JP2014169734A - Liquefaction gas transfer system - Google Patents

Liquefaction gas transfer system Download PDF

Info

Publication number
JP2014169734A
JP2014169734A JP2013041162A JP2013041162A JP2014169734A JP 2014169734 A JP2014169734 A JP 2014169734A JP 2013041162 A JP2013041162 A JP 2013041162A JP 2013041162 A JP2013041162 A JP 2013041162A JP 2014169734 A JP2014169734 A JP 2014169734A
Authority
JP
Japan
Prior art keywords
transfer path
transfer
tank
liquefied gas
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013041162A
Other languages
Japanese (ja)
Other versions
JP6141050B2 (en
Inventor
Takashi Uchida
隆士 内田
Masato Omura
正人 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2013041162A priority Critical patent/JP6141050B2/en
Publication of JP2014169734A publication Critical patent/JP2014169734A/en
Application granted granted Critical
Publication of JP6141050B2 publication Critical patent/JP6141050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a liquefaction gas transfer system capable of restricting both a large-sized formation of the system and increment in expenditure of its installation, and improving a transfer capability of liquefaction gas from a receiving state tank to a storage state tank.SOLUTION: There is provided a transfer passage 4 for transferring liquefaction gas L from a receiving state tank 2 to a storage state tank 3, the transfer passage 4 is provided with a transfer passage separation valve 7 for shutting off flow of the liquefaction gas L, and control means 8 is constituted such that it can select a non-separated transfer state in which the liquefaction gas L is transferred from the receiving state tank 2 to the storage state tank 3 while the transfer passage separation valve 7 is opened through a single transferring system formed to ride over the transfer passage separation valve 7 and a separated transfer state in which the liquefaction gas L is separately transferred between the receiving state tank 2 and the storage state tank 3 connected to each of a plurality of transfer systems formed without riding over the transfer passage separation valve 7 while the transfer passage separation valve 7 is closed.

Description

本発明は、液化ガスを外部より受け入れる受入状態タンクと、当該受入状態タンクから液化ガスを移送して貯蔵する貯蔵状態タンクと、前記受入状態タンク及び前記貯蔵状態タンクと接続され、前記受入状態タンクから前記貯蔵状態タンクへ液化ガスの移送を行う移送路とを備えた液化ガス移送システムに関する。   The present invention is connected to an acceptance state tank for receiving liquefied gas from the outside, a storage state tank for transferring and storing liquefied gas from the acceptance state tank, the acceptance state tank and the storage state tank, and the acceptance state tank The present invention relates to a liquefied gas transfer system including a transfer path for transferring liquefied gas from the storage tank to the storage state tank.

従来の液化ガス移送システムとして、例えば、下記の特許文献1には、液化ガス輸送タンカーから液化ガスを受入れて仮貯蔵する受入状態タンクと、受入状態タンクから払出される液化ガスを移送する移送路と、この移送路によって受入状態タンクから移送された液化ガスを貯蔵する貯蔵状態タンクとを備えた液化ガス移送システムが開示されている。この液化ガス移送システムでは、単一の移送路によって受入状態タンクと貯蔵状態タンクとが接続され、この移送路によって、受入状態タンクに仮貯蔵されている液化ガスが貯蔵状態タンクに移送されるように構成されている。   As a conventional liquefied gas transfer system, for example, in Patent Document 1 below, a receiving state tank that receives and temporarily stores liquefied gas from a liquefied gas transport tanker, and a transfer path that transfers liquefied gas discharged from the received state tank And a liquefied gas transfer system including a storage state tank for storing the liquefied gas transferred from the receiving state tank by the transfer path. In this liquefied gas transfer system, the receiving state tank and the storage state tank are connected by a single transfer path, and the liquefied gas temporarily stored in the receiving state tank is transferred to the storage state tank by this transfer path. It is configured.

特開2001−208297号公報JP 2001-208297 A

しかしながら、上記特許文献1の液化ガス移送システムは、単一の移送路によって受入状態タンクから貯蔵状態タンクに液化ガスが移送されるので液化ガスの移送能力が低く、受入状態タンク内に仮貯蔵された液化ガスを貯蔵状態タンクへ移送して、受入状態タンクが液化ガスを受入可能な状態となるのに長い時間を要するという問題があった。ここで、移送能力とは、液化ガスの移送量をいうとともに、例えば、複数の受入状態タンクと貯蔵状態タンクとを備えた液化ガス移送システムでは、どの受入状態タンクからどの貯蔵状態タンクへ液化ガスを移送するかの移送先の選択性も意味する。
移送量に関しては、例えば、受入状態タンクが、液化ガス輸送タンカーによって輸送された液化ガスを桟橋において荷揚げするためのタンクとして使用されている場合、受入状態タンク内に液化ガスが仮貯蔵されていると、受入状態タンク内の液化ガスを貯蔵状態タンクへ移送して、受入状態タンクが液化ガスを受入可能な状態となるまで、桟橋に到着した液化ガス輸送タンカーは、長時間待機することを余儀なくされるという問題が発生する。
また、液化ガスの移送能力を向上させるために、液化ガス移送システムを複数設けることができるが、この場合では、液化ガス移送システムが大型化するとともにシステムの設置費用が増加する。
However, the liquefied gas transfer system of Patent Document 1 has a low liquefied gas transfer capability because the liquefied gas is transferred from the receiving state tank to the storage state tank through a single transfer path, and is temporarily stored in the receiving state tank. There is a problem that it takes a long time for the liquefied gas to be transferred to the storage state tank so that the receiving state tank can receive the liquefied gas. Here, the transfer capacity refers to the transfer amount of the liquefied gas. For example, in a liquefied gas transfer system including a plurality of receiving state tanks and storage state tanks, from which receiving state tank to which storage state tank the liquefied gas It also means the selectivity of the destination of the transfer.
Regarding the transfer amount, for example, when the receiving state tank is used as a tank for unloading the liquefied gas transported by the liquefied gas transport tanker at the pier, the liquefied gas is temporarily stored in the receiving state tank. And the liquefied gas transport tanker that has arrived at the pier is forced to wait for a long time until the liquefied gas in the receiving state tank is transferred to the storage state tank and the receiving state tank becomes ready to receive liquefied gas. Problem occurs.
In order to improve the transfer capability of the liquefied gas, a plurality of liquefied gas transfer systems can be provided. In this case, the size of the liquefied gas transfer system increases and the installation cost of the system increases.

一方、移送先の選択性に関しては、現今、以下の問題が顕著となってきている。
即ち、液化天然ガス(LNG)を採ってみると、その原産地が近年格段に多様化してきており、各産地からの液化天然ガスの性状(特に発熱量)及び受入量がばらつく傾向が著しい。このような状況で、受入状態タンクから貯蔵状態タンクへの液化ガスの移送を考えると、その移送系統及び移送先(貯蔵状態タンク)の選択性を増大させることが、従来以上に必要となっているが、このような課題に対して、単一の移送路を備えた液化ガス移送システムでは、その対応に限界がある。
On the other hand, regarding the selectivity of the transfer destination, the following problems have become prominent at present.
That is, when liquefied natural gas (LNG) is taken, the place of origin has been remarkably diversified in recent years, and the tendency (particularly the calorific value) and received amount of liquefied natural gas from each place to vary is remarkable. In this situation, considering the transfer of liquefied gas from the receiving tank to the storage tank, it is necessary to increase the selectivity of the transfer system and the transfer destination (storage tank) more than before. However, the liquefied gas transfer system provided with a single transfer path has a limit in dealing with such a problem.

本発明は、かかる点に着目してなされたものであり、システムの大型化及び設置費用の増加を抑制しつつ、受入状態タンクから貯蔵状態タンクへの液化ガスの移送能力を向上することができる液化ガス移送システムを提供することを目的とする。   This invention is made paying attention to this point, and can improve the capability of transferring liquefied gas from the receiving tank to the storage tank while suppressing an increase in system size and installation cost. An object is to provide a liquefied gas transfer system.

上記目的を達成するための本発明に係る液化ガス移送システムは、
液化ガスを外部より受け入れる受入状態タンクと、
当該受入状態タンクから液化ガスを移送して貯蔵する貯蔵状態タンクと、
前記受入状態タンク及び前記貯蔵状態タンクと接続され、前記受入状態タンクから前記貯蔵状態タンクへ液化ガスの移送を行う移送路とを備えた液化ガス移送システムであって、その特徴構成は、
複数設けられる各受入状態タンク及び各貯蔵状態タンクは、前記移送路に液化ガスの流通を断続自在な断続手段を介して個別に接続され、
前記移送路に当該移送路内の液化ガスの流通を遮断する移送路分離弁が備えられるとともに、前記移送路分離弁で前記移送路が分離されて形成された複数の移送系統のそれぞれに前記受入状態タンク及び前記貯蔵状態タンクが接続され、
前記断続手段の切り替え及び前記移送路分離弁の開閉を行う制御手段を備え、
当該制御手段は、
前記移送路分離弁を開状態に維持するとともに、特定の受入状態タンク及び特定の貯蔵状態タンクに対してそれぞれ設けられる断続手段を開状態として、前記移送路分離弁をまたぐ状態で形成される単一の前記移送系統で受入状態タンクから貯蔵状態タンクへ液化ガスを移送する非分離移送状態と、
前記移送路分離弁を閉状態に維持するとともに、特定の受入状態タンク及び特定の貯蔵状態タンクに対してそれぞれ設けられる断続手段を開状態として、前記移送路分離弁をまたぐことなく形成される複数の前記移送系統のそれぞれに接続された受入状態タンク及び貯蔵状態タンク間での液化ガスの移送を別個に行う分離移送状態との間で、移送状態を選択可能に構成されている点にある。
In order to achieve the above object, a liquefied gas transfer system according to the present invention comprises:
A receiving tank for receiving liquefied gas from the outside;
A storage tank for transferring and storing liquefied gas from the receiving tank;
A liquefied gas transfer system that is connected to the receiving state tank and the storage state tank and includes a transfer path for transferring liquefied gas from the receiving state tank to the storage state tank, the characteristic configuration of which is
Each receiving state tank and each storage state tank provided in a plurality are individually connected to the transfer path through intermittent means capable of intermittently circulating the liquefied gas,
The transfer path is provided with a transfer path separation valve for blocking the flow of the liquefied gas in the transfer path, and the receiving is received in each of a plurality of transfer systems formed by separating the transfer path by the transfer path separation valve. A state tank and the storage state tank are connected,
Control means for switching the intermittent means and opening and closing the transfer path separation valve,
The control means is
The transfer path separation valve is maintained in the open state, and the intermittent means provided for each of the specific receiving state tank and the specific storage state tank is opened, and the unit is formed so as to straddle the transfer path separation valve. A non-separated transfer state in which the liquefied gas is transferred from the acceptance state tank to the storage state tank in one transfer system;
The plurality of transfer path separation valves are formed without straddling the transfer path separation valve while maintaining the transfer path separation valve in a closed state and opening / closing the intermittent means provided for each of the specific receiving state tank and the specific storage state tank. The transfer state can be selected between a receiving state tank connected to each of the transfer systems and a separated transfer state in which the liquefied gas is separately transferred between the storage state tanks.

この液化ガス移送システムにあっては、液化ガスの移送を行う移送路に移送路分離弁を備えることで、移送路を、単一の移送路、若しくは複数の移送路として使用することが可能となり、先に説明した移送能力を移送量及び移送先の選択性の点から大きく増大することができる。
さらに、詳細に説明すると、上記特徴構成によれば、移送路分離弁を開状態とすることで、特定の受入状態タンクから特定の貯蔵状態タンクに液化ガスを移送する単一の移送系統が移送分離弁をまたいで形成されるので、この単一の移送系統で受入状態タンクから貯蔵状態タンクへ液化ガスを移送する非分離移送状態とすることができる。
また、移送路分離弁を閉状態とすることで、移送路が移送路分離弁をまたぐことなく分離されて、複数の移送系統が形成されるので、それぞれの移送系統に接続されている受入状態タンクと貯蔵状態タンクとの間で液化ガスを移送することができる。つまり、移送路に形成された複数の移送系統によって液化ガスを同時に独立して移送する分離移送状態とすることができる。
In this liquefied gas transfer system, it is possible to use the transfer path as a single transfer path or a plurality of transfer paths by providing a transfer path separation valve in the transfer path for transferring the liquefied gas. The transfer capability described above can be greatly increased in terms of transfer amount and transfer destination selectivity.
More specifically, according to the above characteristic configuration, a single transfer system for transferring liquefied gas from a specific receiving state tank to a specific storage state tank is transferred by opening the transfer path separation valve. Since it is formed across the separation valves, the single transfer system can be in a non-separation transfer state in which the liquefied gas is transferred from the receiving tank to the storage tank.
Also, by closing the transfer path separation valve, the transfer path is separated without crossing the transfer path separation valve, and a plurality of transfer systems are formed, so that the receiving state connected to each transfer system Liquefied gas can be transferred between the tank and the storage tank. That is, it can be set as the separated transfer state which transfers a liquefied gas simultaneously independently by the several transfer system | strain formed in the transfer path.

よって、移送路に移送路分離弁を設けるだけで、移送路に複数の移送系統を形成することができるので、システムの大型化及び設置費用の増加を抑制しつつ、受入状態タンクから貯蔵状態タンクへの液化ガスの移送能力を向上させることができる。   Therefore, since a plurality of transfer systems can be formed in the transfer path simply by providing a transfer path separation valve in the transfer path, the storage state tank is changed from the receiving state tank while suppressing an increase in system size and an increase in installation cost. The ability to transfer the liquefied gas to can be improved.

本発明に係る液化ガス移送システムの更なる特徴構成は、
前記移送路としての第1移送路と、当該第1移送路とは別の第2移送路とが備えられ、
前記第1移送路に当該第1移送路内の液化ガスの流通を遮断する前記移送路分離弁としての第1移送路分離弁が備えられるとともに、当該第1移送路分離弁から前記第1移送路の一端側に延びる一端側第1移送路部位と他端側に延びる他端側第1移送路部位とを備え、前記一端側第1移送路部位と前記他端側第1移送路部位とのそれぞれに前記受入状態タンク及び前記貯蔵状態タンクが接続され、
前記制御手段は、
前記第1移送路分離弁を開状態に維持するとともに、特定二つの受入状態タンク及び特定二つの貯蔵状態タンクに対してそれぞれ設けられる断続手段を開状態として、前記第1移送路及び前記第2移送路を別個に介して、2系統で別個に受入状態タンクから貯蔵状態タンクへ液化ガスを移送する前記非分離移送状態としての2系統移送状態と、
前記第1移送路分離弁を閉状態に維持するとともに、特定三つの受入状態タンク及び特定三つの貯蔵状態タンクに対してそれぞれ設けられる断続手段を開状態として、前記第1移送路に関して、前記第1移送路分離弁に対して一端側に接続される受入状態タンク及び貯蔵状態タンク間での液化ガスの移送及び、他端側に接続される受入状態タンク及び貯蔵状態タンク間での液化ガスの移送を行うとともに、前記第2移送路を介する液化ガスの移送を別個に行う前記分離移送状態としての3系統移送状態との間で、移送状態を選択可能に構成されている点にある。
Further features of the liquefied gas transfer system according to the present invention are as follows:
A first transfer path as the transfer path and a second transfer path different from the first transfer path;
The first transfer path is provided with a first transfer path separation valve as the transfer path separation valve for blocking the flow of the liquefied gas in the first transfer path, and the first transfer path is separated from the first transfer path separation valve. One end side first transfer path part extending to one end side of the path and the other end side first transfer path part extending to the other end side, the one end side first transfer path part and the other end side first transfer path part; To each of the receiving state tank and the storage state tank,
The control means includes
The first transfer path separation valve is maintained in an open state, and the intermittent means provided for each of the two specific receiving state tanks and the two specific storage state tanks is opened, so that the first transfer path and the second transfer path are opened. A two-system transfer state as the non-separated transfer state in which the liquefied gas is transferred separately from the receiving state tank to the storage state tank in two systems through the transfer path separately;
The first transfer path separation valve is maintained in a closed state, and the intermittent means provided for each of the three specific receiving state tanks and the three specific storage state tanks is opened, and the first transfer path is Transfer of liquefied gas between the receiving state tank and the storage state tank connected to one end side with respect to one transfer path separation valve, and liquefied gas between the receiving state tank and the storage state tank connected to the other end side The transfer state is configured to be selectable between the three-system transfer state as the separation transfer state in which the transfer is performed and the liquefied gas is separately transferred through the second transfer path.

この液化ガス移送システムにあっては、移送路としての第1移送路と、第1移送路とは別個に構成された第2移送路とが液化ガスを移送するために備えられている。そして、この第1移送路及び第2移送路に受入状態タンク、貯蔵状態タンクが個々に断続自在とされるため、移送能力を、その移送量及び選択性の上で、大きく増大することができる。
さらに、詳細に説明すると、上記特徴構成によれば、第1移送路分離弁を開状態とすることで、第1移送路及び第2移送路を個別に介して、特定二つの受入状態タンクから特定二つの貯蔵状態タンクに液化ガスを移送する移送系統が、それぞれ1系統ずつ個別に形成できるので、同時に2系統の移送系統で液化ガスを独立して移送する2系統移送状態とすることができる。
また、第1移送路分離弁を閉状態とすることで、第1移送路を介する移送系統が、一端側第1移送路部位及び他端側第1移送路部位とを個別に介して、それぞれ1系統ずつ個別に形成できるので、2系統の移送系統を形成することができる。一方、第2移送路を介して少なくとも1系統の移送系統が形成される。よって、同時に3系統の移送系統で液化ガスを独立して移送する3系統移送状態とすることができる。
この3系統移送状態では、一端側第1移送路部位に接続されている所望の受入状態タンクと所望の貯蔵状態タンクとの間における液化ガスの移送と、他端側第1移送路部位に接続されている所望の受入状態タンクと所望の貯蔵状態タンクとの間における液化ガスの移送と、第2移送路を介する所望の受入状態タンクから所望の貯蔵状態タンクへの液化ガスの移送を行うことができる。
In this liquefied gas transfer system, a first transfer path as a transfer path and a second transfer path configured separately from the first transfer path are provided for transferring the liquefied gas. And, since the receiving state tank and the storage state tank can be individually interrupted in the first transfer path and the second transfer path, the transfer capacity can be greatly increased in terms of the transfer amount and selectivity. .
More specifically, according to the above-described characteristic configuration, by opening the first transfer path separation valve, the first transfer path and the second transfer path are individually passed through the two specific receiving state tanks. Since the transfer system for transferring the liquefied gas to the two specific storage state tanks can be individually formed one by one, the two-system transfer state in which the liquefied gas is transferred independently by two transfer systems at the same time can be achieved. .
Further, by closing the first transfer path separation valve, the transfer system via the first transfer path is individually connected to the first transfer path part at the one end side and the first transfer path part at the other end side, respectively. Since one system can be formed individually, two transfer systems can be formed. On the other hand, at least one transfer system is formed through the second transfer path. Therefore, it can be set as the 3 system transfer state which transfers liquefied gas independently by 3 systems of transfer systems simultaneously.
In this three-system transfer state, transfer of liquefied gas between the desired receiving state tank connected to the first transfer path part at one end and the desired storage state tank, and connection to the first transfer path part at the other end Transferring the liquefied gas between the desired receiving state tank and the desired storage state tank, and transferring the liquefied gas from the desired receiving state tank to the desired storage state tank via the second transfer path. Can do.

このように、複数の受入状態タンクと複数の貯蔵状態タンクとを、第1移送路と第2移送路と個別に接続して設けることで、受入状態タンクから貯蔵状態タンクへの液化ガスの移送能力を向上させることができる。   As described above, by providing the plurality of receiving state tanks and the plurality of storage state tanks separately connected to the first transfer path and the second transfer path, the transfer of the liquefied gas from the receiving state tank to the storage state tank is performed. Ability can be improved.

本発明に係る液化ガス移送システムの更なる特徴構成は、
前記第2移送路に、当該第2移送路内の液化ガスの流通を遮断する第2移送路分離弁が備えられるとともに、当該第2移送路分離弁から前記第2移送路の一端側に延びる一端側第2移送路部位と他端側に延びる他端側第2移送路部位とのそれぞれに前記受入状態タンク及び前記貯蔵状態タンクが接続され、
前記制御手段が、前記第2移送路分離弁の開閉制御も実行する点にある。
Further features of the liquefied gas transfer system according to the present invention are as follows:
The second transfer path is provided with a second transfer path separation valve that blocks the flow of the liquefied gas in the second transfer path, and extends from the second transfer path separation valve to one end side of the second transfer path. The receiving state tank and the storage state tank are connected to each of the one end side second transfer path part and the other end side second transfer path part extending to the other end side,
The control means also executes opening / closing control of the second transfer path separation valve.

上記特徴構成によれば、第2移送路分離弁を閉状態とすることで、第2移送路を介する移送系統が、一端側第2移送路部位と他端側第2移送路部位とを介する状態で、それぞれ1系統ずつ形成されるので、2系統の移送系統を形成することができる。
つまり、第2移送路分離弁を閉状態とすることで、第1移送路を介して形成される移送系統に加え、一端側第2移送路部位に接続されている所望の受入状態タンクと所望の貯蔵状態タンクとの間における液化ガスの移送と、他端側第2移送路部位に接続されている所望の受入状態タンクと所望の貯蔵状態タンクとの間における液化ガスの移送とを同時に行うことができる。このように、第2移送路を介する2系統の移送系統を形成して、システムの大型化及び設置費用の増加を抑制しつつ、受入状態タンクから貯蔵状態タンクへの液化ガスの移送能力を向上させることができる。
According to the above characteristic configuration, the second transfer path separation valve is closed so that the transfer system via the second transfer path passes through the one end side second transfer path portion and the other end side second transfer path portion. Since one system is formed in each state, two transfer systems can be formed.
In other words, by closing the second transfer path separation valve, in addition to the transfer system formed via the first transfer path, the desired receiving state tank connected to the one end side second transfer path portion and the desired The liquefied gas is transferred between the storage state tank and the liquefied gas between the desired receiving state tank connected to the second transfer path portion at the other end and the desired storage state tank. be able to. In this way, two transfer systems via the second transfer path are formed, and the transfer capacity of the liquefied gas from the receiving tank to the storage tank is improved while suppressing an increase in system size and installation cost. Can be made.

本発明に係る液化ガス移送システムの更なる特徴構成は、
前記移送路に、前記移送路分離弁とは別個に、当該移送路内の液化ガスの流通を遮断する移送路追加分離弁が備えられ、
当該移送路追加分離弁および前記移送路分離弁に挟まれた前記移送路の部位である中間移送路部位に前記受入状態タンク及び前記貯蔵状態タンクが接続され、
前記制御手段が、前記移送路追加分離弁の開閉制御を実行するとともに、前記中間移送路部位に接続される受入状態タンク及び貯蔵状態タンクに対する断続手段の断続制御を実行し、前記中間移送路部位を介する受入状態タンクから貯蔵状態タンクへの移送も行う点にある。
Further features of the liquefied gas transfer system according to the present invention are as follows:
Separately from the transfer path separation valve, the transfer path is provided with a transfer path additional separation valve that blocks the flow of the liquefied gas in the transfer path,
The receiving state tank and the storage state tank are connected to an intermediate transfer path part that is a part of the transfer path sandwiched between the transfer path additional separation valve and the transfer path separation valve,
The control means performs open / close control of the transfer path additional separation valve, and performs intermittent control of the intermittent means for the receiving state tank and the storage state tank connected to the intermediate transfer path part, and the intermediate transfer path part The transfer from the receiving state tank to the storage state tank is also performed.

上記特徴構成によれば、移送路分離弁および移送路追加分離弁を閉じることで、移送路を介する移送系統が、一端側第1移送路部位と他端側第1移送路部位と中間移送路部位とを介する状態で、それぞれ1系統ずつ形成されるので、移送路を介する3系統の移送系統を形成することができる。
つまり、一端側第1移送路部位に接続されている所望の受入状態タンクと所望の貯蔵状態タンクとの間における液化ガスの移送と、中間移送路部位に接続されている所望の受入状態タンクと所望の貯蔵状態タンクとの間における液化ガスの移送と、他端側第1移送路部位に接続されている所望の受入状態タンクと所望の貯蔵状態タンクとの間における液化ガスの移送を行うことができる。
According to the above characteristic configuration, by closing the transfer path separation valve and the transfer path additional separation valve, the transfer system via the transfer path becomes one end side first transfer path part, the other end side first transfer path part, and the intermediate transfer path. Since one system is formed in each state via the site, three transfer systems via the transfer path can be formed.
That is, the transfer of the liquefied gas between the desired receiving state tank connected to the first transfer path part on the one end side and the desired storage state tank, and the desired receiving state tank connected to the intermediate transfer path part, Transfer of the liquefied gas between the desired storage state tank and the transfer of the liquefied gas between the desired receiving state tank connected to the first transfer path portion at the other end and the desired storage state tank Can do.

一方、移送路分離弁および移送路追加分離弁の何れか一方を閉じることで、2系統の移送系統を形成することができる。例えば、移送路追加分離弁が移送路分離弁より移送路の他端側に設けられている場合では、移送路分離弁を閉じることで、中間移送路部位及び他端側第1移送路部位を介する1系統の移送系統を形成して、中間移送路部位及び他端側第1移送路部位に接続されている所望の受入状態タンクと所望の貯蔵状態タンクとの間における液化ガスの移送を行うとともに、一端側第1移送路部位を介する1系統の移送系統を形成して、一端側第1移送路部位に接続されている所望の受入状態タンクと所望の貯蔵状態タンクとの間における液化ガスの移送を行なうことができる。一方、移送路追加分離弁を閉じることで、中間移送路部位及び一端側第1移送路部位を介する1系統の移送系統を形成して、中間移送路部位及び一端側第1移送路部位に接続されている所望の受入状態タンクと所望の貯蔵状態タンクとの間における液化ガスの移送を行うとともに、他端側第1移送路部位を介する1系統の移送系統を形成し、他端側第1移送路部位に接続されている所望の受入状態タンクと所望の貯蔵状態タンクとの間における液化ガスの移送を行なうことができる。   On the other hand, two transfer systems can be formed by closing one of the transfer path separation valve and the transfer path additional separation valve. For example, in the case where the transfer path additional separation valve is provided on the other end side of the transfer path from the transfer path separation valve, the intermediate transfer path part and the other end side first transfer path part can be set by closing the transfer path separation valve. A transfer system of one system is formed, and liquefied gas is transferred between a desired receiving state tank and a desired storage state tank connected to the intermediate transfer path part and the first transfer path part on the other end side. In addition, a liquefied gas between a desired receiving state tank and a desired storage state tank connected to the one end side first transfer path part by forming one transfer system via the one end side first transfer path part. Can be transferred. On the other hand, by closing the transfer path additional separation valve, one transfer system is formed via the intermediate transfer path part and the one end side first transfer path part, and connected to the intermediate transfer path part and the one end side first transfer path part. The liquefied gas is transferred between the desired receiving state tank and the desired storage state tank, and one transfer system is formed via the first transfer path portion on the other end side. The liquefied gas can be transferred between a desired receiving state tank connected to the transfer path portion and a desired storage state tank.

第1実施形態に係る液化ガス移送システムの3系統移送状態を示す概略図Schematic which shows the 3 system | strain transfer state of the liquefied gas transfer system which concerns on 1st Embodiment. 第1実施形態に係る液化ガス移送システムの2系統移送状態を示す概略図Schematic which shows the 2 system | strain transfer state of the liquefied gas transfer system which concerns on 1st Embodiment. 第1実施形態における液化ガスの移送時間を示す図The figure which shows the transfer time of the liquefied gas in 1st Embodiment 第2実施形態に係る液化ガス移送システムの4系統移送状態を示す概略図Schematic showing the four-system transfer state of the liquefied gas transfer system according to the second embodiment 第2実施形態に係る液化ガス移送システムの3系統移送状態を示す概略図Schematic which shows the three-system transfer state of the liquefied gas transfer system which concerns on 2nd Embodiment. 第2実施形態に係る液化ガス移送システムの3系統移送状態を示す概略図Schematic which shows the three-system transfer state of the liquefied gas transfer system which concerns on 2nd Embodiment. 第2実施形態に係る液化ガス移送システムの2系統移送状態を示す概略図Schematic which shows the two-system transfer state of the liquefied gas transfer system which concerns on 2nd Embodiment. 第3実施形態に係る液化ガス移送システムの4系統移送状態を示す概略図Schematic which shows the 4 system | strain transfer state of the liquefied gas transfer system concerning 3rd Embodiment. 第3実施形態に係る液化ガス移送システムの3系統移送状態を示す概略図Schematic which shows the three-system transfer state of the liquefied gas transfer system which concerns on 3rd Embodiment. 第3実施形態に係る液化ガス移送システムの3系統移送状態を示す概略図Schematic which shows the three-system transfer state of the liquefied gas transfer system which concerns on 3rd Embodiment. 第3実施形態に係る液化ガス移送システムの2系統移送状態を示す概略図Schematic which shows the two-system transfer state of the liquefied gas transfer system concerning 3rd Embodiment.

以下、図1及び図2に基づいて本発明の液化ガス移送システムに係る第1実施形態について説明する。
第1実施形態に係る液化ガス移送システム1は、液化ガスLを外部より受け入れる受入状態タンク2と、受入状態タンク2から液化ガスLを移送して貯蔵する貯蔵状態タンク3と、受入状態タンク2及び貯蔵状態タンク3と接続され、受入状態タンク2から貯蔵状態タンク3へ液化ガスLの移送を行う移送路としての第1移送路4と、この第1移送路4とは別の第2移送路5とで構成されている。
ここで、受入状態タンク2及び貯蔵状態タンク3は、それぞれ3つずつ設けられ、第1移送路4と第2移送路5とに液化ガスLの流通を断続自在な断続手段6を介して個別に接続されている。
Hereinafter, based on FIG.1 and FIG.2, 1st Embodiment which concerns on the liquefied gas transfer system of this invention is described.
The liquefied gas transfer system 1 according to the first embodiment includes an acceptance state tank 2 that receives the liquefied gas L from the outside, a storage state tank 3 that transfers and stores the liquefied gas L from the acceptance state tank 2, and an acceptance state tank 2. And a first transfer path 4 that is connected to the storage state tank 3 and transfers the liquefied gas L from the receiving state tank 2 to the storage state tank 3, and a second transfer that is separate from the first transfer path 4. It is comprised by the path 5.
Here, three receiving state tanks 2 and three storage state tanks 3 are provided, respectively, and are individually connected to the first transfer path 4 and the second transfer path 5 via an intermittent means 6 that can freely interrupt the flow of the liquefied gas L. It is connected to the.

そして、第1移送路4に第1移送路4内の液化ガスLの流通を遮断する移送路分離弁としての第1移送路分離弁7が備えられるとともに、第1移送路分離弁7から第1移送路4の一端側(図1中左側)に配設される一端側第1移送路部位10と他端側(図1中右側)に配設される他端側第1移送路部位11とのそれぞれに受入状態タンク2及び貯蔵状態タンク3が接続されている。本実施例では、一端側第1移送路部位10に受入状態タンク2及び貯蔵状態タンク3がそれぞれ2つずつ接続されている。一方、他端側第1移送路部位11に受入状態タンク2及び貯蔵状態タンク3がそれぞれ1つずつ接続されている。
また、第1移送路分離弁7の開閉及び断続手段6の断続状態の切り替えを行う制御手段8が備えられている。
The first transfer path 4 is provided with a first transfer path separation valve 7 as a transfer path separation valve that blocks the flow of the liquefied gas L in the first transfer path 4. One end side first transfer path part 10 provided on one end side (left side in FIG. 1) of one transfer path 4 and the other end side first transfer path part 11 provided on the other end side (right side in FIG. 1). Are connected to the receiving state tank 2 and the storage state tank 3. In this embodiment, two receiving state tanks 2 and two storage state tanks 3 are connected to the first transfer path portion 10 on one end side. On the other hand, the receiving state tank 2 and the storage state tank 3 are respectively connected to the first transfer path part 11 on the other end side.
Moreover, the control means 8 which opens and closes the 1st transfer path separation valve 7, and switches the intermittent state of the intermittent means 6 is provided.

以下、受入状態タンク2と貯蔵状態タンク3について説明する。
受入状態タンク2は、例えば、液化ガス輸送タンカーが到着する桟橋等に設けられ、液化ガス輸送タンカーによって輸送された液化ガスLを荷揚げする際に受入れて仮貯蔵するタンクであり、液化ガスLを受け入れる液化ガス受入口(図示せず)が設けられている。また、この受入状態タンク2は、第1移送路4と第1流出路2aによって接続されるとともに、第2移送路5と第2流出路2bによって接続されている。また、第1流出路2a及び第2流出路2bのそれぞれには、移送ポンプ(図示せず)が設けられて、受入状態タンク2から液化ガスLを第1移送路4及び第2移送路5に流出させることが可能に構成されている。そして、第1流出路2aを開閉自在とする第1流出路断続弁2cと、第2流出路2bを開閉自在とする第2流出路断続弁2dとが設けられ、第1流出路2a及び第2流出路2bにおける液化ガスLの流通が断続自在に構成されている。なお、液化ガスLは、例えば、液化天然ガス(LNG)で構成されている。
Hereinafter, the receiving state tank 2 and the storage state tank 3 will be described.
The acceptance state tank 2 is a tank that is provided, for example, on a jetty or the like where a liquefied gas transport tanker arrives and receives and temporarily stores the liquefied gas L transported by the liquefied gas transport tanker. A receiving liquefied gas inlet (not shown) is provided. The receiving state tank 2 is connected by the first transfer path 4 and the first outflow path 2a, and is connected by the second transfer path 5 and the second outflow path 2b. Each of the first outflow path 2a and the second outflow path 2b is provided with a transfer pump (not shown), and the liquefied gas L is supplied from the receiving state tank 2 to the first transfer path 4 and the second transfer path 5. It is configured to be allowed to flow out to the outside. A first outflow path interrupting valve 2c that allows the first outflow path 2a to be opened and closed and a second outflow path interrupting valve 2d that allows the second outflow path 2b to be opened and closed are provided. The circulation of the liquefied gas L in the two outflow passages 2b is configured to be intermittent. The liquefied gas L is composed of, for example, liquefied natural gas (LNG).

貯蔵状態タンク3は、受入状態タンク2において仮貯蔵された液化ガスLを、受入状態タンク2から移送して貯蔵するタンクである。この貯蔵状態タンク3は、第1移送路4と第1流入路3aによって接続されるとともに、第2移送路5と第2流入路3bによって接続されている。また、第1流入路3a及び第2流入路3bには、それぞれ第1流入路3aを開閉自在とする第1流入路断続弁3cと、第2流入路3bを開閉自在とする第2流入路断続弁3dとが設けられ、第1流入路3a及び第2流入路3bにおける液化ガスLの流通が断続自在に構成されている。   The storage state tank 3 is a tank that transfers and stores the liquefied gas L temporarily stored in the reception state tank 2 from the reception state tank 2. The storage state tank 3 is connected by the first transfer path 4 and the first inflow path 3a, and is connected by the second transfer path 5 and the second inflow path 3b. In addition, the first inflow passage 3a and the second inflow passage 3b include a first inflow passage intermittent valve 3c that allows the first inflow passage 3a to be opened and closed, and a second inflow passage that allows the second inflow passage 3b to be opened and closed, respectively. An intermittent valve 3d is provided, and the flow of the liquefied gas L in the first inflow path 3a and the second inflow path 3b is configured to be intermittent.

このように、第1流出路断続弁2c、第2流出路断続弁2d、第1流入路断続弁3c、第2流入路断続弁3dとで断続手段6が構成されており、制御手段8によって断続が制御されている。
以下、この制御手段8の制御に関して図面を用いて説明するが、図面において、開状態にある弁を「白抜き」で記載し、閉状態にある弁を「黒塗り」で示している。さらに、液化ガスLが移送される経路を受入状態タンク2から貯蔵状態タンク3まで「太線」で示している。図4〜図11でも同じである。
In this way, the first outflow path interruption valve 2c, the second outflow path interruption valve 2d, the first inflow path interruption valve 3c, and the second inflow path interruption valve 3d constitute the interruption means 6, and the control means 8 Intermittent is controlled.
Hereinafter, the control of the control means 8 will be described with reference to the drawings. In the drawings, the valve in the open state is indicated by “white”, and the valve in the closed state is indicated by “black”. Further, the path through which the liquefied gas L is transferred is indicated by “thick line” from the acceptance state tank 2 to the storage state tank 3. The same applies to FIGS.

制御手段8は、図2に示すように、第1移送路分離弁7を開状態に維持するとともに、特定二つの受入状態タンク2及び特定二つの貯蔵状態タンク3に対してそれぞれ設けられる所定の断続手段6を開状態として、前記第1移送路4及び前記第2移送路5を別個に介して、2系統で受入状態タンク2から貯蔵状態タンク3へ液化ガスLを移送する非分離移送状態としての2系統移送状態と、
図1に示すように、第1移送路分離弁7を閉状態に維持するとともに、特定三つの受入状態タンク2及び特定三つの貯蔵状態タンク3に対してそれぞれ設けられる所定の断続手段6を開状態として、第1移送路4に関して、第1移送路分離弁7に対して一端側に接続される受入状態タンク2及び貯蔵状態タンク3間での液化ガスLの移送及び、他端側に接続される受入状態タンク2及び貯蔵状態タンク3間での液化ガスLの移送を行うとともに、第2移送路5を介する液化ガスLの移送を別個に行う分離移送状態としての3系統移送状態との間で、移送状態を選択可能に構成されている。
As shown in FIG. 2, the control means 8 maintains the first transfer path separation valve 7 in an open state, and is provided with a predetermined amount provided for each of the two specific receiving state tanks 2 and the two specific storage state tanks 3. Non-separation transfer state in which the liquefied gas L is transferred from the receiving state tank 2 to the storage state tank 3 in two systems through the first transfer path 4 and the second transfer path 5 separately with the intermittent means 6 opened. 2 system transfer state as
As shown in FIG. 1, the first transfer path separation valve 7 is maintained in a closed state, and predetermined intermittent means 6 provided for the three specific receiving state tanks 2 and the three specific storage state tanks 3 are opened. As for the state, with respect to the first transfer path 4, the transfer of the liquefied gas L between the receiving state tank 2 and the storage state tank 3 connected to one end side with respect to the first transfer path separation valve 7 and the other end side is connected. The liquefied gas L is transferred between the receiving state tank 2 and the storage state tank 3 to be transferred, and the liquefied gas L is separately transferred through the second transfer path 5. The transfer state can be selected between them.

つまり、3系統移送状態では、図1に示す一例のように、第1移送路分離弁7を閉状態として、一端側第1移送路部位10に接続されているいずれか1つの受入状態タンク2の第1流出路断続弁2cを液化ガスLが流通可能な開状態とする(他の第1流出路断続弁2cは閉)とともに、一端側第1移送路部位10に接続されているいずれか1つの貯蔵状態タンク3の第1流入路断続弁3cを開状態として(他の第1流入路断続弁3cは閉)、一端側第1移送路部位10を介する1系統の移送系統を形成することができる。
また、他端側第1移送路部位11に接続されている受入状態タンク2の第1流出路断続弁2cを開状態とするとともに、他端側第1移送路部位11に接続されている貯蔵状態タンク3の第1流入路断続弁3cを開状態として、他端側第1移送路部位11を介する1系統の移送系統を形成することができる。
さらに、第2移送路5において、一端側第1移送路部位10に接続されて、一端側第1移送路部位10を介する移送系統を形成していない受入状態タンク2の第2流出路断続弁2dを開状態とする(他の第2流出路断続弁2dは閉)とともに、同じく一端側第1移送路部位10に接続されて、一端側第1移送路部位10を介する移送系統を形成していない貯蔵状態タンク3の第2流入路断続弁3dを開状態として(他の第2流入路断続弁3dは閉)、1系統の移送系統を形成することができる。
このように、第1移送路4及び第2移送路5を介して、同時に3系統の移送系統が形成され、この3系統の移送系統において液化ガスLを独立して移送する3系統移送状態とすることができる。
That is, in the three-system transfer state, as in the example shown in FIG. 1, the first transfer path separation valve 7 is closed and any one of the receiving state tanks 2 connected to the first transfer path portion 10 on the one end side is used. Any of the first outflow passage interrupting valves 2c in the open state in which the liquefied gas L can flow (the other first outflow passage intermittence valves 2c are closed) and connected to the first transfer passage portion 10 on one end side. The first inflow passage intermittence valve 3c of one storage state tank 3 is opened (the other first inflow passage intermittence valve 3c is closed) to form one transfer system via the first transfer path portion 10 on one end side. be able to.
In addition, the first outflow path interrupting valve 2c of the receiving state tank 2 connected to the other end side first transfer path part 11 is opened, and the storage connected to the other end side first transfer path part 11 is stored. The first inflow passage intermittency valve 3c of the state tank 3 can be opened to form one transfer system via the other end side first transfer passage portion 11.
Furthermore, in the 2nd transfer path 5, it is connected to the 1st transfer path site | part 10 at the one end side, and the 2nd outflow path intermittent valve of the acceptance state tank 2 which does not form the transfer system via the 1st transfer path site | part 10 at the one end side 2d is opened (the other second outflow passage intermittency valve 2d is closed), and also connected to one end-side first transfer path section 10 to form a transfer system via the one end-side first transfer path section 10. The second inflow passage intermittence valve 3d of the storage state tank 3 that is not open is opened (the other second inflow passage intermittence valve 3d is closed), so that one transfer system can be formed.
In this way, three transfer systems are simultaneously formed via the first transfer path 4 and the second transfer path 5, and the three-system transfer state in which the liquefied gas L is independently transferred in the three transfer systems, can do.

なお、本実施例では、図1中の一端側第1移送路部位10において右側に接続される受入状態タンク2と、同じく右側に接続される貯蔵状態タンク3との間で、第1移送路4を介する移送系統を形成したが、一端側第1移送路部位10において右側に接続される受入状態タンク2と左側に接続される貯蔵状態タンク3との間で、一端側第1移送路部位10を介する移送系統を形成してもよい。また、一端側第1移送路部位10において左側に接続される受入状態タンク2と右側に接続される貯蔵状態タンク3との間で、一端側第1移送路部位10を介する移送系統を形成してもよい。さらに、一端側第1移送路部位10において左側に接続される受入状態タンク2と、同じく左側に接続される貯蔵状態タンク3とを接続して、第1移送路4を介する移送系統を形成してもよい。   In the present embodiment, the first transfer path between the receiving state tank 2 connected to the right side and the storage state tank 3 connected to the right side in the first transfer path part 10 on one end side in FIG. 4, but the one end side first transfer path part between the receiving state tank 2 connected to the right side and the storage state tank 3 connected to the left side in the one end side first transfer path part 10. A transfer system through 10 may be formed. In addition, a transfer system is formed between the receiving state tank 2 connected to the left side and the storage state tank 3 connected to the right side at the one end side first transfer path part 10 via the one end side first transfer path part 10. May be. Further, the receiving state tank 2 connected to the left side at the one end side first transfer path part 10 and the storage state tank 3 connected to the left side are connected to form a transfer system via the first transfer path 4. May be.

また、2系統移送状態では、図2に示す一例のように、第1移送路分離弁7を開状態として、いずれか1つの受入状態タンク2の第1流出路断続弁2cを開状態とするとともに、いずれか1つの貯蔵状態タンク3の第1流入路断続弁3cを開状態として、第1移送路4を介する1系統の移送系統を形成することができる。さらに、第2移送路5においては、第1移送路4を介する移送系統を形成していない、いずれか1つの受入状態タンク2の第2流出路断続弁2dを開状態とするとともに、いずれか1つの貯蔵状態タンク3の第2流入路断続弁3dを開状態として、第2移送路5を介する1系統の移送系統を形成することができる。
このように、第1移送路4及び第2移送路5を介して、同時に2系統の移送系統が形成され、この2系統の移送系統において液化ガスLを独立して移送する2系統移送状態とすることができる。
Further, in the two-system transfer state, as in the example shown in FIG. 2, the first transfer path separation valve 7 is opened, and the first outflow path interrupting valve 2c of any one of the receiving state tanks 2 is opened. At the same time, the first inflow passage intermittence valve 3c of any one of the storage state tanks 3 can be opened to form one transfer system through the first transfer passage 4. Furthermore, in the second transfer path 5, the second outflow path interrupting valve 2 d of any one of the receiving state tanks 2, which does not form a transfer system via the first transfer path 4, is opened. One transfer system via the second transfer path 5 can be formed by opening the second inflow path interrupting valve 3 d of one storage state tank 3.
In this way, two transfer systems are simultaneously formed via the first transfer path 4 and the second transfer path 5, and the two-system transfer state in which the liquefied gas L is independently transferred in the two transfer systems, can do.

なお、本実施例では、図2中の第1移送路4において、中央に接続された受入状態タンク2と右側に接続された貯蔵状態タンク3との間で、第1移送路4を介する1系統の移送系統が形成されたが、第1移送路4において中央に接続された受入状態タンク2と、右側に接続された貯蔵状態タンク3又は中央に接続された貯蔵状態タンク3との間で、第1移送路4を介する1系統の移送系統を形成してもよい。また、右側に接続された受入状態タンク2又は左側に接続された受入状態タンク2と、いずれか一つの貯蔵状態タンク3との間で、第1移送路4を介する1系統の移送系統を形成してもよい。   In this embodiment, in the first transfer path 4 in FIG. 2, the first transfer path 4 is connected between the receiving state tank 2 connected to the center and the storage state tank 3 connected to the right side via the first transfer path 4. The transfer system of the system is formed, but between the acceptance state tank 2 connected to the center in the first transfer path 4 and the storage state tank 3 connected to the right side or the storage state tank 3 connected to the center. Alternatively, a single transfer system may be formed via the first transfer path 4. In addition, one transfer system is formed via the first transfer path 4 between the receiving state tank 2 connected to the right side or the receiving state tank 2 connected to the left side and any one storage state tank 3. May be.

図3に、図1に示した3系統移送状態及び図2に示した2系統移送状態の液化ガスLの移送時間T2、T3を示す。図3の縦軸は、3つの受入状態タンク2内の合計の液化ガス残量Qを示しており、横軸は時間Tを示している。また、2系統移送状態による液化ガス残量Qを破線で示し、3系統移送状態による液化ガス残量Qを実線で示す。そして、液化ガス輸送タンカーからの受入状態タンク2への液化ガスLの受入時間T1で示されている。この受入時間T1は、液化ガス輸送タンカーから、3つの受入状態タンク2に同時に液化ガスLの受入を行う状態で、3つの受入状態タンク2内が空の状態である空状態から、液化ガスLで満たされた状態である満状態となるまでの時間である。よって、2系統移送状態又は3系統移送状態に関わらず同じ長さの時間となる。また、2系統移送状態において液化ガスLの移送に必要となる時間を移送時間T2で示し、3系統移送状態において液化ガスLの移送に必要となる時間を移送時間T3で示す。
なお、図3に示された液化ガス残量Qと移送時間T2及び移送時間T3との関係は、3つの受入状態タンク2の容量が同じで、全ての移送系統における液化ガスLの移送能力が同じに構成された液化ガス移送システム1における関係である。
FIG. 3 shows the transfer times T2 and T3 of the liquefied gas L in the three-system transfer state shown in FIG. 1 and the two-system transfer state shown in FIG. The vertical axis in FIG. 3 shows the total amount of remaining liquefied gas Q in the three receiving state tanks 2, and the horizontal axis shows time T. The liquefied gas remaining amount Q in the two-system transfer state is indicated by a broken line, and the liquefied gas remaining amount Q in the three-system transfer state is indicated by a solid line. And it is shown by the acceptance time T1 of the liquefied gas L from the liquefied gas transport tanker to the acceptance state tank 2. This reception time T1 is a state in which the liquefied gas L is simultaneously received from the liquefied gas transport tanker into the three receiving state tanks 2, and the liquefied gas L is from an empty state in which the three receiving state tanks 2 are empty. This is the time until a full state is reached. Therefore, the time is the same regardless of the two-system transfer state or the three-system transfer state. Further, the time required for transferring the liquefied gas L in the two-system transfer state is indicated by a transfer time T2, and the time required for transferring the liquefied gas L in the three-system transfer state is indicated by a transfer time T3.
The relationship between the liquefied gas remaining amount Q and the transfer time T2 and the transfer time T3 shown in FIG. 3 is that the capacity of the three receiving state tanks 2 is the same, and the transfer capability of the liquefied gas L in all transfer systems is It is the relationship in the liquefied gas transfer system 1 comprised similarly.

2系統移送状態による液化ガスLの移送では、図2に示すように、先に2つの受入状態タンク2内の液化ガスLから、それぞれ別の貯蔵状態タンク3に2系統の移送系統によって移送して、その2つの受入状態タンク2内の液化ガスLの移送が完了してから、残りの1つの受入状態タンク2内の液化ガスLの貯蔵状態タンク3への移送が、1系統の移送系統によって、1系統移送状態として開始される。よって、液化ガス残量Qは図3において破線で示された変化を示し、2系統移送状態によって、3つの受入状態タンク2内の液化ガスLを3つの貯蔵状態タンク3へ移送するために必要となる時間は、図3に示す移送時間T2となる。
一方、3系統移送状態による液化ガスLの移送では、図1に示したように、3つの受入状態タンク2内の液化ガスLから、それぞれ別の貯蔵状態タンク3に3系統の移送系統によって同時に移送することができる。よって、液化ガス残量Qは図3において実線で示された変化を示し、3系統移送状態によって、すべての受入状態タンク2内の液化ガスLが貯蔵状態タンク3へ移送するために必要となる時間である移送時間T3は、2系統移送状態による移送時間T2に比べて短縮することができる。
In the transfer of the liquefied gas L in the two-system transfer state, as shown in FIG. 2, the liquefied gas L is transferred from the liquefied gas L in the two receiving state tanks 2 to the separate storage state tank 3 by the two-system transfer system. Then, after the transfer of the liquefied gas L in the two receiving state tanks 2 is completed, the transfer of the liquefied gas L in the remaining one receiving state tank 2 to the storage state tank 3 is one transfer system. Is started as a one-system transfer state. Therefore, the liquefied gas remaining amount Q shows the change indicated by the broken line in FIG. 3 and is necessary for transferring the liquefied gas L in the three receiving state tanks 2 to the three storage state tanks 3 in the two-system transfer state. Is the transfer time T2 shown in FIG.
On the other hand, in the transfer of the liquefied gas L in the three-system transfer state, as shown in FIG. 1, the liquefied gas L in the three receiving state tanks 2 is simultaneously transferred to the separate storage state tanks 3 by the three transfer systems. Can be transported. Therefore, the liquefied gas remaining amount Q shows a change indicated by a solid line in FIG. 3 and is necessary for the liquefied gas L in all the receiving state tanks 2 to be transferred to the storage state tank 3 by the three-system transfer state. The transfer time T3, which is time, can be shortened compared to the transfer time T2 in the two-system transfer state.

〔第2実施形態〕
以下、本発明に係る液化ガス移送システムの第2実施形態を、図4〜7に基づいて説明する。この第2実施形態では、第1移送路4に第1移送路分離弁7に加え、移送路追加分離弁としての第1移送路追加分離弁20が設けられている点で上述の第1実施形態と異なっている。
[Second Embodiment]
Hereinafter, 2nd Embodiment of the liquefied gas transfer system which concerns on this invention is described based on FIGS. In the second embodiment, the first transfer path 4 is provided with a first transfer path additional separation valve 20 as a transfer path additional separation valve in addition to the first transfer path separation valve 7. It is different from the form.

つまり、この第2実施形態に係る液化ガス移送システム1は、第1移送路4に、第1移送路分離弁7とは別個に、第1移送路4内の液化ガスLの流通を遮断する第1移送路追加分離弁20が備えられ、第1移送路追加分離弁20および第1移送路分離弁7に挟まれた第1移送路4の部位である中間移送路部位としての中間第1移送路部位12に受入状態タンク2及び貯蔵状態タンク3が接続されている。
また、制御手段8が、第1移送路追加分離弁20の開閉制御を実行するとともに、中間第1移送路部位12に接続される受入状態タンク2及び貯蔵状態タンク3に対する断続手段6の断続制御を実行し、中間第1移送路部位12を介する受入状態タンク2から貯蔵状態タンク3への移送も行うように構成されている。
That is, the liquefied gas transfer system 1 according to the second embodiment blocks the flow of the liquefied gas L in the first transfer path 4 in the first transfer path 4 separately from the first transfer path separation valve 7. An intermediate first as an intermediate transfer path part which is provided with a first transfer path additional separation valve 20 and is a part of the first transfer path 4 sandwiched between the first transfer path additional separation valve 20 and the first transfer path separation valve 7. The receiving state tank 2 and the storage state tank 3 are connected to the transfer path part 12.
Further, the control means 8 performs opening / closing control of the first transfer path additional separation valve 20 and also performs intermittent control of the intermittent means 6 for the receiving state tank 2 and the storage state tank 3 connected to the intermediate first transfer path portion 12. And the transfer from the receiving state tank 2 to the storage state tank 3 via the intermediate first transfer path portion 12 is also performed.

図4に示すように、制御手段8が、第1移送路分離弁7および第1移送路追加分離弁20を閉じることで、第1移送路4を介する移送系統が、一端側第1移送路部位10、他端側第1移送路部位11、及び、中間第1移送路部位12を介して、それぞれ1系統ずつ形成されるので、3系統の移送系統を形成することができる。
つまり、一端側第1移送路部位10に接続されている受入状態タンク2と貯蔵状態タンク3との間における一端側第1移送路部位10を介する液化ガスLの移送と、中間第1移送路部位12に接続されている受入状態タンク2と貯蔵状態タンク3との間における中間第1移送路部位12を介する液化ガスLの移送と、他端側第1移送路部位11に接続されている受入状態タンク2と貯蔵状態タンク3との間における他端側第1移送路部位11を介する液化ガスLの移送とを、第1移送路4において別個且つ同時に行うことができる。さらに、第2移送路5において、第2移送路5を介する1系統の移送系統が形成されるので、同時に4系統の移送系統により液化ガスLを移送する4系統移送状態とすることができる。よって、システムの大型化及び設置費用の増加を抑制しつつ、受入状態タンク2から貯蔵状態タンク3への液化ガスLの移送能力を向上させることができる。
As shown in FIG. 4, the control means 8 closes the first transfer path separation valve 7 and the first transfer path additional separation valve 20, so that the transfer system via the first transfer path 4 becomes one end side first transfer path. Since one system each is formed via the part 10, the first transfer path part 11 on the other end side, and the intermediate first transfer path part 12, three transfer systems can be formed.
That is, the transfer of the liquefied gas L through the one end side first transfer path part 10 between the receiving state tank 2 and the storage state tank 3 connected to the one end side first transfer path part 10 and the intermediate first transfer path. Transfer of the liquefied gas L via the intermediate first transfer path part 12 between the receiving state tank 2 and the storage state tank 3 connected to the part 12 and the other end side first transfer path part 11 The transfer of the liquefied gas L between the receiving state tank 2 and the storage state tank 3 through the first transfer path portion 11 on the other end side can be performed separately and simultaneously in the first transfer path 4. Furthermore, in the second transfer path 5, one transfer system via the second transfer path 5 is formed, so that the four-system transfer state in which the liquefied gas L is simultaneously transferred by the four transfer systems can be achieved. Therefore, the capability of transferring the liquefied gas L from the receiving state tank 2 to the storage state tank 3 can be improved while suppressing an increase in system size and an increase in installation cost.

また、第1移送路分離弁7および第1移送路追加分離弁20の何れか一方を閉状態とすることで、第1移送路4を介する2系統の移送系統を形成するとともに、第2移送路5を介する1系統の移送系統が形成して、3系統移送状態とすることができる。例えば、図5に示すように、第1移送路分離弁7のみを閉状態とすることで、中間第1移送路部位12及び一端側第1移送路部位10に接続されているいずれかの受入状態タンク2と貯蔵状態タンク3との間に移送系統を形成して、中間第1移送路部位12及び一端側第1移送路部位10を介する液化ガスLの移送を行うとともに、他端側第1移送路部位11に接続されている受入状態タンク2と貯蔵状態タンク3との間に移送系統を形成して、他端側第1移送路部位11を介する液化ガスLの移送を行なうことができる。
また、図6に示すように、第1移送路追加分離弁20のみを閉状態とすることで、例えば、中間第1移送路部位12及び他端側第1移送路部位11に接続されているいずれかの受入状態タンク2と貯蔵状態タンク3との間に移送系統を形成して、中間第1移送路部位12及び他端側第1移送路部位11を介する液化ガスLの移送を行うとともに、一端側第1移送路部位10に接続されているいずれかの受入状態タンク2と貯蔵状態タンク3との間に移送系統を形成して液化ガスLの移送を行うことができる。
一方、図7に示すように、第1移送路分離弁7および第1移送路追加分離弁20の両方を開状態とすることで、第1移送路4を介する1系統の移送系統を形成するとともに、第2移送路5を介する1系統の移送系統を形成して、2系統移送状態とすることができる。
Further, by closing either one of the first transfer path separation valve 7 and the first transfer path additional separation valve 20, a two-line transfer system is formed via the first transfer path 4, and the second transfer One transfer system through the path 5 is formed, and a three-system transfer state can be obtained. For example, as shown in FIG. 5, only the first transfer path separation valve 7 is closed, so that either one of the intermediate first transfer path part 12 and the one end side first transfer path part 10 is connected. A transfer system is formed between the state tank 2 and the storage state tank 3 to transfer the liquefied gas L via the intermediate first transfer path part 12 and the one end side first transfer path part 10 and A transfer system is formed between the receiving state tank 2 and the storage state tank 3 connected to the one transfer path part 11 to transfer the liquefied gas L via the other end side first transfer path part 11. it can.
Moreover, as shown in FIG. 6, it is connected to the intermediate | middle 1st transfer path site | part 12 and the other end 1st transfer path site | part 11 by making only the 1st transfer path addition separation valve 20 into a closed state, for example. A transfer system is formed between any of the receiving state tanks 2 and the storage state tanks 3 to transfer the liquefied gas L via the intermediate first transfer path part 12 and the other end side first transfer path part 11. The liquefied gas L can be transferred by forming a transfer system between any one of the receiving state tank 2 and the storage state tank 3 connected to the first transfer path portion 10 on the one end side.
On the other hand, as shown in FIG. 7, by opening both the first transfer path separation valve 7 and the first transfer path additional separation valve 20, one transfer system is formed via the first transfer path 4. At the same time, one transfer system via the second transfer path 5 can be formed, and a two-system transfer state can be established.

〔第3実施形態〕
以下、本発明に係る液化ガス移送システムの第3実施形態を、図8〜11に基づいて説明する。この第3実施形態は、第1移送路4に第1移送路分離弁7が備えられている点では、上述の第1実施形態と共通であるが、第2移送路5に第2移送路分離弁30が設けられている点で第1実施形態と異なっている。
[Third Embodiment]
Hereinafter, 3rd Embodiment of the liquefied gas transfer system which concerns on this invention is described based on FIGS. The third embodiment is the same as the first embodiment described above in that the first transfer path 4 is provided with the first transfer path separation valve 7, but the second transfer path 5 has the second transfer path. This is different from the first embodiment in that a separation valve 30 is provided.

つまり、この第3実施形態に係る液化ガス移送システム1は、第2移送路5に、第2移送路5内の液化ガスLの流通を遮断する第2移送路分離弁30が備えられるとともに、第2移送路分離弁30から第2移送路5の一端側に延びる一端側第2移送路部位40と他端側に延びる他端側第2移送路部位41とのそれぞれに受入状態タンク2及び貯蔵状態タンク3が接続されている。また、制御手段8が、第2移送路分離弁30の開閉制御も実行するように構成されている。   That is, in the liquefied gas transfer system 1 according to the third embodiment, the second transfer path 5 is provided with the second transfer path separation valve 30 that blocks the flow of the liquefied gas L in the second transfer path 5, The acceptance state tank 2 and the second transfer path part 40 on one end side extending to one end side of the second transfer path 5 from the second transfer path separation valve 30 and the second transfer path part 41 on the other end side extending to the other end side, respectively. A storage tank 3 is connected. Further, the control means 8 is configured to also execute opening / closing control of the second transfer path separation valve 30.

図8に示すように、制御手段8が、第1移送路分離弁7及び第2移送路分離弁30を閉状態とすることで、第1移送路4において、一端側第1移送路部位10を介する移送系統と他端側第1移送路部位11を介する移送系統との2系統の移送系統が形成されるとともに、第2移送路5において、一端側第2移送路部位40を介する移送系統と他端側第2移送路部位41を介する移送系統との2系統の移送系統が形成することができ、同時に4系統の移送系統により液化ガスLを移送する4系統移送状態とすることができる。   As shown in FIG. 8, the control means 8 closes the first transfer path separation valve 7 and the second transfer path separation valve 30, whereby one end side first transfer path portion 10 in the first transfer path 4. The two transfer systems of the transfer system via the first transfer path portion 11 and the transfer system via the other end side are formed, and in the second transfer path 5, the transfer system via the one end side second transfer path portion 40 is formed. And a transfer system via the second transfer path part 41 on the other end side can be formed, and a four-system transfer state in which the liquefied gas L is transferred by the four transfer systems at the same time can be formed. .

そして、図9に示すように、第1移送路分離弁7のみを閉状態とすることで、第1移送路4を介する2系統の移送系統を形成するとともに、第2移送路5を介する1系統の移送系統を形成して、3系統移送状態とすることができる。また、図10に示すように、第2移送路分離弁30のみを閉状態とすることで、第1移送路4を介する1系統の移送系統を形成するとともに、第2移送路5を介する2系統の移送系統を形成して、3系統移送状態とすることができる。
一方、図11に示すように、第1移送路分離弁7および第2移送路分離弁30の両方を開状態とすることで、第1移送路4を介する1系統の移送系統を形成するとともに、第2移送路5を介する1系統の移送系統を形成して、2系統移送状態とすることができる。
Then, as shown in FIG. 9, only the first transfer path separation valve 7 is closed, thereby forming two transfer systems via the first transfer path 4 and 1 via the second transfer path 5. It is possible to form a three-system transfer state by forming a system transfer system. Further, as shown in FIG. 10, only the second transfer path separation valve 30 is closed, thereby forming one transfer system via the first transfer path 4 and 2 via the second transfer path 5. It is possible to form a three-system transfer state by forming a system transfer system.
On the other hand, as shown in FIG. 11, by opening both the first transfer path separation valve 7 and the second transfer path separation valve 30, a single transfer system is formed via the first transfer path 4. In addition, a single transfer system can be formed via the second transfer path 5 to obtain a two-system transfer state.

〔別実施形態〕
(A)上記実施形態においては、第1流出路2a及び第2流出路2bのそれぞれに液化ガスLを移送する移送ポンプを設けたが、これに限らず、第1移送路4及び第2移送路5における移送系統上に移送ポンプを設けてもよい。
[Another embodiment]
(A) In the above embodiment, the transfer pump for transferring the liquefied gas L is provided in each of the first outflow path 2a and the second outflow path 2b. However, the present invention is not limited to this, and the first transfer path 4 and the second transfer A transfer pump may be provided on the transfer system in the path 5.

(B)上記第1実施形態においては、一端側第1移送路部位10に受入状態タンク2及び貯蔵状態タンク3がそれぞれ2つずつ設けられ、他端側第1移送路部位11に受入状態タンク2及び貯蔵状態タンク3がそれぞれ1つずつ設けられたが、これに限らず、他端側第1移送路部位11に受入状態タンク2及び貯蔵状態タンク3がそれぞれ2つずつ設けられ、一端側第1移送路部位10に受入状態タンク2及び貯蔵状態タンク3がそれぞれ1つずつ設けられてもよい。 (B) In the first embodiment, two receiving state tanks 2 and two storage state tanks 3 are provided in one end side first transfer path part 10, and the receiving state tank is provided in the other end side first transfer path part 11. 2 and one storage state tank 3 are provided, but not limited to this, the receiving state tank 2 and the two storage state tanks 3 are provided in the first transfer path part 11 on the other end side. One receiving state tank 2 and one storage state tank 3 may be provided in the first transfer path part 10.

(C)上記第1実施形態においては、受入状態タンク2と貯蔵状態タンク3とがそれぞれ3つずつ設けられたが、これに限らず、受入状態タンク2及び貯蔵状態タンク3が4つ以上設けられてもよく、設けられた受入状態タンク2と貯蔵状態タンク3との数が異なっていてもよい。また、第1移送路4及び第2移送路5に分離弁を追加して設けてもよい。 (C) In the first embodiment, three acceptance state tanks 2 and three storage state tanks 3 are provided, but not limited to this, four or more acceptance state tanks 2 and storage state tanks 3 are provided. The number of the receiving state tanks 2 and the storage state tanks 3 provided may be different. Further, a separation valve may be additionally provided in the first transfer path 4 and the second transfer path 5.

(D)上記第2実施形態及び第3実施形態においては、受入状態タンク2と貯蔵状態タンク3とがそれぞれ4つずつ設けられたが、これに限らず、受入状態タンク2と貯蔵状態タンク3とがそれぞれ3つ又は5つ以上設けられてもよく、設けられた受入状態タンク2と貯蔵状態タンク3との数が異なっていてもよい。また、第1移送路4及び第2移送路5に分離弁を追加して設けてもよい。 (D) In the second embodiment and the third embodiment, four receiving state tanks 2 and four storage state tanks 3 are provided. However, the present invention is not limited to this, and the receiving state tank 2 and the storage state tank 3 are provided. 3 or 5 or more may be provided, and the number of the receiving state tank 2 and the storage state tank 3 provided may be different. Further, a separation valve may be additionally provided in the first transfer path 4 and the second transfer path 5.

(E)上記第3実施形態においては、第1移送路4に第1移送路分離弁7のみが設けられているが、これに加えて、第1移送路4に第1移送路追加分離弁20が設けられていてもよい。この場合、上記第2実施形態で示される中間第1移送路部位12に受入状態タンク2と貯蔵状態タンク3とが設けられた構成として、中間第1移送路部位12を介する1系統の移送系統を追加形成することができる。よって、この中間第1移送路部位12を介する1系統の移送系統と、例えば、図4に示す4系統の移送系統とをあわせることで、5系統の移送系統を形成し、それぞれの移送系統において独立に液化ガスLを移送することが可能である。 (E) In the third embodiment, only the first transfer path separation valve 7 is provided in the first transfer path 4. In addition, the first transfer path additional separation valve is provided in the first transfer path 4. 20 may be provided. In this case, as a configuration in which the receiving state tank 2 and the storage state tank 3 are provided in the intermediate first transfer path portion 12 shown in the second embodiment, one transfer system via the intermediate first transfer path portion 12 is provided. Can be additionally formed. Therefore, by combining one transfer system via this intermediate first transfer path portion 12 and, for example, four transfer systems shown in FIG. 4, five transfer systems are formed. The liquefied gas L can be transferred independently.

(F)上記実施形態においては、図1、2及び図4〜11において、図中上側に配置されたタンクを貯蔵状態タンク3として、図中下側に配置されたタンクを受入状態タンク2としたが、貯蔵状態タンク3と受入状態タンク2とは、断続手段6が設けられた液化ガスLが流通可能な流出路又は流入路で第1移送路4及び第2移送路5に接続されている点、及び、液化ガスLを貯留することが可能に構成されている点で同じタンクであるので、貯蔵状態タンク3及び受入状態タンク2として示したすべてのタンクは、貯蔵状態タンク3と受入状態タンク2とのどちらとしても機能するものである。これにより、タンク内の液化ガスLの貯留状態を考慮して、所望のタンクを、液化ガスLを受け入れる受入状態タンク2として使用することができるとともに、所望のタンクを、液化ガスLを移送して貯蔵する貯蔵状態タンク3として使用することができる。 (F) In the said embodiment, in FIG.1, 2, and FIGS. However, the storage state tank 3 and the receiving state tank 2 are connected to the first transfer path 4 and the second transfer path 5 through an outflow path or an inflow path through which the liquefied gas L provided with the intermittent means 6 can flow. Since all the tanks shown as the storage state tank 3 and the reception state tank 2 are the same as the storage state tank 3 and the reception state tank 2, the storage state tank 3 and the reception state tank 2 It functions as both of the state tank 2. Thereby, in consideration of the storage state of the liquefied gas L in the tank, the desired tank can be used as the receiving state tank 2 for receiving the liquefied gas L, and the liquefied gas L is transferred to the desired tank. It can be used as a storage state tank 3 that stores the

(G)上記実施形態においては、第1流出路2a及び第2流出路2bが、受入状態タンク2からそれぞれ独立して第1移送路4及び第2移送路5に接続されたが、これに限らず、受入状態タンク2に接続する単一の流出路を設け、この単一の流出路の第1移送路4側及び第2移送路5側において、第1流出路2a及び第2流出路2bが分離して形成されるとともに、第1流出路2a及び第2流出路2bが、それぞれ第1移送路4及び第2移送路5に接続されるように構成されてもよい。そして、単一の流出路には、単一の流出路内を流れる液化ガスLを断続自在な合流路断続弁が設けられていてもよい。また、液化ガスLを移送する移送ポンプが流出合流路に設けられていてもよい。 (G) In the above embodiment, the first outflow path 2a and the second outflow path 2b are connected to the first transfer path 4 and the second transfer path 5 independently of the receiving state tank 2, respectively. The first outflow path 2a and the second outflow path are not limited, and a single outflow path connected to the receiving state tank 2 is provided, and the first outflow path 4 side and the second transfer path 5 side of the single outflow path are provided. 2b may be formed separately, and the first outflow path 2a and the second outflow path 2b may be connected to the first transfer path 4 and the second transfer path 5, respectively. And the single outflow path may be provided with the combined flow path intermittent valve which can interrupt the liquefied gas L which flows through the inside of a single outflow path. In addition, a transfer pump that transfers the liquefied gas L may be provided in the outflow channel.

(H)上記実施形態においては、第1流入路3a及び第2流入路3bが、第1移送路4及び第2移送路5からそれぞれ独立して貯蔵状態タンク3に接続されたが、これに限らず、第1流入路3a及び第2流入路3bが貯蔵状態タンク3に接続する前に合流する流入合流路を設け、この流入合流路が貯蔵状態タンク3に接続されるように構成されてもよい。そして、流入合流路には、流入合流路を流れる液化ガスLを断続自在な合流路断続弁が設けられていてもよい。また、液化ガスLを移送する移送ポンプが流入合流路に設けられていてもよい。 (H) In the above embodiment, the first inflow path 3a and the second inflow path 3b are connected to the storage state tank 3 independently from the first transfer path 4 and the second transfer path 5, respectively. Not limited to this, an inflow merging passage is provided to join before the first inflow passage 3 a and the second inflow passage 3 b are connected to the storage state tank 3, and the inflow merging passage is connected to the storage state tank 3. Also good. In addition, the inflow joint channel may be provided with a joint passage intermittent valve that can intermittently connect the liquefied gas L flowing through the inflow joint channel. Moreover, the transfer pump which transfers the liquefied gas L may be provided in the inflow joining flow path.

(I)上記実施形態においては、液化ガスLを移送するにあたり、第1移送路4と第2移送路5とが設けられたが、これに限らず、第2移送路5を設けず、移送路としての第1移送路4のみで構成されていてもよい。
この場合、制御手段8は、第1移送路分離弁7を開状態に維持するとともに、特定の受入状態タンク2及び特定の貯蔵状態タンク3に対してそれぞれ設けられる断続手段6を開状態として、第1移送路分離弁7をまたぐ状態で第1移送路4を介して、単一の移送系統で受入状態タンク2から貯蔵状態タンク3へ液化ガスLを移送する非分離系統移送状態と、
第1移送路分離弁7を閉状態に維持するとともに、特定の受入状態タンク2と特定の貯蔵状態タンク3に対してそれぞれ設けられる断続手段6を開状態として、第1移送路分離弁7をまたぐことなく第1移送路4を介して、複数の移送系統のそれぞれに接続された受入状態タンク2及び貯蔵状態タンク3間での液化ガスLの移送を別個に行う分離移送状態との間で、移送状態を選択可能に構成されていてもよい。
ここで、第1移送路4が単数で構成されていてもよく、複数で構成されていてもよい。例えば、第1移送路4が単数で構成されている場合であって、第1移送路4に第1移送路分離弁7が1つ設けられている時は、2つの移送系統を形成することができ、2つの受入状態タンク2から液化ガスLを同時に2つの貯蔵状態タンク3に別個に移送することができるように構成してもよい。一方、例えば、第1移送路4が3本で構成されている場合であって、それぞれの第1移送路4に第1移送路分離弁7が1つ設けられている時は、6つの移送系統を形成することができ、6つの受入状態タンク2から液化ガスLを同時に6つの貯蔵状態タンク3に別個に移送することができるように構成してもよい。
(I) In the above embodiment, the first transfer path 4 and the second transfer path 5 are provided for transferring the liquefied gas L. However, the present invention is not limited to this, and the second transfer path 5 is not provided. You may comprise only the 1st transfer path 4 as a path.
In this case, the control means 8 keeps the first transfer path separation valve 7 in the open state, and opens the intermittent means 6 provided for the specific receiving state tank 2 and the specific storage state tank 3, respectively. A non-separation system transfer state in which the liquefied gas L is transferred from the receiving state tank 2 to the storage state tank 3 in a single transfer system through the first transfer path 4 in a state of straddling the first transfer path separation valve 7;
While maintaining the 1st transfer path separation valve 7 in a closed state, the intermittent means 6 provided with respect to the specific receiving state tank 2 and the specific storage state tank 3 is made into an open state, respectively, Without separation, the separated transfer state in which the liquefied gas L is separately transferred between the receiving state tank 2 and the storage state tank 3 connected to each of the plurality of transfer systems via the first transfer path 4. The transfer state may be selectable.
Here, the 1st transfer path 4 may be comprised by the singular, and may be comprised by multiple. For example, in the case where the first transfer path 4 is constituted by a single unit and the first transfer path 4 is provided with one first transfer path separation valve 7, two transfer systems are formed. The liquefied gas L from the two receiving state tanks 2 may be separately transferred to the two storage state tanks 3 at the same time. On the other hand, for example, when the first transfer path 4 is composed of three, and each of the first transfer paths 4 is provided with one first transfer path separation valve 7, six transfers A system may be formed, and the liquefied gas L from the six receiving state tanks 2 may be separately transferred to the six storage state tanks 3 at the same time.

(J)上記実施形態においては、移送路として第1移送路4が単数設けられるとともに、第2移送路5が単数設けられたが、これに限らず、第1移送路4を複数設けてもよい。また、第2移送路5を複数設けてもよい。この場合、受入状態タンク2又は貯蔵状態タンク3は、第1移送路4及び第2移送路5のそれぞれに対し、液化ガスLの流入路又は流出路で接続されていてもよい。 (J) In the above embodiment, a single first transfer path 4 and a single second transfer path 5 are provided as transfer paths. However, the present invention is not limited to this, and a plurality of first transfer paths 4 may be provided. Good. A plurality of second transfer paths 5 may be provided. In this case, the receiving state tank 2 or the storage state tank 3 may be connected to each of the first transfer path 4 and the second transfer path 5 by an inflow path or an outflow path of the liquefied gas L.

以上説明したように、システムの大型化及び設置費用の増加を抑制しつつ、受入状態タンクから貯蔵状態タンクへの液化ガスの移送能力を向上することができる液化ガス移送システムを提供することができる。   As described above, it is possible to provide a liquefied gas transfer system capable of improving the liquefied gas transfer capability from the receiving tank to the storage tank while suppressing an increase in system size and an increase in installation cost. .

1 液化ガス移送システム
2 受入状態タンク
3 貯蔵状態タンク
4 第1移送路(移送路)
5 第2移送路
6 断続手段
7 第1移送路分離弁(移送路分離弁)
8 制御手段
10 一端側第1移送路部位
11 他端側第1移送路部位
12 中間移送路部位
20 移送路追加分離弁
30 第2移送路分離弁
40 一端側第2移送路部位
41 他端側第2移送路部位
L 液化ガス
1 Liquefied Gas Transfer System 2 Accepted State Tank 3 Storage State Tank 4 First Transfer Path (Transfer Path)
5 Second transfer path 6 Intermittent means 7 First transfer path separation valve (transfer path separation valve)
8 control means 10 one end side first transfer path part 11 other end side first transfer path part 12 intermediate transfer path part 20 transfer path additional separation valve 30 second transfer path separation valve 40 one end side second transfer path part 41 other end side Second transfer path part L Liquefied gas

Claims (4)

液化ガスを外部より受け入れる受入状態タンクと、
当該受入状態タンクから液化ガスを移送して貯蔵する貯蔵状態タンクと、
前記受入状態タンク及び前記貯蔵状態タンクと接続され、前記受入状態タンクから前記貯蔵状態タンクへ液化ガスの移送を行う移送路とを備えた液化ガス移送システムであって、
複数設けられる各受入状態タンク及び各貯蔵状態タンクは、前記移送路に液化ガスの流通を断続自在な断続手段を介して個別に接続され、
前記移送路に当該移送路内の液化ガスの流通を遮断する移送路分離弁が備えられるとともに、前記移送路分離弁で前記移送路が分離されて形成された複数の移送系統のそれぞれに前記受入状態タンク及び前記貯蔵状態タンクが接続され、
前記断続手段の切り替え及び前記移送路分離弁の開閉を行う制御手段を備え、
当該制御手段は、
前記移送路分離弁を開状態に維持するとともに、特定の受入状態タンク及び特定の貯蔵状態タンクに対してそれぞれ設けられる断続手段を開状態として、前記移送路分離弁をまたぐ状態で形成される単一の前記移送系統で受入状態タンクから貯蔵状態タンクへ液化ガスを移送する非分離移送状態と、
前記移送路分離弁を閉状態に維持するとともに、特定の受入状態タンク及び特定の貯蔵状態タンクに対してそれぞれ設けられる断続手段を開状態として、前記移送路分離弁をまたぐことなく形成される複数の前記移送系統のそれぞれに接続された受入状態タンク及び貯蔵状態タンク間での液化ガスの移送を別個に行う分離移送状態との間で、移送状態を選択可能に構成されている液化ガス移送システム。
A receiving tank for receiving liquefied gas from the outside;
A storage tank for transferring and storing liquefied gas from the receiving tank;
A liquefied gas transfer system comprising a transfer path connected to the receiving state tank and the storage state tank and transferring liquefied gas from the receiving state tank to the storage state tank;
Each receiving state tank and each storage state tank provided in a plurality are individually connected to the transfer path through intermittent means capable of intermittently circulating the liquefied gas,
The transfer path is provided with a transfer path separation valve for blocking the flow of the liquefied gas in the transfer path, and the receiving is received in each of a plurality of transfer systems formed by separating the transfer path by the transfer path separation valve. A state tank and the storage state tank are connected,
Control means for switching the intermittent means and opening and closing the transfer path separation valve,
The control means is
The transfer path separation valve is maintained in the open state, and the intermittent means provided for each of the specific receiving state tank and the specific storage state tank is opened, and the unit is formed so as to straddle the transfer path separation valve. A non-separated transfer state in which the liquefied gas is transferred from the acceptance state tank to the storage state tank in one transfer system;
The plurality of transfer path separation valves are formed without straddling the transfer path separation valve while maintaining the transfer path separation valve in a closed state and opening / closing the intermittent means provided for each of the specific receiving state tank and the specific storage state tank. A liquefied gas transfer system configured to be able to select a transfer state between a receiving state tank connected to each of the transfer systems and a separated transfer state for separately transferring a liquefied gas between storage state tanks .
前記移送路としての第1移送路と、当該第1移送路とは別の第2移送路とが備えられ、
前記第1移送路に当該第1移送路内の液化ガスの流通を遮断する前記移送路分離弁としての第1移送路分離弁が備えられるとともに、当該第1移送路分離弁から前記第1移送路の一端側に延びる一端側第1移送路部位と他端側に延びる他端側第1移送路部位とを備え、前記一端側第1移送路部位と前記他端側第1移送路部位とのそれぞれに前記受入状態タンク及び前記貯蔵状態タンクが接続され、
前記制御手段は、
前記第1移送路分離弁を開状態に維持するとともに、特定二つの受入状態タンク及び特定二つの貯蔵状態タンクに対してそれぞれ設けられる断続手段を開状態として、前記第1移送路及び前記第2移送路を別個に介して、2系統で別個に受入状態タンクから貯蔵状態タンクへ液化ガスを移送する前記非分離移送状態としての2系統移送状態と、
前記第1移送路分離弁を閉状態に維持するとともに、特定三つの受入状態タンク及び特定三つの貯蔵状態タンクに対してそれぞれ設けられる断続手段を開状態として、前記第1移送路に関して、前記第1移送路分離弁に対して一端側に接続される受入状態タンク及び貯蔵状態タンク間での液化ガスの移送及び、他端側に接続される受入状態タンク及び貯蔵状態タンク間での液化ガスの移送を行うとともに、前記第2移送路を介する液化ガスの移送を別個に行う前記分離移送状態としての3系統移送状態との間で、移送状態を選択可能に構成されている請求項1に記載の液化ガス移送システム。
A first transfer path as the transfer path and a second transfer path different from the first transfer path;
The first transfer path is provided with a first transfer path separation valve as the transfer path separation valve for blocking the flow of the liquefied gas in the first transfer path, and the first transfer path is separated from the first transfer path separation valve. One end side first transfer path part extending to one end side of the path and the other end side first transfer path part extending to the other end side, the one end side first transfer path part and the other end side first transfer path part; To each of the receiving state tank and the storage state tank,
The control means includes
The first transfer path separation valve is maintained in an open state, and the intermittent means provided for each of the two specific receiving state tanks and the two specific storage state tanks is opened, so that the first transfer path and the second transfer path are opened. A two-system transfer state as the non-separated transfer state in which the liquefied gas is transferred separately from the receiving state tank to the storage state tank in two systems through the transfer path separately;
The first transfer path separation valve is maintained in a closed state, and the intermittent means provided for each of the three specific receiving state tanks and the three specific storage state tanks is opened, and the first transfer path is Transfer of liquefied gas between the receiving state tank and the storage state tank connected to one end side with respect to one transfer path separation valve, and liquefied gas between the receiving state tank and the storage state tank connected to the other end side The transfer state is configured to be selectable between the three-system transfer state as the separation transfer state in which the transfer is performed and the liquefied gas is separately transferred through the second transfer path. Liquefied gas transfer system.
前記第2移送路に、当該第2移送路内の液化ガスの流通を遮断する第2移送路分離弁が備えられるとともに、当該第2移送路分離弁から前記第2移送路の一端側に延びる一端側第2移送路部位と他端側に延びる他端側第2移送路部位とのそれぞれに前記受入状態タンク及び前記貯蔵状態タンクが接続され、
前記制御手段が、前記第2移送路分離弁の開閉制御も実行する請求項2に記載の液化ガス移送システム。
The second transfer path is provided with a second transfer path separation valve that blocks the flow of the liquefied gas in the second transfer path, and extends from the second transfer path separation valve to one end side of the second transfer path. The receiving state tank and the storage state tank are connected to each of the one end side second transfer path part and the other end side second transfer path part extending to the other end side,
The liquefied gas transfer system according to claim 2, wherein the control unit also executes opening / closing control of the second transfer path separation valve.
前記移送路に、前記移送路分離弁とは別個に、当該移送路内の液化ガスの流通を遮断する移送路追加分離弁が備えられ、
当該移送路追加分離弁および前記移送路分離弁に挟まれた前記移送路の部位である中間移送路部位に前記受入状態タンク及び前記貯蔵状態タンクが接続され、
前記制御手段が、前記移送路追加分離弁の開閉制御を実行するとともに、前記中間移送路部位に接続される受入状態タンク及び貯蔵状態タンクに対する断続手段の断続制御を実行し、前記中間移送路部位を介する受入状態タンクから貯蔵状態タンクへの移送も行う請求項1から3の何れか1項に記載の液化ガス移送システム。
Separately from the transfer path separation valve, the transfer path is provided with a transfer path additional separation valve that blocks the flow of the liquefied gas in the transfer path,
The receiving state tank and the storage state tank are connected to an intermediate transfer path part that is a part of the transfer path sandwiched between the transfer path additional separation valve and the transfer path separation valve,
The control means performs open / close control of the transfer path additional separation valve, and performs intermittent control of the intermittent means for the receiving state tank and the storage state tank connected to the intermediate transfer path part, and the intermediate transfer path part The liquefied gas transfer system according to any one of claims 1 to 3, wherein the transfer from the receiving state tank to the storage state tank is also performed via the liquefied gas.
JP2013041162A 2013-03-01 2013-03-01 Liquefied gas transfer system Expired - Fee Related JP6141050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041162A JP6141050B2 (en) 2013-03-01 2013-03-01 Liquefied gas transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041162A JP6141050B2 (en) 2013-03-01 2013-03-01 Liquefied gas transfer system

Publications (2)

Publication Number Publication Date
JP2014169734A true JP2014169734A (en) 2014-09-18
JP6141050B2 JP6141050B2 (en) 2017-06-07

Family

ID=51692261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041162A Expired - Fee Related JP6141050B2 (en) 2013-03-01 2013-03-01 Liquefied gas transfer system

Country Status (1)

Country Link
JP (1) JP6141050B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210990A (en) * 1998-01-21 1999-08-06 Ishikawajima Harima Heavy Ind Co Ltd Lng receiving device
JPH11280996A (en) * 1998-03-27 1999-10-15 Ishikawajima Harima Heavy Ind Co Ltd Fluid receiving method and fluid storage equipment
JP2001208297A (en) * 2000-01-21 2001-08-03 Osaka Gas Co Ltd Method of storing liquefied petroleum gas at low temperature
JP2006342833A (en) * 2005-06-07 2006-12-21 Tokyo Electric Power Co Inc:The Pressure step-down control method and step-down control system for cold reserving circulation line when receiving lng

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210990A (en) * 1998-01-21 1999-08-06 Ishikawajima Harima Heavy Ind Co Ltd Lng receiving device
JPH11280996A (en) * 1998-03-27 1999-10-15 Ishikawajima Harima Heavy Ind Co Ltd Fluid receiving method and fluid storage equipment
JP2001208297A (en) * 2000-01-21 2001-08-03 Osaka Gas Co Ltd Method of storing liquefied petroleum gas at low temperature
JP2006342833A (en) * 2005-06-07 2006-12-21 Tokyo Electric Power Co Inc:The Pressure step-down control method and step-down control system for cold reserving circulation line when receiving lng

Also Published As

Publication number Publication date
JP6141050B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
CN108291560B (en) Pressure compensation unit
KR20140007007A (en) Purge line change block joint and fluid control device
CN105152382B (en) One kind is without the double water outlet nanofiltrations of electric auto-flushing or anti-penetration water purifier
CN106163913B (en) Ship with the fuel tank for liquid gas
KR20200086634A (en) Device and method for filling tanks with pressurized gas
JP6141050B2 (en) Liquefied gas transfer system
CN108019283B (en) A kind of double hair helicopter oil supply system frameworks
CN109070007A (en) Screw type membrane module
CN101603551B (en) Multi-channel proportional flow distribution valve bank applicable to various variable pump systems
CA2622261A1 (en) Device for drying compressed gas
JP4893466B2 (en) Fuel supply method and apparatus for marine internal combustion engine
WO2018121093A1 (en) Double-head valve
KR102423503B1 (en) Beverage dispenser removing residue
CN212405333U (en) Integrated water route distribution module
CN205478620U (en) It collaborates multiple unit valve for hoist to be applicable to double pump
KR101185414B1 (en) Ship
CN201531749U (en) Pipeline junction component
JP2013199956A (en) Multi-tank type gas supply device
KR20140078016A (en) A fuel oil filling system of twin tank
JP5660929B2 (en) Tanker cargo handling equipment
CN109114417A (en) A kind of filling station and charging method of LNG ship
KR101928105B1 (en) Fuel supply system of ship
JP4027000B2 (en) Merge mechanism
JP2017015167A (en) Block valve, fluid control device with block valve and method for cleaning chamber with block valve
CN103161973A (en) Water treatment valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170502

R150 Certificate of patent or registration of utility model

Ref document number: 6141050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees