JP2014164959A - Electric wire connection structure and terminal - Google Patents

Electric wire connection structure and terminal Download PDF

Info

Publication number
JP2014164959A
JP2014164959A JP2013034052A JP2013034052A JP2014164959A JP 2014164959 A JP2014164959 A JP 2014164959A JP 2013034052 A JP2013034052 A JP 2013034052A JP 2013034052 A JP2013034052 A JP 2013034052A JP 2014164959 A JP2014164959 A JP 2014164959A
Authority
JP
Japan
Prior art keywords
tubular
water
electric wire
connection structure
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013034052A
Other languages
Japanese (ja)
Inventor
Kengo Mitose
賢悟 水戸瀬
Akira Tachibana
昭頼 橘
Takao Tateyama
孝雄 舘山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2013034052A priority Critical patent/JP2014164959A/en
Publication of JP2014164959A publication Critical patent/JP2014164959A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric wire connection structure in which corrosion of a core wire can be suppressed with a configuration capable of being easily manufactured without passing through a complicated process, and also to provide a terminal.SOLUTION: Disclosed is an electric wire connection structure 10 in which an electric wire 13 having a core wire 14 and a conductor insulation layer 15 formed in the outer periphery of the core wire 14 and a tube-shaped terminal 11 composed of a conductor are crimped and joined together. A water-absorbing member 52 is arranged in at least a part of the outer surface of the conductor insulation layer 15, and the water-absorbing member 52 is prevented from coming into contact with the core wire 14.

Description

本発明は、電気導通を担う部品に関し、より詳しくは、電線と端子とを接続した電線接続構造体、及び、電線に接続される端子に関する。   The present invention relates to a component responsible for electrical continuity, and more particularly to a wire connection structure in which an electric wire and a terminal are connected, and a terminal connected to the electric wire.

従来、自動車等に使用されるワイヤーハーネスでは、芯線(導線)を絶縁体で被覆して形成された電線が使用され、この種の電線は、被覆を剥離して露出させた芯線端部に金属端子が圧着接続されている。従来の電線と端子の接続構造では、絶縁体が剥離された芯線端部の表面は剥き出しになっているため、車両等の用途に適用すると、電線が雨水等に晒された場合や高温や高湿の環境下で長時間走行した場合などに、芯線の腐食が懸念されていた。   Conventionally, in wire harnesses used for automobiles, etc., an electric wire formed by coating a core wire (conductive wire) with an insulator is used, and this type of electric wire has a metal at the end of the core wire exposed by peeling off the coating. The terminal is crimped. In the conventional wire-terminal connection structure, the surface of the end of the core wire from which the insulator has been peeled is exposed. Therefore, when applied to applications such as vehicles, the wire is exposed to rainwater, etc. Corrosion of the core wire has been a concern when running for a long time in a humid environment.

特に、近年、自動車の燃費向上を目的としてワイヤーハーネスの軽量化を図るために、芯線の材料が従前の銅系材料からアルミニウムあるいはアルミニウム合金等のアルミ系材料へ置き換えられてきている。アルミ系材料の芯線を電線に用いて、圧着部の金属端子に銅系材料を用いた場合、電線を構成する金属(アルミ系材料)と金属端子を構成する金属(銅系材料)において電位差が生じる。このとき、電線と端子の接続部に水分等が付着した場合、電線の導体(芯線)は露出しているため、異種金属間腐食が発生し、いずれかの金属の腐食が進行してしまう。アルミ系材料と銅系材料の異種金属間腐食においては、アルミ系材料が腐食により減肉してしまう。そのため電線接続部において、接触不良が生じてしまう恐れがあった。
これらの問題を解決するために、従来、圧着部の端部露出領域及びその近傍領域の全外周を樹脂によってモールド成形する技術が提案されている(例えば、特許文献1参照)。
また、電線の芯線露出部に金属製の中間キャップを取り付けた後に端子を圧着し、電線と端子との圧着部を保護する技術が提案されている(例えば、特許文献2参照)。
In particular, in recent years, in order to reduce the weight of a wire harness for the purpose of improving the fuel efficiency of an automobile, the core wire material has been replaced with an aluminum-based material such as aluminum or aluminum alloy from a conventional copper-based material. When the core wire of aluminum material is used for the electric wire and the copper material is used for the metal terminal of the crimping part, there is a potential difference between the metal constituting the electric wire (aluminum material) and the metal constituting the metal terminal (copper material). Arise. At this time, when moisture or the like adheres to the connecting portion between the electric wire and the terminal, the conductor (core wire) of the electric wire is exposed, so that corrosion between different metals occurs and corrosion of any metal proceeds. In the corrosion between dissimilar metals of an aluminum-based material and a copper-based material, the aluminum-based material is thinned by the corrosion. For this reason, there is a risk that poor contact may occur in the wire connection portion.
In order to solve these problems, conventionally, a technique has been proposed in which the entire outer periphery of the end exposed region of the crimped portion and the vicinity thereof is molded with a resin (see, for example, Patent Document 1).
Further, a technique has been proposed in which a metal intermediate cap is attached to a core wire exposed portion of an electric wire and then a terminal is crimped to protect the crimp portion of the electric wire and the terminal (for example, see Patent Document 2).

特開2011−222243号公報JP 2011-222243 A 特開2004−207172号公報JP 2004-207172 A

しかしながら、特許文献1に記載の技術であるモールド成形は圧着後に個々の圧着部に対して樹脂をモールドする作業を要するため、作業が煩雑になるとともに、ワイヤーハーネスの製造の工程数が大きく増す等の課題があった。さらに、モールド成形によって、圧着部が肥大してしまい、各端子が装着されるコネクタハウジングのサイズを大きくする必要が生じる。これにより、コネクタが大型化してしまうこととなり、ワイヤーハーネス全体を高密小型に成形することができなかった。
また、特許文献2に記載の技術では、圧着前に個々の芯線露出部に中間キャップを装着する工程が煩雑であった。更には、圧着時に、ワイヤバレルにより中間キャップを破壊してしまうことにより芯線までの浸水経路が生じてしまい、防水性が損なわれるといった問題があった。
そこで、本発明は、複雑な工程を経ることなく容易に製造可能な構成により、芯線の腐食を抑制できる電線接続構造体、及び、端子を提供することを目的とする。
However, since the molding which is the technique described in Patent Document 1 requires an operation of molding a resin on each crimped portion after crimping, the task becomes complicated and the number of steps of manufacturing the wire harness greatly increases. There was a problem. Furthermore, the crimping part is enlarged by molding, and it is necessary to increase the size of the connector housing to which each terminal is attached. Thereby, a connector will be enlarged and the whole wire harness could not be shape | molded in high-density small.
Moreover, in the technique described in Patent Document 2, the process of attaching the intermediate cap to each core wire exposed portion before pressure bonding is complicated. Furthermore, when the intermediate cap is broken by the wire barrel at the time of crimping, there is a problem that a water immersion path to the core wire is generated and the waterproof property is impaired.
Then, an object of this invention is to provide the electric wire connection structure and terminal which can suppress corrosion of a core wire by the structure which can be manufactured easily without passing through a complicated process.

上記課題を解決するため、本発明の電線接続構造体は、芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、導体からなる管状端子とが圧着結合した電線接続構造体であって、前記導体絶縁層の外表面の少なくとも一部に吸水部材を配置し、前記吸水部材は前記芯線に接しないことを特徴とする。   In order to solve the above-mentioned problems, an electric wire connection structure of the present invention is an electric wire connection structure in which an electric wire having a core wire and a conductor insulating layer formed on the outer periphery of the core wire and a tubular terminal made of a conductor are bonded by pressure bonding. And a water absorbing member is arrange | positioned in at least one part of the outer surface of the said conductor insulating layer, The said water absorbing member does not touch the said core wire, It is characterized by the above-mentioned.

この構成において、前記吸水部材は前記導体絶縁層と前記管状端子との間に配置された構成としてもよい。また、前記管状端子は電線挿入口を有し、前記吸水部材は前記電線挿入口及び前記導体絶縁層と密着するように配置されている構成としてもよい。   In this configuration, the water absorbing member may be disposed between the conductor insulating layer and the tubular terminal. The tubular terminal may have a wire insertion port, and the water absorbing member may be disposed so as to be in close contact with the wire insertion port and the conductor insulating layer.

また、前記導体絶縁層と前記管状端子との間に更に止水部材が配置されており、前記止水部材と前記吸水部材とが隣接するように配置された構成としてもよい。また、軸方向において前記吸水部材が前記止水部材に挟まれるように配置された構成としてもよい。
さらに、前記管状端子の一端が閉塞されており、前記管状端子の他端において前記管状端子と前記電線との間に前記止水部材が配置された構成としてもよい。
また、前記吸水部材は、水を吸着保持する吸水性材料から構成されてもよい。
また、前記止水部材は弾性または可塑性を有する材料により構成されてもよい。
Moreover, it is good also as a structure by which the water stop member is further arrange | positioned between the said conductor insulating layer and the said tubular terminal, and the said water stop member and the said water absorption member are arrange | positioned adjacently. Moreover, it is good also as a structure arrange | positioned so that the said water absorption member may be pinched | interposed into the said water stop member in an axial direction.
Furthermore, it is good also as a structure by which the end of the said tubular terminal is obstruct | occluded and the said water stop member is arrange | positioned between the said tubular terminal and the said electric wire in the other end of the said tubular terminal.
The water absorbing member may be made of a water absorbing material that adsorbs and holds water.
Further, the water stop member may be made of a material having elasticity or plasticity.

また、上記構成において、前記吸水部材は、吸水性樹脂または吸水性樹脂を含むシート状の吸水性部材であってもよい。また、前記管状端子は銅または銅合金からなり、前記芯線はアルミニウムまたはアルミニウム合金からなる構成としてもよい。   Moreover, the said structure WHEREIN: The sheet-like water absorbing member containing a water absorbing resin or a water absorbing resin may be sufficient as the said water absorbing member. The tubular terminal may be made of copper or a copper alloy, and the core wire may be made of aluminum or an aluminum alloy.

また、本発明の端子は、電線とともに圧着されて接合される管状の圧着予定部を有し、前記圧着予定部に吸水性材料が配置されたことを特徴とする。   Moreover, the terminal of this invention has the tubular crimping | compression-bonding part crimped | bonded and joined with an electric wire, The water absorbing material was arrange | positioned at the said crimping | compression-bonding part, It is characterized by the above-mentioned.

この構成において、前記吸水性部材は、前記圧着予定部の軸方向における少なくとも一部に、前記圧着予定部の内周面に沿って環状に配置された構成としてもよい。   This structure WHEREIN: The said water absorbing member is good also as a structure arrange | positioned cyclically | annularly along the internal peripheral surface of the said crimping | compression-bonding part in at least one part in the axial direction of the said crimping | compression-bonding part.

本発明によれば、電線と圧着結合される管状の圧着部に吸水性材料を配置したことにより、圧着部に浸入する水分を捕集して電線導体への水分の付着を抑制し、電線導体の腐食を抑制できる。   According to the present invention, by arranging the water-absorbing material in the tubular crimping portion that is crimp-bonded to the electric wire, the moisture entering the crimping portion is collected and the adhesion of moisture to the electric wire conductor is suppressed. Corrosion can be suppressed.

実施形態にかかる電線接続構造体を示す斜視図である。It is a perspective view showing an electric wire connection structure concerning an embodiment. 電線接続構造体の長手方向の要部断面図である。It is principal part sectional drawing of the longitudinal direction of an electric wire connection structure. 電線接続構造体の管状かしめ部における径方向の断面図である。It is sectional drawing of the radial direction in the tubular crimping part of an electric wire connection structure. 電線接続構造体の別の構成例を示す断面図である。It is sectional drawing which shows another structural example of an electric wire connection structure. 電線接続構造体の別の構成例を示す断面図である。It is sectional drawing which shows another structural example of an electric wire connection structure. 電線接続構造体の別の構成例を示す断面図である。It is sectional drawing which shows another structural example of an electric wire connection structure. 電線接続構造体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of an electric wire connection structure. 電線接続構造体の製造方法を示す説明図であり、(A)は管状端子の長手方向における断面図、(B)は径方向における断面図である。It is explanatory drawing which shows the manufacturing method of an electric wire connection structure, (A) is sectional drawing in the longitudinal direction of a tubular terminal, (B) is sectional drawing in radial direction. 電線接続構造体の圧着加工の説明図である。It is explanatory drawing of the crimping | compression-bonding process of an electric wire connection structure. 管状端子の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a tubular terminal. 管状端子の製造方法の別の例を示す説明図である。It is explanatory drawing which shows another example of the manufacturing method of a tubular terminal. 管状端子の製造方法の別の例を示す説明図である。It is explanatory drawing which shows another example of the manufacturing method of a tubular terminal. 管状端子の製造方法の別の例を示す説明図である。It is explanatory drawing which shows another example of the manufacturing method of a tubular terminal. 電線接続構造体の製造方法の別の例を示す説明図である。It is explanatory drawing which shows another example of the manufacturing method of an electric wire connection structure. 比較例の電線接続構造体の構成を示す断面図である。It is sectional drawing which shows the structure of the electric wire connection structure of a comparative example.

以下、図面を参照して本発明の一実施形態について説明する。
図1は、一実施形態の電線接続構造体10を示す斜視図である。
電線接続構造体10は、管状端子11(端子)と、この管状端子11に圧着結合された電線13とを備える。管状端子11は、雌型端子のボックス部20と管状かしめ部30(圧着部)とを有し、これらの橋渡しとしてトランジション部40を有する。
管状端子11は、導電性と強度を確保するために基本的に金属材料(本実施形態では、銅または銅合金)の基材で製造されている。なお、管状端子11の基材は、銅または銅合金に限るものではなく、アルミニウムや鋼、またはこれらを主成分とする合金等を用いることもできる。
また、管状端子11は、端子としての種々の特性を担保するために、例えば管状端子11の一部あるいは全部にスズ、ニッケル、銀めっきまたは金等のめっき処理が施されていても良い。また、めっきのみならず、スズ等のリフロー処理を施しても良い。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Drawing 1 is a perspective view showing electric wire connection structure 10 of one embodiment.
The electric wire connection structure 10 includes a tubular terminal 11 (terminal) and an electric wire 13 that is pressure-bonded to the tubular terminal 11. The tubular terminal 11 has a box portion 20 of a female terminal and a tubular caulking portion 30 (crimping portion), and has a transition portion 40 as a bridge between them.
The tubular terminal 11 is basically made of a base material made of a metal material (copper or copper alloy in this embodiment) in order to ensure conductivity and strength. In addition, the base material of the tubular terminal 11 is not limited to copper or a copper alloy, and aluminum, steel, an alloy containing these as a main component, or the like can also be used.
Moreover, in order to ensure various characteristics as a terminal, the tubular terminal 11 may be subjected to, for example, a plating process such as tin, nickel, silver plating, or gold on part or all of the tubular terminal 11. Further, not only plating but also reflow treatment of tin or the like may be performed.

