JP2014170655A - Electrode for all-solid-state battery and all-solid-state battery - Google Patents

Electrode for all-solid-state battery and all-solid-state battery Download PDF

Info

Publication number
JP2014170655A
JP2014170655A JP2013041362A JP2013041362A JP2014170655A JP 2014170655 A JP2014170655 A JP 2014170655A JP 2013041362 A JP2013041362 A JP 2013041362A JP 2013041362 A JP2013041362 A JP 2013041362A JP 2014170655 A JP2014170655 A JP 2014170655A
Authority
JP
Japan
Prior art keywords
electrode
solid
state battery
sulfide
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013041362A
Other languages
Japanese (ja)
Inventor
Minako Kato
美奈子 加藤
Hidetake Okamoto
英丈 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2013041362A priority Critical patent/JP2014170655A/en
Publication of JP2014170655A publication Critical patent/JP2014170655A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for an all-solid-state battery, having an electrode mixture capable of suppressing the change of a composition and reducing an increased amount of a volume due to an addition of a conductive assistant.SOLUTION: Electrodes 1 and 2 for an all-solid-state battery of the present invention are electrodes for an all-solid-state battery including collectors 11 and 21 and electrode mixtures 12 and 22 including an electrode active material, a sulfide-based solid electrolyte and a conductive assistant, respectively. The conductive assistant comprises a metal sulfide.

Description

本発明は、全固体電池用電極及びこれを用いた全固体電池に関する。   The present invention relates to an electrode for an all solid state battery and an all solid state battery using the same.

従来の全固体電池用電極の例として、活物質粉末と硫化物系固体電解質粉末とニッケル及びチタンの少なくとも一方を含む導電助材とを含有するものがある(特許文献1)。また、従来の全固体電池の例として、正極層と負極層との間に固体電解質が介在され、正極層及び負極層が、電極活物質及び硫化物系固体電解質と、アセチレンブラック、カーボンファイバー等の導電助材とを含むものがある(特許文献2)。   As an example of a conventional electrode for an all solid state battery, there is one containing an active material powder, a sulfide-based solid electrolyte powder, and a conductive additive containing at least one of nickel and titanium (Patent Document 1). In addition, as an example of a conventional all-solid battery, a solid electrolyte is interposed between a positive electrode layer and a negative electrode layer, and the positive electrode layer and the negative electrode layer include an electrode active material and a sulfide-based solid electrolyte, acetylene black, carbon fiber, etc. There is a thing containing the conductive support material of this (patent document 2).

特開2012−133932号公報JP 2012-133932 A 特開2011−154900号公報JP 2011-154900 A

しかし、このような従来の全固体電池用電極では、硫化物系固体電解質粉末を用いると、導電助材のニッケルやチタンと固体電解質の硫化物との化学反応により電解質の組成を変化させる場合がある。また、このような従来の全固体電池では、密度の低い炭素材料などの導電助材を添加すると、電極合材の体積の増加量が大きくなる場合がある。これらの結果として、放電エネルギー密度が低下する惧れがある。   However, in such a conventional all-solid-state battery electrode, when a sulfide-based solid electrolyte powder is used, the composition of the electrolyte may be changed by a chemical reaction between nickel or titanium as a conductive additive and sulfide of the solid electrolyte. is there. Moreover, in such a conventional all solid state battery, when a conductive auxiliary material such as a carbon material having a low density is added, an increase in the volume of the electrode mixture may increase. As a result of these, the discharge energy density may decrease.

本発明は、組成の変化の抑制及び導電助材の添加による体積の増加量の低減が可能な電極合材を有する全固体電池用電極及びこれを用いた全固体電池を提供することを目的とする。   An object of the present invention is to provide an electrode for an all solid state battery having an electrode mixture capable of suppressing a change in composition and reducing an increase in volume due to the addition of a conductive additive, and an all solid state battery using the same. To do.

本発明の全固体電池用電極は、集電体、及び電極活物質と硫化物系固体電解質と導電助材とを含む電極合材を有する全固体電池用電極であって、前記導電助材は金属硫化物であることを特徴とするものである。   An electrode for an all solid state battery according to the present invention is an electrode for an all solid state battery having a current collector, and an electrode mixture containing an electrode active material, a sulfide-based solid electrolyte, and a conductive additive. It is a metal sulfide.

また、この全固体電池用電極において、金属硫化物は、一硫化物であることが好ましく、さらに遷移金属元素の硫化物であることが好ましく、特にNiS、CoS、FeSのうち少なくとも1つであることがより好ましい。そして、金属硫化物の添加量は、電極合材に対して体積比で1〜5%であることが好ましい。   In this all solid state battery electrode, the metal sulfide is preferably a monosulfide, more preferably a sulfide of a transition metal element, and particularly at least one of NiS, CoS, and FeS. It is more preferable. And it is preferable that the addition amount of a metal sulfide is 1 to 5% by volume ratio with respect to an electrode compound material.

本発明の全固体電池は、一対の電極間に固体電解質が設けられる全固体電池であって、前記一対の電極のうち少なくとも一方に、上記の全固体電池用電極を用いることを特徴とするものである。   An all solid state battery according to the present invention is an all solid state battery in which a solid electrolyte is provided between a pair of electrodes, wherein the all solid state battery electrode is used for at least one of the pair of electrodes. It is.

本発明の全固体電池用電極によれば、導電助材として金属硫化物を用いることにより硫化物系固体電解質と導電助材との化学反応が抑制されるため、電解質の組成の変化を抑制することができる。そして、本発明の全固体電池用電極を用いた全固体電池によれば、導電助材に密度の高い金属硫化物を用いることにより、電極合材の体積の増加量が低減されるため、全固体電池の体積の増加量を低減することができるとともに、電極合材のイオン伝導性を維持したまま電子伝導性を向上させることができる。これらの結果、放電エネルギー密度を向上させることができる。   According to the electrode for an all-solid-state battery of the present invention, the chemical reaction between the sulfide-based solid electrolyte and the conductive additive is suppressed by using a metal sulfide as the conductive additive, thereby suppressing the change in the composition of the electrolyte. be able to. And according to the all solid state battery using the electrode for all solid state battery of the present invention, by using a metal sulfide having a high density for the conductive additive, the increase in the volume of the electrode mixture is reduced. While increasing the volume of the solid battery can be reduced, the electron conductivity can be improved while maintaining the ionic conductivity of the electrode mixture. As a result, the discharge energy density can be improved.

本発明に係る全固体電池用電極を用いた全固体電池の実施例の構成を示す断面図である。It is sectional drawing which shows the structure of the Example of the all-solid-state battery using the electrode for all-solid-state batteries which concerns on this invention.

本発明に係る全固体電池の実施例について、図1を用いて説明する。
本実施例においては、全固体電池が全固体リチウムイオン二次電池(以下、単に二次電池という。)である場合を示す。図1に示すように、二次電池は、正極1及び負極2として機能する一対の電極と、その間に固体電解質3であるリチウムイオン伝導性固体電解質を有する。各電極1,2は電極合材12,22及び集電体11,21をそれぞれ備える。すなわち、図1に示すように、固体電解質3の表面に正極1の電極合材12が隣り合うように配置され、固体電解質3の表面に対向する裏面に負極2の電極合材22が隣り合うように配置され、両集電体11,21が最も外側に位置するように配置される。
An embodiment of an all-solid battery according to the present invention will be described with reference to FIG.
In this embodiment, the case where the all solid state battery is an all solid state lithium ion secondary battery (hereinafter simply referred to as a secondary battery) is shown. As shown in FIG. 1, the secondary battery includes a pair of electrodes that function as a positive electrode 1 and a negative electrode 2, and a lithium ion conductive solid electrolyte that is a solid electrolyte 3 between them. Each of the electrodes 1 and 2 includes electrode composites 12 and 22 and current collectors 11 and 21, respectively. That is, as shown in FIG. 1, the electrode mixture 12 of the positive electrode 1 is disposed adjacent to the surface of the solid electrolyte 3, and the electrode mixture 22 of the negative electrode 2 is adjacent to the back surface facing the surface of the solid electrolyte 3. The current collectors 11 and 21 are disposed on the outermost side.

集電体11,21としては、銅(Cu)、マグネシウム(Mg)、ステンレス鋼、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、インジウム(In)、リチウム(Li)、スズ(Sn)、又はこれらの合金等から成る板状体、箔状体又は粉体が用いられる。本実施例においては、正極1の集電体11(以下、単に正極集電体11という。)としてはSnを、負極2の集電体21(以下、単に負極集電体21という。)としてはCuをそれぞれ採用している。   As the current collectors 11 and 21, copper (Cu), magnesium (Mg), stainless steel, titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn), aluminum (Al ), Germanium (Ge), indium (In), lithium (Li), tin (Sn), or a plate-like body, foil-like body or powder made of an alloy thereof. In this embodiment, Sn is used as the current collector 11 of the positive electrode 1 (hereinafter simply referred to as the positive current collector 11), and Sn is used as the current collector 21 of the negative electrode 2 (hereinafter simply referred to as the negative current collector 21). Adopts Cu respectively.

電極合材12,22は、電子を送り出し受け取る酸化還元反応を行うために粒子間に電子伝導パスを確保する電極活物質と硫化物系固体電解質と導電助材とを所定の割合で混合した混合材である。本実施例においては、硫化物系固体電解質として、リチウムイオン伝導性固体電解質を用いる。このように、電極活物質にリチウムイオン伝導性固体電解質を混合することにより、電子伝導性に加えてイオン伝導性を付与し、粒子間にイオン伝導パスを確保することができる。   The electrode composites 12 and 22 are a mixture in which an electrode active material that secures an electron conduction path between particles, a sulfide-based solid electrolyte, and a conductive additive are mixed at a predetermined ratio in order to perform an oxidation-reduction reaction for sending and receiving electrons. It is a material. In this embodiment, a lithium ion conductive solid electrolyte is used as the sulfide-based solid electrolyte. Thus, by mixing a lithium ion conductive solid electrolyte with the electrode active material, ion conductivity can be imparted in addition to electron conductivity, and an ion conduction path can be secured between the particles.

正極1の電極合材12(以下、単に正極合材12という。)に適した電極活物質としては、リチウムイオンの挿入脱離が可能なものであればよく、特に限定されない。例えば、リチウム・ニッケル複合酸化物(LiNi1-x、ただし、MはCo、Al、Mn、V、Cr、Mg、Ca、Ti、Zr、Nb、Mo及びWのうち少なくとも1つの元素)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等の層状酸化物、オリピン構造を持つリン酸鉄リチウム(LiFePO)、スピネル構造を持つマンガン酸リチウム(LiMn、LiMnO、LiMO)等の固溶体やそれらの混合物、更に硫黄(S)、硫化リチウム(LiS)等の硫化物などを用いることもできる。本実施例においては、正極活物質12aとして、具体的には、リチウム・ニッケル・コバルト・アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05、以下NCAと略称する。)を採用している。 The electrode active material suitable for the electrode mixture 12 of the positive electrode 1 (hereinafter simply referred to as the positive electrode mixture 12) is not particularly limited as long as it can insert and desorb lithium ions. For example, lithium-nickel composite oxide (LiNi x M 1-x O 2 , where M is at least one of Co, Al, Mn, V, Cr, Mg, Ca, Ti, Zr, Nb, Mo and W Elements), layered oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium iron phosphate (LiFePO 4 ) having an olipine structure, spinel structure A solid solution such as lithium manganate (LiMn 2 O 4 , Li 2 MnO 3 , LiMO 2 ) or a mixture thereof, or a sulfide such as sulfur (S) or lithium sulfide (Li 2 S) can also be used. In this embodiment, as the positive electrode active material 12a, specifically, a lithium / nickel / cobalt / aluminum composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 , hereinafter abbreviated as NCA). Is adopted.

一方、負極2の電極合材22(以下、単に負極合材22という。)に適した電極活物質としては、例えば天然黒鉛、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素などの炭素材料のほかに硫化物系固体電解質と合材化されるものであれば限定されない。例えば、チタン酸リチウム(LiTi12)等の金属酸化物も用いることが出来る。本実施例においては、天然・人造などの黒鉛を採用している。 On the other hand, examples of the electrode active material suitable for the electrode mixture 22 of the negative electrode 2 (hereinafter simply referred to as the negative electrode mixture 22) include carbon materials such as natural graphite, artificial graphite, graphite carbon fiber, and resin-fired carbon. It will not be limited if it is compounded with a sulfide type solid electrolyte. For example, a metal oxide such as lithium titanate (Li 4 Ti 5 O 12 ) can also be used. In this embodiment, natural or artificial graphite is employed.

また、両電極1,2に使用可能な電極活物質としては、正極合材12に用いられる電極活物質12a及び負極合材22に用いられる電極活物質の表面に、ジルコニア(ZrO)、アルミナ(Al)、チタン酸リチウム(LiTi12)、ニオブ酸リチウム(LiNbO)、炭素(C)等をそれぞれコーティングしたものが挙げられる。 The electrode active materials usable for both electrodes 1 and 2 include zirconia (ZrO 2 ), alumina on the surface of the electrode active material 12 a used for the positive electrode mixture 12 and the electrode active material used for the negative electrode mixture 22. (Al 2 O 3 ), lithium titanate (Li 4 Ti 5 O 12 ), lithium niobate (LiNbO 3 ), carbon (C) and the like may be used.

リチウムイオン伝導性固体電解質としては、有機化合物又は無機化合物さらには有機及び無機化合物の混合物から成る材料を用いることができ、リチウムイオン電池分野で公知のものを使用することができる。本実施例においては、硫化物系固体電解質は、イオン伝導性が他の無機化合物よりも高いことが知られているため、硫化物系無機固体電解質を採用している。具体的には、LiS−P系、LiS−GeS系、LiS−Ge系、LiS−GeS−P系、LiS−GeS−ZnS系、LiS−SiS系等のガラスセラミックスが挙げられる。本実施例においては、LiS−P系ガラスセラミックスを採用している。 As the lithium ion conductive solid electrolyte, a material composed of an organic compound or an inorganic compound, or a mixture of an organic and an inorganic compound can be used, and those known in the field of lithium ion batteries can be used. In the present embodiment, since the sulfide solid electrolyte is known to have higher ionic conductivity than other inorganic compounds, a sulfide inorganic solid electrolyte is employed. Specifically, Li 2 S—P 2 S 5 system, Li 2 S—GeS 2 system, Li 2 S—Ge 2 S 2 system, Li 2 S—GeS 2 —P 2 S 5 system, Li 2 S— Examples thereof include glass ceramics such as GeS 2 —ZnS and Li 2 S—SiS 2 . In the present embodiment employs a Li 2 S-P 2 S 5 -based glass ceramic.

上述のとおり正極合材12及び負極合材22に硫化物系固体電解質を用いるため、導電助材としては、電解質の組成の変化を抑制することを目的として、金属硫化物が用いられる。また、金属硫化物は2価の硫化物イオンと2価の金属イオンとが化合してできる一硫化物であると好ましい。なぜならば、一硫化物は密度が高いため、放電エネルギー密度を向上させることができるからである。さらに、金属硫化物は、電気伝導性の高い遷移金属元素の硫化物であるとより好ましい。本実施例においては、金属硫化物として、硫化ニッケル(NiS)、硫化コバルト(CoS)、硫化鉄(FeS)を採用している。   Since a sulfide-based solid electrolyte is used for the positive electrode mixture 12 and the negative electrode mixture 22 as described above, a metal sulfide is used as the conductive additive for the purpose of suppressing changes in the composition of the electrolyte. The metal sulfide is preferably a monosulfide formed by combining a divalent sulfide ion and a divalent metal ion. This is because monosulfide has a high density and can improve the discharge energy density. Furthermore, the metal sulfide is more preferably a transition metal element sulfide having high electrical conductivity. In this embodiment, nickel sulfide (NiS), cobalt sulfide (CoS), and iron sulfide (FeS) are employed as the metal sulfide.

ここで、実験例1〜7として、導電助材に金属硫化物を含有する正極合材12を用いた二次電池を作製した。また、導電助材として気相法により合成された炭素繊維(VGCF:登録商標)を含有する比較例1を作製した。さらに、参考例として、導電助材を含有しない正極合材12を用いて二次電池を作製した。実験例1〜7、比較例1及び参考例1について、それぞれ放電エネルギー密度を測定する評価実験を行った。
[実験例1]
LiS−P系ガラスセラミックス粉末を50mg秤量し、内径10mmの合金工具鋼鋼材(SKD:冷間ダイス鋼)製の円筒金型に入れ、単動プレス機を使用して圧力188MPaで1回加圧成形し、固体電解質3を形成した。次に、黒鉛粉末とLiS(70mol%)−P(30mol%)の粉末とを、60:40の割合で混合し、得られた混合物を15mg秤量して円筒金型に投入し、そして単動プレス機を使用して圧力188MPaで3回加圧成形した。ここで用いた黒鉛粉末は、低結晶性炭素で被覆されたものを用いている。正極合材12の作製において、NCAを70mg、真密度5.3g/cmのNiSを2mg(体積パーセント濃度1.2vol%、体積比1.2%)混合した後、LiS(70mol%)−P(30mol%)ガラスセラミックス粉末を30mg添加して混合し、得られた混合物を20mg秤量し、円筒金型の負極合材22を投入した側と反対側から投入し、単動プレス機を使用し、順次376MPa、752MPa、1050MPaで3回加圧成形し、円筒金型から取り出した。最後に、負極合材22側を、負極集電体21のCuを覆う絶縁フィルム4(図1に図示)に開いた直径11mmの穴に挿入し、正極合材12上に正極集電体11であるSnを配置し、正極リード及び負極リードを有する袋状容器に真空状態で封入し、正極集電体11を正極リードに、負極集電体21を負極リードに接続させて二次電池を作製した。ここで、袋状容器は、空気が吸引(真空引き)されて、ある程度の真空度に保持され(以下、これを真空状態という。)、水分の影響を受けないようにされている。
Here, as Experimental Examples 1 to 7, secondary batteries using a positive electrode mixture 12 containing a metal sulfide as a conductive additive were produced. Moreover, the comparative example 1 containing the carbon fiber (VGCF: trademark) synthesize | combined by the gaseous-phase method as a conductive support material was produced. Furthermore, as a reference example, a secondary battery was fabricated using a positive electrode mixture 12 that did not contain a conductive additive. For Experimental Examples 1 to 7, Comparative Example 1 and Reference Example 1, evaluation experiments for measuring the discharge energy density were performed.
[Experimental Example 1]
50 mg of Li 2 S—P 2 S 5 glass ceramic powder was weighed and placed in a cylindrical mold made of an alloy tool steel (SKD: cold die steel) with an inner diameter of 10 mm, and pressure was 188 MPa using a single-acting press. Was pressed once to form a solid electrolyte 3. Next, graphite powder and Li 2 S (70 mol%)-P 2 S 5 (30 mol%) powder were mixed at a ratio of 60:40, and 15 mg of the obtained mixture was weighed and put into a cylindrical mold. Then, using a single-acting press, it was pressure-molded three times at a pressure of 188 MPa. The graphite powder used here is coated with low crystalline carbon. In preparation of the positive electrode mixture 12, after mixing 70 mg of NCA and 2 mg of NiS having a true density of 5.3 g / cm 3 (volume percent concentration 1.2 vol%, volume ratio 1.2%), Li 2 S (70 mol%) was mixed. ) -P 2 S 5 (30 mol%) glass ceramic powder 30 mg was added and mixed, and 20 mg of the resulting mixture was weighed and charged from the side opposite to the side where the negative electrode mixture 22 of the cylindrical mold was charged. Using a dynamic press machine, it was press-molded three times successively at 376 MPa, 752 MPa, and 1050 MPa, and taken out from the cylindrical mold. Finally, the negative electrode mixture 22 side is inserted into a hole of 11 mm in diameter opened in the insulating film 4 (illustrated in FIG. 1) covering Cu of the negative electrode current collector 21, and the positive electrode current collector 11 is placed on the positive electrode mixture 12. Is placed in a bag-like container having a positive electrode lead and a negative electrode lead in a vacuum state, and the secondary battery is connected by connecting the positive electrode current collector 11 to the positive electrode lead and the negative electrode current collector 21 to the negative electrode lead. Produced. Here, the bag-like container is sucked (evacuated) and kept at a certain degree of vacuum (hereinafter referred to as a vacuum state) so that it is not affected by moisture.

二次電池を恒温槽内に配置して、温度30℃、二次電池に負荷される圧力78.4MPa、充電終止電圧4.0V、充電電流0.1mA/cm、放電終止電圧2.0V、放電電流0.1mA/cmとなる条件において、定電流による充放電を行い、放電エネルギー密度Wh/kg−NCAを求める評価実験を行った。その値を表1に示す。ここで、本明細書において、単位[Wh/kg−NCA]とは、NCAの重量当りの放電エネルギー密度を指す。その算出は公知の方法に基づくものであり、電圧と容量から求まるエネルギー[Wh]をNCAの重量[kg]で割ることによって得られるものである。
[実験例2]
正極合材12の作製において、導電助材として、真密度4.8g/cmのFeSを濃度1.2vol%(体積比1.2%)となるように添加した正極合材12を用い、その他は実施例1と同様に二次電池を作製して、評価実験を行った。実験例2における放電エネルギー密度を表1に示す。
[実験例3]
正極合材12の作製において、導電助材として、真密度5.5g/cmのCoSを濃度1.2vol%(体積比1.2%)となるように添加し、その他は実施例1と同様に二次電池を作製して、評価実験を行った。実験例3における放電エネルギー密度を表1に示す。
[実験例4]
正極合材12の作製において、導電助材として、実施例1と同一のNiSを濃度0.6vol%(体積比0.6%)となるように添加し、その他は実施例1と同様に二次電池を作製して、評価実験を行った。実験例4における放電エネルギー密度を表1に示す。
[実験例5]
正極合材12の作製において、導電助材として、実施例1と同一のNiSを濃度2.4vol%(体積比2.4%)となるように添加し、その他は実施例1と同様に二次電池を作製して、評価実験を行った。実験例5における放電エネルギー密度を表1に示す。
[実験例6]
正極合材12の作製において、導電助材として、実施例1と同一のNiSを濃度4.8vol%(体積比4.8%)となるように添加し、その他は実施例1と同様に二次電池を作製して、評価実験を行った。実験例6における放電エネルギー密度を表1に示す。
[実験例7]
正極合材12の作製において、導電助材として、実施例1と同一のNiSを濃度6.0vol%(体積比6.0%)となるように添加し、その他は実施例1と同様に二次電池を作製して、評価実験を行った。実験例7における放電エネルギー密度を表1に示す。
[比較例1]
導電助材として、真密度2.0g/cmの気相法により合成された炭素繊維(VGCF:登録商標)を濃度4.8vol%(体積比4.8%)となるように添加した正極合材12を作成し、その他は実施例1と同様に二次電池を作製して、実験例1と同様の評価実験を行った。比較例1における放電エネルギー密度を表1に示す。
[参考例1]
参考例1として、正極合材12に導電助材を添加せず、実施例1と同様に二次電池を作製して、実験例1と同様の評価実験を行った。参考例1における放電エネルギー密度を表1に示す。
The secondary battery is placed in a thermostat, the temperature is 30 ° C., the pressure applied to the secondary battery is 78.4 MPa, the charge end voltage is 4.0 V, the charge current is 0.1 mA / cm 2 , and the discharge end voltage is 2.0 V. Under the conditions of a discharge current of 0.1 mA / cm 2 , charging and discharging with a constant current were performed, and an evaluation experiment for determining the discharge energy density Wh / kg-NCA was performed. The values are shown in Table 1. Here, in this specification, the unit [Wh / kg-NCA] refers to the discharge energy density per weight of NCA. The calculation is based on a known method, and is obtained by dividing the energy [Wh] obtained from the voltage and capacity by the weight [kg] of the NCA.
[Experiment 2]
In the production of the positive electrode mixture 12, a positive electrode mixture 12 to which FeS having a true density of 4.8 g / cm 3 was added so as to have a concentration of 1.2 vol% (volume ratio 1.2%) was used as a conductive additive. Other than that, a secondary battery was fabricated in the same manner as in Example 1, and an evaluation experiment was performed. The discharge energy density in Experimental Example 2 is shown in Table 1.
[Experiment 3]
In the production of the positive electrode mixture 12, CoS having a true density of 5.5 g / cm 3 was added as a conductive auxiliary so as to have a concentration of 1.2 vol% (volume ratio: 1.2%). Similarly, a secondary battery was produced and an evaluation experiment was performed. The discharge energy density in Experimental Example 3 is shown in Table 1.
[Experimental Example 4]
In the production of the positive electrode mixture 12, the same NiS as in Example 1 was added as a conductive auxiliary so as to have a concentration of 0.6 vol% (volume ratio 0.6%). A secondary battery was fabricated and an evaluation experiment was performed. The discharge energy density in Experimental Example 4 is shown in Table 1.
[Experimental Example 5]
In the production of the positive electrode mixture 12, the same NiS as that of Example 1 was added so as to have a concentration of 2.4 vol% (volume ratio 2.4%) as the conductive auxiliary material, and the others were the same as in Example 1. A secondary battery was fabricated and an evaluation experiment was performed. The discharge energy density in Experimental Example 5 is shown in Table 1.
[Experimental Example 6]
In the production of the positive electrode mixture 12, the same NiS as that of Example 1 was added so as to have a concentration of 4.8 vol% (volume ratio of 4.8%) as the conductive auxiliary material. A secondary battery was fabricated and an evaluation experiment was performed. The discharge energy density in Experimental Example 6 is shown in Table 1.
[Experimental Example 7]
In the production of the positive electrode mixture 12, the same NiS as in Example 1 was added as a conductive additive so as to have a concentration of 6.0 vol% (volume ratio 6.0%). A secondary battery was fabricated and an evaluation experiment was performed. The discharge energy density in Experimental Example 7 is shown in Table 1.
[Comparative Example 1]
A positive electrode to which carbon fiber (VGCF: registered trademark) synthesized by a vapor phase method having a true density of 2.0 g / cm 3 is added as a conductive additive so as to have a concentration of 4.8 vol% (volume ratio 4.8%). A composite material 12 was prepared, and the others were fabricated in the same manner as in Example 1, and the same evaluation experiment as in Experimental Example 1 was performed. The discharge energy density in Comparative Example 1 is shown in Table 1.
[Reference Example 1]
As Reference Example 1, a secondary battery was prepared in the same manner as in Example 1 without adding a conductive additive to the positive electrode mixture 12, and the same evaluation experiment as in Experimental Example 1 was performed. The discharge energy density in Reference Example 1 is shown in Table 1.

表1に示すように、比較例1の放電エネルギー密度は493Wh/kg−NCAであり、導電助材を添加しない参考例1の放電エネルギー密度496Wh/kg−NCAとほぼ同じ値であり、VGCF(登録商標)は導電助材として適切な効果を奏さないことがわかる。   As shown in Table 1, the discharge energy density of Comparative Example 1 is 493 Wh / kg-NCA, which is almost the same value as the discharge energy density 496 Wh / kg-NCA of Reference Example 1 in which no conductive additive is added, and VGCF ( (Registered trademark) does not have an appropriate effect as a conductive additive.

表1に示すように、実施例1は放電エネルギー密度が514Wh/kg−NCAであり、正極合材12にNiSを導電助材として添加することで正極活物質と導電助材との間に電子伝導パスが形成されて導電性が向上し、比較例1よりも放電エネルギー密度が向上したことが確認できる。実施例2、3についてもFeS、CoS各々が実施例1のNiS添加時と同様の作用効果を奏し、放電エネルギー密度がそれぞれ513Wh/kg−NCA、509Wh/kg−NCAであり、比較例1よりも向上した。実施例4〜7では導電助材NiSを体積比で0.6〜6.0%添加することにより、放電エネルギー密度が順に505Wh/kg−NCA、524Wh/kg−NCA、516Wh/kg−NCA、507Wh/kg−NCAであり、比較例1よりも向上したことが確認できる。そして、実験例6と比較例1とを比較すると、導電助材としての添加量はともに同一の濃度4.8vol%であり、実験例1〜5における導電助材の添加量は濃度4.8vol%以下である。これらのことから、炭素材料に比べて真密度の高い金属硫化物を用いることによって、添加量を減少させても、炭素材料を用いた場合(比較例1)以上の放電エネルギー密度が得られることを示している。ひいては、炭素材料を導電助材に用いた場合よりも全固体電池の性能が向上することを示している。   As shown in Table 1, in Example 1, the discharge energy density is 514 Wh / kg-NCA, and by adding NiS to the positive electrode mixture 12 as a conductive additive, electrons are added between the positive electrode active material and the conductive additive. It can be confirmed that the conduction path is formed, the conductivity is improved, and the discharge energy density is improved as compared with Comparative Example 1. Also in Examples 2 and 3, FeS and CoS each had the same effect as NiS addition in Example 1, and the discharge energy densities were 513 Wh / kg-NCA and 509 Wh / kg-NCA, respectively, from Comparative Example 1 Also improved. In Examples 4 to 7, by adding 0.6 to 6.0% of the conductive auxiliary material NiS by volume ratio, the discharge energy density is 505 Wh / kg-NCA, 524 Wh / kg-NCA, 516 Wh / kg-NCA in order, It was 507 Wh / kg-NCA, and it can be confirmed that it was improved over Comparative Example 1. And when Experimental Example 6 and Comparative Example 1 are compared, the addition amount as the conductive additive is the same concentration of 4.8 vol%, and the additive amount of the conductive additive in Experimental Examples 1 to 5 is the concentration of 4.8 vol. % Or less. From these facts, by using a metal sulfide having a higher true density than that of the carbon material, a discharge energy density higher than that when the carbon material is used (Comparative Example 1) can be obtained even if the amount of addition is reduced. Is shown. As a result, it shows that the performance of the all-solid-state battery is improved as compared with the case where the carbon material is used as the conductive additive.

本発明の全固体電池用電極によれば、導電助材として金属硫化物を用いることにより硫化物系固体電解質と導電助材との化学反応が抑制されるため、電解質の変化を抑制することができる。そして、本発明の全固体電池用電極を用いた全固体電池によれば、導電助材に密度の高い金属硫化物を用いることにより、電極合材12,22の体積の増加量が低減されるため、全固体電池の体積の増加量を低減することができるとともに、電極合材12,22のイオン伝導性を維持したまま電子伝導性を向上させることができる。これらの結果、放電エネルギー密度を向上させることができる。   According to the electrode for an all-solid-state battery of the present invention, the use of metal sulfide as a conductive additive suppresses the chemical reaction between the sulfide-based solid electrolyte and the conductive additive, thereby suppressing changes in the electrolyte. it can. And according to the all-solid-state battery using the electrode for all-solid-state batteries of this invention, the increase amount of the volume of the electrode compound materials 12 and 22 is reduced by using a metal sulfide with a high density for a conductive support material. Therefore, the increase in the volume of the all-solid-state battery can be reduced, and the electron conductivity can be improved while maintaining the ionic conductivity of the electrode composites 12 and 22. As a result, the discharge energy density can be improved.

Figure 2014170655
実験例1〜7の結果から、金属硫化物の添加量は、正極合材12に対して体積比1〜5%であることがより好ましいことがわかる。また、実験例1〜7の結果から、本実施例に係る電極合材は正極1にのみ用いたが、適切な効果が得られることがわかった。したがって、一対の電極のうち少なくとも一方に、全固体電池用電極を用いられればよいことがわかる。
Figure 2014170655
From the results of Experimental Examples 1 to 7, it can be seen that the addition amount of the metal sulfide is more preferably 1 to 5% by volume with respect to the positive electrode mixture 12. Moreover, although the electrode compound material which concerns on a present Example was used only for the positive electrode 1 from the result of Experimental example 1-7, it turned out that a suitable effect is acquired. Therefore, it is understood that an all solid state battery electrode may be used for at least one of the pair of electrodes.

なお、本実施例においては、両電極合材12,22の加圧成形には、バインダーは使用しなかったが、当然ながら電極合材はバインダーを使用して加圧成形されても構わない。   In the present embodiment, no binder is used for the pressure molding of the electrode mixtures 12 and 22, but the electrode mixture may naturally be pressure molded using a binder.

1 正極(電極)
11 正極集電体(集電体)
12 正極合材(電極合材)
2 負極(電極)
21 負極集電体(集電体)
22 負極合材(電極合材)
3 固体電解質
4 絶縁フィルム
1 Positive electrode (electrode)
11 Positive current collector (current collector)
12 Positive electrode mixture (electrode mixture)
2 Negative electrode (electrode)
21 Negative electrode current collector (current collector)
22 Negative electrode composite (electrode composite)
3 Solid electrolyte 4 Insulating film

Claims (6)

集電体、及び電極活物質と硫化物系固体電解質と導電助材とを含む電極合材を有する全固体電池用電極であって、
前記導電助材は金属硫化物であることを特徴とする全固体電池用電極。
An electrode for an all-solid battery having a current collector and an electrode mixture containing an electrode active material, a sulfide-based solid electrolyte, and a conductive additive,
An electrode for an all-solid battery, wherein the conductive additive is a metal sulfide.
金属硫化物は、一硫化物であることを特徴とする請求項1に記載の全固体電池用電極。   The electrode for an all-solid-state battery according to claim 1, wherein the metal sulfide is a monosulfide. 金属硫化物は、遷移金属元素の硫化物であることを特徴とする請求項1又は2に記載の全固体電池用電極。   3. The electrode for an all solid state battery according to claim 1, wherein the metal sulfide is a sulfide of a transition metal element. 金属硫化物は、NiS、CoS、FeSのうち少なくとも1つであることを特徴とする請求項1乃至3のいずれか一項に記載の全固体電池用電極。   The electrode for an all solid state battery according to any one of claims 1 to 3, wherein the metal sulfide is at least one of NiS, CoS, and FeS. 金属硫化物の添加量は、電極合材に対して体積比で1〜5%であることを特徴とする請求項1乃至4のいずれか一項に記載の全固体電池用電極。   The electrode for an all-solid-state battery according to any one of claims 1 to 4, wherein the addition amount of the metal sulfide is 1 to 5% by volume with respect to the electrode mixture. 一対の電極間に固体電解質が設けられる全固体電池であって、
前記一対の電極のうち少なくとも一方に、請求項1乃至5のいずれか一項に記載の全固体電池用電極を用いることを特徴とする全固体電池。
An all-solid battery in which a solid electrolyte is provided between a pair of electrodes,
An all solid state battery using the all solid state battery electrode according to any one of claims 1 to 5 as at least one of the pair of electrodes.
JP2013041362A 2013-03-04 2013-03-04 Electrode for all-solid-state battery and all-solid-state battery Pending JP2014170655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041362A JP2014170655A (en) 2013-03-04 2013-03-04 Electrode for all-solid-state battery and all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041362A JP2014170655A (en) 2013-03-04 2013-03-04 Electrode for all-solid-state battery and all-solid-state battery

Publications (1)

Publication Number Publication Date
JP2014170655A true JP2014170655A (en) 2014-09-18

Family

ID=51692902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041362A Pending JP2014170655A (en) 2013-03-04 2013-03-04 Electrode for all-solid-state battery and all-solid-state battery

Country Status (1)

Country Link
JP (1) JP2014170655A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009905A (en) * 2007-06-29 2009-01-15 Sumitomo Electric Ind Ltd Thin film lithium secondary battery and manufacturing method therefor
WO2010131709A1 (en) * 2009-05-14 2010-11-18 独立行政法人物質・材料研究機構 Negative-electrode material and lithium secondary battery using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009905A (en) * 2007-06-29 2009-01-15 Sumitomo Electric Ind Ltd Thin film lithium secondary battery and manufacturing method therefor
WO2010131709A1 (en) * 2009-05-14 2010-11-18 独立行政法人物質・材料研究機構 Negative-electrode material and lithium secondary battery using same

Similar Documents

Publication Publication Date Title
CN111566851B (en) Positive electrode material and battery
CN111201643B (en) Electrode material and battery
WO2019135322A1 (en) Positive electrode material and battery
CN111566848B (en) Negative electrode material and battery using same
WO2019135346A1 (en) Positive electrode material and battery
JP7217433B2 (en) Cathode material and battery using the same
JP6011989B2 (en) Lithium titanium sulfide, lithium niobium sulfide and lithium titanium niobium sulfide
JPWO2019146294A1 (en) battery
JP5742858B2 (en) All-solid battery and method for manufacturing the same
JP5348607B2 (en) All-solid lithium secondary battery
WO2019146293A1 (en) Battery
CN110858663B (en) All-solid-state battery
JP5686300B2 (en) Solid electrolyte material and all solid lithium secondary battery
JP2012164571A (en) Negative electrode body and lithium ion battery
WO2021157361A1 (en) Positive electrode material and battery
JP2015201388A (en) Cathode active material for non-aqueous secondary battery and manufacturing method for the same
CN107867721A (en) Active material for positive electrode for battery and battery
JPWO2020174868A1 (en) Positive electrode material and battery
CN107104231A (en) Positive active material and battery
CN107104232A (en) Positive active material and battery
WO2020034875A1 (en) Sulfur-based positive electrode active material for use in solid-state battery, preparation for material, and applications thereof
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP6285317B2 (en) All solid state battery system
JP2014116127A (en) All-solid-state battery
JP2014170655A (en) Electrode for all-solid-state battery and all-solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606