JP2014166939A5 - - Google Patents

Download PDF

Info

Publication number
JP2014166939A5
JP2014166939A5 JP2013225296A JP2013225296A JP2014166939A5 JP 2014166939 A5 JP2014166939 A5 JP 2014166939A5 JP 2013225296 A JP2013225296 A JP 2013225296A JP 2013225296 A JP2013225296 A JP 2013225296A JP 2014166939 A5 JP2014166939 A5 JP 2014166939A5
Authority
JP
Japan
Prior art keywords
copper
fine particles
nitride fine
copper nitride
particles according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013225296A
Other languages
Japanese (ja)
Other versions
JP6057379B2 (en
JP2014166939A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2013225296A priority Critical patent/JP6057379B2/en
Priority claimed from JP2013225296A external-priority patent/JP6057379B2/en
Priority to CN201480006826.7A priority patent/CN104981427A/en
Priority to KR1020157020804A priority patent/KR20150112984A/en
Priority to PCT/JP2014/052321 priority patent/WO2014119748A1/en
Publication of JP2014166939A publication Critical patent/JP2014166939A/en
Publication of JP2014166939A5 publication Critical patent/JP2014166939A5/ja
Application granted granted Critical
Publication of JP6057379B2 publication Critical patent/JP6057379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

すなわち、本発明は上記の問題を解決するために、以下の発明を提供するものである。
(1)一次粒子の粒径が1〜100nmであり、かつ分解温度が常圧で300℃以下である窒化銅微粒子。
(2)二次粒子の粒径が1μm以下である上記(1)に記載の窒化銅微粒子。
(3)示差熱天秤分析において70℃〜300℃の範囲に重量減少を伴う分解温度を持つ上記(1)または(2)に記載の窒化銅微粒子。
(4)電子顕微鏡観察において、二次粒子が球状である上記(1)〜(3)のいずれかに記載の窒化銅微粒子。
(5)粉末X線回折において、CuKα線で21.5〜24.5°および31.0〜34.0°、39.0〜42.0°、46.0〜49.0°のいずれかの領域に少なくとも一つ以上の窒化銅由来の回折ピークを持つ上記(1)〜(4)のいずれかに記載の窒化銅微粒子。
(6)銅源および窒素源、または銅源、窒素源および保護剤を、溶媒または分散媒に溶解または分散させ、ついで加熱することにより上記(1)〜(5)のいずれかに記載の窒化銅微粒子を製造することを特徴とする窒化銅微粒子の製造方法。
(7)銅源が、無機銅塩、有機銅塩および銅錯体から選ばれる1種以上を含む上記(6)に記載の窒化銅微粒子の製造方法。
(8)窒素源が、アンモニアガスまたはアンモニウム塩化合物、尿素、尿素誘導体化合物、硝酸塩化合物、アミン化合物、およびアジ化化合物から選ばれる1種以上を含む上記(6)または(7)に記載の窒化銅微粒子の製造方法。
(9)銅源および窒素源が、結合または配位した窒素含有銅錯体である上記(6)〜(8)のいずれかに記載の窒化銅微粒子の製造方法。
(10)保護剤が、少なくとも1つ以上のカルボキシル基、アミノ基および/またはヒドロキシル基を有する化合物であることを特徴とする上記(6)〜(9)のいずれかに記載の窒化銅微粒子の製造方法。
(11)溶媒が、沸点100℃以上の有機溶媒である上記(6)〜(10)のいずれかに記載の窒化銅微粒子の製造方法。
(12)加熱温度が100〜250℃である上記(6)〜(11)のいずれかに記載の窒化銅微粒子の製造方法。
(13)溶媒に対する銅源の濃度が、Cu1+またはCu2+換算で0.0001〜1 mol/Lの濃度である上記(6)〜(12)のいずれかに記載の窒化銅微粒子の製造方法。
(14)上記(1)に記載の窒化銅微粒子を含む配線用インク材料。
(15)上記(14)に記載の配線用インク材料を塗布してなる被印刷基材。
(16)上記(15)に記載の被印刷基材を加熱することにより、窒化銅微粒子から金属銅膜が形成されてなる被印刷基材。
That is, the present invention provides the following inventions in order to solve the above problems.
(1) Copper nitride fine particles having a primary particle size of 1 to 100 nm and a decomposition temperature of 300 ° C. or less at normal pressure .
(2) The copper nitride fine particles according to (1), wherein the secondary particles have a particle size of 1 μm or less.
(3) The copper nitride fine particles according to the above (1) or (2) having a decomposition temperature accompanied by weight loss in the range of 70 ° C. to 300 ° C. in differential thermal balance analysis.
(4) The copper nitride fine particles according to any one of (1) to (3), wherein the secondary particles are spherical in electron microscope observation.
(5) In powder X-ray diffraction, any of 21.5 to 24.5 °, 31.0 to 34.0 °, 39.0 to 42.0 °, and 46.0 to 49.0 ° with CuKα ray The copper nitride fine particles according to any one of the above (1) to (4), which have a diffraction peak derived from at least one copper nitride in the region.
(6) The nitriding according to any one of (1) to (5) above, wherein a copper source and a nitrogen source, or a copper source, a nitrogen source and a protective agent are dissolved or dispersed in a solvent or a dispersion medium and then heated. A method for producing copper nitride fine particles, comprising producing copper fine particles.
(7) The manufacturing method of the copper nitride fine particle as described in said (6) in which a copper source contains 1 or more types chosen from inorganic copper salt, organic copper salt, and a copper complex.
(8) The nitriding as described in (6) or (7) above, wherein the nitrogen source contains one or more selected from ammonia gas or ammonium salt compounds, urea, urea derivative compounds, nitrate compounds, amine compounds, and azide compounds A method for producing copper fine particles.
(9) The method for producing copper nitride fine particles according to any one of (6) to (8), wherein the copper source and the nitrogen source are bonded or coordinated nitrogen-containing copper complexes.
(10) The copper nitride fine particles according to any one of (6) to (9) above, wherein the protective agent is a compound having at least one carboxyl group, amino group and / or hydroxyl group. Production method.
(11) The method for producing copper nitride fine particles according to any one of (6) to (10), wherein the solvent is an organic solvent having a boiling point of 100 ° C. or higher.
(12) The method for producing copper nitride fine particles according to any one of (6) to (11), wherein the heating temperature is 100 to 250 ° C.
(13) The method for producing copper nitride fine particles according to any one of (6) to (12), wherein the concentration of the copper source with respect to the solvent is a concentration of 0.0001 to 1 mol / L in terms of Cu 1+ or Cu 2+. .
(14) A wiring ink material containing the copper nitride fine particles according to (1).
(15) A substrate to be printed formed by applying the wiring ink material according to (14).
(16) A substrate to be printed, in which a metal copper film is formed from copper nitride fine particles by heating the substrate to be printed according to (15).

Claims (1)

一次粒子の粒径が1〜100nmであり、かつ分解温度が常圧で300℃以下である窒化銅微粒子。 Copper nitride fine particles having a primary particle size of 1 to 100 nm and a decomposition temperature of 300 ° C. or less at normal pressure .
JP2013225296A 2013-01-31 2013-10-30 Copper nitride fine particles and method for producing the same Expired - Fee Related JP6057379B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013225296A JP6057379B2 (en) 2013-01-31 2013-10-30 Copper nitride fine particles and method for producing the same
CN201480006826.7A CN104981427A (en) 2013-01-31 2014-01-31 Fine copper nitride particles and production method therefor
KR1020157020804A KR20150112984A (en) 2013-01-31 2014-01-31 Fine copper nitride particles and production method therefor
PCT/JP2014/052321 WO2014119748A1 (en) 2013-01-31 2014-01-31 Fine copper nitride particles and production method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013017510 2013-01-31
JP2013017510 2013-01-31
JP2013225296A JP6057379B2 (en) 2013-01-31 2013-10-30 Copper nitride fine particles and method for producing the same

Publications (3)

Publication Number Publication Date
JP2014166939A JP2014166939A (en) 2014-09-11
JP2014166939A5 true JP2014166939A5 (en) 2016-06-23
JP6057379B2 JP6057379B2 (en) 2017-01-11

Family

ID=51262445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013225296A Expired - Fee Related JP6057379B2 (en) 2013-01-31 2013-10-30 Copper nitride fine particles and method for producing the same

Country Status (4)

Country Link
JP (1) JP6057379B2 (en)
KR (1) KR20150112984A (en)
CN (1) CN104981427A (en)
WO (1) WO2014119748A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147561A1 (en) * 2014-03-26 2015-10-01 전자부품연구원 Composite material with which conductor pattern can easily be formed, method for manufacturing the composite material, copper nitride seed material of the composite material and method for synthesising the copper nitride
JP6574553B2 (en) * 2014-06-26 2019-09-11 昭和電工株式会社 Conductive pattern forming composition and conductive pattern forming method
RU2647055C1 (en) * 2017-07-11 2018-03-13 Юлия Алексеевна Щепочкина Steel
RU2647056C1 (en) * 2017-07-11 2018-03-13 Юлия Алексеевна Щепочкина Steel
KR102303767B1 (en) * 2017-11-01 2021-09-23 한국전자기술연구원 Method for manufacturing copper nitride powder for conductor pattern
CN110642304B (en) * 2019-10-09 2021-12-31 上海师范大学 Trimetal nitride material for super capacitor and preparation method thereof
CN111450867A (en) * 2020-05-09 2020-07-28 青岛科技大学 Cu for electrocatalytic carbon dioxide reduction3Preparation method of N nano catalyst
CN115057417B (en) * 2022-06-08 2023-09-12 安徽大学 Preparation of copper nitride nano-sheet and application of copper nitride nano-sheet in formate electrosynthesis
CN116516280A (en) * 2023-04-27 2023-08-01 常州大学 Efficient and energy-saving workpiece nitriding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122230A1 (en) * 2004-06-07 2005-12-22 Kyushu Institute Of Technology Method for processing copper surface, method for forming copper pattern wiring and semiconductor device manufactured using such method
JP3870273B2 (en) * 2004-12-28 2007-01-17 国立大学法人九州工業大学 Copper pattern wiring formation method, semiconductor device created using the method, and nano copper metal particles
JP5778382B2 (en) * 2008-10-22 2015-09-16 東ソー株式会社 Composition for producing metal film, method for producing metal film, and method for producing metal powder
JP5243510B2 (en) * 2010-10-01 2013-07-24 富士フイルム株式会社 Wiring material, wiring manufacturing method, and nanoparticle dispersion

Similar Documents

Publication Publication Date Title
JP2014166939A5 (en)
Benhammada et al. Catalytic effect of green CuO nanoparticles on the thermal decomposition kinetics of ammonium perchlorate
Liu et al. Stable metallic 1T‐WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties
Jian et al. Facile aerosol route to hollow CuO spheres and its superior performance as an oxidizer in nanoenergetic gas generators
JP2020170710A (en) Air-stable surface passivated perovskite quantum dots (qd), manufacturing method of the same, and usage method of the same
Wang et al. Preparation, characterization, thermal evaluation and sensitivities of TKX‐50/GO composite
JP2019527770A (en) Method for producing metal nanoparticle colloidal dispersion
Jaroń et al. Hydrogen Storage Materials: Room‐Temperature Wet‐Chemistry Approach toward Mixed‐Metal Borohydrides
JPWO2015129466A1 (en) Copper nanoparticles and method for producing the same, copper nanoparticle dispersion, copper nanoink, method for storing copper nanoparticles, and method for sintering copper nanoparticles
Wu et al. Aerosol synthesis of phase pure iodine/iodic biocide microparticles
JP5580562B2 (en) Silver-copper mixed powder and bonding method using the same
JP2017179403A5 (en)
JP2011175871A (en) Joining material, and joining method
Abdel-Mottaleb et al. Transition metal complexes of mixed bioligands: synthesis, characterization, DFT modeling, and applications
JP6270183B2 (en) Organic / inorganic layered perovskite compound and method for producing organic / inorganic layered perovskite compound
Al Zoubi et al. Theoretical studies and antibacterial activity for Schiff base complexes
Khadar et al. Enhancement of corrosion inhibition of mild steel in acidic media by green-synthesized nano-manganese oxide
Wu et al. Energetic Compounds Based on 4‐Amino‐1, 2, 4‐triazole (ATZ) and Picrate (PA):[Zn (H2O) 6](PA) 2· 3H2O and [Zn (ATZ) 3](PA) 2· 2.5 H2O] n
Dehghani et al. Development of a nanocomposite coating with anti-corrosion ability using graphene oxide nanoparticles modified by Echium ammonium extract
JP6516570B2 (en) Method of producing graphite film
Li et al. Energetic transition metal (Co/Cu/Zn) imidazole perchlorate complexes: Synthesis, structural characterization, thermal behavior and non-isothermal kinetic analyses
JP6804827B2 (en) Graphene oxide and its laminates and applications of laminates
Wu et al. Preparation, Crystal Structure, and Thermal Decomposition of the Four‐coordinated Zinc Compound Based on 1, 5‐Diaminotetrazole
Manju et al. Highly luminescent monolayer protected Ag 56 Se 13 S 15 clusters
Jing-po et al. Sensing and magnetic removal of Hg (II) using core–shell structured nanocomposite grafted with fluorescence “Off–On” probe