管状端子11のボックス部20は、例えば雄型端子等の挿入タブの挿入を許容する雌型端子のボックス部である。本発明において、このボックス部20の細部の形状は特に限定されない。すなわち、管状端子11は、少なくともトランジション部40を介して管状かしめ部30を備えていれば良く、例えばボックス部を有さなくても良いし、例えばボックス部が雄型端子の挿入タブであっても良い。また、管状かしめ部30に他の形態に係る端子端部が接続された形状であっても良い。本明細書では、本発明の管状端子を説明するために便宜的に雌型ボックスを備えた例を示している。   The box portion 20 of the tubular terminal 11 is a female terminal box portion that allows insertion of an insertion tab such as a male terminal. In the present invention, the shape of the details of the box portion 20 is not particularly limited. That is, the tubular terminal 11 only needs to have the tubular caulking portion 30 via at least the transition portion 40. For example, the tubular terminal 11 does not have to have a box portion. For example, the box portion is an insertion tab of a male terminal. Also good. Moreover, the shape by which the terminal edge part which concerns on another form to the tubular crimping part 30 was connected may be sufficient. In this specification, in order to explain the tubular terminal of the present invention, an example in which a female box is provided for convenience is shown.

図2は、電線接続構造体10の長手方向の要部断面図である。また、図3は電線接続構造体10の管状かしめ部30における径方向の断面図である。
電線13は、例えば、金属または合金からなる素線14aを束ねた芯線14を、絶縁樹脂(例えば、ポリ塩化ビニル)で構成する導体絶縁層15で被覆して構成される。芯線14は、所定の断面積となるように、素線14aを撚って構成しているが、この形態に限定されるものではなく単線で構成しても良い。なお、芯線を構成する金属材料は、高い導電性を有する金属であればよく、アルミニウムまたはアルミニウム合金の他に、銅または銅合金を用いても良い。
FIG. 2 is a cross-sectional view of the main part of the wire connection structure 10 in the longitudinal direction. 3 is a radial cross-sectional view of the tubular caulking portion 30 of the wire connection structure 10. FIG.
The electric wire 13 is configured, for example, by covering a core wire 14 in which strands 14a made of metal or alloy are bundled with a conductor insulating layer 15 made of an insulating resin (for example, polyvinyl chloride). The core wire 14 is formed by twisting the strands 14a so as to have a predetermined cross-sectional area. However, the core wire 14 is not limited to this form and may be formed by a single wire. In addition, the metal material which comprises a core wire should just be a metal which has high electroconductivity, and you may use copper or a copper alloy other than aluminum or an aluminum alloy.

導体絶縁層15を構成する樹脂材としては、ポリ塩化ビニルであり、このポリ塩化ビニル以外にも、例えば、架橋ポリ塩化ビニル、クロロプレンゴム等を主成分とするハロゲン系樹脂や、ポリエチレン、架橋ポリエチレン、エチレンプロビレンゴム、珪素ゴム、ポリエステル等を主成分とするハロゲンフリー樹脂が用いられ、これらに可塑剤や難燃剤等の添加剤を含んでいても良い。   The resin material constituting the conductor insulating layer 15 is polyvinyl chloride. Besides this polyvinyl chloride, for example, halogen resins mainly composed of cross-linked polyvinyl chloride, chloroprene rubber, polyethylene, cross-linked polyethylene, etc. Further, halogen-free resins mainly composed of ethylene propylene rubber, silicon rubber, polyester, etc. are used, and these may contain additives such as plasticizers and flame retardants.

管状かしめ部30は、管状端子11と電線13とを圧着結合する部位であり、導体圧着縮径部35および被覆圧着縮径部36を備える。
通常、圧着結合すると、導体圧着縮径部35および被覆圧着縮径部36がそれぞれ塑性変形を起こして、元の径よりも縮径されることで、電線13の芯線先端部14bおよび被覆先端部(圧着部)15aと圧着結合される。導体圧着縮径部35には、セレーション33が形成されている。セレーション33は、圧着接合の前に、予め管状端子11の内周面に沿って形成された環状の溝である。圧縮接合される際に、このセレーション33によって芯線14が係止され、芯線14と管状端子11との接触圧を高める効果がある。芯線14にアルミニウムまたはアルミニウム合金を用いる場合は、銅及び銅合金を用いる場合と比較すると接触抵抗が低くなると指摘されているが、セレーション33を管状端子11の内周面に設けることにより確実な導通を確保できる。
The tubular caulking portion 30 is a portion that crimps and joins the tubular terminal 11 and the electric wire 13, and includes a conductor crimping reduced diameter portion 35 and a coated crimping reduced diameter portion 36.
Usually, when crimped and joined, the conductor crimped reduced diameter portion 35 and the coated crimped reduced diameter portion 36 are each plastically deformed to be reduced in diameter from the original diameter, thereby allowing the core wire tip 14b and the sheath tip of the electric wire 13 to be reduced. (Crimped part) 15a is crimped and coupled. A serration 33 is formed in the conductor crimping reduced diameter portion 35. The serration 33 is an annular groove that is formed in advance along the inner peripheral surface of the tubular terminal 11 before the crimp bonding. When the compression bonding is performed, the core wire 14 is locked by the serration 33, and there is an effect of increasing the contact pressure between the core wire 14 and the tubular terminal 11. When aluminum or an aluminum alloy is used for the core wire 14, it has been pointed out that the contact resistance is lower than when copper or a copper alloy is used. However, by providing the serration 33 on the inner peripheral surface of the tubular terminal 11, reliable conduction is achieved. Can be secured.

管状かしめ部30の一端は、電線13を挿入することができる電線挿入口31を有し、他端はトランジション部40に接続されている。管状かしめ部30のトランジション部40側は、溶接等の手段によって閉口しており、トランジション部40側から水分等が浸入しないように形成されている。
管状端子11の金属基材(銅または銅合金)と芯線14(アルミニウムまたはアルミニウム合金)との接合部に水分が付着すると、両金属の起電力(イオン化傾向)の差から芯線14が腐食する。また、管状端子11と芯線14とがアルミニウム同士であっても微妙な合金組成の違いによって、それらの接合部は腐食しやすい。
One end of the tubular caulking portion 30 has an electric wire insertion port 31 into which the electric wire 13 can be inserted, and the other end is connected to the transition portion 40. The transition portion 40 side of the tubular caulking portion 30 is closed by means such as welding, and is formed so that moisture or the like does not enter from the transition portion 40 side.
When moisture adheres to the joint between the metal substrate (copper or copper alloy) of the tubular terminal 11 and the core wire 14 (aluminum or aluminum alloy), the core wire 14 corrodes due to the difference in electromotive force (ionization tendency) between the two metals. Further, even if the tubular terminal 11 and the core wire 14 are made of aluminum, their joints are easily corroded due to a subtle difference in alloy composition.

本構成では、管状かしめ部30は、有底の管状に形成されることにより、外部より水分等の浸入が抑制され、管状端子11と電線13との接合部の腐食を抑えることができる。なお、管状かしめ部30は、管状であれば腐食に対して一定の効果を得られるため、必ずしも長手方向に対して円筒である必要はなく、場合によっては楕円や矩形の管であっても良い。また、径が一定である必要はなく、長手方向で半径が変化していても良い。   In this configuration, the tubular caulking portion 30 is formed in a bottomed tubular shape, so that intrusion of moisture and the like is suppressed from the outside, and corrosion of the joint portion between the tubular terminal 11 and the electric wire 13 can be suppressed. If the tubular caulking portion 30 is tubular, a certain effect against corrosion can be obtained. Therefore, the tubular caulking portion 30 is not necessarily cylindrical with respect to the longitudinal direction, and may be an elliptical or rectangular tube depending on circumstances. . Further, the diameter does not need to be constant, and the radius may change in the longitudinal direction.

管状かしめ部30は、後述するように銅または銅合金等の金属からなる条材を平面展開した形状に打ち抜き、曲げ加工によって形成される。この場合、ボックス部20を一体に設けても良い。
平面状態からの曲げ加工した際に、かしめ部に相当する部位はC字型断面となっているので、開放された両端部を突き合わせて溶接等によって接合することで、管状かしめ部30が形成される。管状かしめ部30の接合は、レーザー溶接が好ましいが、電子ビーム溶接、超音波溶接、抵抗溶接等の溶接法でもかまわない。また、はんだ、ろう等、接続媒体を使っての接合でも良い。また、管状かしめ部30は、上記したC字型断面の両端部を接合する方法に限らず、深絞り工法で形成されても良い。さらに、連続管を切断するとともに一端側を閉塞して、管状かしめ部30を形成しても良い。
As will be described later, the tubular caulking portion 30 is formed by punching a strip made of a metal such as copper or a copper alloy into a shape that is flattened and bending. In this case, the box unit 20 may be provided integrally.
Since the portion corresponding to the caulking portion has a C-shaped cross section when bent from a flat state, the tubular caulking portion 30 is formed by joining both open ends and joining them by welding or the like. The Laser welding is preferable for joining the tubular caulking portion 30, but welding methods such as electron beam welding, ultrasonic welding, and resistance welding may be used. Also, joining using a connection medium such as solder or solder may be used. The tubular caulking portion 30 is not limited to the method of joining both end portions of the C-shaped cross section, and may be formed by a deep drawing method. Furthermore, the tubular crimping portion 30 may be formed by cutting the continuous tube and closing one end side.

管状かしめ部30では、管状かしめ部30を構成する金属基材と電線13とが機械的な圧着結合されることにより、同時に電気的な接合を確保する。かしめ接合は、基材や電線(芯線)の塑性変形によって接合が行われる。従って、管状かしめ部30は、かしめ接合をすることができるように肉厚を設計される必要があるが、人力加工や機械加工等で接合を自由に行うことができるので、特に限定されるものではない。
管状かしめ部30では、芯線14を強圧縮して導通を維持する機能と、導体絶縁層15を圧縮してシール性を維持する機能とが要求される。被覆圧着縮径部36では、その断面を略正円にかしめ、導体絶縁層15の全周に渡ってほぼ同等の圧力を与えることにより、全周に渡って均一な弾性反発力を発生させて、シール性を得ることが好ましい。
In the tubular caulking portion 30, the metal base material constituting the tubular caulking portion 30 and the electric wire 13 are mechanically pressure-bonded to ensure electrical connection at the same time. The caulking is performed by plastic deformation of a base material or an electric wire (core wire). Accordingly, the tubular caulking portion 30 needs to be designed to have a thickness so that it can be caulked and joined, but since it can be joined freely by manual machining or machining, it is particularly limited. is not.
The tubular caulking portion 30 is required to have a function of maintaining the electrical conduction by strongly compressing the core wire 14 and a function of maintaining the sealing performance by compressing the conductor insulating layer 15. In the coated crimped reduced diameter portion 36, the cross section thereof is caulked into a substantially circular shape, and by applying substantially the same pressure over the entire circumference of the conductor insulating layer 15, a uniform elastic repulsive force is generated over the entire circumference. It is preferable to obtain a sealing property.

芯線に用いられるアルミニウムまたはアルミニウム合金は、銅及び銅合金と比較すると接触抵抗が高いため、接続に不安がある。このため、管状かしめ部30の内壁面には、電線挿入口31から挿入された芯線14と接触する位置に、電線13の周方向に延びる電線係止溝(不図示)を設け、電線13との接触圧を保つ構成としても良い。   Since aluminum or aluminum alloy used for the core wire has higher contact resistance than copper and copper alloy, there is anxiety in connection. For this reason, the inner wall surface of the tubular caulking portion 30 is provided with a wire locking groove (not shown) extending in the circumferential direction of the electric wire 13 at a position in contact with the core wire 14 inserted from the electric wire insertion port 31. The contact pressure may be maintained.

そして、被覆圧着縮径部36には、管状端子11と導体絶縁層15との間に止水部材51および吸水部材52が配置されている。
止水部材51は、弾性または可塑性を有する材料により構成され、好ましくは不透水性の材料で構成される。吸水部材52は、水分を吸収または除去するものである。
止水部材51及び吸水部材52は、所定厚さのシートを導体絶縁層15の周囲を囲む環状に形成した形状となっている。無端形状の環に形成されていることが好ましいが、長尺のシートを環状に巻いて端を接合し、或いは、重ね合わせた形状となっていてもよい。
止水部材51及び吸水部材52は、電線13が圧着接合される前に、導体絶縁層15と管状端子11との間に介在するように設けられ、被覆圧着縮径部36において圧着される。このため、被覆圧着縮径部36においては、管状かしめ部30の内面と導体絶縁層15の表面とに止水部材51及び吸水部材52が密着し、管状かしめ部30と導体絶縁層15の間を埋める。
And in the crimping | compression-bonding reduced diameter part 36, the water stop member 51 and the water absorption member 52 are arrange | positioned between the tubular terminal 11 and the conductor insulating layer 15. FIG.
The water blocking member 51 is made of a material having elasticity or plasticity, and preferably made of a water-impermeable material. The water absorbing member 52 absorbs or removes moisture.
The water stopping member 51 and the water absorbing member 52 have a shape in which a sheet having a predetermined thickness is formed in an annular shape surrounding the conductor insulating layer 15. Although it is preferably formed in an endless ring, the end may be joined by winding a long sheet in an annular shape, or may be formed in a superposed shape.
The water-stop member 51 and the water-absorbing member 52 are provided so as to be interposed between the conductor insulating layer 15 and the tubular terminal 11 before the electric wire 13 is crimped and joined, and are crimped by the coated crimping reduced diameter portion 36. For this reason, in the cover crimping reduced diameter portion 36, the water stop member 51 and the water absorbing member 52 are in close contact with the inner surface of the tubular caulking portion 30 and the surface of the conductor insulating layer 15, and between the tubular caulking portion 30 and the conductor insulating layer 15. Fill.

止水部材51は、常温において変形させることが可能なものであればよい。より詳細には、可塑性または弾性の少なくともいずれかを有するものであればよい。例えば、合成樹脂、合成ゴム、天然ゴム、各種のエラストマが用いられる。合成樹脂の具体的な例としては、ポリオレフィン系樹脂(ポリエチレン、架橋ポリエチレン、ポリプロピレン、ポリイソブチレン等)、含ハロゲン樹脂(ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン等)、ポリエステル樹脂(ポリエチレンテレフタレート(PET)等)、ポリウレタン樹脂、ポリ酢酸ビニル樹脂、シリコン樹脂、アクリル樹脂、共重合樹脂(ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合樹脂)、AS樹脂(アクリロニトリル−スチレン共重合樹脂)、EVA樹脂(エチレン酢酸ビニル共重合樹脂)等)、これらの樹脂の混合物、及び、これらの樹脂に安定剤や可塑剤等の添加剤を加えたものが挙げられる。また、合成樹脂の一種である、いわゆる合成ゴムとして、シリコーンゴム、フッ素ゴム、ブチルゴム、ブタジエンゴム、スチレン−ブタジエンゴム、エチレンプロピレンゴム、エピクロロヒドリンゴム、クロロプレンゴム、ニトリルゴム等を用いることができる。これらの合成ゴムは油脂類や安定剤等の添加剤を含んでいてもよい。   The water stop member 51 may be any member that can be deformed at room temperature. More specifically, any material having at least one of plasticity and elasticity may be used. For example, synthetic resin, synthetic rubber, natural rubber, and various elastomers are used. Specific examples of synthetic resins include polyolefin resins (polyethylene, crosslinked polyethylene, polypropylene, polyisobutylene, etc.), halogen-containing resins (polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, etc.), polyester resins (polyethylene terephthalate). (PET) etc.), polyurethane resin, polyvinyl acetate resin, silicone resin, acrylic resin, copolymer resin (ABS resin (acrylonitrile-butadiene-styrene copolymer resin), AS resin (acrylonitrile-styrene copolymer resin), EVA resin (Ethylene vinyl acetate copolymer resin) and the like), mixtures of these resins, and those obtained by adding additives such as stabilizers and plasticizers to these resins. In addition, as a so-called synthetic rubber, which is a kind of synthetic resin, silicone rubber, fluorine rubber, butyl rubber, butadiene rubber, styrene-butadiene rubber, ethylene propylene rubber, epichlorohydrin rubber, chloroprene rubber, nitrile rubber, and the like can be used. . These synthetic rubbers may contain additives such as fats and oils and stabilizers.

さらに、止水部材51の材料は、より好ましくは、電線接続構造体10の使用環境において物性変化を招かない程度の耐熱性を有するものが挙げられる。例えば自動車のハーネスとして用いられる電線接続構造体10においては、エンジン、排気系部品、モーターやトランスミッション等の駆動部品、バッテリー及び周辺回路、灯火類等の近傍に配置された場合に十分な耐熱性を発揮すべく、耐熱温度が摂氏120度以上、160度以上もしくは180度のものであることが、より好ましい。耐熱性、耐アルカリ性の観点および止水部材としての可塑性、弾性の観点から、シリコーンゴム、フッ素ゴム、ブチルゴム、ブタジエンゴム、エチレンプロピレンゴム、ニトリルゴムが好ましい材料としてあげられる。
また、電線13の導体絶縁層15には、ポリ塩化ビニル樹脂や架橋ポリ塩化ビニル樹脂を用いることができる。また、導体絶縁層15として、ポリオレフィン系樹脂、エチレンプロビレンゴム、珪素ゴム、ポリエステル、シリコン樹脂等を主成分とするハロゲンフリー樹脂(ノンハロゲン樹脂)を用いることもできる。これらのハロゲンフリー樹脂は金属水和物等の難燃化剤を混合したものであってもよい。
Furthermore, the material of the water stop member 51 is more preferably a material having heat resistance that does not cause a change in physical properties in the usage environment of the wire connection structure 10. For example, in the electric wire connection structure 10 used as a harness of an automobile, sufficient heat resistance is provided when it is disposed in the vicinity of an engine, an exhaust system component, a driving component such as a motor or a transmission, a battery, a peripheral circuit, or a lamp. In order to exhibit, it is more preferable that the heat resistant temperature is 120 degrees Celsius, 160 degrees Celsius, or 180 degrees Celsius. Silicone rubber, fluorine rubber, butyl rubber, butadiene rubber, ethylene propylene rubber, and nitrile rubber are preferable materials from the viewpoints of heat resistance and alkali resistance and plasticity and elasticity as a water-stopping member.
Further, a polyvinyl chloride resin or a cross-linked polyvinyl chloride resin can be used for the conductor insulating layer 15 of the electric wire 13. Further, as the conductor insulating layer 15, a halogen-free resin (non-halogen resin) whose main component is polyolefin resin, ethylene-propylene rubber, silicon rubber, polyester, silicon resin, or the like can be used. These halogen-free resins may be a mixture of a flame retardant such as a metal hydrate.

止水部材51の材料の選択にあたっては、導体絶縁層15と止水部材51との間で、添加剤、油脂または溶剤の移行による物性変化を生じない組み合わせとなるように、導体絶縁層15の材料に対応して選択されることが好ましい。具体的には、導体絶縁層15としてシリコン樹脂以外のハロゲンフリー樹脂を用いる場合、止水部材51としては、含ハロゲン樹脂、油脂または溶剤を混合物として含む合成ゴムや合成樹脂を避けて、他の合成樹脂を用いることが好ましい。一方、導体絶縁層15として含ハロゲン樹脂を用いる場合には、止水部材51として、シリコン樹脂や含ハロゲン樹脂を用いると好ましい。   In selecting the material of the water blocking member 51, the conductor insulating layer 15 may be combined so as not to cause a change in physical properties due to the transfer of additives, oils and fats, or the solvent between the conductor insulating layer 15 and the water blocking member 51. It is preferable to select according to the material. Specifically, when a halogen-free resin other than silicon resin is used as the conductor insulating layer 15, the water-stopping member 51 avoids a synthetic rubber or synthetic resin containing a halogen-containing resin, oil or a solvent as a mixture, and other materials. It is preferable to use a synthetic resin. On the other hand, when a halogen-containing resin is used as the conductor insulating layer 15, it is preferable to use a silicon resin or a halogen-containing resin as the water stop member 51.

吸水部材52は、水分を吸収する機能を有する吸水性材料を上記の形状に加工したもの、或いは、吸水性材料を上記形状の担体に保持させたものである。吸水性材料としては、水と反応して水分を除去する反応型、及び、水を吸着保持する非反応型(吸着型)のものが挙げられる。管状かしめ部30の内部における芯線14及び導体絶縁層15への影響と、電線接続構造体10の設置環境への影響を考慮すると、非反応型のものが好ましい。非反応型の具体的な例としては、ゼオライト等の鉱物、セラミックス、シリカゲル、活性炭等の無機材料を用いた水吸着剤、ポリアクリル酸塩等の吸水性高分子、合成樹脂製の吸水スポンジ等が挙げられる。また、担体としては、上記の各種合成樹脂をシート状に形成したものが挙げられ、例えば、ポリプロピレン樹脂やポリエチレン樹脂製の不織布が挙げられる。管状かしめ部30内部に収めることが可能な薄さに成形する成形性と吸水能を考慮すると、ポリアクリル酸塩を不織布シートに保持させたものが好ましい例として挙げられる。   The water absorbing member 52 is obtained by processing a water absorbing material having a function of absorbing moisture into the above shape, or holding the water absorbing material on a carrier having the above shape. Examples of the water-absorbing material include a reactive type that removes moisture by reacting with water, and a non-reactive type (adsorptive type) that adsorbs and holds water. In consideration of the influence on the core wire 14 and the conductor insulating layer 15 inside the tubular caulking portion 30 and the influence on the installation environment of the wire connection structure 10, a non-reactive type is preferable. Specific examples of non-reactive types include minerals such as zeolite, water adsorbents using inorganic materials such as ceramics, silica gel, activated carbon, water-absorbing polymers such as polyacrylates, water-absorbing sponges made of synthetic resins, etc. Is mentioned. Moreover, as a support | carrier, what formed said synthetic resin in the sheet form is mentioned, For example, the nonwoven fabric made from a polypropylene resin or a polyethylene resin is mentioned, for example. In consideration of the moldability and water absorption ability to form a thin sheet that can be accommodated in the tubular caulking portion 30, a preferred example is a polyacrylic acid salt held on a nonwoven fabric sheet.

本実施形態では、一例として、図2に示すように2つの止水部材51、51と一つの吸水部材52とを配置した構成を示す。すなわち、管状かしめ部30の軸方向において、トランジション部40側から順に止水部材51、吸水部材52、止水部材51の順で配置されている。電線挿入口31に近い止水部材51は、電線挿入口31に達していてもよいし、電線挿入口31より内側にあってもよい。また、図2の例では、トランジション部40側に位置する止水部材51の端は導体絶縁層15の先端とほぼ同位置にあるが、導体絶縁層15の先端が止水部材51より突出していてもよい。
止水部材51は上述のように被覆圧着縮径部36においてかしめられているので、電線挿入口31側は止水部材51及び導体絶縁層15により隙間なく閉塞されている。このため、電線挿入口31からの水分の浸入がないように確実に止水されている。吸水部材52は、止水部材51により止水された空間(領域)に配置されている。吸水部材52の作用としては、止水部材51により止水された空間である管状かしめ部30内部の水分を除去する作用、及び、電線挿入口31側の止水部材51を超えて水分が管状かしめ部30内に浸入した場合に、この水分を除去する作用が挙げられる。例えば、電線接続構造体10が外力により被覆圧着縮径部36またはその近傍で曲がった場合には、電線挿入口31側の止水部材51と導体絶縁層15とがずれたり変形したりするので、止水が解除されてしまう可能性がある。このような場合に水分が管状かしめ部30内部に浸入すると、吸水部材52によって吸収される。吸水部材52の材料を、吸収した水分を保持する材料にすれば、導体圧着縮径部35への水分の浸入をより確実に防止できる。また、トランジション部40側にもう一つの止水部材51が配置されており、この止水部材51も被覆圧着縮径部36においてかしめられている。この止水部材51は、電線挿入口31側の止水部材51による止水が解けても導体圧着縮径部35への水分の浸入を防止する作用がある。
このように、管状かしめ部30は、止水部材51、51及び吸水部材52によって導体圧着縮径部35への水分の浸入を確実に防止できるので、芯線14の腐食を抑制できる。
In this embodiment, the structure which has arrange | positioned the two water-stop members 51 and 51 and the one water absorption member 52 as shown in FIG. 2 as an example. That is, in the axial direction of the tubular caulking portion 30, the water stopping member 51, the water absorbing member 52, and the water stopping member 51 are arranged in this order from the transition portion 40 side. The water stop member 51 close to the electric wire insertion port 31 may reach the electric wire insertion port 31 or may be inside the electric wire insertion port 31. In the example of FIG. 2, the end of the water stop member 51 located on the transition portion 40 side is substantially at the same position as the tip of the conductor insulating layer 15, but the tip of the conductor insulating layer 15 protrudes from the water stop member 51. May be.
Since the water stop member 51 is caulked in the covering crimping reduced diameter portion 36 as described above, the wire insertion port 31 side is closed without any gap by the water stop member 51 and the conductor insulating layer 15. For this reason, the water is surely stopped so that moisture does not enter from the wire insertion port 31. The water absorbing member 52 is disposed in a space (region) where water is stopped by the water stopping member 51. As the action of the water absorbing member 52, the moisture is tubular beyond the action of removing the moisture inside the tubular caulking portion 30 which is a space stopped by the water stopping member 51 and the water stopping member 51 on the electric wire insertion port 31 side. The action of removing this water when entering the caulking portion 30 is mentioned. For example, when the electric wire connection structure 10 is bent by the external force at or near the covering crimping reduced diameter portion 36, the water stop member 51 on the electric wire insertion port 31 side and the conductor insulating layer 15 are displaced or deformed. There is a possibility that the water stop will be released. In such a case, when moisture enters the inside of the tubular caulking portion 30, it is absorbed by the water absorbing member 52. If the material of the water absorbing member 52 is a material that retains absorbed moisture, it is possible to more reliably prevent moisture from entering the conductor crimping reduced diameter portion 35. Further, another water-stop member 51 is disposed on the transition portion 40 side, and this water-stop member 51 is also caulked at the cover crimping reduced diameter portion 36. The water stop member 51 has an effect of preventing moisture from entering the conductor crimping reduced diameter portion 35 even when the water stop by the water stop member 51 on the wire insertion port 31 side is released.
As described above, the tubular caulking portion 30 can surely prevent moisture from entering the conductor crimping reduced diameter portion 35 by the water stop members 51, 51 and the water absorbing member 52, so that the corrosion of the core wire 14 can be suppressed.

管状かしめ部30における吸水部材の配置方法は図2の例に限定されない。
図4、図5、及び図6は、電線接続構造体10とは異なる構成例として、電線接続構造体10A〜10Eの構成を示す長手方向の断面図である。図4〜図6に示す電線接続構造体10A〜10Eは、管状端子11及び電線13を接合する際に被覆圧着縮径部36に吸水部材を配置する位置、および、止水部材と吸水部材との位置関係について、図2の電線接続構造体10以外の構成とした例である。
図4(A)に示す電線接続構造体10Aは、管状端子11と電線13とを圧着接合して構成される点は電線接続構造体10(図2)と同様である。電線接続構造体10Aでは、被覆圧着縮径部36に一つの止水部材51と一つの吸水部材52とが配置されている。止水部材51及び吸水部材52は上述のように環状に形成され、導体絶縁層15の外周を囲むように配置されて、被覆圧着縮径部36において圧着されている。止水部材51は電線挿入口31側に配置され、管状かしめ部30内部への水分の浸入を防止している。吸水部材52は、トランジション部40と止水部材51とによって止水された空間の内部に位置して、水分を吸収する。この構成においても、電線挿入口31側から導体圧着縮径部35への水分の浸入を防止し、芯線14の腐食を抑制できる。また、電線接続構造体10Aでは管状かしめ部30の内部において導体圧着縮径部35に繋がる空間に吸水部材52が接するので、この空間を乾燥状態に保つことができるという効果が期待できる。
The arrangement method of the water absorbing member in the tubular caulking portion 30 is not limited to the example of FIG.
FIGS. 4, 5, and 6 are longitudinal cross-sectional views showing configurations of the wire connection structures 10 </ b> A to 10 </ b> E as configuration examples different from the wire connection structure 10. The wire connection structures 10 </ b> A to 10 </ b> E shown in FIGS. 4 to 6 include a position where the water absorbing member is disposed in the cover crimping reduced diameter portion 36 when the tubular terminal 11 and the electric wire 13 are joined, and the water stopping member and the water absorbing member. It is the example which was set as the structure of those other than the electric wire connection structure 10 of FIG.
The wire connection structure 10A shown in FIG. 4A is the same as the wire connection structure 10 (FIG. 2) in that the tubular terminal 11 and the wire 13 are joined by pressure bonding. In the electric wire connection structure 10 </ b> A, one water-stop member 51 and one water-absorbing member 52 are arranged in the coated crimping reduced diameter portion 36. The water-stop member 51 and the water-absorbing member 52 are formed in an annular shape as described above, are disposed so as to surround the outer periphery of the conductor insulating layer 15, and are pressure-bonded at the cover crimping reduced diameter portion 36. The water stop member 51 is disposed on the electric wire insertion port 31 side, and prevents moisture from entering the tubular caulking portion 30. The water absorbing member 52 is located inside the space stopped by the transition portion 40 and the water stopping member 51 and absorbs moisture. Also in this configuration, it is possible to prevent moisture from entering the conductor crimping reduced diameter portion 35 from the wire insertion port 31 side and to suppress corrosion of the core wire 14. Further, in the electric wire connection structure 10A, since the water absorbing member 52 is in contact with the space connected to the conductor crimping reduced diameter portion 35 inside the tubular caulking portion 30, an effect that this space can be kept dry can be expected.

図4(B)に示す電線接続構造体10Bは、管状端子11と電線13とを圧着接合して構成される点は電線接続構造体10と同様である。電線接続構造体10Bでは、被覆圧着縮径部36に一つの吸水部材52が配置されている。吸水部材52は上述のように環状に形成され、導体絶縁層15の外周を囲むように配置されて、被覆圧着縮径部36において圧着されている。
吸水部材52は管状かしめ部30の長手方向(軸方向)において被覆圧着縮径部36の略中央に配置されている。また、この吸水部材52は電線挿入口31側に露出していない。この構成では止水部材51による止水がなされていないが、被覆圧着縮径部36において導体絶縁層15をかしめたことにより止水がなされている。従って、吸水部材52は止水された空間の内部に位置しているということができ、この空間において水分を吸収する。そして、電線挿入口31側から水分が管状かしめ部30内に浸入した場合に、この水分を吸水部材52が吸収することで、導体圧着縮径部35への水分の浸入を防止し、芯線14の腐食を抑制できる。
The wire connection structure 10B shown in FIG. 4B is the same as the wire connection structure 10 in that the tubular terminal 11 and the wire 13 are joined by pressure bonding. In the wire connection structure 10 </ b> B, one water absorbing member 52 is disposed in the coated crimping reduced diameter portion 36. The water absorbing member 52 is formed in an annular shape as described above, is disposed so as to surround the outer periphery of the conductor insulating layer 15, and is crimped by the coated crimping reduced diameter portion 36.
The water absorbing member 52 is disposed at the approximate center of the coated crimping reduced diameter portion 36 in the longitudinal direction (axial direction) of the tubular caulking portion 30. Further, the water absorbing member 52 is not exposed to the electric wire insertion port 31 side. In this configuration, water is not stopped by the water stop member 51, but water is stopped by caulking the conductor insulating layer 15 in the coated crimping reduced diameter portion 36. Therefore, it can be said that the water absorbing member 52 is located inside the water-stopped space, and absorbs moisture in this space. When moisture enters the tubular caulking portion 30 from the wire insertion port 31 side, the moisture absorbing member 52 absorbs this moisture, thereby preventing moisture from entering the conductor crimping reduced diameter portion 35 and the core wire 14. Corrosion can be suppressed.

図5(A)に示す電線接続構造体10Cは、管状端子11と電線13とを圧着接合して構成される点は電線接続構造体10と同様である。電線接続構造体10Cでは、電線挿入口31及びその近傍に吸水部材52Aが配置されている。吸水部材52Aは、上述した吸水部材52と同様にシート形状の吸水部材を環状に形成したものであり、電線13の外周を囲むように配置される。この吸水部材52Aは、管状かしめ部30の軸方向におけるサイズが吸水部材52より大きく、被覆圧着縮径部36の内部から外に跨がって配置されている。吸水部材52Aの先端部は被覆圧着縮径部36内部において電線13とともにかしめられ、吸水部材52Aの基端部は管状かしめ部30の外において露出している。電線接続構造体10Cが備える吸水部材52Aは、電線挿入口31において管状かしめ部30内に浸入する水分を吸収することにより、管状かしめ部30内部への水分の浸入を防止する。また、吸水部材52Aの材料が、非反応型の吸水剤を含むものであれば、電線接続構造体10Cの周囲が乾燥状態になると水分を放出するので、吸水能が復活し、再び水分の浸入を防止できるようになる。電線接続構造体10Cは、例えば乾燥していることが多い場所に設置されるハーネスの材料として好適である。   The wire connection structure 10C shown in FIG. 5A is the same as the wire connection structure 10 in that the tubular terminal 11 and the wire 13 are joined by pressure bonding. In the wire connection structure 10 </ b> C, the water absorption member 52 </ b> A is disposed in the wire insertion port 31 and the vicinity thereof. The water absorbing member 52 </ b> A is formed by annularly forming a sheet-shaped water absorbing member like the water absorbing member 52 described above, and is disposed so as to surround the outer periphery of the electric wire 13. The water absorbing member 52A is larger in size in the axial direction of the tubular caulking portion 30 than the water absorbing member 52, and is disposed so as to straddle from the inside of the coated crimping reduced diameter portion 36. The distal end portion of the water absorbing member 52A is caulked together with the electric wire 13 inside the coated crimping reduced diameter portion 36, and the proximal end portion of the water absorbing member 52A is exposed outside the tubular caulking portion 30. The water absorbing member 52 </ b> A included in the electric wire connection structure 10 </ b> C prevents moisture from entering the tubular caulking portion 30 by absorbing moisture that enters the tubular caulking portion 30 at the electric wire insertion port 31. In addition, if the material of the water absorbing member 52A includes a non-reactive water absorbing agent, water is released when the periphery of the wire connection structure 10C is in a dry state. Can be prevented. The electric wire connection structure 10C is suitable as a material for a harness that is installed in a place that is often dry, for example.

図5(B)に示す電線接続構造体10Dは、管状端子11と電線13とを圧着接合して構成される点は電線接続構造体10と同様である。電線接続構造体10Dでは、電線挿入口31の外側に吸水部材52Bが配置されている。吸水部材52Bは、上述した吸水部材52、52Aと同様にシート形状の吸水部材を環状に形成したものであり、電線13の外周を囲むように配置される。この吸水部材52Bは、管状かしめ部30の軸方向におけるサイズが吸水部材52より大きく、被覆圧着縮径部36の外側、すなわち管状かしめ部30の端に接する位置に配置されている。吸水部材52Bの先端は被覆圧着縮径部36の内部に無く、圧着されていない。電線接続構造体10Dは、例えば、管状端子11と電線13とを圧着接合した後で吸水部材52Bを巻き付けることにより製造することができる。
吸水部材52Bは、電線挿入口31から管状かしめ部30内に浸入しようとする水分を管状かしめ部30の外で吸収し、管状かしめ部30内部への水分の浸入を防止する。また、吸水部材52Bの材料が非反応型の吸水剤を含むものであれば、電線接続構造体10Dの周囲が乾燥状態になると速やかに水分を放出して吸水能が復活する。このため、電線接続構造体10Dは、例えば乾燥していることが多い場所に設置されるハーネスの材料として好適である。
The wire connection structure 10D shown in FIG. 5B is the same as the wire connection structure 10 in that the tubular terminal 11 and the wire 13 are joined by pressure bonding. In the electric wire connection structure 10 </ b> D, the water absorbing member 52 </ b> B is disposed outside the electric wire insertion port 31. The water absorbing member 52 </ b> B is formed by annularly forming a sheet-shaped water absorbing member in the same manner as the above-described water absorbing members 52 and 52 </ b> A, and is disposed so as to surround the outer periphery of the electric wire 13. The water absorbing member 52 </ b> B is larger in size in the axial direction of the tubular caulking portion 30 than the water absorbing member 52, and is disposed outside the covering crimping reduced diameter portion 36, that is, at a position in contact with the end of the tubular caulking portion 30. The tip of the water absorbing member 52B is not inside the coated crimping reduced diameter portion 36 and is not crimped. The electric wire connection structure 10D can be manufactured, for example, by winding the water absorbing member 52B after the tubular terminal 11 and the electric wire 13 are joined by pressure bonding.
The water absorbing member 52 </ b> B absorbs moisture to enter the tubular caulking portion 30 from the wire insertion port 31 outside the tubular caulking portion 30, and prevents moisture from entering the tubular caulking portion 30. Further, if the material of the water absorbing member 52B includes a non-reactive water absorbing agent, when the surroundings of the wire connection structure 10D are in a dry state, water is quickly released and the water absorbing ability is restored. For this reason, electric wire connection structure 10D is suitable as a material of the harness installed in the place where it is often dry, for example.

図6に示す電線接続構造体10Eは、管状端子11と電線13とを圧着接合して構成される点は電線接続構造体10と同様である。電線接続構造体10Eでは、被覆圧着縮径部36に一つの止水部材51と一つの吸水部材52とが配置されている。止水部材51及び吸水部材52は上述のように環状に形成され、導体絶縁層15の外周を囲むように配置されて、被覆圧着縮径部36において圧着されている。止水部材51はトランジション部40側に配置され、吸水部材52が電線挿入口31側に配置されている。このため、電線挿入口31から管状かしめ部30内に浸入しようとする水分は吸水部材52により吸収され、管状かしめ部30内部への水分の浸入が防止される。また、吸水部材52が吸収しきれない水分が浸入しても、止水部材51により止水されるため管状かしめ部30には水分が浸入しない。このため、より確実に導体圧着縮径部35への水分の浸入を防止できる。   The wire connection structure 10E shown in FIG. 6 is the same as the wire connection structure 10 in that the tubular terminal 11 and the wire 13 are joined by pressure bonding. In the electric wire connection structure 10 </ b> E, one water-stop member 51 and one water-absorbing member 52 are arranged in the coated crimping reduced diameter portion 36. The water-stop member 51 and the water-absorbing member 52 are formed in an annular shape as described above, are disposed so as to surround the outer periphery of the conductor insulating layer 15, and are pressure-bonded at the cover crimping reduced diameter portion 36. The water stop member 51 is disposed on the transition portion 40 side, and the water absorption member 52 is disposed on the wire insertion port 31 side. For this reason, the water | moisture content which is going to enter in the tubular crimping part 30 from the electric wire insertion port 31 is absorbed by the water absorption member 52, and the penetration | invasion of the water | moisture content in the tubular crimping part 30 is prevented. Further, even when water that cannot be absorbed by the water absorbing member 52 enters, the water is stopped by the water stopping member 51, so that the water does not enter the tubular caulking portion 30. For this reason, it is possible to more reliably prevent moisture from entering the conductor crimping reduced diameter portion 35.

続いて、電線接続構造体の製造方法について説明する。
図7〜図13は電線接続構造体10の第1の製造方法を示す説明図である。この第1の製造方法は、電線接続構造体10、及び、電線接続構造体10A、10B、10Eを製造する場合に好適である。
図7は、接合される管状端子11及び電線13の構成を示す斜視図であり、図8は管状端子11の構成を示す断面図である。図8(A)は管状端子11の長手方向の断面図、図8(B)は径方向の断面図である。
図7に示すように、圧着接合される前の管状端子11は、トランジション部40を介してボックス部20と繋がる管状部25を有する。管状部25は、トランジション部40に繋がる拡径部26と、略同径の筒部27とを有し、筒部27が上記の管状かしめ部30(図1)となる。
電線13はワイヤストリッパ等により先端部の導体絶縁層15が剥離され、芯線14が露出した状態で、筒部27に差し込まれる。
Then, the manufacturing method of an electric wire connection structure is demonstrated.
7-13 is explanatory drawing which shows the 1st manufacturing method of the electric wire connection structure 10. FIG. This 1st manufacturing method is suitable when manufacturing the electric wire connection structure 10 and electric wire connection structure 10A, 10B, 10E.
FIG. 7 is a perspective view illustrating the configuration of the tubular terminal 11 and the electric wire 13 to be joined, and FIG. 8 is a cross-sectional view illustrating the configuration of the tubular terminal 11. 8A is a sectional view in the longitudinal direction of the tubular terminal 11, and FIG. 8B is a sectional view in the radial direction.
As shown in FIG. 7, the tubular terminal 11 before being crimp-bonded has a tubular portion 25 connected to the box portion 20 via the transition portion 40. The tubular part 25 has an enlarged diameter part 26 connected to the transition part 40 and a tubular part 27 having substantially the same diameter, and the tubular part 27 becomes the tubular caulking part 30 (FIG. 1).
The electric wire 13 is inserted into the cylindrical portion 27 with the conductor insulating layer 15 at the tip end peeled off by a wire stripper or the like and the core wire 14 is exposed.

図8(A)及び(B)に示すように、筒部27の内周面には予め止水部材51及び吸水部材52が配置されている。止水部材51及び吸水部材52は、塗布や貼付等の方法により筒部27の内周面に付着して配置されており、図8(B)に示すように環状となっている。このため、筒部27に電線13を差し入れれば、止水部材51及び吸水部材52の内側に、電線13が配置される。   As shown in FIGS. 8A and 8B, a water stop member 51 and a water absorption member 52 are arranged in advance on the inner peripheral surface of the cylindrical portion 27. The water-stop member 51 and the water-absorbing member 52 are attached to the inner peripheral surface of the cylindrical portion 27 by a method such as application or sticking, and are annular as shown in FIG. For this reason, if the electric wire 13 is inserted in the cylinder part 27, the electric wire 13 will be arrange | positioned inside the water stop member 51 and the water absorption member 52. FIG.

図9は、管状端子11に電線13を圧着接合する工程の説明図であり、筒部27における横断面に相当する断面図である。図9中に、アンビル103の幅を符号Aで示し、アンビル103に設置した際の管状端子11の横幅(径)を符号Bで示す。
管状端子11と電線13とは、図9に示すように、クリンパ101とアンビル103とを用いて圧着接合され(かしめられ)る。クリンパ101は管状端子11を曲面により構成される圧着壁102を有し、アンビル103は、管状端子11を載せる受部104を有する。アンビル103の受部104は、管状部25の外形形状に対応する曲面とされている。管状端子11に電線13が挿入された状態で、受部104に管状端子11を載せて、図中矢印で示すようにクリンパ101を下降させることで、圧着壁102と受部104とにより管状部25が圧縮され、圧着接合される。
FIG. 9 is an explanatory diagram of a process of crimping and joining the electric wire 13 to the tubular terminal 11, and is a cross-sectional view corresponding to a transverse cross section of the cylindrical portion 27. In FIG. 9, the width of the anvil 103 is indicated by symbol A, and the lateral width (diameter) of the tubular terminal 11 when installed on the anvil 103 is indicated by symbol B.
As shown in FIG. 9, the tubular terminal 11 and the electric wire 13 are crimped and joined (crimped) using a crimper 101 and an anvil 103. The crimper 101 has a crimp wall 102 in which the tubular terminal 11 is formed of a curved surface, and the anvil 103 has a receiving portion 104 on which the tubular terminal 11 is placed. The receiving portion 104 of the anvil 103 is a curved surface corresponding to the outer shape of the tubular portion 25. With the wire 13 inserted in the tubular terminal 11, the tubular terminal 11 is placed on the receiving portion 104, and the crimper 101 is lowered as indicated by an arrow in the drawing, whereby the tubular portion is formed by the crimping wall 102 and the receiving portion 104. 25 is compressed and pressure bonded.

なお、図9には筒部27における断面を示しているため、芯線14の外側の導体絶縁層15と、吸水部材52と、筒部27とが図示されているが、クリンパ101及びアンビル103は、筒部27に限らず他の部分を圧縮できる。すなわち、クリンパ101及びアンビル103は、管状部25の拡径部26を除くほぼ全体を圧縮可能な奥行きを有する。このため、芯線14と管状部25とが圧着接合される部分と、導体絶縁層15を含めた電線13と管状部25とが圧着接合される部分との両方を、一対のクリンパ101及びアンビル103により一度で圧縮できる。また、これらの部位を別々に圧縮してもよい。
また、図9には筒部27の内径(吸水部材52の内側の空間の径)と電線13の外径とがほぼ等しく、電線13の周囲に空間がほとんど無い例を示しているが、本発明の適用範囲はこれに限定されない。電線13の外径が筒部27の内径(吸水部材52の内側の空間の径)より小さく、電線13の周囲に隙間が存在する状態で、図3に示すように圧着することも可能である。この場合も、圧縮により筒部27が縮径して、筒部27、止水部材51または吸水部材52及び導体絶縁層15が密着するので、電線13を管状端子11に確実に接合できる。
そして、圧着後の管状端子11は電線13とともに電線接続構造体10を構成する。
9 shows a cross section of the cylindrical portion 27, the conductor insulating layer 15, the water absorbing member 52, and the cylindrical portion 27 outside the core wire 14 are illustrated, but the crimper 101 and the anvil 103 are In addition to the cylindrical portion 27, other portions can be compressed. That is, the crimper 101 and the anvil 103 have a depth capable of compressing almost the entire portion excluding the enlarged diameter portion 26 of the tubular portion 25. For this reason, both the portion where the core wire 14 and the tubular portion 25 are pressure-bonded and the portion where the electric wire 13 including the conductor insulating layer 15 and the tubular portion 25 are pressure-bonded are connected to the pair of crimpers 101 and the anvil 103. Can be compressed at once. Moreover, you may compress these parts separately.
9 shows an example in which the inner diameter of the cylindrical portion 27 (the diameter of the space inside the water absorbing member 52) and the outer diameter of the electric wire 13 are substantially equal, and there is almost no space around the electric wire 13. The scope of the invention is not limited to this. In the state where the outer diameter of the electric wire 13 is smaller than the inner diameter of the cylindrical portion 27 (the diameter of the space inside the water absorbing member 52) and there is a gap around the electric wire 13, it can be crimped as shown in FIG. . Also in this case, the diameter of the cylindrical portion 27 is reduced by the compression, and the cylindrical portion 27, the water blocking member 51 or the water absorbing member 52, and the conductor insulating layer 15 are brought into close contact with each other.
And the tubular terminal 11 after crimping | combination comprises the electric wire connection structure 10 with the electric wire 13. FIG.

このようにして製造された電線接続構造体10では、図9に示した圧着工程により管状部25が塑性変形を起こして縮径されることで、芯線14の芯線先端部14bが管状端子11に接合される。図2に示したように、芯線先端部14bにはセレーション33が嵌合して、より強固に接合されている。導体圧着縮径部35は、管状かしめ部30において最も縮径率が高くなっている部分である。図1及び図2に示したように管状かしめ部30においては導体圧着縮径部35と被覆圧着縮径部36の縮径率が異なっているが、圧着壁102及び受部104の奥行き方向の形状や深さを導体圧着縮径部35と被覆圧着縮径部36に合わせて調整することにより、一度の圧着工程により必要な縮径率で管状かしめ部30を構成できる。   In the wire connection structure 10 manufactured in this way, the tubular portion 25 undergoes plastic deformation and is reduced in diameter by the crimping process shown in FIG. 9, so that the core wire tip portion 14 b of the core wire 14 becomes the tubular terminal 11. Be joined. As shown in FIG. 2, serrations 33 are fitted to the core wire tip end portion 14 b and are more firmly joined. The conductor crimping reduced diameter portion 35 is a portion having the highest diameter reduction ratio in the tubular caulking portion 30. As shown in FIGS. 1 and 2, in the tubular caulking portion 30, the diameter reduction ratios of the conductor crimping reduced diameter portion 35 and the coated crimping reduced diameter portion 36 are different, but the crimping wall 102 and the receiving portion 104 in the depth direction are different. By adjusting the shape and depth according to the conductor crimping reduced diameter portion 35 and the coated crimping reduced diameter portion 36, the tubular caulking portion 30 can be configured with a necessary diameter reduction ratio by a single crimping process.

管状かしめ部30においては、芯線14を強圧縮して導通を維持する機能と、導体絶縁層15を圧縮してシール性を維持する機能とが要求される。被覆圧着縮径部36では、その断面を略正円にかしめ、導体絶縁層15の全周に渡ってほぼ同等の圧力を与えることにより、全周に渡って均一な弾性反発力を発生させて、シール性を得ることが好ましい。しかしながら、実際の圧着工程では、図3に示すようにアンビル103とクリンパ101の上下からの挟み込みにより圧着加工するため、両工具間の隙間部に、管状端子11の金属材料がはみ出していく挙動が発生する。より具体的には、アンビル103の縁部105と圧着壁102との接触部に管状端子11がはみ出す挙動が発生する。この挙動は、アンビル103とクリンパ101との間に形成される圧縮空間が完全な円形とはならないために生じるので、アンビル103のサイズによらず発生し得る。つまり、図9にはアンビル103の幅Aが管状端子11の横幅Bより大きい場合を示しているが、アンビル103の幅Aのサイズが管状端子11の横幅Bより小さい場合であっても、上記の挙動は発生し得る。   The tubular caulking portion 30 is required to have a function of maintaining the electrical conductivity by strongly compressing the core wire 14 and a function of maintaining the sealing performance by compressing the conductor insulating layer 15. In the coated crimped reduced diameter portion 36, the cross section thereof is caulked into a substantially circular shape, and by applying substantially the same pressure over the entire circumference of the conductor insulating layer 15, a uniform elastic repulsive force is generated over the entire circumference. It is preferable to obtain a sealing property. However, in the actual crimping process, as shown in FIG. 3, since the anvil 103 and the crimper 101 are clamped from above and below, the metal material of the tubular terminal 11 protrudes into the gap between the two tools. Occur. More specifically, the behavior in which the tubular terminal 11 protrudes from the contact portion between the edge portion 105 of the anvil 103 and the crimping wall 102 occurs. This behavior occurs because the compression space formed between the anvil 103 and the crimper 101 does not become a perfect circle, and can occur regardless of the size of the anvil 103. That is, FIG. 9 shows the case where the width A of the anvil 103 is larger than the lateral width B of the tubular terminal 11, but even if the size of the width A of the anvil 103 is smaller than the lateral width B of the tubular terminal 11, This behavior can occur.

このため、図3に示したように、輪切り断面における被覆圧着縮径部36内面の形状は略正円とならず、上記工具間の隙間部に対応する部位37,37が外部へ出っ張った形状となってしまう。部位37、37の出っ張りは、クリンパ101及びアンビル103の当接位置に発生するので、クリンパ101及びアンビル103の奥行き方向に沿って発生する。従って、管状かしめ部30においては、導体圧着縮径部35にも同様の出っ張りが発生し、この出っ張りは管状かしめ部30の軸方向に伸びている。
部位37,37に対応する位置では、被覆圧着縮径部36から導体絶縁層15への圧力が不足し、被覆圧着縮径部36の内面と導体絶縁層15の表面との間に隙間が生じ、この隙間がリーク経路となって電線挿入口31側から管状かしめ部30内部に水分が浸入する懸念がある。
管状端子11の金属基材(銅または銅合金)と芯線14との接合部に水分が付着すると、両金属の起電力(イオン化傾向)の差から芯線14が腐食する。また、管状端子11と芯線14とがアルミニウム同士であっても微妙な合金組成の違いによって、それらの接合部は腐食しやすい。このため、電線接続構造体10において管状かしめ部30の内部に水分が侵入する構成では腐食の進行が心配される。
For this reason, as shown in FIG. 3, the shape of the inner surface of the coated crimping reduced diameter portion 36 in the cross-section is not a substantially circular shape, and the portions 37 and 37 corresponding to the gaps between the tools protrude to the outside. End up. Since the protrusions of the portions 37 and 37 occur at the contact positions of the crimper 101 and the anvil 103, they occur along the depth direction of the crimper 101 and the anvil 103. Therefore, in the tubular caulking portion 30, a similar bulge occurs in the conductor crimping reduced diameter portion 35, and this bulge extends in the axial direction of the tubular caulking portion 30.
At positions corresponding to the portions 37, 37, the pressure from the coated crimping reduced diameter portion 36 to the conductor insulating layer 15 is insufficient, and a gap is generated between the inner surface of the coated crimped reduced diameter portion 36 and the surface of the conductor insulating layer 15. There is a concern that moisture may enter the tubular caulking portion 30 from the side of the electric wire insertion port 31 as this gap becomes a leak path.
When moisture adheres to the joint between the metal base (copper or copper alloy) of the tubular terminal 11 and the core wire 14, the core wire 14 corrodes due to the difference in electromotive force (ionization tendency) between the two metals. Further, even if the tubular terminal 11 and the core wire 14 are made of aluminum, their joints are easily corroded due to a subtle difference in alloy composition. For this reason, in the configuration in which moisture enters the inside of the tubular caulking portion 30 in the wire connection structure 10, the progress of corrosion is a concern.

また、本実施形態では、管状かしめ部30には、管状部25の成形時に溶接された溶接ビード43がある。溶接の条件によっては、溶接ビード43にはひけが生じ、溶接ビード43の肉厚が減少するとともに、溶接ビード43のビードが平滑な内面ではなく不規則な凹凸構造を形成することにより、溶接ビード43付近の内面がリーク経路となることも懸念される。
また,溶接ビード43と隣接し、溶接による熱影響を受ける部位の強度が低下することにより、圧着加工時に溶接ビード43及びその付近が不均質変形を受けるため、溶接ビード43付近の内面がリーク経路となる可能性も考えられる。
また,アンビル103とクリンパ101の上下方向からの圧着加工では、管状かしめ部30の下側(アンビル103側)が、上側(クリンパ101側)よりも、受ける圧力が強い傾向にあるため、圧着後の導体絶縁層15の弾性反発力も、下側(アンビル103側)が上側(クリンパ101側)より強くなることがあった。このため、管状かしめ部30における上側(クリンパ101側)での弾性反発力が不足し、上側での導体絶縁層15と管状かしめ部30との界面全域がリーク経路となる可能性がある。
In the present embodiment, the tubular caulking portion 30 has a weld bead 43 welded when the tubular portion 25 is formed. Depending on the welding conditions, sink marks may occur in the weld bead 43, the thickness of the weld bead 43 is reduced, and the bead of the weld bead 43 forms an irregular concavo-convex structure instead of a smooth inner surface. There is also concern that the inner surface near 43 becomes a leak path.
Further, since the strength of a portion adjacent to the weld bead 43 and affected by heat due to welding is reduced, the weld bead 43 and the vicinity thereof are subjected to inhomogeneous deformation at the time of the crimping process. There is a possibility of becoming.
Further, in the crimping process of the anvil 103 and the crimper 101 from above and below, the pressure on the lower side (anvil 103 side) of the tubular caulking portion 30 tends to be stronger than the upper side (the crimper 101 side). The elastic repulsion force of the conductor insulating layer 15 sometimes became stronger on the lower side (anvil 103 side) than on the upper side (crimper 101 side). For this reason, the elastic repulsive force on the upper side (crimper 101 side) of the tubular caulking portion 30 is insufficient, and the entire interface area between the conductor insulating layer 15 and the tubular caulking portion 30 on the upper side may become a leakage path.

本実施形態に係る電線接続構造体10、及び電線接続構造体10A〜10Eでは、管状端子11と電線13とが圧着される管状かしめ部30に吸水部材を配置することにより、溶接ビード43や部位37、37に起因して生じる隙間から水分が浸入したとしても、この水分の導体圧着縮径部35への浸入を防止し、芯線14の腐食を抑制できる。   In the electric wire connection structure 10 and the electric wire connection structures 10A to 10E according to the present embodiment, the weld bead 43 and the parts are arranged by disposing a water absorbing member in the tubular caulking portion 30 to which the tubular terminal 11 and the electric wire 13 are crimped. Even if moisture enters from the gap generated due to 37, 37, the moisture can be prevented from entering the conductor crimping reduced diameter portion 35 and corrosion of the core wire 14 can be suppressed.

図10及び図11は、管状端子11の製造方法を示す説明図である。
図10(A)は管状端子11の長手方向における断面図であり、図10(B)は管状端子11を折り曲げ加工により形成する前の連鎖端子151を示し、管状端子11と連鎖端子151の各部との対応を破線で示す。なお、理解の便宜のため、止水部材51及び吸水部材52の表面をハッチングにより示す。
管状端子11の製造にあたっては、まず、長手形状の金属板である条150を打ち抜いて連鎖端子151を形成する。条150は、予め、金属材料(本実施形態では、銅または銅合金)にメッキや表面塗装等の処理が施され、テープ状にされたものである。連鎖端子151は、図10(B)に示すように、それぞれが一つの管状端子11となる端子成形片160が複数並び、各端子成形片160がテープ状の連結テープ164により連結された形状となっている。連鎖端子151は、条150を打ち抜いたものであるため、平板状である。連結テープ164には、条150から連鎖端子151を打ち抜く際に、同時に各々の端子成形片160の位置を示す位置決め穴165が打ち抜かれる。
端子成形片160は、折り曲げ加工によりボックス部20に成形されるボックス成形部161と、ボックス成形部161に連結され、折り曲げ加工によりボックス部20内部のスプリングに成形されるスプリング成形部162とを有する。また、ボックス成形部161には、曲げ加工により管状部25に成形される管状成形部163が繋がっている。
条150から連鎖端子151を打ち抜いた後、連鎖端子151の各部に対して折り曲げ加工または曲げ加工を施すことにより、連結テープ164により連結された複数の管状端子11を得ることができる。各々の管状端子11を連結テープ164から切り離すことで、管状端子11が完成する。
10 and 11 are explanatory views showing a method for manufacturing the tubular terminal 11.
FIG. 10A is a cross-sectional view in the longitudinal direction of the tubular terminal 11, and FIG. 10B shows the chain terminal 151 before the tubular terminal 11 is formed by bending, and each part of the tubular terminal 11 and the chain terminal 151. Is shown by a broken line. For convenience of understanding, the surfaces of the water stopping member 51 and the water absorbing member 52 are indicated by hatching.
In manufacturing the tubular terminal 11, first, the chain terminal 151 is formed by punching the strip 150 which is a long metal plate. The strip 150 is formed into a tape shape by applying a treatment such as plating or surface coating to a metal material (copper or copper alloy in this embodiment) in advance. As shown in FIG. 10 (B), the chain terminal 151 has a shape in which a plurality of terminal molded pieces 160 each forming one tubular terminal 11 are arranged, and each terminal molded piece 160 is connected by a tape-like connecting tape 164. It has become. Since the chain terminal 151 is formed by punching the strip 150, it has a flat plate shape. When the chain terminal 151 is punched from the strip 150, a positioning hole 165 indicating the position of each terminal molding piece 160 is punched into the connecting tape 164 at the same time.
The terminal molding piece 160 includes a box molding portion 161 that is molded into the box portion 20 by bending, and a spring molding portion 162 that is connected to the box molding portion 161 and is molded into a spring inside the box portion 20 by bending. . Further, the box forming portion 161 is connected to a tubular forming portion 163 that is formed into a tubular portion 25 by bending.
After punching the chain terminal 151 from the strip 150, each of the chain terminal 151 is bent or bent to obtain a plurality of tubular terminals 11 connected by the connecting tape 164. By disconnecting each tubular terminal 11 from the connecting tape 164, the tubular terminal 11 is completed.

管状部25の内部に設けられるセレーション33は、連鎖端子151、または、打ち抜き加工の前の条150に対してプレス処理等により形成することができる。
止水部材51及び吸水部材52は、連鎖端子151の状態で配置することができる。すなわち、管状成形部163を管状部25に成形した場合に筒部27に相当する部分に、予め、止水部材51及び吸水部材52を塗布や貼付等の方法により付着させる。この管状成形部163を曲げ加工して管状部25とすれば、管状部25が形成された時点で、既に筒部27の内周面に、環状の止水部材51及び吸水部材52が形成される。
The serrations 33 provided inside the tubular portion 25 can be formed by press processing or the like on the chain terminal 151 or the strip 150 before punching.
The water blocking member 51 and the water absorbing member 52 can be arranged in the state of the chain terminal 151. That is, when the tubular forming portion 163 is formed into the tubular portion 25, the water-stop member 51 and the water-absorbing member 52 are attached in advance to a portion corresponding to the tubular portion 27 by a method such as application or sticking. If the tubular molded portion 163 is bent to form the tubular portion 25, the annular water stop member 51 and the water absorbing member 52 are already formed on the inner peripheral surface of the tubular portion 27 when the tubular portion 25 is formed. The

止水部材51及び吸水部材52は、連鎖端子151を打ち抜く前の条150に付着させてもよい。
例えば図11(A)に示すように、条150において打ち抜き後に管状成形部163となる予定の位置に、止水部材51及び吸水部材52を付着させることができる。この方法を用いれば、止水部材51及び吸水部材52を無駄なく使用できるほか、打ち抜き加工の際に金型に止水部材51及び吸水部材52が付着しにくいという利点がある。
また、図11(B)に示すように、端子成形片160の位置にかかわらず条150の長手方向に伸びる領域の全体に止水部材51及び吸水部材52を付着させてもよい。止水部材51及び吸水部材52は筒部27の周面に沿って配置すればよいので、図11(B)のように条150の長手方向の全体に配置できる。この場合、条150の幅方向において止水部材51及び吸水部材52を付着させる位置を制御すればよく、条150の長手方向における位置決めが必要ないことから、速やかに処理できるという利点がある。
The water stopping member 51 and the water absorbing member 52 may be attached to the strip 150 before the chain terminal 151 is punched out.
For example, as shown in FIG. 11 (A), the water stop member 51 and the water absorbing member 52 can be attached to the positions where the tubular molded portion 163 is to be formed after punching in the strip 150. If this method is used, the water-stopping member 51 and the water-absorbing member 52 can be used without waste, and the water-stopping member 51 and the water-absorbing member 52 are less likely to adhere to the mold during punching.
Further, as shown in FIG. 11B, the water stop member 51 and the water absorbing member 52 may be attached to the entire region extending in the longitudinal direction of the strip 150 regardless of the position of the terminal molding piece 160. Since the water stop member 51 and the water absorption member 52 may be disposed along the peripheral surface of the cylindrical portion 27, the water stop member 51 and the water absorption member 52 can be disposed in the entire longitudinal direction of the strip 150 as shown in FIG. In this case, the position where the water blocking member 51 and the water absorbing member 52 are attached in the width direction of the strip 150 may be controlled, and positioning in the longitudinal direction of the strip 150 is not necessary.

また、管状成形部163を曲げ加工して管状部25を形成する方法としては、上述のように、管状成形部163の両端を突き合わせてレーザー溶接により接合する方法が挙げられるが、本発明はこれに限定されない。以下、管状成形部163の接合方法の別の例について説明する。   In addition, as a method of forming the tubular portion 25 by bending the tubular molded portion 163, as described above, there is a method in which both ends of the tubular molded portion 163 are abutted and joined by laser welding. It is not limited to. Hereinafter, another example of the joining method of the tubular molded portion 163 will be described.

図12は、管状端子の別の構成例として、管状端子11Aの構成を示す図である。図12(A)は斜視図、図12(B)は要部断面図である。
この管状端子11Aは、管状端子11と同様のボックス部20を有する。なお、理解の便宜のためボックス部20を仮想線で示す。
管状端子11Aは、トランジション部40Aを介してボックス部20と接続される管状部25Aを有する。管状部25Aは、トランジション部40Aから次第に大径となる拡径部26Aと、この拡径部26Aの縁部から筒状に延びる筒部27Aとからなる。管状部25Aは中空の管であり、管状部25Aの一端には電線13を挿入可能な電線挿入口31が開口している。また、管状部25Aの他端はトランジション部40Aに接続されている。電線挿入口31から管状部25Aに電線13を挿入し、筒部27Aを圧着工具によって圧縮することで管状端子11と電線13とが圧着接合され、電線接続構造体が形成される。
FIG. 12 is a diagram showing a configuration of a tubular terminal 11A as another configuration example of the tubular terminal. 12A is a perspective view, and FIG. 12B is a cross-sectional view of a main part.
The tubular terminal 11 </ b> A has a box portion 20 similar to the tubular terminal 11. For convenience of understanding, the box unit 20 is indicated by a virtual line.
11 A of tubular terminals have the tubular part 25A connected with the box part 20 via the transition part 40A. The tubular portion 25A includes an enlarged diameter portion 26A that gradually increases in diameter from the transition portion 40A, and a cylindrical portion 27A that extends in a cylindrical shape from the edge of the enlarged diameter portion 26A. The tubular portion 25A is a hollow tube, and an electric wire insertion port 31 into which the electric wire 13 can be inserted is opened at one end of the tubular portion 25A. The other end of the tubular portion 25A is connected to the transition portion 40A. The electric wire 13 is inserted into the tubular portion 25A from the electric wire insertion port 31 and the tubular portion 27A is compressed by a crimping tool, whereby the tubular terminal 11 and the electric wire 13 are crimped and joined to form an electric wire connection structure.

管状部25Aは、例えば、管状成形部163を断面C字形状に曲げ加工して構成される。ここで、管状成形部163の端部はさらに略直角に曲げられ、接合部において立ち上がり部45、45が形成される。このため、管状部25Aを閉じた管とする場合、立ち上がり部45の側面どうしが突き合わされて接合される。立ち上がり部45、45をレーザー溶接により接合する場合、レーザーの照射方向においては接合部(立ち上がり部)の深さがあるので、図12(B)に示すように、溶接ビード43Aは管状部25Aの外側にとどまり、管状部25Aの内表面に達しない。   For example, the tubular portion 25A is formed by bending the tubular molded portion 163 into a C-shaped cross section. Here, the end portion of the tubular molded portion 163 is further bent at a substantially right angle, and the rising portions 45 and 45 are formed at the joint portion. Therefore, when the tubular portion 25A is a closed tube, the side surfaces of the rising portion 45 are abutted and joined. When joining the rising portions 45, 45 by laser welding, since there is a depth of the joining portion (rising portion) in the laser irradiation direction, as shown in FIG. 12B, the weld bead 43A is formed of the tubular portion 25A. It stays outside and does not reach the inner surface of the tubular portion 25A.

図10〜図11で説明したように、管状部25Aを管状に成形する前に止水部材51及び吸水部材52を配置した場合、レーザー溶接によって管状部25Aの内周面まで高温に曝されると、止水部材51及び/または吸水部材52の変質を招く可能性がある。そこで、図12に示すように管状成形部163に立ち上がり部45を設けて、立ち上がり部45の立ち上がり(管状部25Aの外表面)側からレーザーを照射して溶接を行うと、溶接により高温となって溶解する部分が管状部25Aの内表面に達することがない。このため、既に付着している止水部材51及び吸水部材52に影響を与えることなく、管状部25Aを成形できるという利点がある。
また、トランジション部40Aにおいて管状部25Aの先端部を確実に閉塞させるため、トランジション部40Aにもレーザー溶接加工を施して、先端溶接部44を形成してもよい。
As described with reference to FIGS. 10 to 11, when the water stop member 51 and the water absorbing member 52 are arranged before the tubular portion 25 </ b> A is formed into a tubular shape, the inner peripheral surface of the tubular portion 25 </ b> A is exposed to a high temperature by laser welding. Then, there is a possibility that the water stopping member 51 and / or the water absorbing member 52 is deteriorated. Therefore, as shown in FIG. 12, when the tubular molded portion 163 is provided with a rising portion 45 and welding is performed by irradiating a laser from the rising portion 45 (outer surface of the tubular portion 25A) side, the temperature becomes high due to welding. Thus, the portion that dissolves does not reach the inner surface of the tubular portion 25A. For this reason, there exists an advantage that 25 A of tubular parts can be shape | molded, without affecting the water stop member 51 and the water absorption member 52 which have already adhered.
Further, in order to reliably close the distal end portion of the tubular portion 25A in the transition portion 40A, the distal end welded portion 44 may be formed by applying laser welding to the transition portion 40A.

図13は、管状端子の別の構成例として、管状端子11Bの構成を示す図である。図13(A)は斜視図、(B)は要部断面図である。
この管状端子11Bは、管状端子11と同様のボックス部20を有する。なお、理解の便宜のためボックス部20を仮想線で示す。
管状端子11Bは、トランジション部40Bを介してボックス部20と接続される管状部25Bを有する。管状部25Bは、トランジション部40Bから次第に大径となる拡径部26Bと、この拡径部26Bの縁部から筒状に延びる筒部27Bとからなる。管状部25Bは中空の管であり、管状部25Bの一端には電線13を挿入可能な電線挿入口31が開口している。また、管状部25Bの他端はトランジション部40Bに接続されている。電線挿入口31から管状部25Bに電線13を挿入し、筒部27Bを圧着工具によって圧縮することで管状端子11と電線13とが圧着接合され、電線接続構造体が形成される。
FIG. 13 is a diagram showing a configuration of a tubular terminal 11B as another configuration example of the tubular terminal. FIG. 13A is a perspective view, and FIG.
This tubular terminal 11 </ b> B has a box portion 20 similar to the tubular terminal 11. For convenience of understanding, the box unit 20 is indicated by a virtual line.
The tubular terminal 11B has a tubular part 25B connected to the box part 20 via the transition part 40B. The tubular portion 25B includes an enlarged diameter portion 26B that gradually increases in diameter from the transition portion 40B, and a cylindrical portion 27B that extends in a cylindrical shape from the edge of the enlarged diameter portion 26B. The tubular portion 25B is a hollow tube, and an electric wire insertion port 31 into which the electric wire 13 can be inserted is opened at one end of the tubular portion 25B. The other end of the tubular portion 25B is connected to the transition portion 40B. The electric wire 13 is inserted into the tubular portion 25B from the electric wire insertion port 31, and the tubular portion 27B is compressed by a crimping tool so that the tubular terminal 11 and the electric wire 13 are crimped and joined to form an electric wire connection structure.

管状部25Bは、例えば、管状成形部163を断面C字形状に曲げ加工して構成される。この際、管状成形部163の端部は相互に重ね合わされて重ね合わせ部46を形成する。この重ね合わせ部46に対して、重なり方向からレーザーを照射することにより、管状部25Bが閉じた管とされる。重ね合わせ部46をレーザー溶接により接合する場合、レーザーの照射方向において2枚の板材が重なっているので、図13(B)に示すように、溶接ビード43Bは管状部25Bの外側にとどまり、管状部25Bの内表面に達しない。
このため、レーザー溶接によって管状部25Bの内周面まで高温に曝されることがないため、止水部材51及び吸水部材52の変質を招かないように溶接を行うことができ、止水部材51及び吸水部材52に影響を与えることなく管状部25Bを成形できる。また、重ね合わせ部46は曲げ加工の工程を増やすことなく実現できるので、管状端子11Bの生産性への影響は軽微である。
この場合も、トランジション部40Bにおいて管状部25Bの先端部が確実に閉塞された構成とするため、トランジション部40Bにレーザー溶接加工を施して、先端溶接部44を形成してもよい。
The tubular portion 25B is configured, for example, by bending the tubular molded portion 163 into a C-shaped cross section. At this time, the end portions of the tubular molded portion 163 are overlapped with each other to form the overlapping portion 46. By irradiating the overlapping portion 46 with laser from the overlapping direction, the tubular portion 25B is closed. When the overlapping portion 46 is joined by laser welding, since the two plate materials are overlapped in the laser irradiation direction, the weld bead 43B remains outside the tubular portion 25B as shown in FIG. It does not reach the inner surface of the portion 25B.
For this reason, since the laser welding does not expose the inner peripheral surface of the tubular portion 25B to a high temperature, welding can be performed without causing alteration of the water-stopping member 51 and the water-absorbing member 52. And the tubular portion 25B can be formed without affecting the water absorbing member 52. Further, since the overlapping portion 46 can be realized without increasing the number of bending steps, the influence on the productivity of the tubular terminal 11B is negligible.
Also in this case, since the distal end portion of the tubular portion 25B is reliably closed in the transition portion 40B, the distal end weld portion 44 may be formed by performing laser welding on the transition portion 40B.

次に、電線接続構造体の第2の製造方法について説明する。
図14は電線接続構造体10の第2の製造方法を示す説明図である。この第2の製造方法は、電線接続構造体10、及び、電線接続構造体10A、10B、10C、10D、10Eを製造する場合に好適である。
図14は、接合される管状端子11及び電線13の構成を示す斜視図である。この図14に示すように、第2の製造方法では、電線13の先端部において導体絶縁層15に止水部材51及び吸水部材52を設ける。止水部材51及び吸水部材52は、導体絶縁層15の外側に巻き付け、或いは、環状に形成された止水部材51及び吸水部材52に電線13を挿通させることにより、配置される。また、止水部材51及び吸水部材52を配置する工程は、芯線14を露出させるために導体絶縁層15を剥離する工程の後に行ってもよいし、この工程の前に行ってもよい。また、図14には導体絶縁層15の外周面に止水部材51及び吸水部材52が密着した構成を図示しているが、止水部材51及び吸水部材52の内径が導体絶縁層15の外径より大きくてもよい。すなわち、図14に示す状態で、止水部材51及び吸水部材52と導体絶縁層15との間に隙間があってもよい。止水部材51及び吸水部材52を導体絶縁層15に止めるか否かは任意であり、電線13を電線挿入口31に挿入する際に、止水部材51及び吸水部材52を所望の位置に配置できればよい。
Next, the 2nd manufacturing method of an electric wire connection structure is demonstrated.
FIG. 14 is an explanatory view showing a second manufacturing method of the wire connection structure 10. This second manufacturing method is suitable for manufacturing the wire connection structure 10 and the wire connection structures 10A, 10B, 10C, 10D, and 10E.
FIG. 14 is a perspective view showing configurations of the tubular terminal 11 and the electric wire 13 to be joined. As shown in FIG. 14, in the second manufacturing method, a water stop member 51 and a water absorption member 52 are provided on the conductor insulating layer 15 at the tip end portion of the electric wire 13. The water-stop member 51 and the water-absorbing member 52 are arranged by winding the electric wire 13 through the water-stop member 51 and the water-absorbing member 52 that are formed around the conductor insulating layer 15 or formed in an annular shape. Further, the step of arranging the water blocking member 51 and the water absorbing member 52 may be performed after the step of peeling the conductor insulating layer 15 in order to expose the core wire 14 or may be performed before this step. 14 shows a configuration in which the water stop member 51 and the water absorption member 52 are in close contact with the outer peripheral surface of the conductor insulation layer 15, but the inner diameters of the water stop member 51 and the water absorption member 52 are outside the conductor insulation layer 15. It may be larger than the diameter. That is, in the state shown in FIG. 14, there may be a gap between the water stopping member 51 and the water absorbing member 52 and the conductor insulating layer 15. Whether or not to stop the water-stopping member 51 and the water-absorbing member 52 on the conductor insulating layer 15 is arbitrary, and the water-stopping member 51 and the water-absorbing member 52 are disposed at desired positions when the electric wire 13 is inserted into the electric wire insertion port 31. I can do it.

このように、本発明を適用した電線接続構造体10、10A〜10Eは、芯線14と芯線の外周に形成された導体絶縁層15とを有する電線13と、管状端子11とを圧着接合して構成され、導体絶縁層15の外表面の少なくとも一部に吸水部材52、52A、52B、52Cを配置し、吸水部材52、52A、52B、52Cは芯線14に接しない構成となっている。これにより、管状かしめ部30の内部、特に芯線14が露出した導体圧着縮径部35に対する水分の浸入を、より確実に防止できる。従って、導体圧着縮径部35における芯線14の腐食を抑制できる。   Thus, the electric wire connection structures 10, 10 </ b> A to 10 </ b> E to which the present invention is applied are obtained by pressure-bonding the electric wire 13 having the core wire 14 and the conductor insulating layer 15 formed on the outer periphery of the core wire and the tubular terminal 11. The water absorbing members 52, 52 A, 52 B, 52 C are arranged on at least a part of the outer surface of the conductor insulating layer 15, and the water absorbing members 52, 52 A, 52 B, 52 C are not in contact with the core wire 14. Thereby, the penetration | invasion of the water | moisture content to the inside of the tubular crimping part 30, especially the conductor crimping | compression-reducing diameter part 35 which the core wire 14 exposed can be prevented more reliably. Therefore, corrosion of the core wire 14 in the conductor crimping reduced diameter portion 35 can be suppressed.

次に、実施例について説明する。
(実施例1)
実施例1の電線接続構造体は、図2に示す電線接続構造体10の形態(a)を用い、管状端子11の基材として、古河電気工業製の銅合金FAS−680(厚さ0.25mm、H材)を用いた。FAS−680の合金組成は、ニッケル(Ni)を2.0〜2.8質量%、シリコン(Si)を0.45〜0.6質量%、亜鉛(Zn)を0.4〜0.55質量%、スズ(Sn)を0.1〜0.25質量%、およびマグネシウム(Mg)を0.05〜0.2質量%含有し、残部が銅(Cu)および不可避不純物である。
管状部25は、曲げ加工されたC字型断面の両端部を突き合わせ、内径3.2mmとなるようにレーザー溶接した。
Next, examples will be described.
Example 1
The wire connection structure of Example 1 uses the form (a) of the wire connection structure 10 shown in FIG. 2, and the copper alloy FAS-680 (thickness 0. 25 mm, H material). The alloy composition of FAS-680 is nickel (Ni) 2.0-2.8 mass%, silicon (Si) 0.45-0.6 mass%, zinc (Zn) 0.4-0.55. It contains 0.1% to 0.25% by mass of tin (Sn) and 0.05 to 0.2% by mass of magnesium (Mg), with the balance being copper (Cu) and inevitable impurities.
The tubular portion 25 was subjected to laser welding so that both end portions of the bent C-shaped cross section were butted to have an inner diameter of 3.2 mm.

電線13の芯線14は、合金組成が鉄(Fe)を約0.2質量%、銅(Cu)を約0.2質量%、マグネシウム(Mg)を約0.1質量%、シリコン(Si)を約0.04質量%、残部がアルミニウム(Al)および不可避不純物であるアルミ合金線(線径0.42mm)を素線14aとして用いた。この素線14aを19本用いて2.5sq、19本撚りの芯線14にした。 また、電線13の導体絶縁層15は、ハロゲンフリー樹脂としてエチレン酢酸ビニル共重合体を用いた。導体絶縁層15は、芯線14の周囲を外径が2.8mmとなるように押出し法により形成した。   The core wire 14 of the electric wire 13 has an alloy composition of about 0.2% by mass of iron (Fe), about 0.2% by mass of copper (Cu), about 0.1% by mass of magnesium (Mg), and silicon (Si). Is about 0.04 mass%, the balance is aluminum (Al) and an aluminum alloy wire (wire diameter 0.42 mm) which is an unavoidable impurity. 19 strands 14a were used to form a core wire 14 of 2.5 sq, 19 strands. Moreover, the conductor insulating layer 15 of the electric wire 13 used the ethylene vinyl acetate copolymer as halogen-free resin. The conductor insulating layer 15 was formed by an extrusion method around the core wire 14 so that the outer diameter was 2.8 mm.

電線13は、ワイヤストリッパを用いて電線端部の導体絶縁層15を剥離して芯線14を露出させた。この状態で電線13を管状端子11の管状部25に差し込み、管状部25のうち筒部27をクリンパ101及びアンビル103を用いて部分的に強圧縮することで圧着結合した。   The electric wire 13 peeled off the conductor insulating layer 15 at the end of the electric wire using a wire stripper to expose the core wire 14. In this state, the electric wire 13 was inserted into the tubular portion 25 of the tubular terminal 11, and the tubular portion 27 of the tubular portion 25 was partly strongly compressed by using the crimper 101 and the anvil 103 to be bonded by pressure bonding.

吸水部材及び止水部材の構成は、図2に示した止水部材51、吸水部材52の態様とした。吸水部材52としては、不織布にポリアクリル酸塩架橋体である高吸水性樹脂を塗布したテープである、三洋化成工業株式会社製 アクアパール(登録商標)E−200(0.1mm厚)を環状にしたものを用いた。また、止水部材51としては、シリコンゴムシート(0.1mm厚)を用いた。   The water absorbing member and the water stopping member are configured as the water stopping member 51 and the water absorbing member 52 shown in FIG. As the water absorbing member 52, an aqua pearl (registered trademark) E-200 (0.1 mm thickness) manufactured by Sanyo Chemical Industries, Ltd., which is a non-woven fabric coated with a highly water-absorbing resin, which is a crosslinked polyacrylate, is circular. What was made into was used. Moreover, as the water stop member 51, a silicon rubber sheet (0.1 mm thickness) was used.

環境試験は、以下の手順で試験1、2の2種類の試験を実施した。
(試験1)
電線接続構造体10の管状端子11をキャビティに挿入し、電線側が天井、端子側が地面向きになるようにして、キャビティが中空に浮くように試験装置にセットし、塩水噴霧試験を行った。
塩水噴霧試験は、5質量%塩水を35℃に調整し、連続で1000時間噴霧した。
その後、四端子法を用いて、導体圧着縮径部35と、芯線14の管状端子11が取り付けられていない側の端部との電気抵抗を測定した。更に、電気抵抗を測定した後に、管状端子11を解体して管状かしめ部30内の芯線14の腐食(劣化)状況を目視で確認・評価した。上記の四端子法による電気抵抗の測定は環境試験前にも実行し、環境試験前後の電気抵抗の変化を評価した。
In the environmental test, two types of tests 1 and 2 were performed in the following procedure.
(Test 1)
The tubular terminal 11 of the electric wire connection structure 10 was inserted into the cavity, the electric wire side was set to the ceiling, and the terminal side was directed to the ground.
In the salt spray test, 5% by weight salt water was adjusted to 35 ° C. and sprayed continuously for 1000 hours.
Thereafter, the electrical resistance between the conductor crimping reduced diameter portion 35 and the end portion of the core wire 14 on the side where the tubular terminal 11 is not attached was measured using a four-terminal method. Furthermore, after measuring the electrical resistance, the tubular terminal 11 was disassembled, and the corrosion (deterioration) state of the core wire 14 in the tubular caulking portion 30 was visually confirmed and evaluated. The measurement of the electrical resistance by the above four-terminal method was performed before the environmental test, and the change in the electrical resistance before and after the environmental test was evaluated.

(試験2)
電線13の一端と管状端子11とをそれぞれ把持し、管状端子11の端部にて電線13を屈曲させる動作を繰り返して、屈曲負荷を100回与えた。
次に、管状端子11をキャビティに挿入し、電線側が天井、端子側が地面向きになるようにして、キャビティが中空に浮くように試験装置にセットし、塩水噴霧試験を行った。塩水噴霧試験は、5質量%塩水を35℃に調整し、連続で1000時間噴霧した。
その後、四端子法を用いて、導体圧着縮径部35と、芯線14の管状端子11が取り付けられていない側の端部との電気抵抗を測定した。更に、電気抵抗を測定した後に、管状端子11を解体して管状かしめ部30内の芯線14の腐食(劣化)状況を目視で確認・評価した。上記の四端子法による電気抵抗の測定は環境試験前にも実行し、環境試験前後の電気抵抗の変化を評価した。
(Test 2)
One end of the electric wire 13 and the tubular terminal 11 were respectively gripped, and the operation of bending the electric wire 13 at the end of the tubular terminal 11 was repeated to give a bending load 100 times.
Next, the tubular terminal 11 was inserted into the cavity, and the electric wire side was set to the ceiling and the terminal side was directed to the ground. In the salt spray test, 5% by weight salt water was adjusted to 35 ° C. and sprayed continuously for 1000 hours.
Thereafter, the electrical resistance between the conductor crimping reduced diameter portion 35 and the end portion of the core wire 14 on the side where the tubular terminal 11 is not attached was measured using a four-terminal method. Furthermore, after measuring the electrical resistance, the tubular terminal 11 was disassembled, and the corrosion (deterioration) state of the core wire 14 in the tubular caulking portion 30 was visually confirmed and evaluated. The measurement of the electrical resistance by the above four-terminal method was performed before the environmental test, and the change in the electrical resistance before and after the environmental test was evaluated.

(実施例2)
図4(A)に示した電線接続構造体10Aの形態(b)を用いた。すなわち、止水部材51と吸水部材52とを1個ずつ配置した。他の条件及び環境試験は実施例1と同一とした。
(Example 2)
The form (b) of the wire connection structure 10A shown in FIG. 4 (A) was used. That is, the water stop member 51 and the water absorption member 52 are arranged one by one. Other conditions and environmental tests were the same as in Example 1.

(実施例3)
図4(B)に示した電線接続構造体10Bの形態(c)を用いた。すなわち、止水部材51を配置せず、一つの吸水部材52を配置した。他の条件及び環境試験は実施例1と同一とした。
(Example 3)
The form (c) of the wire connection structure 10B shown in FIG. 4 (B) was used. That is, one water absorbing member 52 is arranged without arranging the water stopping member 51. Other conditions and environmental tests were the same as in Example 1.

(実施例4)
図5(A)に示した電線接続構造体10Cの形態(d)を用いた。すなわち、止水部材51を配置せず、管状かしめ部30の内外に跨がって配置される吸水部材52Aを用いた。他の条件及び環境試験は実施例1と同一とした。
Example 4
The form (d) of the wire connection structure 10C shown in FIG. 5 (A) was used. That is, the water absorbing member 52 </ b> A that is disposed across the inside and outside of the tubular caulking portion 30 without using the water stopping member 51 is used. Other conditions and environmental tests were the same as in Example 1.

(実施例5)
図5(B)に示した電線接続構造体10Dの形態(e)を用いた。すなわち、止水部材51を配置せず、管状かしめ部30の外に接する吸水部材52Bを用いた。他の条件及び環境試験は実施例1と同一とした。
(Example 5)
The form (e) of the wire connection structure 10D shown in FIG. 5 (B) was used. That is, the water absorbing member 52 </ b> B that contacts the outside of the tubular caulking portion 30 without using the water stopping member 51 is used. Other conditions and environmental tests were the same as in Example 1.

(実施例6)
図6に示した電線接続構造体10E(f)の形態を用いた。すなわち、被覆圧着縮径部36の内部において止水部材51をトランジション部40側に、吸水部材52を電線挿入口31側に配置した。他の条件及び環境試験は実施例1と同一とした。
(Example 6)
The form of the wire connection structure 10E (f) shown in FIG. 6 was used. That is, the water-stop member 51 is disposed on the transition portion 40 side and the water-absorbing member 52 is disposed on the wire insertion port 31 side in the inside of the coated crimping reduced diameter portion 36. Other conditions and environmental tests were the same as in Example 1.

(比較例1)
比較例1の電線接続構造体は、図15(A)に示すように、吸水部材を配置しない電線接続構造体12Aの形態(g)を用いた。電線接続構造体12Aは、図2に示した電線接続構造体10において吸水部材52を廃し、被覆圧着縮径部36の内部に止水部材51Aを配置したものである。止水部材51Aは、導体絶縁層15の先端位置から電線挿入口31にかけて、導体絶縁層15の外周を覆う環状に形成した。止水部材51Aの材料は、実施例1の止水部材51と同様とした。他の条件は実施例1と同一とした。この電線接続構造体12Aを用いて、実施例1と同様に試験1、2を行った。
(Comparative Example 1)
As shown in FIG. 15 (A), the wire connection structure of Comparative Example 1 used the form (g) of the wire connection structure 12A in which the water absorbing member is not disposed. The wire connection structure 12 </ b> A is obtained by eliminating the water absorbing member 52 in the wire connection structure 10 shown in FIG. 2 and arranging a water stop member 51 </ b> A inside the coated crimping reduced diameter portion 36. The water stop member 51 </ b> A was formed in an annular shape covering the outer periphery of the conductor insulating layer 15 from the tip position of the conductor insulating layer 15 to the wire insertion port 31. The material of the water stop member 51A was the same as that of the water stop member 51 of Example 1. Other conditions were the same as in Example 1. Tests 1 and 2 were performed in the same manner as in Example 1 by using this wire connection structure 12A.

(比較例2)
比較例2の電線接続構造体は、図15(B)に示すように、吸水部材52Cを被覆圧着縮径部36内部に配置し、止水部材を配置しない電線接続構造体12Bの形態(h)を用いた。電線接続構造体12Bは、図2に示した電線接続構造体10において止水部材を廃し、被覆圧着縮径部36の内部に、導体絶縁層15と芯線14とに跨がるように吸水部材52Cを配置したものである。すなわち、吸水部材52Cを、導体絶縁層15が剥離されて露出した芯線14と、導体絶縁層15の先端部とにわたって、外周を囲んだ構成とした。吸水部材52Cの材料は、実施例1の吸水部材52と同様とした。他の条件は実施例1と同一とした。この電線接続構造体12Bを用いて、実施例1と同様に試験1、2を行った。
(Comparative Example 2)
As shown in FIG. 15 (B), the electric wire connection structure of Comparative Example 2 has a configuration (h) of the electric wire connection structure 12B in which the water absorbing member 52C is arranged inside the coated crimping reduced diameter portion 36 and the water stop member is not arranged. ) Was used. The wire connection structure 12B eliminates the water-stopping member in the wire connection structure 10 shown in FIG. 2, and the water-absorbing member so as to straddle the conductor insulating layer 15 and the core wire 14 inside the coated crimping reduced diameter portion 36. 52C is arranged. That is, the water absorbing member 52 </ b> C has a configuration that surrounds the outer periphery of the core wire 14 that is exposed when the conductor insulating layer 15 is peeled off and the tip of the conductor insulating layer 15. The material of the water absorbing member 52C was the same as that of the water absorbing member 52 of Example 1. Other conditions were the same as in Example 1. Tests 1 and 2 were performed in the same manner as in Example 1 by using this wire connection structure 12B.

(比較例3)
比較例3の電線接続構造体は、図15(C)に示すように、電線接続構造体10(図2)の止水部材51及び吸水部材52を配置しない電線接続構造体12Cの形態(i)を用いた。他の条件は実施例1と同一とした。この電線接続構造体12Cを用いて、実施例1と同様に試験1、2を行った。
(Comparative Example 3)
As shown in FIG. 15C, the wire connection structure of Comparative Example 3 is a form (i) of the wire connection structure 12C in which the water stop member 51 and the water absorption member 52 of the wire connection structure 10 (FIG. 2) are not arranged. ) Was used. Other conditions were the same as in Example 1. Tests 1 and 2 were performed in the same manner as in Example 1 using the wire connection structure 12C.

上記した実施例1〜12、比較例1〜2の試験結果を表1に示す。
この表1では、腐食試験観察評価について4段階に区分けして評価した。
<腐食試験観察評価>
管状かしめ部30内の芯線14の腐食状況を目視によりA〜Dの4段階の評価をした。
◎…腐食なし。
○…芯線の一部に表面の変色が見られる。
△…芯線の一部に腐食が見られる。
×…芯線の大部分が腐食している。
なお、この評価において、露出した導体(芯線)表面の80%以上が変色(腐食)したものを大部分、10%を下回ったものを一部とする。

Figure 2014164959
Table 1 shows the test results of Examples 1 to 12 and Comparative Examples 1 and 2 described above.
In Table 1, the corrosion test observation evaluation was divided into four stages and evaluated.
<Corrosion test observation evaluation>
The corrosion state of the core wire 14 in the tubular caulking portion 30 was visually evaluated in four stages A to D.
◎… No corrosion.
○: Discoloration of the surface is seen on part of the core wire
Δ: Corrosion is observed on a part of the core wire.
X: Most of the core wire is corroded.
In this evaluation, 80% or more of the exposed conductor (core wire) surface is discolored (corroded), and most of the surface is less than 10%.
Figure 2014164959

この表1に示す通り、吸水部材を配置した実施例1〜6では、試験1及び試験2の腐食試験において、芯線14に変色を呈したのみであり、留意すべき腐食は見られないという優れた結果が得られた。また、比較例1においては止水部材51Aを配置したことにより試験1では好ましい結果が得られたが、より厳しい試験2においては芯線14の腐食が見られた。また、比較例2においては吸水部材を配置したが、試験2において芯線14の腐食が発生した。これらの結果から、管状端子11と電線13とを圧着接合する圧着部である管状かしめ部30に、吸水部材を配置することにより、芯線14の腐食を効果的に抑制できることが明らかになった。また、実施例1〜6と比較例2との結果の比較から、吸水部材は、管状かしめ部30の内部において、導体絶縁層15が剥離された芯線14に接しないように配置すると、芯線14の腐食を顕著に抑制することができ、好ましいといえる。   As shown in Table 1, in Examples 1 to 6 in which the water absorbing members are arranged, only the core wire 14 was discolored in the corrosion tests of Test 1 and Test 2, and excellent corrosion that attention should be paid was not observed. Results were obtained. Further, in Comparative Example 1, a favorable result was obtained in Test 1 by arranging the water-stop member 51A, but in the more severe Test 2, corrosion of the core wire 14 was observed. In Comparative Example 2, a water absorbing member was disposed, but in Test 2, corrosion of the core wire 14 occurred. From these results, it has been clarified that the corrosion of the core wire 14 can be effectively suppressed by arranging the water absorbing member in the tubular caulking portion 30 which is a crimping portion for crimping and joining the tubular terminal 11 and the electric wire 13. Further, from the comparison of the results of Examples 1 to 6 and Comparative Example 2, when the water absorbing member is arranged in the tubular caulking portion 30 so as not to contact the core wire 14 from which the conductor insulating layer 15 has been peeled off, the core wire 14 It can be said that it is possible to significantly suppress corrosion of the steel.

10 電線接続構造体
11、11A、11B 管状端子(端子)
13 電線
14 芯線
15 導体絶縁層
20 ボックス部
25、25A、25B 管状部(圧着予定部)
27、27A、27B 筒部
30 管状かしめ部(圧着部)
33 セレーション
35 導体圧着縮径部
36 被覆圧着縮径部
40、40A、40B トランジション部
51、51A、51B 止水部材
52、52A、52B、52C 吸水部材
10 Wire connection structure 11, 11A, 11B Tubular terminal (terminal)
13 Electric wire 14 Core wire 15 Conductor insulation layer 20 Box part 25, 25A, 25B Tubular part (part to be crimped)
27, 27A, 27B Cylinder part 30 Tubular caulking part (crimp part)
33 Serration 35 Conductor crimping reduced diameter part 36 Covering crimping reduced diameter part 40, 40A, 40B Transition part 51, 51A, 51B Water stop member 52, 52A, 52B, 52C Water absorption member

Claims (12)

芯線と前記芯線の外周に形成された導体絶縁層とを有する電線と、導体からなる管状端子とが圧着結合した電線接続構造体であって、
前記導体絶縁層の外表面の少なくとも一部に吸水部材を配置し、前記吸水部材は前記芯線に接しないことを特徴とする電線接続構造体。
An electric wire connection structure in which an electric wire having a core wire and a conductor insulating layer formed on the outer periphery of the core wire, and a tubular terminal made of a conductor are pressure-bonded,
A wire connection structure, wherein a water absorbing member is disposed on at least a part of an outer surface of the conductor insulating layer, and the water absorbing member does not contact the core wire.
前記吸水部材は前記導体絶縁層と前記管状端子との間に配置されたことを特徴とする請求項1記載の電線接続構造体。   The wire connection structure according to claim 1, wherein the water absorbing member is disposed between the conductor insulating layer and the tubular terminal. 前記管状端子は電線挿入口を有し、前記吸水部材は前記電線挿入口及び前記導体絶縁層と密着するように配置されていることを特徴とする請求項1又は2記載の電線接続構造体。   The wire connection structure according to claim 1 or 2, wherein the tubular terminal has an electric wire insertion opening, and the water absorbing member is disposed so as to be in close contact with the electric wire insertion opening and the conductor insulating layer. 前記導体絶縁層と前記管状端子との間に更に止水部材が配置されており、前記止水部材と前記吸水部材とが隣接するように配置されたことを特徴とする請求項1乃至3いずれかに記載の電線接続構造体。   4. The water stop member is further disposed between the conductor insulating layer and the tubular terminal, and the water stop member and the water absorption member are disposed adjacent to each other. The electric wire connection structure of crab. 軸方向において前記吸水部材が前記止水部材に挟まれるように配置されたことを特徴とする請求項4記載の電線接続構造体。   The electric wire connection structure according to claim 4, wherein the water absorbing member is disposed so as to be sandwiched between the water stopping members in the axial direction. 前記管状端子の一端が閉塞されており、前記管状端子の他端において前記管状端子と前記電線との間に前記止水部材が配置されたことを特徴とする請求項4又は5記載の電線接続構造体。   The wire connection according to claim 4 or 5, wherein one end of the tubular terminal is closed, and the water stop member is disposed between the tubular terminal and the wire at the other end of the tubular terminal. Structure. 前記吸水部材は、水を吸着保持する吸水性材料から構成されることを特徴とする請求項1乃至6いずれかに記載の電線接続構造体。   The wire connection structure according to any one of claims 1 to 6, wherein the water absorbing member is made of a water absorbing material that adsorbs and holds water. 前記止水部材は弾性または可塑性を有する材料により構成されたことを特徴とする請求項4乃至6いずれかに記載の電線接続構造体。   The wire connection structure according to any one of claims 4 to 6, wherein the water stop member is made of a material having elasticity or plasticity. 前記吸水部材は、吸水性樹脂または吸水性樹脂を含むシート状の吸水性部材であることを特徴とする請求項1乃至8のいずれかに記載の電線接続構造体。   The wire connection structure according to any one of claims 1 to 8, wherein the water absorbing member is a water absorbing resin or a sheet-like water absorbing member containing a water absorbing resin. 前記管状端子は銅または銅合金からなり、前記芯線はアルミニウムまたはアルミニウム合金からなることを特徴とする請求項1乃至12のいずれかに記載の電線接続構造体。   The wire connection structure according to any one of claims 1 to 12, wherein the tubular terminal is made of copper or a copper alloy, and the core wire is made of aluminum or an aluminum alloy. 電線とともに圧着されて接合される管状の圧着予定部を有し、前記圧着予定部に吸水部材が配置されたことを特徴とする端子。   A terminal having a tubular crimping portion to be bonded together by being crimped together with an electric wire, and a water absorbing member disposed in the crimping portion. 前記吸水部材は、前記圧着予定部の軸方向における少なくとも一部に、前記圧着予定部の内周面に沿って環状に配置されたことを特徴とする請求項11記載の端子。   The terminal according to claim 11, wherein the water absorbing member is arranged in an annular shape along an inner peripheral surface of the to-be-crimped portion at least at a part in the axial direction of the to-be-crimped portion.
JP2013034052A 2013-02-24 2013-02-24 Electric wire connection structure and terminal Pending JP2014164959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013034052A JP2014164959A (en) 2013-02-24 2013-02-24 Electric wire connection structure and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013034052A JP2014164959A (en) 2013-02-24 2013-02-24 Electric wire connection structure and terminal

Publications (1)

Publication Number Publication Date
JP2014164959A true JP2014164959A (en) 2014-09-08

Family

ID=51615410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013034052A Pending JP2014164959A (en) 2013-02-24 2013-02-24 Electric wire connection structure and terminal

Country Status (1)

Country Link
JP (1) JP2014164959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085304A (en) * 2016-11-25 2018-05-31 日立金属株式会社 Wiring harness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085304A (en) * 2016-11-25 2018-05-31 日立金属株式会社 Wiring harness

Similar Documents

Publication Publication Date Title
KR101505793B1 (en) Method for manufacturing electrical wiring connection structure body, and electrical wiring connection structure body
JP6438670B2 (en) Connection structure of crimp terminal and electric wire
JP5657179B1 (en) Connection structure, connector, method for manufacturing connection structure, electric wire connection structure, and tubular terminal
JP5521123B1 (en) Connection structure, connector, and manufacturing method of connection structure
JP5995799B2 (en) Connection structure, connector, and connection method
JP2016129149A (en) Wire connection structure
JP5787919B2 (en) Terminal and wire connection structure
JP5654161B2 (en) Wire connection structure, connector, method for manufacturing wire connection structure, and die for crimping
WO2012060151A1 (en) Terminal-attached wire and method of manufacturing terminal-attached wire
JP2014164961A (en) Electric wire connection structure
KR102000372B1 (en) Electrical wire-connecting structure and method for manufacturing electrical wire-connecting structure
JP2014164957A (en) Electric wire connection structure
JP6007125B2 (en) Manufacturing method of electric wire connection structure
WO2015108011A1 (en) Terminal and electric-wire connection structure for terminal
JP2014164959A (en) Electric wire connection structure and terminal
JP6372975B2 (en) Wire connection structure
JP6182326B2 (en) Manufacturing method of terminal and manufacturing method of electric wire connection structure
JP5778197B2 (en) Electric wire connection structure and electric wire
JP2014164956A (en) Electric wire connection structure
JP2018092739A (en) Electric wire with terminal, terminal, manufacturing method of electric wire with terminal, and wiring harness
JP6935310B2 (en) Manufacturing method of electric wire with terminal
JP2014164954A (en) Wire connection structure, method and apparatus of manufacturing wire connection structure
JP2014160577A (en) Crimp terminal and wire harness using crimp terminal
JP6372971B2 (en) Electric wire connection structure and method of manufacturing electric wire connection structure