JP2014164958A - Wire connection structure and method for manufacturing wire connection structure - Google Patents

Wire connection structure and method for manufacturing wire connection structure Download PDF

Info

Publication number
JP2014164958A
JP2014164958A JP2013034050A JP2013034050A JP2014164958A JP 2014164958 A JP2014164958 A JP 2014164958A JP 2013034050 A JP2013034050 A JP 2013034050A JP 2013034050 A JP2013034050 A JP 2013034050A JP 2014164958 A JP2014164958 A JP 2014164958A
Authority
JP
Japan
Prior art keywords
tubular
wire
electric wire
connection structure
crimping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013034050A
Other languages
Japanese (ja)
Other versions
JP6007125B2 (en
Inventor
Yoshikazu Okuno
良和 奥野
Kengo Mitose
賢悟 水戸瀬
Akira Tachibana
昭頼 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2013034050A priority Critical patent/JP6007125B2/en
Publication of JP2014164958A publication Critical patent/JP2014164958A/en
Application granted granted Critical
Publication of JP6007125B2 publication Critical patent/JP6007125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wire connection structure capable of improving productivity while improving water cut-off performance, in a constitution where a coated wire is crimped to a tubular terminal, and a method for manufacturing a wire connection structure.SOLUTION: A tubular part 25 of a tubular terminal 11 and an aluminum wire 13 inserted into the tubular part 25 are crimped such that a conductor insulation layer 15 of the aluminum wire 13 has a compressibility of 70-90%.

Description

本発明は、電気導通を担う部品に関し、より詳しくは、電線と端子との電線接続構造体およびその製造方法に関する。   The present invention relates to a component responsible for electrical continuity, and more particularly to a wire connection structure of a wire and a terminal and a method for manufacturing the same.

自動車等には、複数本の電線を束ねたワイヤーハーネスが配索され、このワイヤーハーネスを介して複数の電装機器が互いに電気接続されている。このワイヤーハーネスと電装機器との接続、或いは、ワイヤーハーネス同士の接続は、それぞれに設けたコネクタによって行われる。
この種の電線は、芯線(導体)を絶縁体で被覆して形成された被覆電線が使用され、被覆を剥離して露出させた芯線端部に圧着端子を圧着接続し、この圧着端子を介してコネクタが装着される。
圧着端子を管構造にしても、圧着端子と被膜電線との間に隙間が生じ、外部から水が浸入してしまう。これを回避するために、Oリング、防食用液剤による被覆、はんだ被覆により電線接続部の止水性を高める構造が提案されている(例えば、特許文献1〜4参照)。
In a car or the like, a wire harness in which a plurality of electric wires are bundled is routed, and a plurality of electrical devices are electrically connected to each other via the wire harness. The connection between the wire harness and the electrical equipment or the connection between the wire harnesses is performed by a connector provided in each.
This type of electric wire uses a covered electric wire formed by coating a core wire (conductor) with an insulator, and a crimp terminal is crimped to the exposed end of the core wire after peeling off the coating, The connector is attached.
Even if the crimp terminal has a tube structure, a gap is generated between the crimp terminal and the coated electric wire, and water enters from the outside. In order to avoid this, the structure which raises the water stop of an electric wire connection part by O-ring, the coating | coated with the anticorrosive liquid agent, and solder coating is proposed (for example, refer patent documents 1-4).

特開2002−216862号公報JP 2002-216862 A 特開2011−065994号公報JP 2011-0659994 A 特開2011−204582号公報JP 2011-204582 A 特開2011−210593号公報JP 2011-210593A

しかし、Oリングでは、その材料のゴムの劣化によりシールの効果が消失するおそれがあった。主に熱により劣化が促進されるが、車載にて利用する場合は、長い年月に渡り使用されることにより、経年劣化で弾性を失うおそれがあった。また、Oリングは、筒形状のリーク経路の線状でのポイント封止であるが故に、一箇所損傷してしまうと、シールの効果が消失してしまうという弱さを併せ持つ。さらに、Oリング、防食用液剤、はんだ等を併用する場合は、それらに適した箇所に配置する工程が必要となり、生産性の向上に不利であった。
そこで、本発明は、管状端子に被覆電線を圧着させる構成で、止水性を向上させつつ生産性の向上が可能な電線接続構造体および電線接続構造体の製造方法を提供することを目的とする。
However, with the O-ring, the sealing effect may be lost due to the deterioration of the rubber of the material. Deterioration is mainly promoted by heat, but when used in a vehicle, there has been a risk of losing elasticity due to deterioration over time due to use over many years. In addition, since the O-ring is a linear point seal of a cylindrical leak path, it has a weakness that if it is damaged at one place, the sealing effect is lost. Furthermore, when an O-ring, anticorrosive liquid, solder, or the like is used in combination, a process for arranging the O-ring, an anticorrosive liquid, solder, or the like is required, which is disadvantageous in improving productivity.
Then, this invention aims at providing the manufacturing method of the electric wire connection structure and electric wire connection structure which can improve productivity, improving a water stop with the structure which crimps | bonds a covered electric wire to a tubular terminal. .

上記課題を解決するため、本発明の電線接続構造体は、芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、導体からなる管状端子とを有し、前記管状端子の管状部と前記電線とが、前記導体絶縁層の圧縮率が70%〜90%となるように圧着されていることを特徴とする。
この構成において、前記導体絶縁層の圧縮率が75%〜85%であることを特徴とする。
また、この構成において、前記管状部の一端が閉塞されていることを特徴とする。
In order to solve the above problems, an electric wire connection structure according to the present invention includes an electric wire having a core wire and a conductor insulating layer formed on an outer periphery of the core wire, and a tubular terminal made of a conductor, and the tubular terminal of the tubular terminal The portion and the electric wire are crimped so that the compressibility of the conductor insulating layer is 70% to 90%.
In this configuration, the conductor insulating layer has a compressibility of 75% to 85%.
Further, in this configuration, one end of the tubular portion is closed.

また、この構成において、前記芯線の断面積が0.75sq〜2.5sqであることを特徴とする。
また、この構成において、前記管状部の管サイズは内径が1.6mm〜3.0mmであることを特徴とする。
また、この構成において、前記芯線の圧縮率が45%〜85%であることを特徴とする。
また、この構成において、前記管状端子が銅または銅合金からなり、前記芯線がアルミニウムまたはアルミニウム合金からなることを特徴とする。
In this configuration, the core wire has a cross-sectional area of 0.75 sq to 2.5 sq.
Further, in this configuration, the tube size of the tubular portion has an inner diameter of 1.6 mm to 3.0 mm.
In this configuration, the core wire has a compression rate of 45% to 85%.
In this configuration, the tubular terminal is made of copper or a copper alloy, and the core wire is made of aluminum or an aluminum alloy.

また、本発明の電線接続構造体は、芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、導体からなる管状端子とを有し、前記導体絶縁層と前記管状端子の固着力が0.1〜5.0MPaであることを特徴とする。
この構成において、前記導体絶縁層と前記管状端子の間に固着材が配置されていることを特徴とする。
また、この構成において、前記固着材は、油成分を含有することを特徴とする。油成分を含有する固着材を用いることで固着力が過大になりすぎず、腐食を抑制することができる。
The electric wire connection structure of the present invention includes an electric wire having a core wire and a conductor insulating layer formed on an outer periphery of the core wire, and a tubular terminal made of a conductor, and the conductor insulating layer and the tubular terminal are fixed to each other. The adhesion is 0.1 to 5.0 MPa.
In this configuration, a fixing material is disposed between the conductor insulating layer and the tubular terminal.
In this configuration, the fixing material contains an oil component. By using a fixing material containing an oil component, the fixing force does not become excessive, and corrosion can be suppressed.

また、本発明の電線接続構造体の製造方法は、芯線と前記芯線の外周に導体絶縁層を有する電線の端末の前記導体絶縁層を剥離し、前記芯線を露出させる工程と、導体からなる管状端子の管状部に前記電線を挿入する工程と、前記端子と前記電線を圧着し、導体圧着部と被覆圧着部を形成する工程とを有し、前記圧着は、前記被覆圧着部における前記導体絶縁層の圧縮率が70%〜90%となるように行うことを特徴とする。
この構成において、前記圧着は、前記管状部のうち前記被覆圧着部の高さおよび幅を制御して行うことを特徴とする。
In addition, the method for manufacturing an electric wire connection structure according to the present invention includes a step of peeling the conductor insulating layer of the end of the electric wire having a conductor and a conductor insulating layer on the outer periphery of the core and exposing the core, and a tubular made of a conductor. A step of inserting the electric wire into a tubular portion of a terminal, and a step of crimping the terminal and the electric wire to form a conductor crimping portion and a covering crimping portion, wherein the crimping is performed on the conductor insulation in the covering crimping portion. It is characterized in that the compression rate of the layer is 70% to 90%.
In this configuration, the crimping is performed by controlling the height and width of the covering crimping portion of the tubular portion.

本発明では、管状端子の管状部と電線とが、電線の芯線の外周に形成された導体絶縁層の圧縮率が70%〜90%となるように圧着されているので、管状端子に被覆電線を圧着させる構成であっても、止水性を向上させつつ生産性の向上が可能である。このため、被覆電線にアルミニウム電線を使用した場合には、アルミニウム電線の腐食を抑えることが可能である。   In the present invention, the tubular portion of the tubular terminal and the electric wire are pressure-bonded so that the compressibility of the conductor insulating layer formed on the outer periphery of the core wire of the electric wire is 70% to 90%. Even if it is the structure which press-fits, productivity improvement is possible, improving water-stopping property. For this reason, when an aluminum electric wire is used for the covered electric wire, corrosion of the aluminum electric wire can be suppressed.

本実施形態にかかる電線接続構造体を示す斜視図である。It is a perspective view which shows the electric wire connection structure concerning this embodiment. 電線接続構造体の長手方向断面を示した断面図である。It is sectional drawing which showed the longitudinal direction cross section of the electric wire connection structure. (A)は管状端子の長手方向における断面図であり、(B)は管状端子を折り曲げ加工により形成する前の連鎖端子を示した図である。(A) is sectional drawing in the longitudinal direction of a tubular terminal, (B) is the figure which showed the chain terminal before forming a tubular terminal by a bending process. 圧着工程の具体例を説明する図である。It is a figure explaining the specific example of a crimping | compression-bonding process. (A)は圧着前の電線断面の一例を模式的に示した図であり、(B)は圧着後の電線断面の一例を模式的に示した図である。(A) is the figure which showed typically an example of the electric wire cross section before crimping, (B) is the figure which showed typically an example of the electric wire cross section after crimping | compression-bonding.

以下、図面を参照して本発明の一実施形態について説明する。
図1は、本実施形態にかかる電線接続構造体を示す斜視図であり、図2は、電線接続構造体の長手方向断面を示した断面図である。
この電線接続構造体10は、自動車用のワイヤーハーネスに使用されるものであり、図1に示すように、管状端子11と、この管状端子11に圧着されるアルミニウム電線(電線)13とを備える。アルミニウム電線(電線)13は、芯線の材料が従前の銅系材料のものと比べて軽量化し易いため、ワイヤーハーネスを軽量化することができ、自動車の燃費向上に有利である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a wire connection structure according to the present embodiment, and FIG. 2 is a cross-sectional view showing a longitudinal section of the wire connection structure.
This electric wire connection structure 10 is used for a wire harness for automobiles, and includes a tubular terminal 11 and an aluminum electric wire (electric wire) 13 that is crimped to the tubular terminal 11 as shown in FIG. . The aluminum electric wire (electric wire) 13 is easy to reduce the weight of the core wire material compared to the conventional copper-based material, so that the wire harness can be reduced in weight, which is advantageous for improving the fuel efficiency of the automobile.

管状端子11は、雌型端子のボックス部20と管状部25とを有し、これらの橋渡しとしてトランジション部40を有する。管状端子11は、導電性と強度を確保するために基本的に金属材料(本実施形態では、銅または銅合金)の基材で製造されている。なお、管状端子11の基材は、銅または銅合金に限るものではなく、アルミニウムや鋼、またはこれらを主成分とする合金等を用いることもできる。
また、管状端子11は、端子としての種々の特性を担保するために、例えば管状端子11の一部あるいは全部に錫、ニッケル、銀めっきまたは金等のめっき処理が施されていても良い。また、めっきのみならず、錫等のリフロー処理を施しても良い。本実施形態で例示する管状端子11は、全体に錫めっきが施されている。
The tubular terminal 11 has a female terminal box portion 20 and a tubular portion 25, and has a transition portion 40 as a bridge between them. The tubular terminal 11 is basically made of a base material made of a metal material (copper or copper alloy in this embodiment) in order to ensure conductivity and strength. In addition, the base material of the tubular terminal 11 is not limited to copper or a copper alloy, and aluminum, steel, an alloy containing these as a main component, or the like can also be used.
Moreover, in order to ensure various characteristics as a terminal, the tubular terminal 11 may be subjected to, for example, a plating process such as tin, nickel, silver plating, or gold on part or all of the tubular terminal 11. In addition to plating, reflow treatment such as tin may be performed. The tubular terminal 11 exemplified in this embodiment is tin-plated as a whole.

アルミニウム電線13は、例えば、アルミニウムまたはアルミニウム合金性の素線14aを束ねたアルミニウム芯線(導体)14を、絶縁樹脂(例えば、ポリ塩化ビニル)で構成する導体絶縁層(電線被覆)15で被覆して構成される被覆電線である。アルミニウム芯線14は、所定の断面積となるように、アルミニウム素線14aを撚って構成している。   The aluminum electric wire 13 is formed by, for example, covering an aluminum core wire (conductor) 14 in which aluminum or aluminum alloy wires 14a are bundled with a conductor insulating layer (electric wire coating) 15 made of an insulating resin (for example, polyvinyl chloride). It is a covered electric wire constituted. The aluminum core wire 14 is formed by twisting an aluminum strand 14a so as to have a predetermined cross-sectional area.

なお、アルミニウム電線13の素線14aの組成としては、例えば鉄(Fe)を約0.2質量%、銅(Cu)を約0.2質量%、マグネシウム(Mg)を約0.1質量%、シリコン(Si)を約0.04質量%、残部がアルミニウム(Al)および不可避不純物かなるアルミニウム合金を用いることができる。他の合金組成として、Feを約1.05質量%、Mgを約0.15質量%、Siを約0.04質量%、残部がAlおよび不可避不純物のもの、あるいは、Feを約1.0質量%、Siを約0.04質量%、残部がAlおよび不可避不純物のもの、Feを約0.2質量%、Mgを約0.7質量%、Siを約0.7質量%、残部がAlおよび不可避不純物のものなどを用いることができる。これらは、さらにTi、Zr、Sn、Mn等の合金元素を含んでいてもよい。   In addition, as a composition of the strand 14a of the aluminum electric wire 13, for example, iron (Fe) is about 0.2 mass%, copper (Cu) is about 0.2 mass%, and magnesium (Mg) is about 0.1 mass%. An aluminum alloy containing about 0.04 mass% of silicon (Si) and the balance of aluminum (Al) and inevitable impurities can be used. As other alloy compositions, Fe is about 1.05 mass%, Mg is about 0.15 mass%, Si is about 0.04 mass%, the balance is Al and inevitable impurities, or Fe is about 1.0 % By mass, about 0.04% by mass of Si, the balance being Al and inevitable impurities, about 0.2% by mass of Fe, about 0.7% by mass of Mg, about 0.7% by mass of Si, and the balance Al and inevitable impurities can be used. These may further contain alloy elements such as Ti, Zr, Sn, and Mn.

アルミニウム電線13の導体絶縁層15を構成する樹脂材としては、ポリ塩化ビニルであり、このポリ塩化ビニル以外にも、例えば、架橋ポリ塩化ビニル、クロロプレンゴム等を主成分とするハロゲン系樹脂や、ポリエチレン、架橋ポリエチレン、エチレンプロビレンゴム、珪素ゴム、ポリエステル等を主成分とするハロゲンフリー樹脂が用いられ、これらに可塑剤や難燃剤等の添加剤を含んでいても良い。   The resin material constituting the conductor insulating layer 15 of the aluminum electric wire 13 is polyvinyl chloride. Besides this polyvinyl chloride, for example, a halogen-based resin mainly composed of crosslinked polyvinyl chloride, chloroprene rubber, Halogen-free resins mainly composed of polyethylene, crosslinked polyethylene, ethylene propylene rubber, silicon rubber, polyester, etc. are used, and these may contain additives such as plasticizers and flame retardants.

管状端子11のボックス部20は、ワイヤーハーネス端部に設けられるコネクタ等に設けられる雄型端子等の挿入タブの挿入を許容する雌型端子のボックス部である。本発明において、このボックス部20の細部の形状は特に限定されない。すなわち、管状端子11は、少なくともトランジション部40を介して管状部25を備えていれば良く、例えばボックス部20を有さなくても良いし、例えばボックス部20が雄型端子の挿入タブであっても良い。また、管状部25に他の形態に係る端子端部が接続された形状であっても良い。本明細書では、本発明の管状端子11を説明するために便宜的に雌型ボックスを備えた例を示している。   The box portion 20 of the tubular terminal 11 is a female terminal box portion that allows insertion of an insertion tab such as a male terminal provided in a connector or the like provided at an end portion of the wire harness. In the present invention, the shape of the details of the box portion 20 is not particularly limited. That is, the tubular terminal 11 only needs to include the tubular portion 25 via at least the transition portion 40. For example, the box portion 20 may not have the box portion 20. For example, the box portion 20 is an insertion tab of a male terminal. May be. Moreover, the shape by which the terminal end part which concerns on another form to the tubular part 25 was connected may be sufficient. In this specification, in order to explain the tubular terminal 11 of the present invention, an example in which a female box is provided for convenience is shown.

管状部25は、管状端子11とアルミニウム電線13とを圧着する部位であり、管状圧着部とも言う。この管状部25は、トランジション部40から次第に大径となる拡径部26と、この拡径部26の縁部から筒状に延びる筒部27とからなる。管状部25は中空の管となっており、管状部25の一端には、アルミニウム電線13を挿入することができる電線挿入口31が開口している。また、管状部25の他端は、トランジション部40に接続されるとともに、内部封止のために先端を潰して閉口されており、トランジション部40側から水分等が浸入しないように形成されている。   The tubular portion 25 is a portion that crimps the tubular terminal 11 and the aluminum electric wire 13 and is also referred to as a tubular crimp portion. The tubular portion 25 includes an enlarged diameter portion 26 that gradually increases in diameter from the transition portion 40, and a tubular portion 27 that extends in a cylindrical shape from the edge of the enlarged diameter portion 26. The tubular portion 25 is a hollow tube, and an electric wire insertion port 31 into which the aluminum electric wire 13 can be inserted is opened at one end of the tubular portion 25. The other end of the tubular portion 25 is connected to the transition portion 40 and closed by crushing the tip for internal sealing, so that moisture and the like do not enter from the transition portion 40 side. .

この管状部25は、例えば、銅または銅合金に錫めっきした条材を打ち抜いた板材に曲げ加工を施すことによって形成される。或いは、銅または銅合金を打ち抜いた板材に曲げ加工を施す前後で錫めっきを施して形成しても良い。また、ボックス部20及び管状部25を一枚の板材から作ることも可能であるし、ボックス部20と管状部25とを別の板材から形成して、その後にトランジション部40において接合することも可能である。
管状部25は、上記板材に曲げ加工を施してC字型断面となるように巻き、開放された端面同士を突き合わせて溶接等によって接合することで形成される。管状部25の接合は、レーザー溶接が好ましいが、電子ビーム溶接、超音波溶接、抵抗溶接等の溶接法でもかまわない。開口部をレーザー溶接により接合することにより、側面が閉じた管状に成形される。また、はんだ、ろう等、接続媒体を使っての接合でも良い。
The tubular portion 25 is formed by, for example, bending a plate material obtained by punching a strip material obtained by tinning copper or a copper alloy. Alternatively, it may be formed by performing tin plating before and after bending a plate material obtained by punching copper or a copper alloy. In addition, the box portion 20 and the tubular portion 25 can be made from a single plate material, or the box portion 20 and the tubular portion 25 can be formed from different plate materials and then joined at the transition portion 40. Is possible.
The tubular portion 25 is formed by bending the plate material so as to have a C-shaped cross section, butting the opened end faces together and joining them by welding or the like. Laser welding is preferable for joining the tubular portions 25, but welding methods such as electron beam welding, ultrasonic welding, and resistance welding may also be used. By joining the openings by laser welding, the opening is formed into a closed tube. Also, joining using a connection medium such as solder or solder may be used.

本実施形態ではレーザー溶接により管状部25が形成された例を示し、この例では図1に示すように、管状部25に、軸方向に伸びる溶接ビード部43が形成される。トランジション部40は、管状部25の一端をプレスして閉じることにより形成される。トランジション部40は、溶接等の手段によって閉鎖されており、トランジション部40側から水分等が浸入しないように形成されている。また、管状部25の内部空間はトランジション部40において閉塞されている。管状部25は、上記したC字型断面の両端部を接合する方法に限らず、深絞り工法で形成されても良い。さらに、連続管を切断するとともに一端側を閉塞して、管状部25及びトランジション部40を形成しても良い。
なお、管状部25は管状であればよく、必ずしも長手方向に対して円筒である必要はない。断面が楕円や矩形の管であっても良い。また、径が一定である必要はなく、長手方向で半径が変化する形状であっても良い。
In this embodiment, an example in which the tubular portion 25 is formed by laser welding is shown. In this example, as shown in FIG. 1, a weld bead portion 43 extending in the axial direction is formed in the tubular portion 25. The transition part 40 is formed by pressing and closing one end of the tubular part 25. The transition part 40 is closed by means such as welding, and is formed so that moisture or the like does not enter from the transition part 40 side. Further, the internal space of the tubular portion 25 is closed at the transition portion 40. The tubular portion 25 is not limited to the method of joining both end portions of the C-shaped cross section, and may be formed by a deep drawing method. Further, the tubular portion 25 and the transition portion 40 may be formed by cutting the continuous tube and closing one end side.
In addition, the tubular part 25 should just be a tubular shape, and does not necessarily need to be a cylinder with respect to the longitudinal direction. The cross section may be an ellipse or a rectangular tube. Further, the diameter does not need to be constant, and may be a shape whose radius changes in the longitudinal direction.

図3は、管状端子11の製造方法の具体例を説明する図であり、(A)は管状端子11の長手方向における断面図であり、(B)は管状端子11を折り曲げ加工により形成する前の連鎖端子(打ち抜き材)151を示し、管状端子11と連鎖端子151の各部との対応を破線で示す。
管状端子11の製造方法は、打ち抜き工程、曲げ工程、切出工程を含む。
図3に示すように、打ち抜き工程では、長手形状の金属板である条150がプレス加工により打ち抜かれ、連鎖端子151が形成される。条150は、予め金属材料(本実施形態では、銅または銅合金)にめっきや表面塗装等の処理が施された、例えば厚さ0.25mmのテープ状材料である。条150から打ち抜かれる連鎖端子151は、それぞれが一つの管状端子11となる端子成形片160が複数並び、各端子成形片160が連結テープ164により連結された形状となっている。連鎖端子151は、条150を打ち抜いた打ち抜き材であるため、平板である。また、条150から連鎖端子151が打ち抜かれる際には、同時に、各々の端子成形片160の位置を示す位置決め穴165が連結テープ164において打ち抜かれる。
3A and 3B are diagrams for explaining a specific example of the manufacturing method of the tubular terminal 11, where FIG. 3A is a cross-sectional view in the longitudinal direction of the tubular terminal 11, and FIG. 3B is a view before the tubular terminal 11 is formed by bending. The chain terminal (punching material) 151 is shown, and the correspondence between the tubular terminal 11 and each part of the chain terminal 151 is indicated by a broken line.
The manufacturing method of the tubular terminal 11 includes a punching process, a bending process, and a cutting process.
As shown in FIG. 3, in the punching step, the strip 150, which is a long metal plate, is punched by press working to form a chain terminal 151. The strip 150 is a tape-like material having a thickness of, for example, 0.25 mm, in which a metal material (in this embodiment, copper or a copper alloy) is previously subjected to a treatment such as plating or surface coating. The chain terminal 151 punched out from the strip 150 has a shape in which a plurality of terminal molding pieces 160, each of which forms one tubular terminal 11, are arranged, and each terminal molding piece 160 is connected by a connecting tape 164. The chain terminal 151 is a flat plate because it is a punched material obtained by punching the strip 150. In addition, when the chain terminal 151 is punched from the strip 150, the positioning hole 165 indicating the position of each terminal molding piece 160 is simultaneously punched in the connecting tape 164.

端子成形片160は、折り曲げ加工によりボックス部20に成形されるボックス成形部161と、ボックス成形部161に連結され、折り曲げ加工によりボックス部20内部のスプリングに成形されるスプリング成形部162とを有する。また、ボックス成形部161には、プレスによる曲げ加工によって管状部25に成形される管状成形部163が繋がっている。
曲げ工程においては、ボックス成形部161を略直角に複数回折り曲げてボックス部20を形成する加工と、スプリング成形部162を折り曲げてボックス部20内部に収める加工とが並行して行われ、さらに、管状成形部163を丸める曲げ加工が行われる。
The terminal molding piece 160 includes a box molding portion 161 that is molded into the box portion 20 by bending, and a spring molding portion 162 that is connected to the box molding portion 161 and is molded into a spring inside the box portion 20 by bending. . Further, the box forming portion 161 is connected to a tubular forming portion 163 that is formed into a tubular portion 25 by bending with a press.
In the bending step, the process of forming the box part 20 by bending the box molding part 161 a plurality of times substantially at right angles and the process of bending the spring molding part 162 to fit inside the box part 20 are performed in parallel. A bending process for rounding the tubular molded portion 163 is performed.

管状成形部163は、まず、連結テープ164の面に対する上下方向からのプレス加工により断面U字形状に曲げられ、その後、U字の先端側を丸める加工により、断面C字形状に成形され、端面同士を溶接し、内部封止のために先端を潰して形成される。ボックス成形部161及びスプリング成形部162に対する曲げ加工と、管状成形部163に対する加工とは、個別に実行されても良いし、並行して実行されても良い。また、連結テープ164により連結された複数の端子成形片160に対して同時に曲げ加工を行って、複数の管状端子11を形成しても良い。曲げ加工により形成された管状端子11は、切出工程において連結テープ164から切り離される。   The tubular molded portion 163 is first bent into a U-shaped cross section by pressing from above and below the surface of the connecting tape 164, and then formed into a C-shaped cross section by rounding the front end side of the U shape. It is formed by welding together and crushing the tip for internal sealing. The bending process for the box forming part 161 and the spring forming part 162 and the process for the tubular forming part 163 may be performed individually or in parallel. Further, the plurality of terminal molded pieces 160 connected by the connecting tape 164 may be bent at the same time to form the plurality of tubular terminals 11. The tubular terminal 11 formed by bending is cut off from the connecting tape 164 in the cutting process.

このようにして製作された管状端子11の管状部25に対し、図2に示すように、端末の導体絶縁層15を剥離し、アルミニウム芯線14が露出したアルミニウム電線13を被覆先端部(圧着部)15aまで挿入し、管状部25を圧縮することによって、管状部25と導体絶縁層15およびアルミニウム芯線14とが一体に圧着される。
管状部25では、管状部25を構成する金属基材とアルミニウム電線13とが外側から圧縮されることによって、機械的接続と電気的接続とが行われる。
つまり、管状部25とアルミニウム電線13とを圧着した場合には、管状部25が塑性変形して元の径よりも縮径(或いは、拡径させても良い)されることで、図2に示すように、管状部25とアルミニウム芯線14とが圧着接続された状態の導体圧着部35と、管状部25とアルミニウム芯線14とが圧着接続された状態の被覆圧着部36とが形成され、これらによって、機械的および電気的な接続が確保される。
圧着は、管状端子11の基材や電線(芯線)の塑性変形によって行われる。このため、管状部25は、圧着することができるように肉厚が設計される必要があるが、人力加工や機械加工等で圧着を自由に行うことができるので、肉厚については特に限定されるものではない。
As shown in FIG. 2, the terminal conductor insulating layer 15 is peeled off from the tubular portion 25 of the tubular terminal 11 manufactured in this manner, and the aluminum electric wire 13 with the aluminum core wire 14 exposed is covered with the coated tip portion (crimping portion). ) By inserting up to 15 a and compressing the tubular portion 25, the tubular portion 25, the conductor insulating layer 15, and the aluminum core wire 14 are crimped together.
In the tubular part 25, mechanical connection and electrical connection are performed by compressing the metal base material and the aluminum electric wire 13 which comprise the tubular part 25 from the outside.
That is, when the tubular portion 25 and the aluminum electric wire 13 are pressure-bonded, the tubular portion 25 is plastically deformed to be reduced in diameter (or increased in diameter) from the original diameter, so that FIG. As shown, a conductor crimping portion 35 in a state where the tubular portion 25 and the aluminum core wire 14 are crimped and connected, and a covering crimping portion 36 in which the tubular portion 25 and the aluminum core wire 14 are crimped and connected are formed. This ensures a mechanical and electrical connection.
Crimping is performed by plastic deformation of the base material of the tubular terminal 11 and the electric wire (core wire). For this reason, the thickness of the tubular portion 25 needs to be designed so that it can be pressure-bonded, but since the pressure-bonding can be performed freely by manual processing or machining, the thickness is not particularly limited. It is not something.

管状部25とアルミニウム電線13とを圧着する際に、図2に示すように、導体圧着部35および被覆圧着部36を、圧着具(後述するクリンパ101およびアンビル103等の治具)を用いて部分的に強圧縮することで塑性変形させる。図2に示した例では、導体圧着部35が、縮径率が一番高くなっている部分である。   When crimping the tubular portion 25 and the aluminum electric wire 13, as shown in FIG. 2, the conductor crimping portion 35 and the covering crimping portion 36 are bonded using a crimping tool (a jig such as a crimper 101 and anvil 103 described later). It is plastically deformed by partial strong compression. In the example shown in FIG. 2, the conductor crimping portion 35 is a portion having the highest diameter reduction rate.

管状部25では、アルミニウム芯線14を強圧縮して導通を維持する機能と、導体絶縁層15(被覆先端部15a)を圧縮してシール性を維持する機能とが要求される。被覆圧着部36では、その断面を略正円にかしめ、導体絶縁層15の全周に渡ってほぼ同等の圧力を与えることにより、全周に渡って均一な弾性反発力を発生させて、シール性を得ることが好ましい。
一方、実際の圧着工程では、アンビル上にセットした導体圧着部35および被覆圧着部36を備えた管状端子11に、適切な長さの導体絶縁層15をストリップした芯線先端部14bを挿入し、上方からクリンパ101を下降させ、圧力を加えて、導体圧着部35および被覆圧着部36を圧着する(かしめる)工法が取られている。
The tubular portion 25 is required to have a function of maintaining the electrical conductivity by strongly compressing the aluminum core wire 14 and a function of maintaining the sealing performance by compressing the conductor insulating layer 15 (covering tip portion 15a). In the cover crimping portion 36, the cross section thereof is caulked into a substantially circular shape, and a substantially equal pressure is applied over the entire circumference of the conductor insulating layer 15, thereby generating a uniform elastic repulsion force over the entire circumference and It is preferable to obtain properties.
On the other hand, in the actual crimping step, the core wire tip 14b obtained by stripping the conductor insulating layer 15 of an appropriate length is inserted into the tubular terminal 11 provided with the conductor crimping portion 35 and the covering crimping portion 36 set on the anvil, A method is employed in which the crimper 101 is lowered from above and pressure is applied to crimp (crimp) the conductor crimping portion 35 and the covering crimping portion 36.

本構成では、管状部25は、一端が閉塞するとともに他端が開放した有底の管状に形成されているため、一端側からの水分等の浸入を抑制することができる。
一方、管状部25の他端側においては、管状端子11とアルミニウム電線13との間に隙間が存在すると、その隙間から水分が入り、アルミニウム芯線14に付着するおそれが生じる。
管状端子11の金属基材(銅または銅合金)とアルミニウム芯線14との接合部に水分が付着すると、両金属の起電力(イオン化傾向)の差からアルミニウム芯線14が腐食する現象(すなわち電食)が生じて製品寿命が短くなるという問題が生じる。
In this configuration, the tubular portion 25 is formed in a bottomed tubular shape with one end closed and the other end opened, so that intrusion of moisture or the like from one end side can be suppressed.
On the other hand, on the other end side of the tubular portion 25, if there is a gap between the tubular terminal 11 and the aluminum wire 13, moisture may enter from the gap and adhere to the aluminum core wire 14.
Phenomenon that the aluminum core wire 14 corrodes due to the difference in electromotive force (ionization tendency) between the two metals when moisture adheres to the joint between the metal base (copper or copper alloy) of the tubular terminal 11 and the aluminum core wire 14 (that is, electrolytic corrosion). ) Occurs and the product life is shortened.

また、管状部25では、管状部25を構成する金属基材とアルミニウム電線13とが機械的に圧着されることによって、同時に電気的接続が確保される。芯線に用いられるアルミニウムまたはアルミニウム合金は、銅及び銅合金と比較すると接触抵抗が高いことが指摘されている。このため、従前の銅系材料の電線導体と比べて、十分な接触圧を確保することが望まれる。   Moreover, in the tubular part 25, electrical connection is ensured simultaneously by mechanically crimping | bonding the metal base material and the aluminum electric wire 13 which comprise the tubular part 25. It has been pointed out that aluminum or aluminum alloy used for the core wire has higher contact resistance than copper and copper alloy. For this reason, it is desired to ensure a sufficient contact pressure as compared with a conventional copper-based wire conductor.

そこで、発明者等は、圧着において、被覆圧着部36の圧縮率を、管状部25と導体絶縁層15(被覆先端部15a)との間の止水性および電線保持力を確保する値に設定しておくことにより、止水性および電線保持力を確保することができることを見出した。
これによって、アルミニウム電線13の保持力を容易に確保できるとともに、アルミニウム芯線14の腐食を抑えることができ、電線接続構造体10の寿命を延ばすことができる。
この場合、管状部25の圧縮により導体絶縁層15(被覆先端部15a)も圧縮させることによって、管状部25と導体絶縁層15とを密着させ、止水性と電線保持力とを十分に確保することができる。このため、少なくともアルミニウム電線13の被覆層である導体絶縁層15(被覆先端部15a)を、管状部25と隙間無く密着させる圧縮力を作用させる力で圧着工程が行われる。
なお、圧着工程の際には、導体絶縁層15の圧縮率(被覆圧縮率に対応)が目標値となるように、管状部25(特に被覆圧着部36)のクリンプハイト(圧着部分の高さ)およびクリンプワイド(圧着部分の幅)を設定しておくことによって、適切に圧縮させることができる。
In view of this, the inventors set the compression rate of the coated crimping portion 36 to a value that secures the water stoppage and the electric wire holding force between the tubular portion 25 and the conductor insulating layer 15 (coating tip portion 15a) in the crimping. It has been found that the water-stopping property and the electric wire holding force can be ensured by keeping them.
As a result, the holding force of the aluminum wire 13 can be easily secured, the corrosion of the aluminum core wire 14 can be suppressed, and the life of the wire connection structure 10 can be extended.
In this case, by compressing the conductor insulating layer 15 (coating tip 15a) by compressing the tubular portion 25, the tubular portion 25 and the conductor insulating layer 15 are brought into close contact with each other, and sufficient water-stopping and electric wire holding force are ensured. be able to. For this reason, a crimping | compression-bonding process is performed by the force which acts on the compressive force which makes the conductor insulation layer 15 (coating front-end | tip part 15a) which is a coating layer of the aluminum electric wire 13 closely_contact | adhere with the tubular part 25 without gap.
In the crimping step, the crimp height (the height of the crimping portion) of the tubular portion 25 (particularly the coating crimping portion 36) is set so that the compression rate (corresponding to the coating compression rate) of the conductor insulating layer 15 becomes a target value. ) And crimp width (the width of the crimping part) can be set appropriately.

また、圧着において、導体圧着部35の圧縮率を、管状部25とアルミニウム芯線14との間の電線保持力および接触圧を確保する値に設定しておくことにより、電線保持力および接触圧を容易に確保することができる。これによって、アルミニウム電線13の芯線保持力を容易に確保できるとともに、管状部25との導通を容易に確保することができる。
この場合、管状部25の圧縮によりアルミニウム芯線14も圧縮させることによって、管状部25とアルミニウム芯線14とを十分に接触させ、電線保持力と接触圧とを十分に確保している。つまり、アルミニウム芯線14が少なくとも圧縮する圧縮力を作用する力で圧着工程が行われる。
この圧着工程の際にも、導体圧着部35の圧縮率(導体圧縮率に対応)が目標値となるように、管状部25(この場合は、特に導体圧着部35)のクリンプハイト(圧着部分の高さ)およびクリンプワイド(圧着部分の幅)を設定しておくことによって、適切に圧縮させることができる。
なお、被覆圧着部36の圧着と導体圧着部35の圧着とは同時に行っても良いし、別々に行っても良いが、被覆圧着部36と導体圧着部35は、連なった構造であるため、同時に圧着を行うのがより好ましい。
Moreover, in crimping | compression-bonding, by setting the compression rate of the conductor crimping | compression-bonding part 35 to the value which ensures the electric wire holding force and contact pressure between the tubular part 25 and the aluminum core wire 14, electric wire holding force and contact pressure are set. It can be secured easily. Accordingly, the core wire holding force of the aluminum electric wire 13 can be easily ensured, and the electrical connection with the tubular portion 25 can be easily ensured.
In this case, by compressing the aluminum core wire 14 by compressing the tubular portion 25, the tubular portion 25 and the aluminum core wire 14 are sufficiently brought into contact with each other, and the electric wire holding force and the contact pressure are sufficiently ensured. That is, the crimping process is performed with a force that exerts a compressive force that at least compresses the aluminum core wire 14.
Also in this crimping step, the crimp height (crimped portion of the tubular portion 25 (in this case, particularly the conductor crimped portion 35) is set so that the compressibility of the conductor crimped portion 35 (corresponding to the conductor compressibility) becomes the target value. ) And crimp width (crimp width) can be set appropriately.
Note that the crimping of the covering crimping part 36 and the crimping of the conductor crimping part 35 may be performed simultaneously or separately, but the covering crimping part 36 and the conductor crimping part 35 have a continuous structure. It is more preferable to perform pressure bonding at the same time.

