JP2014170862A - Electrode for electrolytic capacitor and method for manufacturing the same - Google Patents

Electrode for electrolytic capacitor and method for manufacturing the same Download PDF

Info

Publication number
JP2014170862A
JP2014170862A JP2013042471A JP2013042471A JP2014170862A JP 2014170862 A JP2014170862 A JP 2014170862A JP 2013042471 A JP2013042471 A JP 2013042471A JP 2013042471 A JP2013042471 A JP 2013042471A JP 2014170862 A JP2014170862 A JP 2014170862A
Authority
JP
Japan
Prior art keywords
metal foil
electrode
valve action
diameter
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013042471A
Other languages
Japanese (ja)
Other versions
JP6164875B2 (en
Inventor
Tomoyuki Yoshii
智之 吉井
Masayoshi Maruyama
雅義 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2013042471A priority Critical patent/JP6164875B2/en
Publication of JP2014170862A publication Critical patent/JP2014170862A/en
Application granted granted Critical
Publication of JP6164875B2 publication Critical patent/JP6164875B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrode for an electrolytic capacitor in which, when powder of valve action metal and an organic substance such as an organic binder or solvent are mixed, the organic substance is removed after coating it over the surface of the valve action metal foil, and then sintered to provide the powder of valve action metal on the surface of the valve action metal foil, sintering is easy to carry out even when the thickness of the electrode is increased, and in which, when the powder of valve action metal is sintered on both surfaces of the valve action metal foil, a warp hardly occurs even when the size of the electrode is expanded.SOLUTION: The present invention provides an electrode for an electrolytic capacitor including a metal foil having a plurality of through-holes and a sintered layer provided on the surface of the metal foil and having metal powder with a diameter larger than the diameter of the through-holes.

Description

本発明は、電解コンデンサ用電極およびその製造方法に関するものである。   The present invention relates to an electrode for an electrolytic capacitor and a manufacturing method thereof.

従来、電解コンデンサ用電極は、弁作用金属箔をエッチング等により表面積を増加させ、その後、陽極酸化により表面に酸化皮膜を設けている。ただ、このエッチング方式では、エッチング液が金属箔内部まで作用するのが容易ではなく、厚くとも150μm程度の電極厚さとなっている。   Conventionally, an electrode for an electrolytic capacitor has a surface area increased by etching or the like on a valve action metal foil, and then an oxide film is provided on the surface by anodic oxidation. However, in this etching system, it is not easy for the etching solution to reach the inside of the metal foil, and the electrode thickness is about 150 μm at the maximum.

特許文献1では、大きさが5mm四方程度の電解コンデンサに対して、タンタルなどの弁作用金属の粉体と有機バインダと溶剤とを混合してペーストとし、タンタルなどの弁作用金属箔の表面に塗布後、有機バインダと溶剤を除去し、次に焼結させることにより、200μm程度の厚さの電極部分を得ることが記載されている。   In Patent Document 1, a valve action metal powder such as tantalum, an organic binder, and a solvent are mixed with an electrolytic capacitor having a size of about 5 mm square to form a paste, and the surface of the valve action metal foil such as tantalum is formed. It is described that after application, the organic binder and solvent are removed and then sintered to obtain an electrode portion having a thickness of about 200 μm.

特開2003−243262号公報JP 2003-243262 A

ところで、特許文献1の電解コンデンサの電極のように、弁作用金属箔の表面に、弁作用金属の粉体を焼結させる電極構成の場合、弁作用金属の粉体を焼結させるときに、粉体焼結層の片面に弁作用金属箔があるため、その方向からは有機バインダや溶剤の除去ができず、急いで加熱すると発生するガス圧で粉体間または粉体と箔間が離れすぎて焼結しにくくなりやすい。特に、焼結層の厚さが厚くなるとより焼結しにくくなりやすい。また、弁作用金属箔の表面に弁作用金属の粉体を両面に設け、受け皿上で焼結させる場合には、中間の金属箔のために、上側の焼結層と下側の焼結層では、有機バインダや溶剤の除去に違いが生じやすく、この除去の違いのため、電極にそりが発生しやすい。特に、電極の大きさを広くする場合には、よりそりが発生しやすくなりやすい。   By the way, in the case of an electrode configuration in which the powder of valve action metal is sintered on the surface of the valve action metal foil like the electrode of the electrolytic capacitor of Patent Document 1, when the powder of valve action metal is sintered, Since there is a valve action metal foil on one side of the powder sintered layer, the organic binder and solvent cannot be removed from that direction, and the powder pressure or the powder and foil are separated by the gas pressure generated when heated rapidly. It is too easy to sinter. In particular, when the thickness of the sintered layer is increased, it becomes more difficult to sinter. In addition, when the valve action metal powder is provided on both surfaces of the valve action metal foil and sintered on the tray, the upper sintered layer and the lower sintered layer are used for the intermediate metal foil. Then, a difference is easily caused in the removal of the organic binder and the solvent, and the electrode is easily warped due to the difference in the removal. In particular, when the size of the electrode is increased, warpage is more likely to occur.

本発明は、弁作用金属の粉体と、有機バインダや溶剤などの有機物とを混合し混合体とし、弁作用金属箔の表面に塗布後、上記有機物を除去し、次に焼結させることにより、弁作用金属箔の表面に弁作用金属の粉体を設ける場合において、上記の課題を解決するためになされたもので、電極の厚さを厚くしても、焼結がしやすく、また、弁作用金属箔の表面に弁作用金属の粉体を両面焼結させた場合、電極の大きさを広くしてもそりが発生しにくい電解コンデンサ用電極を得ることを目的としている。   The present invention comprises mixing a valve action metal powder and an organic substance such as an organic binder or a solvent to form a mixture, removing the organic substance after application to the surface of the valve action metal foil, and then sintering the mixture. In the case of providing valve action metal powder on the surface of the valve action metal foil, it was made in order to solve the above problems, and even if the thickness of the electrode is increased, it is easy to sinter, An object of the present invention is to obtain an electrode for an electrolytic capacitor in which, when both surfaces of a valve action metal powder are sintered on the surface of the valve action metal foil, warpage is unlikely to occur even when the electrode size is widened.

本発明は、上記の課題を解決するために、下記の電解コンデンサ用電極またはその製造方法を提供するものである。
(1)複数の貫通孔を有する金属箔と、この金属箔の表面に設けた前記貫通孔の直径よりも大径の金属粉体を有する焼結層とが含まれる電解コンデンサ用電極。
(2)前記貫通孔の平均直径が0.1μmから1.5μmで、前記金属粉体の平均直径が2μmから5μmである(1)の電解コンデンサ用電極。
(3)前記金属箔に、複数のへこみ部分と、そのへこみ部分に、そのへこみ部分の直径または幅よりも小径の貫通孔を有する(1)または(2)の電解コンデンサ用電極。
(4)エッチングの孔食により金属箔に貫通孔を得る工程と、その後、
前記貫通孔の直径よりも大径の金属粉体を有機物とともに混合した混合体を前記金属箔に塗布し焼結する工程とを有する電解コンデンサ用電極の製造方法。
In order to solve the above problems, the present invention provides the following electrode for an electrolytic capacitor or a method for producing the same.
(1) An electrolytic capacitor electrode including a metal foil having a plurality of through holes and a sintered layer having a metal powder having a diameter larger than the diameter of the through holes provided on the surface of the metal foil.
(2) The electrode for an electrolytic capacitor according to (1), wherein an average diameter of the through holes is 0.1 μm to 1.5 μm, and an average diameter of the metal powder is 2 μm to 5 μm.
(3) The electrode for electrolytic capacitors according to (1) or (2), wherein the metal foil has a plurality of dent portions, and the dent portions have through holes having a diameter smaller than the diameter or width of the dent portions.
(4) a step of obtaining a through hole in the metal foil by etching pitting, and thereafter
A method of manufacturing an electrode for an electrolytic capacitor, comprising: applying a mixture obtained by mixing a metal powder having a diameter larger than the diameter of the through-hole together with an organic substance to the metal foil and sintering the mixture.

本発明の構成である、金属箔に複数の貫通孔を設けることにより、電極の厚さを厚くしても、焼結がしやすく、また、弁作用金属箔の表面に弁作用金属の粉体を両面焼結させた場合、電極の大きさを広くしてもそりが発生しにくい電解コンデンサ用電極を得ることができる。また、この金属箔の貫通孔の直径よりも大径の金属粉体を使用することにより、この貫通孔を通して弁作用金属箔の反対面に金属粉体が流出するのを防止し、弁作用金属箔の反対面を汚すのを防ぐことができる。   By providing a plurality of through holes in the metal foil, which is a configuration of the present invention, it is easy to sinter even if the electrode thickness is increased, and the valve action metal powder is formed on the surface of the valve action metal foil. When both are sintered, it is possible to obtain an electrode for an electrolytic capacitor that hardly warps even when the size of the electrode is increased. Further, by using a metal powder having a diameter larger than the diameter of the through hole of the metal foil, it is possible to prevent the metal powder from flowing out through the through hole to the opposite surface of the valve action metal foil. It is possible to prevent the opposite surface of the foil from being stained.

本発明の電解コンデンサ用電極の断面図を示している。The sectional view of the electrode for electrolytic capacitors of the present invention is shown. 本発明の別の電解コンデンサ用電極の断面図を示している。The sectional view of another electrode for electrolytic capacitors of the present invention is shown.

本発明に述べる金属箔は、複数の貫通孔を有する弁作用金属の箔で、弁作用金属としてはたとえばタンタル、ニオブ、またはアルミニウムがあげられる。純度は、99.8重量%以上で、例えば、珪素、鉄、銅、マグネシウム、マンガン、チタン、クロム、亜鉛、ガリウム、バナジウム、ニッケル及びホウ素の少なくとも1種の合金元素を必要範囲内において添加した合金あるいは上記の不可避的不純物元素の含有量を限定したものも含まれる。厚さは、10μmから150μm程度で、10μmより薄いと取り扱いが困難になりやすい。150μmより厚いと、エッチングで貫通孔ができにくくなる。   The metal foil described in the present invention is a valve metal foil having a plurality of through holes. Examples of the valve metal include tantalum, niobium, and aluminum. The purity is 99.8% by weight or more. For example, at least one alloy element of silicon, iron, copper, magnesium, manganese, titanium, chromium, zinc, gallium, vanadium, nickel, and boron is added within a necessary range. Also included are alloys or those in which the content of the above inevitable impurity elements is limited. The thickness is about 10 μm to 150 μm, and if it is thinner than 10 μm, handling tends to be difficult. When it is thicker than 150 μm, it becomes difficult to form a through hole by etching.

なお、金属箔に、複数のへこみ部分を設けると、へこみ部分の箔の厚さが薄くなるので、へこみ部分においてエッチングでの貫通孔の形成が容易となる。そのため、貫通孔を得やすくするために、エッチング孔の径を太くする必要がなく、金属箔部分の容量を増加しやすくなる。
へこみの形状は、線状でも点状でもよいが、連続的に金属箔を搬送する場合でへこみが線状または間欠的な線状の場合、搬送方向に設ける。また、搬送とは直角方向に線状のへこみを設けると金属箔が裂けやすくなるため好ましくない。
点状のへこみ部分の作成方法は、エンボスロールと平面ロールとの組み合わせにより片面に、またエンボスロールどうしの組み合わせにより両面にへこみ部分を設けることができる。両面にへこみ部分を設ける場合には、エンボスロールと組み合わせた歯車等によりへこみ部分が重なるように調整する。へこみ部分の縦断面形状は、長方形、台形、半円形など特に限定がないが、片面の場合は先のとがった三角形でもよい。両面の場合は、先がとがっていない方が位置をあわせやすい。
線状のへこみ部分の作成方法は、平面ロールに凸部を円周上に設け、両面の場合には二本で金属箔をはさみ、片面の場合にはニップロールと組み合わせてへこみ部を設ける。搬送方向の線状または間欠的な線状の場合、へこみ部分の裏表の位置あわせが容易となる。
へこみ部分の作成により金属箔にはひずみを発生する場合には、焼鈍を行う。焼鈍方法は、300℃から600℃程度の温度で加熱する。
In addition, when a plurality of dent portions are provided in the metal foil, the thickness of the dent portion foil is reduced, so that it is easy to form a through hole by etching in the dent portion. Therefore, it is not necessary to increase the diameter of the etching hole in order to easily obtain the through hole, and the capacity of the metal foil portion is easily increased.
The shape of the dent may be linear or point-like, but when the metal foil is continuously conveyed and the dent is linear or intermittent, it is provided in the conveyance direction. Further, it is not preferable to provide a linear dent in a direction perpendicular to the conveyance because the metal foil is easily torn.
In the method of creating the dot-like dent portion, the dent portion can be provided on one side by a combination of an embossing roll and a flat roll, and on both sides by a combination of embossing rolls. When providing a dent part on both surfaces, it adjusts so that a dent part may overlap with the gear etc. which combined with the embossing roll. The vertical cross-sectional shape of the indented portion is not particularly limited, such as a rectangle, a trapezoid, or a semicircular shape. However, in the case of a single-sided shape, it may be a pointed triangle. In the case of double-sided, it is easier to align the position if the tip is not sharp.
In the method of creating a linear dent portion, a convex portion is provided on the circumference of a flat roll, two metal foils are sandwiched between two sides, and a dent portion is provided in combination with a nip roll in the case of one side. In the case of a linear or intermittent linear shape in the transport direction, it is easy to align the front and back of the recessed portion.
If the metal foil is distorted due to the formation of the dent, annealing is performed. In the annealing method, heating is performed at a temperature of about 300 ° C. to 600 ° C.

本発明に述べる貫通孔は、金属箔の表面から裏面まで貫通する穴で、金属箔の電極部分に分散して複数設ける。貫通孔は、電極製造中の焼結行程においては、有機バインダや溶剤などの有機物の分解ガスまたはガスの通り道として使用し、電極製造後においては、電解コンデンサの電解質の電気の通り道として使用される。貫通孔の直径は、電極製造中で、金属箔に金属粉体と有機バインダや溶剤などの有機物との混連体を塗布するときに、この貫通孔を通して弁作用金属箔の反対面に流出するのを防止しする程度に細くする必要があり、具体的には0.1μmから1.5μmとなる。   The through hole described in the present invention is a hole penetrating from the front surface to the back surface of the metal foil, and a plurality of through holes are provided dispersed in the electrode portion of the metal foil. The through-hole is used as a passage for decomposing gas or gas of organic substances such as an organic binder and a solvent in the sintering process during manufacturing of the electrode, and is used as a passage for the electrolyte of the electrolytic capacitor after the electrode is manufactured. . The diameter of the through-hole flows out to the opposite surface of the valve-acting metal foil through this through-hole when applying a mixture of metal powder and an organic substance such as an organic binder or a solvent to the metal foil during electrode manufacture. It is necessary to reduce the thickness to such an extent that it can be prevented, specifically 0.1 μm to 1.5 μm.

