従った多くの変形形態が可能であり、それは添付の特許請求の範囲の範囲内にある。例えば、上述したように、カラー及び/又はフレームの位置、寸法および材料は、様々に変更され得る。更に、説明されたデバイスの様々な性能特性を更に改善するために、他の特徴要素を追加および/または除去することができる。これらの及び他の変形形態は、本明細書、図面および特許請求の範囲を検証した後に当業者に明らかになるであろう。従って、本発明は、添付の特許請求の範囲の思想および範囲内を除いて制限されるべきではない。
100、100B〜100D、200A〜200D、300A〜300D 音響共振器
105 基板
110 空気キャビティ
115 下部電極
120、130 平坦化層
125 圧電層
135 上部電極
140 カラー
145 フレーム

Claims (20)

  1. 音響共振器構造体であって、
    基板の上に配置された第1の電極と、
    前記第1の電極の上に配置された圧電層と、
    前記圧電層の上に配置された第2の電極と、
    前記第1の電極、前記圧電層、及び前記第2の電極の間の重なり部分により画定された主膜領域内に配置され、前記主膜領域の境界と実質的にそろえられた外側エッジを含むフレームと、
    前記フレームから離れて形成され、前記主膜領域の外側に配置され、前記主膜領域の境界と実質的にそろえられた、又は前記主膜領域と部分的に重なる内側エッジを有するカラーとを含む、音響共振器構造体。
  2. 前記第2の電極に隣接して前記圧電層の上に配置された平坦化層を更に含み、前記カラーが前記平坦化層と前記第2の電極の上に配置される、請求項1に記載の音響共振器構造体。
  3. 前記カラーが、前記下部電極と前記圧電層との間に配置される、請求項1に記載の音響共振器構造体。
  4. 前記カラーが、前記下部電極と前記基板との間に配置される、請求項1に記載の音響共振器構造体。
  5. 前記フレームが、前記上部電極の下側部分に配置されている、請求項1に記載の音響共振器構造体。
  6. 前記フレームが、前記下部電極の下側部分に配置されている、請求項1に記載の音響共振器構造体。
  7. 前記主膜領域内に配置され、前記主膜領域の境界と実質的にそろえられた外側エッジを有する追加のフレームを更に含み、前記フレームが前記上部電極の下側部分に配置され、前記追加のフレームが前記下部電極の下側部分に配置される、請求項1に記載の音響共振器構造体。
  8. 前記主膜領域内に配置され、前記主膜領域の境界と実質的にそろえられた外側エッジを有する追加のフレームを更に含み、前記フレームが前記上部電極の下側部分に配置され、前記追加のフレームが前記下部電極の上側部分に配置される、請求項1に記載の音響共振器構造体。
  9. 前記フレームが、アドオンフレーム又は複合フレームである、請求項1に記載の音響共振器構造体。
  10. 前記カラーが、ホウケイ酸ガラス、炭素ドープド酸化ケイ素、炭化ケイ素、窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化亜鉛、チタン酸ジルコン酸鉛、ダイヤモンド、又はダイヤモンド状炭素からなる、請求項1に記載の音響共振器構造体。
  11. 前記フレームが、銅、モリブデン、アルミニウム、タングステン、イリジウム、ホウケイ酸ガラス、炭素ドープド酸化ケイ素、炭化ケイ素、窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化亜鉛、チタン酸ジルコン酸鉛、ダイヤモンド、又はダイヤモンド状炭素の層からなる、請求項1に記載の音響共振器構造体。
  12. 前記基板が前記第1の電極の下に位置する空気キャビティを有し、前記主膜領域の境界が、前記空気キャビティの上の前記第2の電極のエッジにより画定される、請求項1に記載の音響共振器構造体。
  13. 前記カラーが、前記主膜領域のカットオフ周波数と実質的に同じであるカットオフ周波数を有するカラー領域を画定する、請求項1に記載の音響共振器構造体。
  14. 前記フレームは、フレーム領域を画定し、前記フレーム領域と前記主膜領域の中央部分との間でカットオフ周波数の不整合および音響インピーダンスの不整合の少なくとも一方を生じるように構成されている、請求項1に記載の音響共振器構造体。
  15. 前記主膜領域内で前記第1又は第2の電極に接続され、前記フレームと隣り合わせの構成に構成された追加のフレームを更に含む、請求項1に記載の音響共振器構造体。
  16. 前記フレームが第1のフレーム領域に配置され、第1の方向において前記第1のフレーム領域のカットオフ周波数をシフトするように構成され、前記追加のフレームが、第2のフレーム領域に配置され、前記第1の方向とは反対の第2の方向において前記第2のフレーム領域のカットオフ周波数をシフトするように構成されている、請求項15に記載の音響共振器構造体。
  17. 前記第1の電極と前記基板との間に配置された音響反射器を更に含む、請求項1に記載の音響共振器構造体。
  18. 音響共振器構造体であって、
    第1の電極層と第2の電極層との間に挟まれた圧電層を含み、前記第1の電極、前記圧電層、及び前記第2の電極の間の重なり部分により画定された主膜領域を有する音響スタックと、
    前記主膜領域内に配置され、前記主膜領域の境界と実質的にそろえられた外側エッジを有するフレームと、
    前記主膜領域の外側に配置され、前記主膜領域の境界と実質的にそろえられた又は前記主膜領域と部分的に重なる内側エッジを有するカラーとを含み、
    前記フレーム及び前記カラーが前記音響スタックの異なる層に配置される、音響共振器構造体。
  19. 前記第1の電極層が空気キャビティを有する基板の上に配置され、前記カラーが前記基板と前記第1の電極層との間に配置され、前記フレームが前記圧電層と前記第2の電極層との間に形成されている、請求項18に記載の音響共振器構造体。
  20. 音響反射器および基板を更に含み、前記音響スタックが、前記音響反射器にわたって前記基板の上に形成されている、請求項18に記載の音響共振器構造体。
JP2014034922A 2013-02-28 2014-02-26 カラー及びフレームを含む音響共振器 Pending JP2014171218A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/781,491 2013-02-28
US13/781,491 US9490771B2 (en) 2012-10-29 2013-02-28 Acoustic resonator comprising collar and frame

Publications (1)

Publication Number Publication Date
JP2014171218A true JP2014171218A (ja) 2014-09-18

Family

ID=50239179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014034922A Pending JP2014171218A (ja) 2013-02-28 2014-02-26 カラー及びフレームを含む音響共振器

Country Status (2)

Country Link
JP (1) JP2014171218A (ja)
GB (1) GB2511919A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020202564A (ja) * 2019-06-12 2020-12-17 ツー−シックス デラウェア インコーポレイテッドII−VI Delaware,Inc. 電極画定された非サスペンデッド音響共振器
JP2021027382A (ja) * 2019-07-31 2021-02-22 太陽誘電株式会社 弾性波デバイスおよびその製造方法、圧電薄膜共振器、フィルタ並びにマルチプレクサ
US11738539B2 (en) 2018-07-17 2023-08-29 II-VI Delaware, Inc Bonded substrate including polycrystalline diamond film
US11750169B2 (en) 2018-07-17 2023-09-05 Ii-Vi Delaware, Inc. Electrode-defined unsuspended acoustic resonator
US12021499B2 (en) 2023-04-10 2024-06-25 Ii-Vi Delaware, Inc. Electrode defined resonator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490771B2 (en) 2012-10-29 2016-11-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator comprising collar and frame

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119556A1 (ja) * 2006-04-05 2007-10-25 Murata Manufacturing Co., Ltd. 圧電共振子及び圧電フィルタ
US9673778B2 (en) * 2009-06-24 2017-06-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Solid mount bulk acoustic wave resonator structure comprising a bridge
US9246473B2 (en) * 2011-03-29 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator comprising collar, frame and perimeter distributed bragg reflector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11738539B2 (en) 2018-07-17 2023-08-29 II-VI Delaware, Inc Bonded substrate including polycrystalline diamond film
US11750169B2 (en) 2018-07-17 2023-09-05 Ii-Vi Delaware, Inc. Electrode-defined unsuspended acoustic resonator
JP2020202564A (ja) * 2019-06-12 2020-12-17 ツー−シックス デラウェア インコーポレイテッドII−VI Delaware,Inc. 電極画定された非サスペンデッド音響共振器
JP7307032B2 (ja) 2019-06-12 2023-07-11 ツー-シックス デラウェア インコーポレイテッド 電極画定された非サスペンデッド音響共振器
JP2021027382A (ja) * 2019-07-31 2021-02-22 太陽誘電株式会社 弾性波デバイスおよびその製造方法、圧電薄膜共振器、フィルタ並びにマルチプレクサ
JP7383417B2 (ja) 2019-07-31 2023-11-20 太陽誘電株式会社 弾性波デバイスおよびその製造方法、圧電薄膜共振器、フィルタ並びにマルチプレクサ
US12021499B2 (en) 2023-04-10 2024-06-25 Ii-Vi Delaware, Inc. Electrode defined resonator

Also Published As

Publication number Publication date
GB2511919A (en) 2014-09-17
GB201400920D0 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US9490771B2 (en) Acoustic resonator comprising collar and frame
US9484882B2 (en) Acoustic resonator having temperature compensation
US9246473B2 (en) Acoustic resonator comprising collar, frame and perimeter distributed bragg reflector
US9401692B2 (en) Acoustic resonator having collar structure
US9099983B2 (en) Bulk acoustic wave resonator device comprising a bridge in an acoustic reflector
US9525397B2 (en) Acoustic resonator comprising acoustic reflector, frame and collar
US9748918B2 (en) Acoustic resonator comprising integrated structures for improved performance
US10284173B2 (en) Acoustic resonator device with at least one air-ring and frame
US9048812B2 (en) Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer
US9853626B2 (en) Acoustic resonator comprising acoustic redistribution layers and lateral features
CN105048986B (zh) 具有空气环及温度补偿层的声谐振器装置
US9425764B2 (en) Accoustic resonator having composite electrodes with integrated lateral features
JP5926735B2 (ja) 広帯域音響結合薄膜bawフィルタ
US9490418B2 (en) Acoustic resonator comprising collar and acoustic reflector with temperature compensating layer
US9385684B2 (en) Acoustic resonator having guard ring
US9571064B2 (en) Acoustic resonator device with at least one air-ring and frame
US9203374B2 (en) Film bulk acoustic resonator comprising a bridge
US9490770B2 (en) Acoustic resonator comprising temperature compensating layer and perimeter distributed bragg reflector
JP5643056B2 (ja) 弾性波デバイス
CN112673568B (zh) 用于调整声波谐振器的频率响应的负荷谐振器
JP2015198450A (ja) 音響再分配層を含む音響共振器
JP2021536721A (ja) 二段横波バルク弾性波フィルタ
JP2014171218A (ja) カラー及びフレームを含む音響共振器
JP2015154492A (ja) 音響反射器、フレーム、及びカラーを備える音響共振器
KR20150101961A (ko) 적어도 하나의 에어-링 및 프레임을 갖는 음향 공진기 디바이스