また、管状部25と導体絶縁層15との間の隙間については、その隙間を閉塞可能なゴム系等の接着剤を、端子圧着前に管状部25の内部、又は、導体絶縁層1の外周にコーティングすることによって、接着剤を用いない方法に比して隙間の閉塞性を向上させても良い。また、コーティングに限らず、接着剤付きシートを巻き付けるようにしても良い。これらによって、より水の浸入防止が可能となる。   Moreover, about the clearance gap between the tubular part 25 and the conductor insulating layer 15, the adhesives, such as a rubber type which can block | close the clearance gap, the inside of the tubular part 25 before terminal crimping, or the outer periphery of the conductor insulating layer 1 By coating the film, the clogging property of the gap may be improved as compared with a method using no adhesive. Moreover, you may make it wind not only a coating but a sheet | seat with an adhesive agent. By these, it becomes possible to prevent water from entering more.

図4は圧着工程の具体例を説明する図であり、管状部25の被覆圧着部36の横断面を圧着部品と共に示している。
管状端子11とアルミニウム電線13とは、図4に示すように、クリンパ101とアンビル103とを用いて圧着され(かしめられ)る。クリンパ101は管状端子11の外形状に対応する曲面により構成される圧着壁102を有し、アンビル103は、管状端子11を載せる受部104を有する。アンビル103の受部104は、管状部25の外形形状に対応する曲面とされている。
FIG. 4 is a diagram for explaining a specific example of the crimping process, and shows a cross section of the coated crimping part 36 of the tubular part 25 together with the crimping part.
As shown in FIG. 4, the tubular terminal 11 and the aluminum electric wire 13 are crimped (crimped) using a crimper 101 and an anvil 103. The crimper 101 has a crimp wall 102 constituted by a curved surface corresponding to the outer shape of the tubular terminal 11, and the anvil 103 has a receiving portion 104 on which the tubular terminal 11 is placed. The receiving portion 104 of the anvil 103 is a curved surface corresponding to the outer shape of the tubular portion 25.

図4に示すように、管状端子11にアルミニウム電線13が挿入された状態で、受部104に管状端子11を載せて、図中矢印で示すようにクリンパ101を下降させることで、圧着壁102と受部104とにより管状部25が圧縮され、圧着される。
これらクリンパ101及びアンビル103が、管状部25の拡径部26を除くほぼ全体を圧縮可能な奥行きを有することによって、被覆圧着部36の圧着と導体圧着部35の圧着とを同時に行うことができる。また、これらの部位を別々に圧縮しても良い。
As shown in FIG. 4, with the aluminum wire 13 inserted into the tubular terminal 11, the tubular terminal 11 is placed on the receiving portion 104, and the crimper 101 is lowered as indicated by an arrow in the drawing, whereby the crimp wall 102. The tubular portion 25 is compressed and pressed by the receiving portion 104.
Since the crimper 101 and the anvil 103 have a depth capable of compressing almost the entire portion excluding the enlarged diameter portion 26 of the tubular portion 25, the crimping of the covering crimping portion 36 and the crimping of the conductor crimping portion 35 can be performed simultaneously. . Moreover, you may compress these parts separately.

次に、本発明の電線接続構造体10の実施例を比較例とともに説明する。なお、本発明は、以下の実施例に限定されるものではない。
表1は、電線サイズと管状部25の径サイズとの対応関係の一例を示している。
Next, the Example of the electric wire connection structure 10 of this invention is described with a comparative example. The present invention is not limited to the following examples.
Table 1 shows an example of the correspondence relationship between the wire size and the diameter size of the tubular portion 25.

Figure 2014164958
Figure 2014164958

表1に示すように、電線サイズは、導体断面積が0.75mm2(以下、「mm2」を「sq」と表記する)、1.0sq、1.25sq、2.0sq、2.5sqの5種類が代表的なものであり、それぞれの被覆電線に対して、端子管サイズがそれぞれ直径(内径)1.6mm、1.8mm、2.0mm、2.8mm、3.0mmの管状部25を使用する。
管状部25の直径(内径)は電線13を容易に管状部25に挿入でき、かつ所望の圧着ができる条件を満たすものを選択している。
As shown in Table 1, the conductor cross-sectional area is 0.75 mm 2 (hereinafter, “mm 2 ” is expressed as “sq”), 1.0 sq, 1.25 sq, 2.0 sq, 2.5 sq, as shown in Table 1. Are representative, and for each covered wire, the terminal tube sizes are 1.6 mm, 1.8 mm, 2.0 mm, 2.8 mm, and 3.0 mm tubular sections, respectively. 25 is used.
The diameter (inner diameter) of the tubular portion 25 is selected so that the electric wires 13 can be easily inserted into the tubular portion 25 and satisfy the conditions for desired crimping.

なお、導体絶縁層15を装着することにより、上記5種類の各電線の仕上がり外径は直径1.4mm〜2.8mmとなる。   In addition, by attaching the conductor insulating layer 15, the finished outer diameter of each of the five types of electric wires becomes a diameter of 1.4 mm to 2.8 mm.

管状端子11の基材として、古河電気工業製の銅合金FAS−680(厚さ0.25mm、H材)を用いた。FAS−680の合金組成は、ニッケル(Ni)を2.0〜2.8質量%、シリコン(Si)を0.45〜0.6質量%、亜鉛(Zn)を0.4〜0.55質量%、スズ(Sn)を0.1〜0.25質量%、およびマグネシウム(Mg)を0.05〜0.2質量%含有し、残部が銅(Cu)および不可避不純物である。
管状部25は、曲げ加工されたC字型断面の両端部を突き合わせ、直径(内径)が1.6mm〜3.0mmとなるようにレーザー溶接した。これによって、表1に示す直径(内径)の管状部25を有する管状端子11を製作した。
A copper alloy FAS-680 (thickness: 0.25 mm, H material) manufactured by Furukawa Electric was used as the base material for the tubular terminal 11. The alloy composition of FAS-680 is nickel (Ni) 2.0-2.8 mass%, silicon (Si) 0.45-0.6 mass%, zinc (Zn) 0.4-0.55. It contains 0.1% to 0.25% by mass of tin (Sn) and 0.05 to 0.2% by mass of magnesium (Mg), with the balance being copper (Cu) and inevitable impurities.
The tubular portion 25 was subjected to laser welding so that both end portions of the bent C-shaped cross section were abutted and the diameter (inner diameter) was 1.6 mm to 3.0 mm. Thus, the tubular terminal 11 having the tubular portion 25 having the diameter (inner diameter) shown in Table 1 was manufactured.

アルミニウム電線13のアルミニウム芯線14は、合金組成が鉄(Fe)を約0.2質量%、銅(Cu)を約0.2質量%、マグネシウム(Mg)を約0.1質量%、シリコン(Si)を約0.04質量%、残部がアルミニウム(Al)および不可避不純物であるアルミ合金線を素線14aとして用いた。このアルミニウム芯線14を用い、表1に示す導体サイズのアルミニウム電線13を形成した。   The aluminum core wire 14 of the aluminum electric wire 13 has an alloy composition of about 0.2 mass% of iron (Fe), about 0.2 mass% of copper (Cu), about 0.1 mass% of magnesium (Mg), silicon ( An aluminum alloy wire having about 0.04% by mass of Si) and the balance being aluminum (Al) and inevitable impurities was used as the strand 14a. Using this aluminum core wire 14, an aluminum wire 13 having a conductor size shown in Table 1 was formed.

また、アルミニウム電線13の導体絶縁層15は、PVCを用いた。
アルミニウム電線13は、ワイヤストリッパを用いて電線端部の導体絶縁層15を剥離してアルミニウム芯線14を露出させる。
Moreover, PVC was used for the conductor insulating layer 15 of the aluminum electric wire 13.
The aluminum electric wire 13 peels off the conductor insulating layer 15 at the end of the electric wire using a wire stripper to expose the aluminum core wire 14.

この状態で、表1に示す電線サイズと端子管サイズの組み合わせで、アルミニウム電線13を管状端子11の管状部25に差し込み、管状部25の導体圧着部35および被覆圧着部36を、クリンパ101及びアンビル103を用いて部分的に強圧縮することで圧着し、電線接続構造体10を製作した。
この圧着においては、導体絶縁層15の圧縮率(以下、「被覆圧縮率」と言う)が70%〜90%の範囲となるように行った。
In this state, the aluminum wire 13 is inserted into the tubular portion 25 of the tubular terminal 11 with the combination of the wire size and the terminal tube size shown in Table 1, and the conductor crimping portion 35 and the covering crimping portion 36 of the tubular portion 25 are connected to the crimper 101 and The electric wire connection structure 10 was manufactured by crimping by partial strong compression using the anvil 103.
In this crimping, the compression rate of the conductor insulating layer 15 (hereinafter referred to as “coating compression rate”) was in the range of 70% to 90%.

この被覆圧縮率は、導体絶縁層15の圧着前後の面積比であり、圧着後の電線を輪切りで断面出しし、導体絶縁層15の面積を測り、圧着前の同面積との比率を求めることによって得られる。
ここで、図5(A)は圧着前の電線断面の一例を模式的に示した図であり、図5(B)は圧着後の電線断面の一例を模式的に示した図である。図5(A)に示すように、圧着前は、アルミニウム電線13の素線14a間に相対的に広い隙間で配置された状態であり、導体絶縁層15が滑らかな筒形状である。これに対し、圧着後は、図5(B)に示すように、アルミニウム電線13の素線14aが互いに密着して素線群を構成するため、導体絶縁層15は素線群を囲うように変形することで、いびつな形状に変形する。
This coverage compression ratio is an area ratio before and after crimping of the conductor insulating layer 15, and the cross section of the wire after crimping is cut out, the area of the conductor insulating layer 15 is measured, and the ratio with the same area before crimping is obtained. Obtained by.
Here, FIG. 5A is a diagram schematically showing an example of the cross section of the electric wire before crimping, and FIG. 5B is a diagram schematically showing an example of the cross section of the electric wire after crimping. As shown in FIG. 5 (A), before crimping, the aluminum wires 13 are arranged in a relatively wide gap between the strands 14a, and the conductor insulating layer 15 has a smooth cylindrical shape. On the other hand, after crimping, as shown in FIG. 5B, the strands 14a of the aluminum wires 13 are in close contact with each other to form a strand group, so that the conductor insulating layer 15 surrounds the strand group. By deforming, it deforms into an irregular shape.

この被覆圧縮率を異ならせた複数種類の電線接続構造体10を製作し、これら電線接続構造体10に対し、エアリーク試験を行い、管状部25と導体絶縁層15との間の隙間からエアリークがあるか否かを試験した。
エアリーク試験は、電線接続構造体10に対し、端子を接続していない側の電線の端部から空気圧を徐々に上げて50kPaの空気圧を30秒間当ててリークを確認した後、120℃で120時間経過した後に同様のリークを確認する方法とした。その場合の試験結果を表2に示す。
A plurality of types of wire connection structures 10 with different coating compression rates are manufactured, an air leak test is performed on these wire connection structures 10, and air leaks are generated from a gap between the tubular portion 25 and the conductor insulating layer 15. It was tested whether there was.
In the air leak test, after the air pressure is gradually increased from the end of the wire not connected to the terminal and the air pressure of 50 kPa is applied for 30 seconds to confirm the leak, the air leak test is performed at 120 ° C. for 120 hours. The same leak was confirmed after the passage. Table 2 shows the test results in that case.

Figure 2014164958
Figure 2014164958

表2では、試験結果を4段階で評価した。
◎(二重丸)…空気圧50kPaでもエアリークが確認されなかった。
○(一重丸)…空気圧30kPa未満ではエアリークが確認されず、空気圧30〜50kPaでエアリークが確認された。
△(三角)…空気圧1〜5kPa未満ではエアリークが確認されず、空気圧5〜30kPaでエアリークが確認された。
×(バツ)…空気圧1〜5kPaでエアクリークが確認された。
In Table 2, the test results were evaluated in four stages.
A (double circle): No air leak was observed even at an air pressure of 50 kPa.
○ (Single circle): Air leak was not confirmed at an air pressure of less than 30 kPa, and air leak was confirmed at an air pressure of 30 to 50 kPa.
Δ (triangle): No air leak was confirmed at an air pressure of less than 1 to 5 kPa, and air leak was confirmed at an air pressure of 5 to 30 kPa.
X (X): Air creek was confirmed at an air pressure of 1 to 5 kPa.

表2では、2.5sqのアルミニウム電線13と0.75sqのアルミニウム電線13とについての試験結果を示した。2.5sqのアルミニウム電線13において、被覆圧縮率(平均圧縮率)が90%を実施例1とし、80%を実施例2とし、75%を実施例3とし、70%を実施例4とした。
また、0.75sqのアルミニウム電線13において、被覆圧縮率が89%を実施例5とし、80%を実施例6とし、70%を実施例7とした。
一方、2.5sqのアルミニウム電線13において、被覆圧縮率が98%を比較例1とし、95%を比較例2とし、93%を比較例3とし、65%を比較例4とし、63%を比較例5とし、55%を比較例6とし、0.75sqのアルミニウム電線13において、99%を比較例7とし、55%を比較例8とした。
In Table 2, the test result about the 2.5 sq aluminum electric wire 13 and the 0.75 sq aluminum electric wire 13 was shown. In the aluminum wire 13 of 2.5 sq, the coating compression ratio (average compression ratio) is 90% as Example 1, 80% as Example 2, 75% as Example 3, and 70% as Example 4. .
Moreover, in the aluminum electric wire 13 of 0.75 sq, the coating compression rate was 89% as Example 5, 80% as Example 6, and 70% as Example 7.
On the other hand, in the 2.5 sq aluminum electric wire 13, the covering compression ratio is 98% as Comparative Example 1, 95% as Comparative Example 2, 93% as Comparative Example 3, 65% as Comparative Example 4, and 63%. In Comparative Example 5, 55% was Comparative Example 6, 99% was Comparative Example 7 and 55% was Comparative Example 8 in the 0.75 sq aluminum wire 13.

表2に示すように、30kPa未満でエアリークがなかったのは、実施例1〜実施例7であり、その被覆圧縮率は70%〜90%であり、このうち、実施例2および実施例6では、50kPaでもエアリークがない良好な結果が得られ、その被覆圧縮率は80%であった。
これに対し、比較例1〜8、つまり、被覆圧縮率が90%より大きい範囲と、70%未満では、リークが認められた。このことから、被覆圧縮率を70%〜90%にすることで、管状部25と導体絶縁層15との間の止水性を十分に確保し腐食が抑制されることが判った。また、止水性をより向上させる場合は、被覆圧縮率80%、或いは、80%を中心とする周辺範囲(75%〜85%)が好ましいことが判った。
なお、発明者等は、他の電線サイズのアルミニウム電線13を圧着した電線接続構造体10についても、同様の知見を得ている。
As shown in Table 2, it was Examples 1 to 7 that had no air leak at less than 30 kPa, and the coating compression ratio was 70% to 90%, and of these, Examples 2 and 6 Then, a good result with no air leak was obtained even at 50 kPa, and the coating compression ratio was 80%.
On the other hand, leaks were observed in Comparative Examples 1 to 8, that is, in a range where the coating compression ratio was greater than 90% and less than 70%. From this, it was found that by setting the coating compressibility to 70% to 90%, the water stoppage between the tubular portion 25 and the conductor insulating layer 15 is sufficiently secured and corrosion is suppressed. Moreover, when improving water-stopping more, it turned out that the surrounding compression range (75%-85%) centering on 80% of coating compressibility or 80% is preferable.
In addition, the inventors have obtained the same knowledge about the wire connection structure 10 in which the aluminum wires 13 of other wire sizes are crimped.

また、導体圧着部35の圧縮率(以下、「導体圧縮率(芯線圧縮率とも言う)」と言う)については、発明者等が試験したところ、導体圧縮率が45%〜85%の範囲、より好ましくは、50%〜75%の範囲が、電線保持力および導通の観点から望ましいことが確認された。
このような被覆圧縮率および導体圧縮率は、クリンプハイト(圧着部分の高さ)およびクリンプワイド(圧着部分の幅)を設定すれば良いので、圧着工程は複雑とならない。
Moreover, about the compression rate (henceforth "conductor compression rate (it is also called a core wire compression rate)") of the conductor crimping | compression-bonding part 35, when the inventors tested, the conductor compression rate is 45 to 85% of range, More preferably, it was confirmed that the range of 50% to 75% is desirable from the viewpoint of electric wire holding force and conduction.
Such a covering compression ratio and a conductor compression ratio may be set as a crimp height (a height of the crimping portion) and a crimp width (a width of the crimping portion), and thus the crimping process is not complicated.

以上説明したように、本実施の形態によれば、管状部25に挿入したアルミニウム電線13(端末被覆剥離電線)が、70%〜90%の被覆圧縮率で圧着されるので、止水性をより向上させることができ、端末被覆剥離電線の腐食をより抑制することができる。この構成によれば、Oリング、防食用液剤およびはんだ等を使用して止水性を高める構造と比べて、部品追加や特別な工程が不要であり、容易に止水性を向上させることができる。また、一般的な圧着作業と同様の圧着作業で止水性を向上できるので、生産性も向上させることが可能である。   As described above, according to the present embodiment, since the aluminum electric wire 13 (terminal covering peeled electric wire) inserted into the tubular portion 25 is crimped at a covering compressibility of 70% to 90%, the water stopping property is further improved. It is possible to improve the corrosion of the terminal-coated peeled electric wire. According to this structure, compared with the structure which uses an O-ring, the anticorrosive liquid agent, a solder, etc. and raises water stop, addition of components and a special process are unnecessary and can improve water stop easily. Further, since the water stoppage can be improved by a crimping operation similar to a general crimping operation, productivity can also be improved.

また、本構成では、管状端子11のアルミニウム電線13を挿入する部位(管状部25)が、プレスにより一端が閉塞するとともに他端が開放した管状に形成されるので、管状端子11の一端側(芯線と管状端子11との間の隙間)をプレスによって閉塞しているので、これによっても止水性が向上する。
この場合、管状端子11の管状部25が、銅または銅合金からなる金属材料に錫めっきした条材から打ち抜いた材を管状にプレスし、端面同士を溶接し、内部封止のために先端を潰して形成されるので、耐食性および止水性に優れた管状部25の生産性を向上させることが可能である。なお、銅合金条を打ち抜いてプレスした後に錫めっきを施す態様であっても良い。
Moreover, in this structure, since the site | part (tubular part 25) which inserts the aluminum electric wire 13 of the tubular terminal 11 is formed in the tubular shape which one end obstruct | occluded by press and the other end was open | released, Since the gap between the core wire and the tubular terminal 11 is closed by pressing, this also improves the water stoppage.
In this case, the tubular portion 25 of the tubular terminal 11 presses a material punched from a strip material plated with tin on a metal material made of copper or copper alloy into a tubular shape, welds the end faces to each other, and tips the tip for internal sealing. Since it is formed by crushing, it is possible to improve the productivity of the tubular portion 25 having excellent corrosion resistance and water-stopping properties. In addition, the aspect which tin-plats after punching and pressing a copper alloy strip may be sufficient.

上記説明では、アルミニウム電線13を圧着する電線接続構造体10およびその製造方法に本発明を適用する場合を説明したが、これに限らない。
例えば、芯線を構成する金属材料に、銅または銅金属等を用いた被覆電線を圧着する電線接続構造体およびその製造方法に本発明を適用しても良く、芯線を構成する金属材料は、電線としての実用が可能な高い導電性を有する金属であれば良い。
また、本明細書の電線接続構造体10は例として雌型端子を示したが、当然、これに限られない。
Although the case where this invention is applied to the electric wire connection structure 10 which crimps | bonds the aluminum electric wire 13 and its manufacturing method was demonstrated in the said description, it is not restricted to this.
For example, the present invention may be applied to a wire connection structure for crimping a coated electric wire using copper or copper metal to a metal material constituting the core wire, and a manufacturing method thereof. As long as it is a metal having high conductivity that can be put into practical use, any metal may be used.
Moreover, although the electric wire connection structure 10 of this specification showed the female terminal as an example, naturally, it is not restricted to this.

次いで、他の実施例を説明する。
管状端子11の管状部25に対し、被覆電線であるアルミニウム電線13を圧着する場合、管状部25に対し、径の異なる導体絶縁層15およびアルミニウム芯線14とが圧着されるので、管状端子11とアルミニウム電線13とが不均一に圧着されることになる。この場合に、管状端子11とアルミニウム電線13との間の固着力がどのような範囲であれば止水性が得られるかの試験を行った。
その試験結果を表3に示す。
Next, another embodiment will be described.
When the aluminum wire 13 that is a covered electric wire is crimped to the tubular portion 25 of the tubular terminal 11, the conductor insulating layer 15 and the aluminum core wire 14 having different diameters are crimped to the tubular portion 25. The aluminum wire 13 is crimped non-uniformly. In this case, a test was conducted to determine what range the fixing force between the tubular terminal 11 and the aluminum electric wire 13 can provide water-stopping.
The test results are shown in Table 3.

Figure 2014164958
Figure 2014164958

表3では、固着力をバンププル試験で評価した。
具体的には、まず管状端子11に用いる表3に記載の材料からなる基材(1cm角)を用意する。この基材上に表3に記載した固着材を一様の厚さとなるように塗布形成し、更に固着材の上に、アルミニウム電線13の導体絶縁層15に用いる材料からなる絶縁被覆材(PVC樹脂を用い、5mm角、厚さ1mmの試験片を用いた。)を固着材上に配置する。
得られた、基材/固着材/絶縁材で構成される試料を水平にジグ固定し、バンププル試験器を用いて絶縁材を鉛直上方へ引き上げ、引きはがれる強度を測定した。
また、腐食性の試験は電線接続構造体に対して行った。
In Table 3, the adhesion strength was evaluated by a bump pull test.
Specifically, first, a base material (1 cm square) made of the material shown in Table 3 used for the tubular terminal 11 is prepared. An adhesive covering material (PVC) made of a material used for the conductor insulating layer 15 of the aluminum electric wire 13 is formed on the base material by coating and forming the fixing material described in Table 3 so as to have a uniform thickness. A resin is used and a test piece of 5 mm square and 1 mm thickness is used.) Is placed on the fixing material.
The obtained sample composed of the base material / adhering material / insulating material was horizontally fixed to a jig, and the insulating material was pulled up vertically using a bump pull tester, and the peel strength was measured.
In addition, the corrosive test was performed on the wire connection structure.

具体的には、アルミニウム電線13の先端の導体絶縁層(PVC樹脂)15を剥ぎ取り、先端部の導体絶縁層表面に固着材を塗布したアルミニウム電線13を管状端子11に挿入し、圧着することにより試験用の電線接続構造体を形成した。
得られた電線接続構造体に対して、塩水噴霧試験を300時間行い、圧着部の電気抵抗を測定した。
Specifically, the conductor insulating layer (PVC resin) 15 at the tip of the aluminum wire 13 is peeled off, and the aluminum wire 13 having a fixing material applied to the surface of the conductor insulating layer at the tip is inserted into the tubular terminal 11 and crimped. Thus, a test wire connection structure was formed.
The obtained wire connection structure was subjected to a salt spray test for 300 hours, and the electrical resistance of the crimped portion was measured.

○(一重丸)…電気抵抗が3mΩ未満と確認された。
×(バツ)…電気抵抗が3mΩ以上と確認された。
試験後、管状端子11を解体し、アルミニウム電線13の状態を観察したところ、上記×のものは、電線導体の腐食が顕著であった。一方、○のものは、電線導体は健全であり、腐食は見られなかった。
○ (Single circle): It was confirmed that the electrical resistance was less than 3 mΩ.
X (X): It was confirmed that the electric resistance was 3 mΩ or more.
After the test, the tubular terminal 11 was disassembled, and the state of the aluminum electric wire 13 was observed. On the other hand, in the case of ○, the wire conductor was healthy and no corrosion was observed.

表3では、固着力を高めるために、固着材として鉱石油を基油とし、ウレアを増ちょう剤として含有し、防錆剤や極圧剤などの添加剤を配合したグリース(日本グリース製ニグエースHT−DX−2)をアルミニウム電線13の導体絶縁層15外周に塗布することによって、0.1MPaの固着力を得た電線接続構造体10を実施例2−1とし、固着材を、中鎖型塩素化パラフィンを主成分とする、不水溶性切削油である潤滑油(協和石油ルブリカンツ株式会社製サーチングカット AL−100)に変更することによって、0.16MPaの固着力を得た電線接続構造体10を実施例2−2とした。
また、固着材を用いずに、圧着力の調整によって、0.5MPaの固着力を得た電線接続構造体10を実施例2−3とし、2.1MPaの固着力を得た電線接続構造体10を実施例2−4とし、5MPaの固着力を得た電線接続構造体10を実施例2−5とし、3種類の基材を用いて0.5MPaの固着力を得た電線接続構造体10を実施例2−6〜2−8とした。
In Table 3, grease (Nigace made by Nihon Grease Co., Ltd.) containing mineral oil as the base oil, urea as a thickener, and additives such as rust preventives and extreme pressure agents is used to increase the adhesive strength. HT-DX-2) is applied to the outer periphery of the conductor insulating layer 15 of the aluminum electric wire 13 so that the electric wire connection structure 10 having an adhering force of 0.1 MPa is taken as Example 2-1, and the adhering material is a medium chain. Wire connection with 0.16 MPa adhesive strength by changing to lubricating oil (searching cut AL-100, manufactured by Kyowa Oil Lubricants Co., Ltd.), which is a water-insoluble cutting oil mainly composed of type chlorinated paraffin The structure 10 was set as Example 2-2.
Moreover, the electric wire connection structure 10 which obtained the adhering force of 2.1 MPa by adjusting the crimping force without using the adhering material was defined as Example 2-3, and the electric wire connecting structure obtained the adhering force of 2.1 MPa. 10 is Example 2-4, and the wire connection structure 10 is obtained as Example 2-5, and the wire connection structure 10 is 0.5 MPa using three types of base materials. 10 was set as Examples 2-6 to 2-8.

また、比較例として、アルミニウム電線13が固着されていない電線接続構造体10を比較例2−1とし、僅かに固着された電線接続構造体10(0.01MPaの固着力)を比較例2−2とし、10MPaの固着力を得た電線接続構造体10を比較例2−3とした。また、固着材として、2−シアノアクリル酸エステルを主成分とする瞬間接着剤である株式会社スリーボンド製TB1757を塗布することによって、25MPaの固着力を得た電線接続構造体10を比較例2−4とした。   Moreover, as a comparative example, the wire connection structure 10 to which the aluminum wire 13 is not fixed is referred to as Comparative Example 2-1, and the wire connection structure 10 (bonding force of 0.01 MPa) that is slightly fixed is referred to as Comparative Example 2-. 2 and the electric wire connection structure 10 which acquired the adhering force of 10 Mpa was made into Comparative Example 2-3. Moreover, the wire connection structure 10 which obtained the adhesive force of 25 Mpa by apply | coating TB1757 by ThreeBond Co., Ltd. which is an instantaneous adhesive which has 2-cyanoacrylic acid ester as a main component as a fixing material is Comparative Example 2- It was set to 4.

表3に示すように、実施例2−1〜2−8、つまり、固着力が0.1〜5.0MPaの範囲では、腐食が確認されなかった。
これに対し、比較例2−1〜2−4、つまり、固着力が0.01以下の範囲、および、10以上の範囲では腐食が確認された。
発明者の検討によれば、管状端子11と電線とが不均一に圧着されるため、固着力が強すぎると、管状端子11や電線被覆(導体絶縁層15)のいずれかが他方の伸び縮みに追従できず、隙間が生じたものと考えられる。
以上の検討から、固着力を0.1〜5.0MPaの範囲にすることにより、管状端子11と被覆電線との間の隙間を閉じることができ、止水性が向上することを確認した。また、固着力の管理で止水性を向上できるので、容易に止水性を確保することができる。
また、固着材に、エステル系を主成分とする瞬間接着剤を用いた場合は、固着力が過大であるために、被覆圧着部36内の導体絶縁層15と管状部25の圧力の均衡が崩れてしまい、浸水経路が発生することで腐食が生じてしまうので、固着材を使用する場合は、油成分を含有する材料である、グリースや潤滑油を使用することも好ましいことを確認することができた。
As shown in Table 3, corrosion was not confirmed in Examples 2-1 to 2-8, that is, in the range where the adhesion strength was 0.1 to 5.0 MPa.
On the other hand, corrosion was confirmed in Comparative Examples 2-1 to 2-4, that is, in the range where the fixing force was 0.01 or less and in the range of 10 or more.
According to the inventor's study, since the tubular terminal 11 and the electric wire are non-uniformly crimped, if the fixing force is too strong, either the tubular terminal 11 or the electric wire covering (conductor insulating layer 15) is expanded or contracted. It is considered that a gap was generated due to failure to follow.
From the above examination, it was confirmed that the gap between the tubular terminal 11 and the covered electric wire can be closed by setting the fixing force in the range of 0.1 to 5.0 MPa, and the water stoppage is improved. In addition, since the water stoppage can be improved by managing the sticking force, the water stoppage can be easily secured.
Further, when an instantaneous adhesive mainly composed of ester is used as the fixing material, since the fixing force is excessive, the pressure balance between the conductor insulating layer 15 and the tubular portion 25 in the coated crimping portion 36 is balanced. If it uses a fixing material, it should be confirmed that it is preferable to use grease or lubricating oil, which is a material containing an oil component. I was able to.

10 電線接続構造体
11 管状端子
13 アルミニウム電線(被覆電線)
14 アルミニウム芯線(導体)
15 導体絶縁層(電線被覆)
15a 被覆先端部
20 ボックス部
25 管状部
35 導体圧着部
36 被覆圧着部
101 クリンパ
103 アンビル
10 Wire Connection Structure 11 Tubular Terminal 13 Aluminum Wire (Coated Wire)
14 Aluminum core wire (conductor)
15 Conductor insulation layer (wire coating)
15a Covering tip portion 20 Box portion 25 Tubular portion 35 Conductor crimping portion 36 Covering crimping portion 101 Crimper 103 Anvil

Claims (12)

芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、導体からなる管状端子とを有し、
前記管状端子の管状部と前記電線とが、前記導体絶縁層の圧縮率が70%〜90%となるように圧着されていることを特徴とする電線接続構造体。
An electric wire having a core wire and a conductor insulating layer formed on the outer periphery of the core wire, and a tubular terminal made of a conductor,
The wire connecting structure, wherein the tubular portion of the tubular terminal and the electric wire are pressure-bonded so that the compressibility of the conductor insulating layer is 70% to 90%.
前記導体絶縁層の圧縮率が75%〜85%であることを特徴とする請求項1に記載の電線接続構造体。   The wire connection structure according to claim 1, wherein the conductor insulating layer has a compressibility of 75% to 85%. 前記管状部の一端が閉塞されていることを特徴とする請求項1に記載の電線接続構造体。   The wire connection structure according to claim 1, wherein one end of the tubular portion is closed. 前記芯線の断面積が0.75sq〜2.5sqであることを特徴とする請求項1〜3のいずれかに記載の電線接続構造体。   The cross-sectional area of the said core wire is 0.75 sq-2.5 sq, The electric wire connection structure in any one of Claims 1-3 characterized by the above-mentioned. 前記管状部の管サイズは内径が1.6mm〜3.0mmであることを特徴とする請求項4に記載の電線接続構造体。   The wire connection structure according to claim 4, wherein the tubular portion has an inner diameter of 1.6 mm to 3.0 mm. 前記芯線の圧縮率が45%〜85%であることを特徴とする請求項1〜4のいずれかに記載の電線接続構造体。   The wire connection structure according to any one of claims 1 to 4, wherein a compression rate of the core wire is 45% to 85%. 前記管状端子が銅または銅合金からなり、前記芯線がアルミニウムまたはアルミニウム合金からなることを特徴とする請求項1〜6のいずれかに記載の電線接続構造体。   The wire connection structure according to any one of claims 1 to 6, wherein the tubular terminal is made of copper or a copper alloy, and the core wire is made of aluminum or an aluminum alloy. 芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、導体からなる管状端子とを有し、前記導体絶縁層と前記管状端子の固着力が0.1〜5.0MPaであることを特徴とする電線接続構造体。   It has an electric wire having a core wire and a conductor insulating layer formed on the outer periphery of the core wire, and a tubular terminal made of a conductor, and an adhesion force between the conductor insulating layer and the tubular terminal is 0.1 to 5.0 MPa. An electric wire connection structure characterized by that. 前記導体絶縁層と前記管状端子の間に固着材が配置されていることを特徴とする請求項8に記載の電線接続構造体。   The wire connection structure according to claim 8, wherein a fixing material is disposed between the conductor insulating layer and the tubular terminal. 前記固着材は、油成分を含有することを特徴とする請求項9に記載の電線接続構造体。   The wire connecting structure according to claim 9, wherein the fixing material contains an oil component. 芯線と前記芯線の外周に導体絶縁層を有する電線の端末の前記導体絶縁層を剥離し、前記芯線を露出させる工程と、
導体からなる管状端子の管状部に前記電線を挿入する工程と、
前記端子と前記電線を圧着し、導体圧着部と被覆圧着部を形成する工程とを有し、
前記圧着は、前記被覆圧着部における前記導体絶縁層の圧縮率が70%〜90%となるように行うことを特徴とする電線接続構造体の製造方法。
Peeling the conductor insulating layer of the end of the electric wire having a conductor insulating layer on the outer periphery of the core wire and the core wire, and exposing the core wire;
Inserting the electric wire into a tubular portion of a tubular terminal made of a conductor;
Crimping the terminal and the electric wire, forming a conductor crimping portion and a covering crimping portion,
The method for producing a wire connection structure according to claim 1, wherein the crimping is performed such that a compressibility of the conductor insulating layer in the coated crimping portion is 70% to 90%.
前記圧着は、前記管状部のうち前記被覆圧着部の高さおよび幅を制御して行うことを特徴とする請求項11に記載の電線接続構造体の製造方法。   The said crimping | compression-bonding is performed by controlling the height and width | variety of the said coating crimping | compression-bonding part among the said tubular parts, The manufacturing method of the electric wire connection structure of Claim 11 characterized by the above-mentioned.
JP2013034050A 2013-02-24 2013-02-24 Manufacturing method of electric wire connection structure Active JP6007125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013034050A JP6007125B2 (en) 2013-02-24 2013-02-24 Manufacturing method of electric wire connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013034050A JP6007125B2 (en) 2013-02-24 2013-02-24 Manufacturing method of electric wire connection structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016039234A Division JP2016129149A (en) 2016-03-01 2016-03-01 Wire connection structure

Publications (2)

Publication Number Publication Date
JP2014164958A true JP2014164958A (en) 2014-09-08
JP6007125B2 JP6007125B2 (en) 2016-10-12

Family

ID=51615409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013034050A Active JP6007125B2 (en) 2013-02-24 2013-02-24 Manufacturing method of electric wire connection structure

Country Status (1)

Country Link
JP (1) JP6007125B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016864A (en) * 2015-06-30 2017-01-19 古河電気工業株式会社 Wire with terminal, wiring harness structure, and manufacturing method of wire with terminal
JP2017203214A (en) * 2016-05-10 2017-11-16 三菱マテリアル株式会社 Copper terminal material with tin plating, terminal and wire terminal part structure
US10305240B2 (en) 2014-03-24 2019-05-28 Furukawa Electric Co., Ltd. Wire harness, connection method between covered conducting wire and terminal, and wire harness structure body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216862A (en) * 2001-01-19 2002-08-02 Yazaki Corp Waterproof structure of connection part of electric wire and terminal, and waterproofing method
JP2004071437A (en) * 2002-08-08 2004-03-04 Sumitomo Wiring Syst Ltd Grounding terminal for automobile and waterproof connection structure of wire
JP2009252712A (en) * 2008-04-11 2009-10-29 Yazaki Corp Waterproof connector and method for manufacturing same
JP2013004409A (en) * 2011-06-20 2013-01-07 Yazaki Corp Electric connection terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216862A (en) * 2001-01-19 2002-08-02 Yazaki Corp Waterproof structure of connection part of electric wire and terminal, and waterproofing method
JP2004071437A (en) * 2002-08-08 2004-03-04 Sumitomo Wiring Syst Ltd Grounding terminal for automobile and waterproof connection structure of wire
JP2009252712A (en) * 2008-04-11 2009-10-29 Yazaki Corp Waterproof connector and method for manufacturing same
JP2013004409A (en) * 2011-06-20 2013-01-07 Yazaki Corp Electric connection terminal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305240B2 (en) 2014-03-24 2019-05-28 Furukawa Electric Co., Ltd. Wire harness, connection method between covered conducting wire and terminal, and wire harness structure body
JP2017016864A (en) * 2015-06-30 2017-01-19 古河電気工業株式会社 Wire with terminal, wiring harness structure, and manufacturing method of wire with terminal
JP2017203214A (en) * 2016-05-10 2017-11-16 三菱マテリアル株式会社 Copper terminal material with tin plating, terminal and wire terminal part structure
WO2017195768A1 (en) * 2016-05-10 2017-11-16 三菱マテリアル株式会社 Tinned copper terminal material, terminal, and electrical wire end part structure
US20190161866A1 (en) * 2016-05-10 2019-05-30 Mitsubishi Materials Corporation Tinned copper terminal material, terminal, and electrical wire end part structure
US10801115B2 (en) 2016-05-10 2020-10-13 Mitsubishi Materials Corporation Tinned copper terminal material, terminal, and electrical wire end part structure

Also Published As

Publication number Publication date
JP6007125B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP5607858B1 (en) Manufacturing method of electric wire connection structure and electric wire connection structure
JP2016129149A (en) Wire connection structure
JP6117426B2 (en) Wire harness, method for connecting coated conductor and terminal, and wire harness structure
JP6007125B2 (en) Manufacturing method of electric wire connection structure
JP5654161B2 (en) Wire connection structure, connector, method for manufacturing wire connection structure, and die for crimping
KR102000372B1 (en) Electrical wire-connecting structure and method for manufacturing electrical wire-connecting structure
JP5787919B2 (en) Terminal and wire connection structure
JP2014164957A (en) Electric wire connection structure
JP2014164946A (en) Terminal insulation removed electric wire and electric wire connection structure
JP2016046140A (en) Method of manufacturing electrical wire with terminal
JP5778197B2 (en) Electric wire connection structure and electric wire
JP6182326B2 (en) Manufacturing method of terminal and manufacturing method of electric wire connection structure
JP6935310B2 (en) Manufacturing method of electric wire with terminal
JP2014164959A (en) Electric wire connection structure and terminal
JP2014164954A (en) Wire connection structure, method and apparatus of manufacturing wire connection structure
JP6017061B2 (en) Wire harness, connection method between terminal and coated conductor, mold
JP6615064B2 (en) Manufacturing method of electric wire with terminal
JP6372971B2 (en) Electric wire connection structure and method of manufacturing electric wire connection structure
JP2021082462A (en) Wire with tube terminal and manufacturing method thereof
JP2017016864A (en) Wire with terminal, wiring harness structure, and manufacturing method of wire with terminal
JP2014164947A (en) Tube terminal, method for manufacturing tube terminal, and electric wire connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150723

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R151 Written notification of patent or utility model registration

Ref document number: 6007125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350