この貫通孔の作成方法に特に限定はないが、エッチングによる孔食が作業性の点または貫通孔の孔径の制御の点で好ましい。金属箔にへこみ部分を設ける場合、エッチングする前にへこみ部分は作成しておく。
アルミニウム箔の場合、塩酸等の水溶液中で、エッチングにより貫通孔が作成される。たとえば、アルミニウム箔に直流電流を流して電気化学的にエッチングしてエッチング穴を形成した後、塩酸や硫酸等を含む溶液中で交流電流を流してエッチングすることにより、アルミニウム箔の表面が溶解するのを減少でき、機械的強度が低下するのを防止でき、また、エッチング穴の径を効率的に拡大できる。また、アルミニウムに、マンガン、鉄、マグネシウム、シリコン、銅、または鉛等を添加したものが使用できる。それらの添加物は、アルミニウムの強度またはエッチング性を改善することができる。エッチング性は全面腐食よりも特に孔食がおきやすいように、鉄、銅、鉛等の添加量を調節する。それらの添加量は1ppmから100ppm程度が好ましい。
タンタル箔、ニオブ箔の場合、電解エッチングの際に、酸素供給源とならないアニオンを非プロトン性の極性溶媒に添加した有機電解液中などで行うのが好ましい。酸素供給源とならないアニオンとしては、たとえばフッ化硼酸リチウム、フッ化リン酸リチウムなどが使用できる。また非プロトン性の極性溶媒としては、たとえば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、酢酸メチル、プロピオン酸メチル、エチルメチルカーボネートなどが使用できる。
貫通孔をエッチング液により設ける場合、貫通孔のほか表面が祖面化されると、電極の表面積の増加することになる。
Although there is no particular limitation on the method of creating the through hole, pitting corrosion by etching is preferable in terms of workability or control of the diameter of the through hole. When providing a dent part in metal foil, a dent part is created before etching.
In the case of an aluminum foil, a through hole is created by etching in an aqueous solution such as hydrochloric acid. For example, a surface of the aluminum foil is dissolved by flowing an alternating current in a solution containing hydrochloric acid, sulfuric acid or the like after etching by forming an etching hole by flowing a direct current through the aluminum foil and electrochemically etching. Therefore, the mechanical strength can be prevented from being lowered, and the diameter of the etching hole can be efficiently enlarged. In addition, aluminum added with manganese, iron, magnesium, silicon, copper, lead, or the like can be used. These additives can improve the strength or etchability of the aluminum. For the etching property, the amount of iron, copper, lead or the like is adjusted so that pitting corrosion is more likely to occur than the overall corrosion. Their addition amount is preferably about 1 ppm to 100 ppm.
In the case of a tantalum foil or a niobium foil, it is preferable that the electrolytic etching is performed in an organic electrolytic solution in which an anion that does not serve as an oxygen supply source is added to an aprotic polar solvent. As an anion that does not serve as an oxygen supply source, for example, lithium fluoroborate, lithium fluorophosphate, or the like can be used. Examples of the aprotic polar solvent that can be used include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, methyl acetate, methyl propionate, and ethyl methyl carbonate.
When the through hole is provided by the etching solution, the surface area of the electrode increases when the surface other than the through hole becomes rough.

本発明に述べる焼結層は、金属箔表面に設けた弁作用金属粉末の焼結体の層で、金属箔の貫通孔の直径よりも大径の金属粉体を有機バインダや溶剤などの有機物とともに混合した混合体を金属箔に塗布し、有機物を加熱除去後、焼結することにより得られる。有機バインダや溶剤などの有機物は、含水率の低い通常の焼結用のものが使用できる。焼結層厚さは、特に限定あるわけではないが、100μmから1000μm程度で、100μmより薄いとコンデンサの容量密度が低くなりやすい。1000μmより厚いと、有機バインダや溶剤などの有機物が加熱除去しにくくなる。   The sintered layer described in the present invention is a layer of a valve action metal powder sintered body provided on the surface of the metal foil, and a metal powder having a diameter larger than the diameter of the through hole of the metal foil is an organic substance such as an organic binder or a solvent. The mixture mixed together is applied to a metal foil, and the organic matter is removed by heating and then sintered. As organic substances such as an organic binder and a solvent, those for ordinary sintering having a low water content can be used. The thickness of the sintered layer is not particularly limited, but is about 100 μm to 1000 μm, and if it is thinner than 100 μm, the capacitance density of the capacitor tends to be low. When it is thicker than 1000 μm, organic substances such as an organic binder and a solvent are difficult to be removed by heating.

金属粉体としてはたとえば、タンタル、ニオブ、アルミニウムなどの弁作用を有する金属の少なくとも1種から構成される。純度は、99.8重量%以上で、例えば、珪素、鉄、銅、マグネシウム、マンガン、チタン、クロム、亜鉛、ガリウム、バナジウム、ニッケル及びホウ素の少なくとも1種の合金元素を必要範囲内において添加した合金あるいは上記の不可避的不純物元素の含有量を限定したものも含まれる。弁作用金属粉末の形状は、特に限定されず、球状、不定形状、鱗片状、繊維状等のいずれも使用できる。金属粉体の平均直径は、2μmから5μmで、直径が大きいほど、陽極酸化により表面に設ける酸化皮膜を厚くできるため高耐電圧対応となる。   Examples of the metal powder include at least one metal having a valve action such as tantalum, niobium, and aluminum. The purity is 99.8% by weight or more. For example, at least one alloy element of silicon, iron, copper, magnesium, manganese, titanium, chromium, zinc, gallium, vanadium, nickel, and boron is added within a necessary range. Also included are alloys or those in which the content of the above inevitable impurity elements is limited. The shape of the valve action metal powder is not particularly limited, and any of a spherical shape, an indefinite shape, a scale shape, a fiber shape, and the like can be used. The average diameter of the metal powder is 2 μm to 5 μm. The larger the diameter, the thicker the oxide film provided on the surface by anodic oxidation.

有機バインダとしてはたとえば、弁作用金属粉末に添加し、空孔のある焼結体を得るための有機物で、球状、不定形状、繊維状等のいずれも使用できる。たとえば、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ブチラール樹脂、フェノール樹脂、アクリル樹脂、尿素樹脂、酢酸ビニルエマルジョン、ポリウレタン樹脂、ポリ酢酸ビニル樹脂、エポキシ樹脂、メラミン樹脂、アルキド樹脂、ニトロセルロース樹脂、樟脳などがあげられ、これらの有機物は単独、あるいは、上記お互いの樹脂を2種以上混合して利用することができる。バインダの平均径は1μm以上30μm以下程度となるが、これらに限定されるものではない。   As the organic binder, for example, it is an organic substance added to the valve action metal powder to obtain a sintered body having pores, and any of a spherical shape, an indefinite shape, a fibrous shape and the like can be used. For example, polyvinyl alcohol resin, polyvinyl acetal resin, butyral resin, phenol resin, acrylic resin, urea resin, vinyl acetate emulsion, polyurethane resin, polyvinyl acetate resin, epoxy resin, melamine resin, alkyd resin, nitrocellulose resin, camphor, etc. These organic substances can be used alone or in admixture of two or more of the above resins. The average diameter of the binder is about 1 μm to 30 μm, but is not limited thereto.

溶剤は、たとえば、80℃以上200℃以下が好ましく使用できる。具体的な溶剤としてはシクロヘキサノン、メチルセルソルブ、アニソール、キシレン、ベンジルアルコール、ジエチレングリコールなどがあげられる。この他、水、あるいはメタノール、イソプロピルアルコール等のアルコール類、セルソルブ類、アセトン、メチルエチルケトン、イソホロン等のケトン類、N、N−ジメチルホルムアミド等のアミド類、酢酸エチル等のエステル類、ジオキサン等のエーテル類、塩化メチル等の塩素系溶媒、トルエン等の芳香族系炭化水素類等が挙げられるが、これらに限定されるものではない。これらの溶剤は、単独又は2種類以上混合して用いても良い。   For example, the solvent is preferably used at 80 ° C. or higher and 200 ° C. or lower. Specific examples of the solvent include cyclohexanone, methyl cellosolve, anisole, xylene, benzyl alcohol, and diethylene glycol. In addition, water, alcohols such as methanol and isopropyl alcohol, cersolves, ketones such as acetone, methyl ethyl ketone, and isophorone, amides such as N and N-dimethylformamide, esters such as ethyl acetate, and ethers such as dioxane And chlorinated solvents such as methyl chloride, and aromatic hydrocarbons such as toluene, but are not limited thereto. These solvents may be used alone or in combination of two or more.

上述の金属粉体と有機バインダや溶剤などの有機物は、各種の混練・分散機を用いて分散することができる。混練・分散にあたっては、攪拌機、二本ロール、三本ロール等のロール型混練機、縦型ニーダー、加圧ニーダー、プラネタリーミキサー等の羽根型混練機、ボール型回転ミル、サンドミル、アトライター等の分散機、超音波分散機、ナノマイザー等が使用できる。
このようにして作製された混連体は、種々の塗布方法により塗布物として形成することができる。例えば、公知のロール塗布方法等により支持箔上に塗布物を形成することができる。また、塗布物の乾燥後、単位体積当たりの金属粉末の密度を上げるためにまた膜厚を平均化するために、プレスあるいはカレンダー処理をしてもよい。
The above-mentioned metal powder and organic substances such as an organic binder and a solvent can be dispersed using various kneading and dispersing machines. In kneading and dispersing, roll type kneaders such as stirrers, two rolls, three rolls, vertical type kneaders, pressure kneaders, blade type kneaders such as planetary mixers, ball type rotary mills, sand mills, attritors, etc. No. disperser, ultrasonic disperser, nanomizer and the like can be used.
The mixed body produced in this manner can be formed as a coating by various coating methods. For example, the coated material can be formed on the support foil by a known roll coating method or the like. Further, after drying the coated product, press or calendar treatment may be performed in order to increase the density of the metal powder per unit volume and to average the film thickness.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の電解コンデンサ用電極の断面図を示している。複数の貫通孔1を有する金属箔2と、この金属箔2の表面に設けた金属粉体3を有する焼結層4とが含まれる電解コンデンサ用電極を示している。
金属箔2に貫通孔1を設けるのに、エッチングの孔食によりおこなうと、非貫通の孔5も生じやすいが、この非貫通の孔5により、コンデンサとしての表面積の拡大に寄与し、その点で好ましい。
また、金属箔2の表面には、この金属箔2の表面に設けた貫通孔1の直径よりも大径の金属粉体3を有する焼結層4を設ける。
FIG. 1 shows a cross-sectional view of an electrode for an electrolytic capacitor according to the present invention. An electrode for an electrolytic capacitor including a metal foil 2 having a plurality of through holes 1 and a sintered layer 4 having a metal powder 3 provided on the surface of the metal foil 2 is shown.
If the through-hole 1 is provided in the metal foil 2 by etching pitting corrosion, a non-through hole 5 is likely to be formed, but this non-through hole 5 contributes to an increase in surface area as a capacitor. Is preferable.
A sintered layer 4 having a metal powder 3 having a diameter larger than the diameter of the through hole 1 provided on the surface of the metal foil 2 is provided on the surface of the metal foil 2.

図2は、本発明の別の電解コンデンサ用電極の断面図を示している。
金属箔2には、複数のへこみ部分6と、エッチングにより全面に形成された非貫通の孔5と、非貫通の孔5の一部が金属箔2の表面から裏面にかけて貫通した貫通孔1とを有している。貫通孔1は、へこみ部分6の直径よりも小径で、へこみ部分6は金属箔2の厚さが薄くなる部分のため、貫通孔1は、このへこみ部分6で形成しやすい。また、金属箔2のへこみ部分6以外の部分は、へこみ部分6よりも箔厚が厚い部分であるため、貫通孔1ができにくく、エッチングされていない部分もあり、金属箔2の箔強度に寄与している。
また、へこみ部分6は、金属箔2の表面または裏面の少なくともどちらか一方に設けるが、両面にしかもできるだけ同じ位置にそろえた方が、金属箔2によりうすい部分ができ好ましい。
また、金属箔2の表面には金属粉体3を有する焼結層4を設けることになるが、金属箔2の表面に金属粉体3をバインダとともに混合した混合体を塗布後加圧プレスされる。ここで、金属箔2の全表面に設けたへこみ部分6が、アンカー効果によりその表面に設けるものを強固に積層することができる。
FIG. 2 shows a cross-sectional view of another electrolytic capacitor electrode of the present invention.
The metal foil 2 includes a plurality of recessed portions 6, a non-through hole 5 formed on the entire surface by etching, and a through hole 1 in which a part of the non-through hole 5 penetrates from the front surface to the back surface of the metal foil 2. have. The through hole 1 is smaller than the diameter of the dent portion 6, and the dent portion 6 is a portion where the thickness of the metal foil 2 is reduced. Therefore, the through hole 1 is easily formed by the dent portion 6. Further, since the portion other than the recessed portion 6 of the metal foil 2 is a portion where the foil thickness is thicker than that of the recessed portion 6, the through-hole 1 is difficult to be formed, and there is a portion that is not etched. Has contributed.
Moreover, although the dent part 6 is provided in at least any one of the surface or the back surface of the metal foil 2, it is preferable that the metal foil 2 forms a light part by aligning as much as possible on both surfaces.
In addition, the sintered layer 4 having the metal powder 3 is provided on the surface of the metal foil 2, but after the mixture obtained by mixing the metal powder 3 with the binder is applied to the surface of the metal foil 2, it is pressed. The Here, the dent portions 6 provided on the entire surface of the metal foil 2 can be firmly laminated with those provided on the surface by the anchor effect.

以下に、本発明を実施例によりさらに具体的に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。   EXAMPLES The present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
まず、金属粉体として、平均粒径4μmのアルミニウム粉末100質量部にバインダとしてアクリル樹脂60質量部を混合し、溶剤としてのメチルセルソルブ30質量部に分散させた塗工液を準備した。
次に、金属箔として、コイル状の幅が500mm、厚さ70μm、純度99.9%以上のアルミニウム箔をエッチング処理した。
エッチング処理は、塩酸5wt%及び硫酸25wt%で、温度80℃のエッチングの液中において、電流密度0.3A/cmの直流電流を流してエッチング処理し、エッチング孔を形成する。次に、塩酸7wt%及び硫酸5wt%組成及び温度の溶液中にエッチング孔を形成したアルミ箔を浸漬し、電流密度 0.3A/cm、周波数2000Hzの交流電流を200秒間流して行った。その後500mmの長さに切り分けた。その結果、エッチング孔のうち30%が、平均直径0.8μmの貫通孔となっていた。
次に、準備した塗工液をこのエッチング処理し裁断した金属箔の片面に、縦30mm横20mmの長方形になるように複数塗布し、半乾燥後、裏返して裏面を塗布し、両面を乾燥した。塗布は片面ずつ行ったが、金属箔の背面に金属粉体が流出せず塗工は良好であった。
次に、受け皿上に乗せて、400℃の真空中で、バインダを分解除去後、655℃で焼結し、トータル厚さ600μmの積層体を得た。
次に、引き出し電極部をマスクし、陽極酸化処理によって積層体の表面全体に誘電体である酸化皮膜を形成した。まず、沸騰した純水中に浸漬し、表面に擬似ベーマイトを形成する。次に、ホウ酸を含む水溶液中に積層体を浸漬し、500Vの電圧を印加し、陽極酸化を行った。その後、熱処理、減極処理、陽極酸化を繰り返し、その後、洗浄、乾燥して化成工程を終了し、その後切り分け電解コンデンサ用電極を得た。
Example 1
First, as a metal powder, a coating liquid was prepared by mixing 60 parts by mass of an acrylic resin as a binder with 100 parts by mass of an aluminum powder having an average particle diameter of 4 μm and dispersing it in 30 parts by mass of methyl cellosolve as a solvent.
Next, an aluminum foil having a coiled width of 500 mm, a thickness of 70 μm, and a purity of 99.9% or more was etched as a metal foil.
Etching is performed by applying a direct current of 0.3 A / cm 2 in an etching solution of 5 wt% hydrochloric acid and 25 wt% sulfuric acid at a temperature of 80 ° C. to form etching holes. Next, an aluminum foil having etching holes was immersed in a solution having a composition and temperature of 7 wt% hydrochloric acid and 5 wt% sulfuric acid, and an alternating current having a current density of 0.3 A / cm 2 and a frequency of 2000 Hz was passed for 200 seconds. Then, it was cut into a length of 500 mm. As a result, 30% of the etching holes were through holes having an average diameter of 0.8 μm.
Next, the prepared coating solution was applied to one side of this etched and cut metal foil so as to be a rectangle of 30 mm in length and 20 mm in width, and after semi-drying, it was turned over and the back side was applied, and both sides were dried. . The coating was performed one side at a time, but the metal powder did not flow out to the back of the metal foil, and the coating was good.
Next, it was placed on a saucer, and the binder was decomposed and removed in a vacuum of 400 ° C., followed by sintering at 655 ° C. to obtain a laminate having a total thickness of 600 μm.
Next, the lead electrode portion was masked, and an oxide film as a dielectric was formed on the entire surface of the laminate by anodization. First, it is immersed in boiling pure water to form pseudo boehmite on the surface. Next, the laminate was immersed in an aqueous solution containing boric acid, and a voltage of 500 V was applied to perform anodization. Thereafter, heat treatment, depolarization treatment, and anodization were repeated, and thereafter, the chemical conversion step was completed by washing and drying, and then the electrode for an electrolytic capacitor was obtained.

(実施例2)
金属箔として、アルミニウム箔の長さ方向に、幅300μm、長さ2mmのライン状のへこみを2mm間欠で設け、次に焼鈍してひずみをとったものを使用する以外実施例1と同様に作成して電解コンデンサ用電極材を得た。
(Example 2)
Prepared in the same manner as in Example 1 except that a metal foil having a width of 300 μm and a length of 2 mm in the form of a line indentation is intermittently provided by 2 mm in the length direction of the aluminum foil and then annealed and strained. Thus, an electrode material for an electrolytic capacitor was obtained.

(比較例1)
金属箔として、エッチングしない以外実施例1と同様に作成して電解コンデンサ用電極材を得た。
(Comparative Example 1)
A metal foil was prepared in the same manner as in Example 1 except that it was not etched to obtain an electrode material for an electrolytic capacitor.

試料は、平板上に置き、最大曲がり高さをそり高さとし、また、実施例1の容量に対して、実施例2と比較例1の容量増減を測定した。試料数は各40個としその平均値を表1に示す。   The sample was placed on a flat plate, the maximum bending height was set as the warp height, and the capacity increase / decrease in Example 2 and Comparative Example 1 relative to the capacity in Example 1 was measured. The number of samples is 40, and the average value is shown in Table 1.

Figure 2014170862
Figure 2014170862

表1から、実施例は、比較例と比べ、そりと容量増加率に対して良好な結果を得た。また、特に、容量増加率に対して、金属箔に、複数のへこみ部分を設けると、容量増加率が改善された。
From Table 1, the example obtained better results with respect to warpage and capacity increase rate than the comparative example. In particular, when the metal foil is provided with a plurality of dent portions with respect to the capacity increase rate, the capacity increase rate was improved.

1…貫通孔、2…金属箔、3…金属粉体、4…焼結層、5…非貫通の孔、6…へこみ部分   DESCRIPTION OF SYMBOLS 1 ... Through-hole, 2 ... Metal foil, 3 ... Metal powder, 4 ... Sintered layer, 5 ... Non-through-hole, 6 ... Dented part

Claims (4)

複数の貫通孔を有する金属箔と、この金属箔の表面に設けた前記貫通孔の直径よりも大径の金属粉体を有する焼結層とが含まれる電解コンデンサ用電極。   An electrode for an electrolytic capacitor, comprising: a metal foil having a plurality of through holes; and a sintered layer having a metal powder having a diameter larger than the diameter of the through holes provided on the surface of the metal foil. 前記貫通孔の平均直径が0.1μmから1.5μmで、前記金属粉体の平均直径が2μmから5μmである請求項1の電解コンデンサ用電極。   The electrode for an electrolytic capacitor according to claim 1, wherein an average diameter of the through holes is 0.1 µm to 1.5 µm, and an average diameter of the metal powder is 2 µm to 5 µm. 前記金属箔に、複数のへこみ部分と、そのへこみ部分に、そのへこみ部分の直径または幅よりも小径の貫通孔を有する請求項1または2の電解コンデンサ用電極。   The electrode for electrolytic capacitors according to claim 1 or 2, wherein the metal foil has a plurality of dent portions, and the dent portions have through holes having a diameter smaller than the diameter or width of the dent portions. エッチングの孔食により金属箔に貫通孔を得る工程と、その後、
前記貫通孔の直径よりも大径の金属粉体を有機物とともに混合した混合体を前記金属箔に塗布し焼結する工程とを有する電解コンデンサ用電極の製造方法。
A step of obtaining a through hole in the metal foil by etching pitting, and then
A method of manufacturing an electrode for an electrolytic capacitor, comprising: applying a mixture obtained by mixing a metal powder having a diameter larger than the diameter of the through-hole together with an organic substance to the metal foil and sintering the mixture.
JP2013042471A 2013-03-05 2013-03-05 Electrode for electrolytic capacitors Expired - Fee Related JP6164875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042471A JP6164875B2 (en) 2013-03-05 2013-03-05 Electrode for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042471A JP6164875B2 (en) 2013-03-05 2013-03-05 Electrode for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2014170862A true JP2014170862A (en) 2014-09-18
JP6164875B2 JP6164875B2 (en) 2017-07-19

Family

ID=51693033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042471A Expired - Fee Related JP6164875B2 (en) 2013-03-05 2013-03-05 Electrode for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP6164875B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076674A (en) * 2014-10-09 2016-05-12 パナソニックIpマネジメント株式会社 Electrode foil, manufacturing method for the same and electrolytic capacitor
WO2019026701A1 (en) * 2017-08-01 2019-02-07 日立化成株式会社 Electrode for electrolytic capacitors, method for producing electrode for electrolytic capacitors, and electrolytic capacitor
KR102114963B1 (en) * 2018-12-31 2020-05-25 한국제이씨씨(주) Method for manufacturing electrode of electric double layer capacitor
US11443902B2 (en) * 2018-10-04 2022-09-13 Pacesetter, Inc. Hybrid anode and electrolytic capacitor
WO2023236564A1 (en) * 2022-06-07 2023-12-14 南通海星电子股份有限公司 Preparation method for high-specific-surface-area high-dielectric sintered foil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254108A (en) * 1989-03-29 1990-10-12 Permelec Electrode Ltd Tantalum sintered body and its production
JP2001185460A (en) * 1999-12-27 2001-07-06 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method and substrate of an integrated circuitfor it
JP2006245149A (en) * 2005-03-01 2006-09-14 Nec Tokin Corp Wet electrolytic capacitor and its manufacturing method
JP2010098163A (en) * 2008-10-17 2010-04-30 Nec Tokin Corp Solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254108A (en) * 1989-03-29 1990-10-12 Permelec Electrode Ltd Tantalum sintered body and its production
JP2001185460A (en) * 1999-12-27 2001-07-06 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method and substrate of an integrated circuitfor it
JP2006245149A (en) * 2005-03-01 2006-09-14 Nec Tokin Corp Wet electrolytic capacitor and its manufacturing method
JP2010098163A (en) * 2008-10-17 2010-04-30 Nec Tokin Corp Solid electrolytic capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076674A (en) * 2014-10-09 2016-05-12 パナソニックIpマネジメント株式会社 Electrode foil, manufacturing method for the same and electrolytic capacitor
WO2019026701A1 (en) * 2017-08-01 2019-02-07 日立化成株式会社 Electrode for electrolytic capacitors, method for producing electrode for electrolytic capacitors, and electrolytic capacitor
US11443902B2 (en) * 2018-10-04 2022-09-13 Pacesetter, Inc. Hybrid anode and electrolytic capacitor
US11935706B2 (en) 2018-10-04 2024-03-19 Pacesetter, Inc. Hybrid anode and electrolytic capacitor
KR102114963B1 (en) * 2018-12-31 2020-05-25 한국제이씨씨(주) Method for manufacturing electrode of electric double layer capacitor
WO2023236564A1 (en) * 2022-06-07 2023-12-14 南通海星电子股份有限公司 Preparation method for high-specific-surface-area high-dielectric sintered foil

Also Published As

Publication number Publication date
JP6164875B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6164875B2 (en) Electrode for electrolytic capacitors
CN102714098B (en) Electrode material for aluminum electrolytic capacitor and production method therefor
TWI544509B (en) Electrode for electrolytic capacitor for electrolysis and method for manufacturing the same
CN102804302A (en) Electrode material for aluminum electrolytic capacitor and method for manufacturing the material
TW201337990A (en) Method for manufacturing electrode material for aluminum electrolytic capacitor
JP5570263B2 (en) Electrode capacitor anode
TW201040995A (en) Manufacturing method of aluminum electrode plate for electrolytic capacitor
JP2012096937A (en) Thermally conductive sheet and method for manufacturing the same
JP4998559B2 (en) Aluminum etched plate for electrolytic capacitors
WO2013190756A1 (en) Capacitor production method
JP2020177937A (en) Electrode for electrolytic capacitor and manufacturing method thereof
JP3729013B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP4811939B2 (en) Formation method of electrode foil for electrolytic capacitor
WO2009113123A1 (en) Process for producing aluminum electrode plate for electrolytic capacitor
JP4893183B2 (en) Aluminum electrode plate for electrolytic capacitors
JP5570262B2 (en) Anode for electrolytic capacitor and electrolytic capacitor
CN219117594U (en) Niobium material stretching surface treatment device for capacitor
JP2007081067A (en) Electrolytic capacitor and its manufacturing method
CN109243828A (en) A kind of caustic solution of Ultra-low Specific volume anode aluminum foil
JPWO2009118774A1 (en) Aluminum etched plate for electrolytic capacitor, aluminum electrode plate for electrolytic capacitor, and manufacturing method thereof
CN102686341A (en) Flat Ni particle, multilayer ceramic electronic component using the same, and production method for flat Ni particle
JP2013074081A (en) Method for manufacturing sintered body electrode for electrolytic capacitor
JP2018133479A (en) Solid electrolytic capacitor, and method for manufacturing the same
WO2010131290A1 (en) Manufacturing method for an aluminum electrode plate for electrolytic capacitor and manufacturing apparatus therefor
JP2021072362A (en) Method for manufacturing electrode foil for electrolytic capacitor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R150 Certificate of patent or registration of utility model

Ref document number: 6164875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees