JP2014169424A - Molding - Google Patents

Molding Download PDF

Info

Publication number
JP2014169424A
JP2014169424A JP2013043291A JP2013043291A JP2014169424A JP 2014169424 A JP2014169424 A JP 2014169424A JP 2013043291 A JP2013043291 A JP 2013043291A JP 2013043291 A JP2013043291 A JP 2013043291A JP 2014169424 A JP2014169424 A JP 2014169424A
Authority
JP
Japan
Prior art keywords
ethylene
copolymer
mass
cellulosic fibers
unsaturated carboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013043291A
Other languages
Japanese (ja)
Other versions
JP6173722B2 (en
Inventor
Riyouji Tanaka
僚治 田中
Kazuishi Sato
一石 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2013043291A priority Critical patent/JP6173722B2/en
Publication of JP2014169424A publication Critical patent/JP2014169424A/en
Application granted granted Critical
Publication of JP6173722B2 publication Critical patent/JP6173722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molding excellent in stress crack resistance.SOLUTION: The molding contains: an ethylenic copolymer which contains a polymerization unit derived from ethylene and a polymerization unit derived from at least one copolymerization compound selected from the group consisting of a vinyl ester, an unsaturated carboxylic acid, a derivative of a vinyl ester, and a derivative of an unsaturated carboxylic acid, wherein the content ratio of the polymerization unit derived from the copolymerization compound is 5-50 mass%; and cellulosic fibers having an average fiber diameter of 500 nm or less. The cellulosic fibers are contained in an amount of 0.5-10 pts.mass based on 100 pts.mass of the ethylenic copolymer.

Description

本発明は、成形体に関する。   The present invention relates to a molded body.

エチレン系共重合体を含む成形体は、その適度な柔軟性と、優れた機械的特性及び成形性により、各種容器、包装材料に広く使用されている。中でも、パイプ、ボトル、ボトルキャップ、人工芝等の用途においては、種々の液体が接触した状態で内圧等の応力に長時間晒される。そのため、一定の応力がかかる状態で薬品中に放置したときにクラックや破壊が起きないこと(以下、「耐ストレスクラック性」ともいう。)が求められる。   Molded articles containing an ethylene copolymer are widely used in various containers and packaging materials due to their moderate flexibility and excellent mechanical properties and moldability. In particular, in applications such as pipes, bottles, bottle caps, and artificial turf, they are exposed to stresses such as internal pressure for a long time in a state where various liquids are in contact. Therefore, it is required that cracks and destruction do not occur (hereinafter also referred to as “stress crack resistance”) when left in chemicals under a certain stress.

耐ストレスクラック性を高めるには、エチレン系共重合体の分子量を高めることが有効であることが分かっているが、単純に分子量を高めると流動性や剛性が低下する。また、密度を下げることでも耐ストレスクラック性を高めることはできるが、密度の低下は剛性の低下を伴うので、用途によっては適用できない。   It has been found that increasing the molecular weight of the ethylene-based copolymer is effective in increasing the stress crack resistance, but if the molecular weight is simply increased, the fluidity and rigidity are lowered. In addition, the stress crack resistance can be increased by reducing the density, but the decrease in density is accompanied by a decrease in rigidity, and therefore cannot be applied depending on the application.

その他の方法として、樹脂の機械的特性を向上させるために、樹脂と、ガラス繊維、炭素繊維、又はアラミド繊維等との複合化することが検討されており、これにより、強度、剛性等が向上することが見出されている。例えば、特許文献1〜2には、ガラス繊維を用いた複合材が記載されている。   As another method, in order to improve the mechanical properties of the resin, it has been studied to combine the resin with glass fiber, carbon fiber, or aramid fiber, thereby improving strength, rigidity, etc. Has been found to do. For example, Patent Documents 1 and 2 describe composite materials using glass fibers.

特許第3166814号公報Japanese Patent No. 3166814 特許第4217284号公報Japanese Patent No. 4217284

しかしながら、特許文献1〜2に記載された樹脂とガラス繊維との複合材は、ガラス繊維が破損することにより補強効果が不十分となる。また、ガラス繊維と樹脂の界面強度が弱いため、耐ストレスクラック性が不十分であるという問題点がある。   However, the composite material of resin and glass fiber described in Patent Documents 1 and 2 has an insufficient reinforcing effect due to breakage of the glass fiber. Moreover, since the interface strength between the glass fiber and the resin is weak, there is a problem that the stress crack resistance is insufficient.

本発明は、上記問題に鑑みてなされたものであり、耐ストレスクラック性に優れる成形体を提供することを目的とする。   This invention is made | formed in view of the said problem, and it aims at providing the molded object which is excellent in stress crack resistance.

本発明者らは、上記問題を解決するために鋭意検討した。その結果、エチレン系共重合体に所定のセルロース系繊維を凝集することなく分散させることにより、上記課題を解決できることを見出し、本発明を完成するに至った。   The present inventors diligently studied to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by dispersing predetermined cellulose fibers in the ethylene copolymer without agglomeration, and the present invention has been completed.

すなわち、本発明は、以下のとおりである。
〔1〕
エチレン由来の重合単位と、ビニルエステル、不飽和カルボン酸、ビニルエステルの誘導体、及び不飽和カルボン酸の誘導体からなる群より選ばれる少なくとも1種の共重合化合物由来の重合単位とを含有し、該共重合化合物由来の重合単位の含有割合が5〜50質量%であるエチレン系共重合体と、
平均繊維径が500nm以下であるセルロース系繊維と、を含み、
該セルロース系繊維は、前記エチレン系共重合体100質量部に対して、0.5〜10質量部含まれる、
成形体。
〔2〕
前記エチレン系共重合体が、エチレン−酢酸ビニル共重合体を含む、前項〔1〕に記載の成形体。
That is, the present invention is as follows.
[1]
Containing a polymerized unit derived from ethylene and a polymerized unit derived from at least one copolymer compound selected from the group consisting of vinyl esters, unsaturated carboxylic acids, derivatives of vinyl esters, and derivatives of unsaturated carboxylic acids, An ethylene copolymer in which the content of the polymerized units derived from the copolymer compound is 5 to 50% by mass;
Cellulosic fibers having an average fiber diameter of 500 nm or less,
The cellulose fiber is contained in an amount of 0.5 to 10 parts by mass with respect to 100 parts by mass of the ethylene copolymer.
Molded body.
[2]
The molded product according to [1] above, wherein the ethylene copolymer includes an ethylene-vinyl acetate copolymer.

本発明によれば、耐ストレスクラック性に優れる成形体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the molded object which is excellent in stress crack resistance can be provided.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。   DESCRIPTION OF EMBODIMENTS Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. However, the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is possible.

〔成形体〕
本実施形態の成形体は、
エチレン由来の重合単位と、ビニルエステル、不飽和カルボン酸、ビニルエステルの誘導体、及び不飽和カルボン酸の誘導体からなる群より選ばれる少なくとも1種の共重合化合物由来の重合単位とを含有し、前記共重合化合物由来の重合単位の含有割合がエチレン系共重合体に対して5〜50質量%であるエチレン系共重合体と、
平均繊維径が500nm以下であるセルロース系繊維と、を含み、
該セルロース系繊維は、前記エチレン系共重合体100質量部に対して、0.5〜10質量部含まれる。
[Molded body]
The molded body of this embodiment is
Containing a polymerized unit derived from ethylene and a polymerized unit derived from at least one copolymer compound selected from the group consisting of vinyl esters, unsaturated carboxylic acids, vinyl ester derivatives, and unsaturated carboxylic acid derivatives, An ethylene copolymer in which the content of the polymerization unit derived from the copolymer compound is 5 to 50% by mass with respect to the ethylene copolymer;
Cellulosic fibers having an average fiber diameter of 500 nm or less,
The cellulose fiber is contained in an amount of 0.5 to 10 parts by mass with respect to 100 parts by mass of the ethylene copolymer.

〔エチレン系共重合体〕
本実施形態のエチレン系共重合体は、エチレンと、ビニルエステル、不飽和カルボン酸、ビニルエステルの誘導体及び不飽和カルボン酸の誘導体からなる群より選ばれる少なくとも1種の共重合化合物と、を共重合した共重合体である。なお、本願明細書において「共重合化合物」とは、エチレンと共重合するビニルエステル、不飽和カルボン酸、ビニルエステルの誘導体及び不飽和カルボン酸の誘導体のことをいう。
[Ethylene copolymer]
The ethylene copolymer of this embodiment is a copolymer of ethylene and at least one copolymer compound selected from the group consisting of vinyl esters, unsaturated carboxylic acids, vinyl ester derivatives and unsaturated carboxylic acid derivatives. It is a polymerized copolymer. In the present specification, the “copolymerization compound” refers to vinyl ester, unsaturated carboxylic acid, vinyl ester derivative and unsaturated carboxylic acid derivative copolymerized with ethylene.

上記ビニルエステルとしては、特に限定されないが、具体的には、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等が挙げられる。   Although it does not specifically limit as said vinyl ester, Specifically, vinyl acetate, vinyl propionate, vinyl butyrate, etc. are mentioned.

また、不飽和カルボン酸としては、特に限定されないが、具体的には、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、フマル酸等が挙げられる。   The unsaturated carboxylic acid is not particularly limited, and specific examples include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, fumaric acid and the like.

またさらに、不飽和カルボン酸の誘導体としては、特に限定されないが、具体的には、アクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、メタクリル酸メチル、アクリル酸ブチル、メタクリル酸ブチル等が挙げられる。   Furthermore, the derivative of the unsaturated carboxylic acid is not particularly limited, and specific examples include methyl acrylate, ethyl acrylate, ethyl methacrylate, methyl methacrylate, butyl acrylate, and butyl methacrylate.

エチレン系共重合体としては、特に限定されないが、例えば、エチレン−酢酸ビニル共重合体(以下、「EVA」ともいう。)、エチレン−アクリル酸共重合体(以下、「EAA」ともいう。)、エチレン−メタクリル酸共重合体(以下、「EMAA」ともいう。)、エチレン−アクリル酸メチル共重合体(以下、「EMA」ともいう。)、エチレン−アクリル酸エチル共重合体(以下、「EEA」ともいう。)、エチレン−メタクリル酸エチル共重合体(以下、「EMMA」ともいう。)が挙げられる。この中でもエチレン系共重合体が、EVAを含むことが好ましい。これにより、成形体中でのセルロース系繊維の分散性がより高くなり、成形体が耐ストレスクラック性により優れるものとなる。   Although it does not specifically limit as an ethylene-type copolymer, For example, ethylene-vinyl acetate copolymer (henceforth "EVA"), ethylene-acrylic acid copolymer (henceforth "EAA"). , Ethylene-methacrylic acid copolymer (hereinafter also referred to as “EMAA”), ethylene-methyl acrylate copolymer (hereinafter also referred to as “EMA”), ethylene-ethyl acrylate copolymer (hereinafter referred to as “ EEA ”) and ethylene-ethyl methacrylate copolymer (hereinafter also referred to as“ EMMA ”). Among these, it is preferable that an ethylene-type copolymer contains EVA. Thereby, the dispersibility of the cellulose fiber in a molded object becomes higher, and a molded object becomes more excellent in stress crack resistance.

共重合化合物由来の重合単位が、エチレン系共重合体に含まれる含有割合はエチレン系共重合体に対して5〜50質量%であり、10〜35質量%が好ましく、12〜30質量%がより好ましい。含有率が5質量%以上であることにより、成形体中でのセルロース系繊維の分散性が分散剤を添加しなくても良好となり、耐ストレスクラック性がより優れる。また、含有率が50質量%以下であることにより、樹脂が過度に柔軟にならず、材料として好ましい。   The content ratio in which the polymerization unit derived from the copolymer compound is contained in the ethylene copolymer is 5 to 50% by mass, preferably 10 to 35% by mass, and 12 to 30% by mass with respect to the ethylene copolymer. More preferred. When the content is 5% by mass or more, the dispersibility of the cellulosic fibers in the molded article becomes good without adding a dispersant, and the stress crack resistance is more excellent. Further, when the content is 50% by mass or less, the resin is not excessively flexible and is preferable as a material.

また、本実施形態で使用されるエチレン系共重合体のメルトマスフローレイト(MFR、JIS−K−7210:1999、190℃、荷重2.16kg)は、0.1〜100g/10minであることが好ましく、0.5〜50g/10minであることがより好ましく、1.0〜30g/10minであることがさらに好ましい。MFRが0.1g/10min以上であることにより、成形体中でのセルロース系繊維の分散性がより優れる傾向にあると共に、エチレン系共重合体の流動性がより優れ、成形加工がより容易となる傾向にある。また、MFRが100g/10min以下であることにより、適度な分子量を有するので、成形体の機械的特性がより優れる傾向にある。   Further, the melt mass flow rate (MFR, JIS-K-7210: 1999, 190 ° C., load 2.16 kg) of the ethylene-based copolymer used in the present embodiment is 0.1 to 100 g / 10 min. Preferably, it is 0.5 to 50 g / 10 min, more preferably 1.0 to 30 g / 10 min. When the MFR is 0.1 g / 10 min or more, the dispersibility of the cellulosic fibers in the molded product tends to be more excellent, the flowability of the ethylene copolymer is better, and the molding process is easier. Tend to be. Moreover, since MFR is 100 g / 10min or less, since it has moderate molecular weight, it exists in the tendency for the mechanical characteristic of a molded object to be more excellent.

エチレン系共重合体の重合方法は、特に限定されないが、例えば、高圧法、中低圧法等の公知の方法により行なうことができる。また、エチレン系共重合体の一次構造はランダム、ブロック等、いずれの構造であってもよい。   The polymerization method of the ethylene copolymer is not particularly limited, and can be performed by a known method such as a high-pressure method or a medium-low pressure method. The primary structure of the ethylene copolymer may be any structure such as random or block.

〔セルロース系繊維〕
本実施形態の成形体中には、平均繊維径が500nm以下のセルロース系繊維が分散している。本実施形態のセルロース系繊維としては、特に限定されないが、例えば、セルロースのホモポリマー、その誘導体又はそれらの混合物が挙げられる。このようなセルロース系繊維としては、特に限定されないが、具体的には、木材パルプ、非木材パルプ、バクテリア、藻類、ホヤ由来のセルロースが挙げられる。セルロース系繊維は通常、硫酸や塩酸等の酸を用いた酸加水分解による化学的方法、もしくは高圧ホモジナイザー、リファイナー、グラインダー、ボールミル、ロッドミル、石臼等の機械的エネルギーを与えて、セルロースの解繊や微細化を行う物理的方法により得られるが、これらに限定されるものではない。また、化学的、物理的方法による処理を施した市販のセルロース系繊維を利用することもできる。上記の処理によって、セルロース系繊維の平均繊維径は500nm以下、好ましくは100nm以下に調整することができる。
[Cellulose fiber]
Cellulosic fibers having an average fiber diameter of 500 nm or less are dispersed in the molded body of this embodiment. Although it does not specifically limit as a cellulose fiber of this embodiment, For example, the homopolymer of a cellulose, its derivative (s), or those mixtures are mentioned. Such cellulosic fibers are not particularly limited, and specific examples include wood pulp, non-wood pulp, bacteria, algae, and sea squirt-derived cellulose. Cellulosic fibers are usually subjected to chemical methods by acid hydrolysis using acids such as sulfuric acid and hydrochloric acid, or mechanical energy such as high-pressure homogenizers, refiners, grinders, ball mills, rod mills, stone mills, etc. Although it can be obtained by a physical method for miniaturization, it is not limited thereto. Commercially available cellulosic fibers that have been treated by chemical and physical methods can also be used. By the above treatment, the average fiber diameter of the cellulosic fibers can be adjusted to 500 nm or less, preferably 100 nm or less.

(平均繊維径)
セルロース系繊維の平均繊維径は500nm以下であり、300nm以下であることが好ましく、100nm以下であることがより好ましい。また、平均繊維径は10nm以上であることが好ましく、15nm以上であることがより好ましく、20nm以上であることがさらに好ましい。平均繊維径が500nm以下であることにより、得られる成形体の耐ストレスクラック性がより向上する。また、平均繊維径が、10nm以上であることにより、粉砕に用いるエネルギーがより小さくなり、また、再凝集も起こりにくい傾向にある。なお、平均繊維径は実施例に記載の方法により求めることができる。
(Average fiber diameter)
The average fiber diameter of the cellulosic fibers is 500 nm or less, preferably 300 nm or less, and more preferably 100 nm or less. The average fiber diameter is preferably 10 nm or more, more preferably 15 nm or more, and further preferably 20 nm or more. When the average fiber diameter is 500 nm or less, the stress crack resistance of the obtained molded body is further improved. Further, when the average fiber diameter is 10 nm or more, energy used for pulverization becomes smaller and reaggregation tends not to occur. In addition, an average fiber diameter can be calculated | required by the method as described in an Example.

本実施形態の成形体は、エチレン系共重合体に対し、セルロース系繊維を分散させたものである。本実施形態の成形体においてセルロース系繊維の含有量は、エチレン系共重合体100質量部に対し、0.5〜10質量部であり、1〜10質量部であることが好ましく、3〜10質量部であることがより好ましい。含有量が0.5質量部以上であることにより、耐ストレスクラック性により優れる。また、含有量が10質量部以下であることにより、加工時の流動性がより適度な範囲となり、成形性により優れる。   The molded body of this embodiment is obtained by dispersing cellulose fibers in an ethylene copolymer. In the molded body of the present embodiment, the content of the cellulose fiber is 0.5 to 10 parts by mass, preferably 1 to 10 parts by mass, with respect to 100 parts by mass of the ethylene copolymer. More preferably, it is part by mass. When the content is 0.5 part by mass or more, the stress crack resistance is more excellent. Moreover, when content is 10 mass parts or less, the fluidity | liquidity at the time of a process becomes a more suitable range, and it is excellent by a moldability.

(分散方法)
本実施形態の成形体は、エチレン系共重合体にセルロース系繊維を凝集することなく分散したものである。分散方法は、特に限定されないが、例えば、EVA等のエチレン系共重合体をミキサー、二軸押出機等を用いて溶融混練しながらセルロース系繊維を添加する方法や、エチレン系共重合体を溶解した溶液を撹拌しながらセルロース系繊維を加える方法等が適用できる。
(Distribution method)
The molded body of the present embodiment is obtained by dispersing cellulose fibers in an ethylene copolymer without agglomeration. Although the dispersion method is not particularly limited, for example, a method of adding cellulosic fibers while melt-kneading an ethylene copolymer such as EVA using a mixer, a twin screw extruder, or the like, or dissolving the ethylene copolymer A method of adding a cellulosic fiber while stirring the prepared solution can be applied.

セルロース系繊維は、水などの液中に分散した状態では安定であるが、乾くと容易に凝集し、再分散することは困難である。従って、エチレン系共重合体への添加はセルロース系繊維が液中に分散した状態で実施する事が好ましい。また、セルロース系繊維と共に系内に添加された水など液体は、真空乾燥機などで除去できるが、生産性、及びセルロース系繊維の分散性から、真空ベント付二軸押出機による混合、分散、液体除去が好ましい。   Cellulosic fibers are stable when dispersed in a liquid such as water, but easily aggregate when dried and difficult to redisperse. Therefore, the addition to the ethylene copolymer is preferably carried out in a state where the cellulosic fibers are dispersed in the liquid. In addition, liquids such as water added into the system together with the cellulosic fibers can be removed with a vacuum dryer, etc., but from the productivity and dispersibility of the cellulosic fibers, mixing and dispersion by a twin screw extruder with a vacuum vent, Liquid removal is preferred.

〔成形方法〕
成形体の成形方法は、特に限定されないが、例えば、プレス成形、カレンダー成形、溶融押出成形、射出成形、ブロー成形等の公知の成形方法が適用可能である。
[Molding method]
Although the molding method of a molded object is not specifically limited, For example, well-known molding methods, such as press molding, calendar molding, melt extrusion molding, injection molding, blow molding, are applicable.

また、本実施形態の成形体は、必要に応じて、酸化防止剤、耐光安定剤、保温剤、帯電防止剤、滑剤、アンチブロッキング剤、難燃剤、防曇剤、顔料、染料、オイル、ワックス、発泡剤等を適時配合することができる。   In addition, the molded product of the present embodiment includes an antioxidant, a light stabilizer, a heat retention agent, an antistatic agent, a lubricant, an antiblocking agent, a flame retardant, an antifogging agent, a pigment, a dye, an oil, and a wax as necessary. A foaming agent and the like can be blended in a timely manner.

本実施形態に係る成形体は、耐ストレスクラック性に優れるため、例えば、種々の液体が接触した状態で内圧等の応力に長時間晒されるパイプ、ボトル、ボトルキャップ、人工芝に好適に用いることができる。   Since the molded body according to the present embodiment is excellent in stress crack resistance, for example, it is preferably used for pipes, bottles, bottle caps, and artificial turf that are exposed to stresses such as internal pressure for a long time in contact with various liquids. Can do.

以下、本発明について、実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。尚、物性測定方法、評価方法は以下の通りである。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. The present invention is not limited in any way by the following examples. The physical property measurement method and evaluation method are as follows.

(1)セルロース系繊維の平均繊維径測定
日立ハイテクノロジー(株)製、走査型電子顕微鏡を用いて撮影した画像より任意に選らんだ12本のセルロース系繊維の繊維径を測定し、その平均値を算出して平均繊維径を求めた。
(1) Measurement of average fiber diameter of cellulosic fibers The fiber diameters of 12 cellulosic fibers arbitrarily selected from images taken using a scanning electron microscope manufactured by Hitachi High Technology Co., Ltd. were measured, and the average was measured. The value was calculated to obtain the average fiber diameter.

(2)耐ストレスクラック性
耐ストレスクラック性試験は、ASTM D1693に記載の方法で実施した。具体的には、試験液として、ライオン(株)製リポノックスNC95の10質量%水溶液を使用し、50℃で、環境応力による亀裂が発生する確率が50%となる時間を計測した。
(2) Stress crack resistance The stress crack resistance test was conducted by the method described in ASTM D1693. Specifically, a 10% by mass aqueous solution of Liponox NC95 manufactured by Lion Corporation was used as a test solution, and the time at which the probability of cracking due to environmental stress was 50% was measured at 50 ° C.

[実施例1〜3]
エチレン系共重合体として、酢酸ビニル含有量14質量%、MFR=15g/10minのエチレン−酢酸ビニル共重合体(EVA−1:旭化成ケミカルズ(株)製EM−6415)を準備した。また、セルロース系繊維として、香川県産ヒノキをディスクミルに16回通すことにより作製した平均繊維径50nmのセルロース系繊維(Cell−1)、及び同ヒノキをディスクミルに8回通すことにより作製した平均繊維径120nmのセルロース系繊維(Cell−2)を準備した。
[Examples 1 to 3]
As an ethylene copolymer, an ethylene-vinyl acetate copolymer (EVA-1: EM-6415 manufactured by Asahi Kasei Chemicals Corporation) having a vinyl acetate content of 14% by mass and MFR = 15 g / 10 min was prepared. Moreover, as a cellulose fiber, it produced by passing the cypress produced in Kagawa Prefecture 16 times through a disk mill and a cellulose fiber (Cell-1) having an average fiber diameter of 50 nm, and passing the cypress through the disk mill 8 times. Cellulosic fibers (Cell-2) having an average fiber diameter of 120 nm were prepared.

上記のエチレン系共重合体とセルロース系繊維とを用いて、表1に示す割合でペレットを作製し、該ペレットを用いて成形シートを作製し、耐ストレスクラック性を評価した。具体的には、エチレン−酢酸ビニル共重合体とセルロース系繊維の水分散スラリーを二軸押出機を用いて混合し、ダイより押し出したストランドをカットしてペレットを作製した。その後、プレス成形により成形シートを作製し、耐ストレスクラック性を評価した。ペレット組成と評価結果を表1に示す。   Using the ethylene copolymer and cellulose fiber, pellets were prepared at the ratio shown in Table 1, and a molded sheet was prepared using the pellets, and the stress crack resistance was evaluated. Specifically, an ethylene-vinyl acetate copolymer and an aqueous dispersion slurry of cellulose fibers were mixed using a twin screw extruder, and the strand extruded from the die was cut to produce a pellet. Thereafter, a molded sheet was produced by press molding, and the stress crack resistance was evaluated. Table 1 shows the pellet composition and evaluation results.

[比較例1、2]
セルロース系繊維の配合量を変更したこと以外は実施例1と同様の操作により紫外線カットフィルムを作製し、耐ストレスクラック性を評価した。ペレット組成と評価結果を表1に示す。比較例2ではセルロース系繊維の量が多すぎたため混合不良となり、耐ストレスクラック性を測定することができなかった。
[Comparative Examples 1 and 2]
An ultraviolet cut film was prepared by the same operation as in Example 1 except that the blending amount of the cellulosic fiber was changed, and the stress crack resistance was evaluated. Table 1 shows the pellet composition and evaluation results. In Comparative Example 2, the amount of cellulosic fibers was too large, resulting in poor mixing, and the stress crack resistance could not be measured.

[比較例3]
セルロース系繊維として、コピー用紙をミキサーで解繊したセルロース系繊維(平均繊維径11μm、Cell−3)を用いたこと以外は実施例1と同様の操作により紫外線カットフィルムを作製し、耐ストレスクラック性を評価した。ペレット組成と評価結果を表1に示す。
[Comparative Example 3]
A UV cut film was prepared by the same operation as in Example 1 except that cellulose fibers (average fiber diameter 11 μm, Cell-3) obtained by defibrating copy paper with a mixer were used as the cellulose fibers, and stress cracking resistance was prevented. Sex was evaluated. Table 1 shows the pellet composition and evaluation results.

本発明の成形体は、パイプ、ボトル、ボトルキャップ、人工芝として産業上の利用可能性を有する。   The molded body of the present invention has industrial applicability as a pipe, bottle, bottle cap, and artificial turf.

Claims (2)

エチレン由来の重合単位と、ビニルエステル、不飽和カルボン酸、ビニルエステルの誘導体、及び不飽和カルボン酸の誘導体からなる群より選ばれる少なくとも1種の共重合化合物由来の重合単位とを含有し、該共重合化合物由来の重合単位の含有割合が5〜50質量%であるエチレン系共重合体と、
平均繊維径が500nm以下であるセルロース系繊維と、を含み、
該セルロース系繊維は、前記エチレン系共重合体100質量部に対して、0.5〜10質量部含まれる、
成形体。
Containing a polymerized unit derived from ethylene and a polymerized unit derived from at least one copolymer compound selected from the group consisting of vinyl esters, unsaturated carboxylic acids, derivatives of vinyl esters, and derivatives of unsaturated carboxylic acids, An ethylene copolymer in which the content of the polymerized units derived from the copolymer compound is 5 to 50% by mass;
Cellulosic fibers having an average fiber diameter of 500 nm or less,
The cellulose fiber is contained in an amount of 0.5 to 10 parts by mass with respect to 100 parts by mass of the ethylene copolymer.
Molded body.
前記エチレン系共重合体が、エチレン−酢酸ビニル共重合体を含む、請求項1に記載の成形体。   The molded article according to claim 1, wherein the ethylene-based copolymer includes an ethylene-vinyl acetate copolymer.
JP2013043291A 2013-03-05 2013-03-05 Compact Expired - Fee Related JP6173722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013043291A JP6173722B2 (en) 2013-03-05 2013-03-05 Compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013043291A JP6173722B2 (en) 2013-03-05 2013-03-05 Compact

Publications (2)

Publication Number Publication Date
JP2014169424A true JP2014169424A (en) 2014-09-18
JP6173722B2 JP6173722B2 (en) 2017-08-02

Family

ID=51692025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013043291A Expired - Fee Related JP6173722B2 (en) 2013-03-05 2013-03-05 Compact

Country Status (1)

Country Link
JP (1) JP6173722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026702A (en) * 2017-07-28 2019-02-21 東洋レヂン株式会社 Thermoplastic composite resin, filament for 3d printer using the resin, and method for producing them

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248053A (en) * 2007-03-30 2008-10-16 Daicel Chem Ind Ltd Suspension of plural minute resins
JP2012180491A (en) * 2011-03-03 2012-09-20 Asahi Kasei Chemicals Corp Resin composition
JP2013014741A (en) * 2011-06-07 2013-01-24 Kao Corp Additive for modifying resin and method for producing the same
JP5150792B2 (en) * 2011-03-11 2013-02-27 Dic株式会社 Modified cellulose nanofiber, process for producing the same, and resin composition using the same
JP2014015512A (en) * 2012-07-06 2014-01-30 Japan Polyethylene Corp Cellulose fiber-containing resin composition
JP2014040535A (en) * 2012-08-23 2014-03-06 Du Pont Mitsui Polychem Co Ltd Resin composition, molding material, molded body, and method of producing resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248053A (en) * 2007-03-30 2008-10-16 Daicel Chem Ind Ltd Suspension of plural minute resins
JP2012180491A (en) * 2011-03-03 2012-09-20 Asahi Kasei Chemicals Corp Resin composition
JP5150792B2 (en) * 2011-03-11 2013-02-27 Dic株式会社 Modified cellulose nanofiber, process for producing the same, and resin composition using the same
JP2013014741A (en) * 2011-06-07 2013-01-24 Kao Corp Additive for modifying resin and method for producing the same
JP2014015512A (en) * 2012-07-06 2014-01-30 Japan Polyethylene Corp Cellulose fiber-containing resin composition
JP2014040535A (en) * 2012-08-23 2014-03-06 Du Pont Mitsui Polychem Co Ltd Resin composition, molding material, molded body, and method of producing resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026702A (en) * 2017-07-28 2019-02-21 東洋レヂン株式会社 Thermoplastic composite resin, filament for 3d printer using the resin, and method for producing them

Also Published As

Publication number Publication date
JP6173722B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
US11390728B2 (en) Cellulose-containing resin composition and cellulosic ingredient
US20220325077A1 (en) Cellulose-Containing Resin Composition and Cellulosic Ingredient
JP6570103B2 (en) A composite resin composition and a method for producing the composite resin composition.
Fang et al. Effect of fiber treatment on the water absorption and mechanical properties of hemp fiber/polyethylene composites
JP6215127B2 (en) Method for producing fiber-containing resin composition
CN102282197A (en) Biodegradable polymer composition
CN105602011A (en) High-compatibility starch-based full-biodegradable resin, and preparation method thereof
JP2014193959A (en) Plant fiber-containing resin composition and production method thereof
KR20180090780A (en) Mechanical and Barrier Properties Improved Polyolefin Compositions
Martínez‐Sanz et al. Nanocomposites of ethylene vinyl alcohol copolymer with thermally resistant cellulose nanowhiskers by melt compounding (I): Morphology and thermal properties
JP2019172752A (en) Process for producing microfibrillated cellulose-containing polypropylene resin composite
CN113444269A (en) Low-warpage good-appearance glass fiber reinforced polypropylene composite material and preparation method thereof
CN105295187A (en) Halogen-free flame-retardant polyolefin rubber-covered wire optical cable material
TWI726894B (en) Method for improving comparative tracking index and use of epoxy compound and ethylene ethyl acrylate copolymer
JP6173722B2 (en) Compact
CN109337330A (en) A kind of high shading PC composite material and preparation method of halogen-free flameproof
CN106009481B (en) A kind of core shell structure reinforced polyformaldehyde in situ and preparation method thereof
CN104530656A (en) Antistatic PBT material and preparation method thereof
CN105860488A (en) Specular free-spraying enhanced polycarbonate composition and preparation method thereof
CN109777096A (en) A kind of polyamide compoiste material and preparation method thereof
CN109810421A (en) Semi-transparent display HIPS resin of one kind and preparation method thereof
Liu et al. Recycled acrylonitrile–butadiene–styrene copolymer resin strengthened and toughened by an elastomer/inorganic nanoparticles complex
JP2012180491A (en) Resin composition
WO2010137718A1 (en) Polymer fine particles capable of preventing the generation of gum in extrusion molding
JP6310307B2 (en) Polyethylene resin composition and film thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R150 Certificate of patent or registration of utility model

Ref document number: 6173722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees